
Parameterized Object Sensitivity for Points-to and
Side-Effect Analyses for Java

Ana Milanova Atanas Rountev Barbara G. Ryder
Department of Computer Science

Rutgers University
New Brunswick, NJ 08901

{milanova,rountev,ryder}@cs.rutgers.edu

ABSTRACT
The goal of points-to analysis for Java is to determine the set
of objects pointed to by a reference variable or a reference
objet field. Improving the precision of practical points-to
analysis is important because points-to information has a
wide variety of client applications in optimizing compilers
and software engineering tools. In this paper we present
object sensitivity, a new form of context sensitivity for flow-
insensitive points-to analysis for Java. The key idea of our
approach is to analyze a method separately for each of the
objects on which this method is invoked. To ensure flexibil-
ity and practicality, we propose a parameterization frame-
work that allows analysis designers to control the tradeoffs
between cost and precision in the object-sensitive analysis.

Side-effect analysis determines the memory locations that
may be modified by the execution of a program statement.
This information is needed for various compiler optimiza-
tions and software engineering tools. We present a new
form of side-effect analysis for Java which is based on object-
sensitive points-to analysis.

We have implemented one instantiation of our parameter-
ized object-sensitive points-to analysis. We compare this
instantiation with a context-insensitive points-to analysis
for Java which is based on Andersen’s analysis for C [4].
On a set of 23 Java programs, our experiments show that
the two analyses have comparable cost. In some cases the
object-sensitive analysis is actually faster than the context-
insensitive analysis. Our results also show that object sensi-
tivity significantly improves the precision of side-effect anal-
ysis, call graph construction, and virtual call resolution.
These experiments demonstrate that object-sensitive anal-
yses can achieve significantly better precision than context-
insensitive ones, while at the same time remaining efficient
and practical.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA’02,July 22-24,2002, Roma, Italy
Copyright 2002 ACM 1-58113-562-9/02/0007...$5.00

1. INTRODUCTION
Points-to analysis is a fundamental static analysis used by

optimizing Java compilers and software engineering tools to
determine the set of objects whose addresses may be stored
in reference variables and reference object fields. These
points-to sets are typically computed by constructing one
or more points-to graphs, which serve as abstractions of the
run-time memory states of the analyzed program. (An ex-
ample of a points-to graph is shown in Figure 1, which is
discussed in Section 2.1)

Optimizing Java compilers can use points-to information
to perform various optimizations such as virtual call reso-
lution, removal of unnecessary synchronization, and stack-
based object allocation. Points-to analysis is also a pre-
requisite for a variety of other analyses—for example, side-

effect analysis, which determines the memory locations that
may be modified by the execution of a statement, and def-

use analysis, which identifies pairs of statements that set
the value of a memory location and subsequently use that
value. These analyses are necessary to perform compiler
optimizations such as code motion and partial redundancy
elimination. In addition, such analyses are needed in the
context of software engineering tools: for example, def-use
analysis is needed for program slicing and data-flow-based
testing. Points-to analysis is a crucial prerequisite for em-
ploying these analyses and optimizations.

Because of this wide range of applications, it is important
to investigate approaches for precise and efficient computa-
tion of points-to information. The two major dimensions
in the design space of points-to analysis are flow sensitivity
and context sensitivity. Intuitively, flow-sensitive analyses
take into account the flow of control between program points
inside a method, and compute separate solutions for these
points. Flow-insensitive analyses ignore the flow of control
between program points, and therefore can be less precise
and more efficient than flow-sensitive analyses. Context-

sensitive analyses distinguish between the different contexts
under which a method is invoked, and analyze the method
separately for each context. Context-insensitive analyses do
not separate the different invocation contexts for a method,
which improves efficiency at the expense of some possible
precision loss.

Recent work [19, 26, 15, 20] has shown that flow- and
context-insensitive points-to analysis for Java can be effi-
cient and practical even for large programs, and therefore

is a realistic candidate for use in optimizing compilers and
software engineering tools. However, context insensitivity
inherently compromises the precision of points-to analysis
for object-oriented languages such as Java. This impreci-
sion results from fundamental object-oriented features and
programming idioms. (Section 2 presents several examples
that illustrate this point.) The imprecision decreases the im-
pact of the points-to analysis on client optimizations (e.g.,
virtual call resolution) and leads to less precise client anal-
yses (e.g., def-use analysis). To make existing flow- and
context-insensitive analyses more useful, it is important to
introduce context sensitivity that targets the sources of im-
precision that are specific to object-oriented languages. At
the same time, the introduction of context sensitivity should
not increase analysis cost to the point of compromising the
practicality of the analysis.

In this paper we propose object sensitivity as a new form
of context sensitivity for flow-insensitive points-to analysis
for Java. Our approach uses the receiver object at a method

invocation site to distinguish different calling contexts. Con-
ceptually, every method is replicated for each possible re-
ceiver object. The analysis computes separate points-to sets
for each replica of a local variable; each of those points-to
sets is valid for method invocations with the corresponding
receiver object.

We propose a parameterization framework that allows
precision improvement through object sensitivity without
incurring the cost of non-discriminatory replication of all
variables. The analysis is parameterized by the set of vari-
ables for which the analysis designer wants to maintain mul-
tiple points-to sets. This targeted replication allows analy-
sis designers to tune directly the cost of the analysis. The
framework space ranges from context-insensitive analysis to
precise object-sensitive analysis for which every local vari-
able is replicated for every possible receiver object of its
enclosing method.

In this paper we discuss parameterized object-sensitive
points-to analysis that is based on an Andersen-style points-
to analysis for Java. Andersen’s analysis for C [4] is a well-
known flow- and context-insensitive points-to analysis. Re-
cent work [26, 15, 20] shows how to extend this analysis
for Java. Although we demonstrate our technique on An-
dersen’s analysis, parameterized object sensitivity can be
trivially applied to enhance the precision of other flow- and
context-insensitive analyses for Java (e.g., analyses that are
based on flow- and context-insensitive points-to analyses for
C [25, 24, 8]).

Modification side-effect analysis (MOD) determines, for
each statement, the set of objects that may be modified by
that statement. Similarly, USE analysis computes the set of
objects that may be read by a statement. This information
plays an important role in optimizing compilers and software
productivity tools. Side-effect analysis requires the output
of a points-to analysis. We define and evaluate a new object-
sensitive MOD analysis that is based on the parameterized
object-sensitive points-to analysis. Although we omit the
discussion, our approach also applies to the corresponding
USE analysis.

We have implemented one instantiation of our parame-
terized object-sensitive analysis. We compare this instanti-
ation with an Andersen-style flow- and context-insensitive

class Y {...}

class X {
Y f;

void set(Y r)

{ this.f = r; }

static void main() {
X p = new X();s1:
Y q = new Y();s2:
p.set(q);

}
}

H
H
Hj

�
�
�*

H
H
Hj

�
�
�*

?

p

this

q

r

o1

o2

f

Figure 1: Sample program and its points-to graph.

points-to analysis. For a set of 23 Java programs, our ex-
periments show that the cost of the two analyses is compa-
rable. In some cases the object-sensitive analysis is actually
faster than the context-insensitive analysis. We also evalu-
ate the precision of the two analyses with respect to several
client applications. MOD analysis based on object-sensitive
points-to analysis is significantly more precise than the cor-
responding MOD analysis based on context-insensitive points-
to analysis. In addition, object sensitivity improves the pre-
cision of call graph construction and virtual call resolution.
Our experimental results show that object-sensitive analyses
are capable of achieving significantly better precision than
context-insensitive ones, while at the same time remaining
efficient and practical.

Contributions. The contributions of our work are the
following:

• We propose object sensitivity as a new form of con-
text sensitivity for flow-insensitive points-to analysis
for Java. We also define a parameterization framework
that allows analysis designers to control the degree of
object sensitivity and the cost/precision tradeoffs of
the analysis.

• We define a new object-sensitive side-effect analysis
for Java which is based on our parameterized object-
sensitive points-to analysis.

• We compare one instantiation of our parameterized
object-sensitive analysis with an Andersen-style flow-
and context-insensitive analysis. Our experiments on
a large set of programs show that the object-sensitive
analysis is practical and significantly improves the pre-
cision of MOD analysis, call graph construction, and
virtual call resolution.

Outline. The rest of the paper is organized as follows.
Section 2 describes Andersen’s analysis for Java and dis-
cusses some sources of imprecision due to context insensitiv-
ity. Section 3 defines our object-sensitive analysis. Section 4
discusses parameterized object sensitivity and Section 5 de-
scribes techniques for its efficient implementation. The new
MOD analysis is defined in Section 6. The experimental re-
sults are presented in Section 7. Section 8 discusses related
work and Section 9 presents conclusions and future work.

f(G, si : l = new C) = G ∪ {(l, oi)}

f(G, l = r) = G ∪ {(l, oi) | oi∈Pt(G, r)}

f(G, l.f = r) =

G ∪ {(〈oi, f〉, oj) | oi∈Pt(G, l) ∧ oj ∈Pt(G, r)}

f(G, l = r.f) =

G ∪ {(l, oi) | oj ∈Pt(G, r) ∧ oi∈Pt(G, 〈oj , f〉)}

f(G, l = r0.m(r1, . . . , rn)) =

G ∪ {resolve(G, m, oi, r1, . . . , rn, l) | oi∈Pt(G, r0)}

resolve(G, m, oi, r1, . . . , rn, l) =
let mj(p0, p1, . . . , pn, ret j) = dispatch(oi, m) in

{(p0, oi)} ∪ f(G, p1 = r1) ∪ . . . ∪ f(G, l = retj)

Figure 2: Points-to effects of program statements
for Andersen’s analysis.

2. FLOW- AND CONTEXT-INSENSITIVE
POINTS-TO ANALYSIS FOR JAVA

Previous work proposes various flow- and context-insensi-
tive analyses for Java [19, 26, 15, 20]. These analyses are
typically derived from similar analyses for C. This section
discusses a flow- and context-insensitive points-to analysis
for Java that is derived from Andersen’s points-to analysis
for C [4]. It also illustrates how context insensitivity com-
promises analysis precision.

2.1 Analysis Semantics
Andersen’s analysis for Java is defined in terms of three

sets. Set R contains all reference variables in the analyzed
program (including static variables). Set O contains names
for all objects created at object allocation sites; for each
allocation site si, there is a separate object name oi ∈ O.
Set F contains all instance fields in program classes. The
analysis constructs points-to graphs containing two kinds of
edges. Edge (r, oi) ∈ R × O shows that reference variable
r points to object oi. Edge (〈oi, f〉, oj) ∈ (O × F) × O
shows that field f of object oi points to object oj . A sample
program and its points-to graph are shown in Figure 1.

For brevity, we only discuss the kinds of statements listed
below. Other kinds of statements (e.g., calls to constructors
and static methods) are handled in a similar fashion.

• Direct assignment: l = r

• Instance field write: l.f = r

• Instance field read: l = r.f

• Object creation: l = new C

• Virtual invocation: l = r0.m(r1,...,rk)

At a virtual call, name m uniquely identifies a method in
the program. This method is the compile-time target of
the call, and is determined based on the declared type of
r0 [12, Section 15.11.3]. At run-time, the invoked method
is determined by examining the class of the receiver object
and all of its superclasses, and finding the first method that
matches the signature and the return type of m [12, Section
15.11.4].

class X {...}

class Y {

X f;

1 void set(X x) { this.f = x; } }

2 s1: X x1 = new X();

3 s2: X x2 = new X();

4 s3: Y y1 = new Y();

5 s4: Y y2 = new Y();

6 y1.set(x1);

7 y2.set(x2);

Figure 3: Imprecision due to field encapsulation.

Analysis semantics is defined in terms of transfer func-

tions that add new edges to points-to graphs. Each transfer
function represents the semantics of a program statement.
The functions for different statements are shown in Figure 2
in the format f(G, s) = G′, where s is a statement, G is
an input points-to graph, and G′ is the resulting points-to
graph. Pt(G,x) denotes the points-to set (i.e., the set of
all successors) of x in graph G. The solution computed by
the analysis is a points-to graph that is the closure of the
empty graph under the application of all transfer functions
for program statements.

For most statements, the effects on the points-to graph
are straightforward; for example, statement l = r creates
new points-to edges from l to all objects pointed to by r.
For virtual call sites, resolution is performed for every re-
ceiver object pointed to by r0. Function dispatch uses the
class of the receiver object and the compile-time target of
the call to determine the actual method mj invoked at run-
time. Variables p0, . . . , pn are the formal parameters of the
method; variable p0 corresponds to the implicit parameter
this. Variable retj contains the return values of mj (we as-
sume that each method has a unique variable that is assigned
all values returned by the method; this can be achieved by
inserting auxiliary assignments).

2.2 The Imprecision of Context-Insensitive
Analysis

This section presents several examples of basic object-
oriented features and programming idioms for which context-
insensitive analysis produces imprecise results.

2.2.1 Encapsulation
Figure 3 illustrates the typical situation when an encapsu-

lated field is written through a modifier method. At the call
site at line 6, y1 points to o3 and x1 points to o1. After the
analysis applies the transfer function for the virtual call (as
shown in Figure 2), the implicit parameter this of method
set points to o3 and formal parameter x points to o1. After
the analysis processes the call at line 7, this points to o4

and x points to o2. Thus, at statement this.f=x at line 1,
the analysis erroneously infers points-to edges (〈o3, f〉, o2)
and (〈o4, f〉, o1).

The imprecision can be avoided if the analysis distin-
guishes invocations of set on o3 from invocations of set on
o4. This could be achieved if the analysis were able to asso-
ciate multiple points-to sets with this and with x, one for

class X { void n() {...} }

class Y extends X { void n() {...} }

class Z extends X { void n() {...} }

class A {

X f;

1 A(X xa) { this.f = xa; } }

class B extends A {

2 B(X xb) { super(xb); ... }

void m() {

3 X xb = this.f;

4 xb.n(); } }

class C extends A {

5 C(X xc) { super(xc); ... }

void m() {

6 X xc = this.f;

7 xc.n(); } }

8 s1: Y y = new Y();

9 s2: Z z = new Z();

10 s3: B b = new B(y);

11 s4: C c = new C(z);

12 b.m();

13 c.m();

Figure 4: Field assignment through a superclass.

each of the objects on which set is invoked. This would al-
low statement this.f=x to be analyzed separately for each
of the receiver objects, and would avoid creating spurious
points-to edges. In Section 3 we show how object-sensitive
analysis achieves this goal.

During context-insensitive analysis, there is a single copy
of every method for all possible invocations. Therefore, field
f of each receiver object will point to all objects passed as ar-
guments to the method which sets the value of f. In object-
oriented languages, encapsulation and information hiding
are strongly supported, and fields are almost always accessed
indirectly through method invocations. As a result, context-
insensitive analysis can incur significant imprecision.

2.2.2 Inheritance
Consider the example in Figure 4. At line 2, which is

executed after the constructor at line 10 is invoked, B.this
points to o3 and B.xb points to o1. After the analysis pro-
cesses the call to the superclass constructor, A.this and
A.xa point to o3 and o1, respectively. Because of the call
at line 5, A.this will point to o4 and A.xa will point to
o2. Thus, at statement this.f=xa at line 1, spurious edges
(〈o3, f〉, o2) and (〈o4, f〉, o1) are added to the graph. The
imprecision propagates further, as the analysis infers that
xb at line 3 points to both o1 (of class Y) and o2 (of class Z).
Therefore, it appears that the possible targets of the virtual
call at line 4 are Y.n and Z.n (the same problem also occurs
at line 7). As a result, the calls at lines 4 and 7 cannot be
devirtualized using the solution computed by the context-
insensitive analysis. The imprecision is due to statement

class Container {

Object[] data;

Container(int size) {

1 s1: Object[] data tmp = new Object[size];

2 this.data = data tmp; }

void put(Object e,int at) {

Object[] data tmp = this.data;

3 data tmp[at] = e; }

Object get(int at) {

4 Object[] data tmp = this.data;

5 return data tmp[at]; } }

6 s2: Container c1 = new Container(100);

7 s3: Container c2 = new Container(200);

8 s4: X x = new X();

9 c1.put(x,0);

10 s5: X y = new Y();

11 c2.put(y,1);

Figure 5: Simplified container class.

this.f=xa in the constructor of superclass A, which merges
the information for all possible receiver objects.

In the presence of inheritance, instance fields are often lo-
cated in superclasses and are written through invocations of
superclass constructors or methods. During context-insensi-
tive analysis, fields of subclass instances are perceived to
point to objects intended for instances of other subclasses.
In the presence of wide and deep inheritance hierarchies,
context insensitivity can lead to substantial imprecision.

2.2.3 Collections and Maps
Consider the example in Figure 5. There is a single object

name o1 which represents the data arrays of both instances
of Container. Therefore, objects stored in individual con-
tainers appear to be shared between the two containers. In
order to avoid this imprecision, the data array of every in-
stance of Container should be represented by a distinct ob-
ject name. In addition, the analysis should be able to assign
distinct points-to sets to put.this and put.e for every pos-
sible receiver object of put.

Context insensitivity causes data that is stored in one in-
stance of a collection or a map to be retrieved from every
other instance of the same class, and very likely from all in-
stances of its subclasses. Since collections (e.g., Vector) and
maps (e.g., Hashtable) are commonly used in Java, context
insensitivity can seriously compromise analysis precision.

3. OBJECT-SENSITIVE ANALYSIS
In context-sensitive analysis, a method is analyzed sepa-

rately for different calling contexts. We define a new form
of context-sensitive points-to analysis for Java which we re-
fer to as object-sensitive analysis. With object sensitivity,
each instance method (i.e., non-static method) and each con-
structor is analyzed separately for each object on which this
method/constructor may be invoked. More precisely, the
analysis uses a set of object names to represent objects al-
located at run time. If a method/constructor may be in-

voked on run-time objects represented by object name o,
the object-sensitive analysis maintains a separate contex-
tual version of that method/constructor that corresponds
to invocation context o.

Our object-sensitive analysis is based on Andersen’s anal-
ysis for Java from Section 2.1. However, the same approach
can be trivially applied to other flow- and context-insen-
sitive analyses for Java (e.g., analyses derived from flow- and
context-insensitive points-to analyses for C [25, 24, 8]). Sec-
tion 3.1 defines the semantics of the object-sensitive analysis.
Section 3.2 discusses why object sensitivity is appropriate
for flow-insensitive analysis of object-oriented programs, and
compares this approach with other context-sensitive analy-
ses.

3.1 Analysis Semantics
Our object-sensitive analysis is defined in terms of five

sets. Recall from Section 2.1 that set R contains all ref-
erence variables in the analyzed program (including static
variables), and set F contains all instance fields in program
classes. Set S contains all object allocation sites in the pro-
gram. We also use a set of object names O′ and a set of
replicated variables R′; both sets will be discussed shortly.

To simplify the presentation, we define a relation α which
shows that a method or a constructor m may be invoked
on instances of a given class C. Suppose that m is defined
in some class D. Relation α(C, m) holds if and only if C
and D are the same class or C is a subclass of D. Note
that α(C, m) should hold even if m is overridden somewhere
on the inheritance chain between D and C, because m could
still be invoked on instances of C through super. We extend
the notation to object names: for any o ∈ O′ which repre-
sents instances of class C, α(o, m) if and only if α(C, m).

The analysis uses a set of object names O′ ⊆ S×(S∪{ε}).
Consider an allocation site si ∈ S in method m. If m is a
static method, the objects allocated by si are represented
by a single object name oiε. If m is an instance method or a
constructor, the objects allocated by si are represented by
a set of object names oij ∈ O′. There is a separate name
oij for each allocation site sj : l = new C for which α(C, m)
holds. Name oij represents all run-time objects that were
created at si when m was invoked on an object created at
sj . For example, allocation site s1 in Figure 5 appears in
constructor Container. Sites s2 and s3 create instances of
Container; thus, there are two object names o12 and o13

that correspond to s1.
Set C = O′ ∪ {ε} represents the space of all possible con-

texts for our object-sensitive analysis. A static method is
always analyzed under the empty context ε. Any instance
method or constructor m is separately analyzed for each
context o ∈ O′ for which α(o, m) holds. This separation is
achieved by maintaining multiple replicas of reference vari-
ables for each possible context. The set of replicated refer-
ence variables R′ is defined by a function map : R×C → R′.
If r ∈ R is a static variable or a local variable in a static
method, r is mapped to itself. If r is a local variable in an in-
stance method or a constructor m, r is mapped to a ”fresh”
variable ro for every context o ∈ O′ for which α(o, m) holds.
For example, in Figure 4 we have α(o3ε, A.A) and α(o4ε, A.A),
and there are two copies of A.this and A.xa corresponding
to contexts o3ε and o4ε. For the rest of the paper we will

F (G, si : l = new C) = G ∪
⋃

ojk∈Cm

{(lojk , oij)}

F (G, l = r) = G ∪
⋃

c∈Cm

f(G, lc = rc)

F (G, l.f = r) = G ∪
⋃

c∈Cm

f(G, lc.f = rc)

F (G, l = r.f) = G ∪
⋃

c∈Cm

f(G, lc = rc.f)

F (G, l = r0.m(r1, . . . , rn)) =

G ∪
⋃

c∈Cm

{resolve(G, m, oij , r
c
1, . . . , rc

n, lc) | oij ∈Pt(G, rc
0)}

resolve(G, m, oij , r
c
1, . . . , rc

n, lc) =
let c′ = oij

mj(p0, p1, . . . , pn, ret j) = dispatch(oij , m) in

{(pc′

0 , oij)} ∪ f(G, pc′

1 = rc
1) ∪ . . . ∪ f(G, lc = retc′

j)

Figure 6: Points-to effects of statements in instance
methods and constructors for object-sensitive anal-
ysis. Cm is the set of possible contexts for the en-
closing method m. rc denotes map(r, c).

refer to the elements of R′ as context copies.
The object-sensitive analysis constructs points-to graphs

in which the nodes are elements of R′ and O′. Analysis se-
mantics can be defined by transfer functions that add new
edges to these points-to graphs. For statements that are lo-
cated inside static methods, the transfer functions are identi-
cal to those in Figure 2. For statements located in instance
methods and constructors, the transfer functions are pre-
sented in Figure 6. The effects of F (G, s) are equivalent to
applying the corresponding f(G, s) from Figure 2 for each
context from the set Cm = {o ∈ C |α(o, m)}, where m is the
method in which s is located.1

Example. Consider the set of statements in Figure 4.
Since α(B, B.B) and α(B, A.A), we have

{B.thiso3ε , B.xb
o3ε , A.this

o3ε , A.xa
o3ε} ⊆ R′.

Similarly, we have

{C.thiso4ε , C.xc
o4ε , A.this

o4ε , A.xa
o4ε} ⊆ R′.

At line 2, B.thiso3ε points to o3ε and B.xbo3ε points to o1ε.
When the analysis processes the call to A.A at line 2, A.this
and A.xa are mapped to the context copies corresponding
to o3ε, and points-to edges (A.thiso3ε , o3ε) and (A.xao3ε ,
o1ε) are added to the graph. Similarly, because of line 5,
A.thiso4ε points to o4ε and A.xao4ε points to o2ε. Statement
this.f=xa at line 1 occurs in the context of o3ε and o4ε.
Thus, we have

A.this
o3ε = A.xa

o3ε A.this
o4ε = A.xa

o4ε

which produces edges (〈o3ε, f〉, o1ε) and (〈o4ε, f〉, o2ε).

1For simplicity, we present the semantics as if all elements
of Cm are possible contexts. As discussed in Section 5, anal-
ysis implementations only need to consider contexts that
actually occur at calls to m.

3.2 Advantages of Object Sensitivity
In object-oriented languages such as Java, one of the pri-

mary roles of instance methods is to access or modify the
state of the objects on which they are invoked. Instance
methods typically work on encapsulated data, using implicit
parameter this to modify or retrieve data from the object
structure rooted at the receiver object. If points-to analysis
does not distinguish the different receiver objects of instance
methods, the states of these objects are essentially merged
and any access/modification of the state of one object is
propagated to all other objects. Therefore, it is crucial to
distinguish the different objects pointed to by this and to
analyze instance methods separately for different receiver
objects. Similarly, the role of a constructor is to create the
initial object state. To avoid merging the initial states of all
objects pointed to by this, points-to analysis should distin-
guish the different objects on which a constructor is invoked.

Context sensitivity mechanisms of finer granularity than
a receiver object may create redundant contextual versions.
For example, one of the most popular mechanisms for con-
text sensitivity is the call string approach, which represents
invocation context using a string of k enclosing call sites. For
k = 1, a method is analyzed separately for each call site that
invokes that method. For many statements, it is redundant
to distinguish between distinct call sites that have the same

receiver object. For example, if statement this.f=formal

were analyzed separately for distinct call sites that have the
same receiver object, the effect would be the same as if it
were analyzed once for that object: field f of the receiver
would point to all objects in the points-to sets of the corre-
sponding actual parameters at all call sites. Clearly, because
of the flow insensitivity of the analysis, the effects of the
distinct per-call-site versions of the statement are merged.
The same kind of redundancy also occurs for statements
that read the value of any field of the receiver object (e.g.,
l=this.f), as well as for certain method invocations on the
receiver (e.g., l=this.m()). Therefore, such redundancies
cause the call string approach to incur increased analysis
cost without any precision gain. On the other hand, object-
sensitive analysis performs exactly the necessary amount of
work for such statements.

In certain cases, distinguishing calling context by a chain
of enclosing call sites can be less precise than distinguish-
ing context per receiver object. To illustrate such a case,
recall the set of statements from Figure 4. Suppose that the
following new statement is added at line 14:

14 s5 : C c2 = new C(y);

If calling context is distinguished per call site (k = 1), the
effects of constructor A.A invoked at line 5 are merged for
receivers o4 and o5. Thus, there are redundant points-to
edges (〈o4, f〉, o1) and (〈o5, f〉, o2). The imprecision propa-
gates and affects both the points-to analysis and its clients;
for example, the virtual call at line 7 cannot be resolved.

4. PARAMETERIZED OBJECT
SENSITIVITY

In this section we define a parameterized framework for
object-sensitive analysis. The framework encompasses a fam-
ily of analyses that range from the least precise and least

costly context-insensitive Andersen’s analysis to the most
precise and costly object-sensitive analysis described in Sec-
tion 3.

The framework is parameterized in two dimensions. First,
the analysis designer can select the set of object allocation
sites for which a more precise naming scheme should be used.
The analysis uses multiple object names for the selected sites
and single object names for all other sites. Second, the anal-
ysis designer can specify the set of reference variables for
which multiple points-to sets should be maintained. The
analysis replicates only these selected variables.

The goal of the parameterization is to enhance the flexibil-
ity of the object-sensitive analysis. By varying the number
of selected allocation sites and variables, the analysis de-
signer can control directly the size of the points-to graph and
the cost of the analysis. The parameterization also allows
targeted replication rather than global non-discriminatory
replication. The analysis designer can choose objects and
variables for which keeping more precise information is likely
to improve the points-to solution (e.g., implicit parameters
this, formal parameters, return variables, etc.).

The parameterization is based on two sets S∗ and R∗.
Set S∗ ⊆ S contains the object allocation sites for which
the analysis designer wants to use the more precise nam-
ing scheme from Section 3.1. Set R∗ ⊆ R contains the set
of reference variables that should be replicated during the
analysis.

The set of object names O′ ⊆ S × (S ∪ {ε}) is defined
as follows. If si ∈ S is located in an instance method or a
constructor m and si ∈ S∗, there is an object name oij ∈ O′

for each allocation site sj : l = new C for which α(C, m). For
any other si, there is a single object name oiε ∈ O′. Function
map : R × C → R′ constructs R′ based on parameter set
R∗ ⊆ R. If r ∈ R∗ is a local variable in an instance method
or a constructor m, r is mapped to a ”fresh” variable ro for
every context o ∈ O′ such that α(o, m). Any other variable
is mapped to itself. Thus, map replicates variables in R∗

for all applicable contexts, and preserves variables not in R∗

(i.e., map(r, c) = r for any r /∈ R∗).
The transfer functions from Figure 6 can be modified in a

straightforward fashion for the parameterized analysis. For
example, the transfer function for object creation becomes

F (G, si : l = new C) =

G ∪
⋃

ojk∈Cm

{(map(l, ojk), oij)} if si ∈ S∗

G ∪
⋃

ojk∈Cm

{(map(l, ojk), oiε)} otherwise

The transfer functions for other program statements are
identical to the ones from Figure 6, except for the use of
the modified function map based on parameter set R∗.

5. IMPLEMENTATION TECHNIQUES
A typical implementation of Andersen’s flow- and context-

insensitive analysis for Java uses a statement processing rou-

tine which processes different kinds of program statements,
and a virtual dispatch routine which models the semantics
of virtual calls. The parameterized object-sensitive analysis
can be build on top of any such existing implementation I
of Andersen’s analysis for Java. This can be achieved by (i)

implementing function map(v, c), (ii) augmenting the state-
ment processing routine in I to process each statement once
for every possible context in accordance with the rules from
Figure 6, and (iii) augmenting the virtual dispatch routine
in I to map the formal parameters and return variable of the
invoked method to the corresponding invocation context.

Let I ′ be an implementation of the parameterized analysis
which augments I with function map and alters the state-
ment processing routine and the virtual dispatch routine.
Any such I ′ can be optimized in several ways.

First, the semantics in Figure 6 implicitly assumes that all
possible contexts of a method m are actually used at calls
to that method—that is, m is invoked with every context o
for which α(o, m) holds. Clearly, I ′ can keep track of which
contexts actually occur at calls to m. Thus, I ′ would take
into account the effects of a statement in m for context o if
and only if m has been invoked with receiver object o.

Second, whenever the points-to set of a replica thiso is
needed, the analysis can return the singleton set {o}. Thus,
I ′ can avoid storing replicas thiso and redundant points-to
edges as well as retrieving the points-to set of thiso.

Third, whenever I ′ processes a statement s which con-
tains only non-replicated variables, there is no need to ana-
lyze s multiple times for different contexts. In other words,
transfer function F (G, s) from Figure 6 can be replaced with
f(G, s) from Figure 2. For the rest of this paper we refer
to such statements as context-independent, while statements
that need to be analyzed multiple times for different contexts
are referred to as context-dependent.

Fourth, some further simplifications of transfer functions
can be carried out. Let l be a replicated local variable.
The simplification can be performed as follows: (i) create
a new non-replicated variable l′, (ii) create a new (context-
dependent) statement l’=l, and (iii) replace l with l′ in all
assignment statements of the form l.f=p, p=l and p.f=l

for which p /∈ R∗. As a result, all such statements become
context-independent and therefore are inexpensive to pro-
cess. Similarly, replacement of l with l′ can also be per-
formed for virtual call l.m(p1,..,pn) if pi /∈ R∗ for every i,
as well as for r.m(p1,..,l,..,pn) if r /∈ R∗. It is straight-
forward to show that this optimization does not affect anal-
ysis correctness or precision.

6. SIDE-EFFECT ANALYSIS
In this section we present a MOD analysis based on object-

sensitive points-to analysis. Our MOD algorithm computes
a set of modified objects Mod(s, c) ⊆ O′ for each statement
s and for each context c of the method containing s. The
algorithm is shown in Figure 7. Pt(x) denotes the set of ob-
jects pointed to by context copy x. We say that statement s
appears in context c if α holds between c and the enclosing
method of s. MMod(m, c) stores the sets of objects mod-
ified by each contextual version of a method (i.e., objects
that are modified when m is invoked with context c). For
virtual calls (lines 6–10) the target methods are determined
for each receiver object oij in context c, based on the class
of oij and the compile-time target m. In addition, object oij

determines which set of modified objects associated with the
target method will be added to the Mod set at line 9. For
static calls (lines 11-14) we use ε to denote the special empty
context in which the statements in those methods appear.

input Stmt : set of statements map: R × C → R′

Methods: set of methods Pt : R′ → P(O′)
output Mod : Stmt × C → P(O′)
declare MMod : Methods × C → P(O′)
[1] foreach indirect write s : p.f = q ∈ Stmt do
[2] foreach context c in which s appears do
[3] Mod(s, c) := {oij | oij ∈Pt(map(p, c))}
[4] add Mod(s, c) to MMod(EnclMethod(s), c)
[5] while changes occur in Mod or MMod do
[6] foreach virtual call s : l = r.m(...) ∈ Stmt do
[7] foreach context c in which s appears do
[8] foreach object oij ∈Pt(map(r, c)) do
[9] Mod(s, c) := Mod(s, c) ∪

{okl | okl∈MMod(target(oij , m), oij)}
[10] add Mod(s, c) to MMod(EnclMethod(s), c)
[11] foreach static call s : l = C.m(...) ∈ Stmt do
[12] foreach context c in which s appears do
[13] Mod(s, c) := Mod(s, c) ∪ MMod(m, ε)
[14] add Mod(s, c) to MMod(EnclMethod(s), c)

Figure 7: Object-sensitive MOD analysis. P(X) de-
notes the power set of X.

Example. Consider the example in Figure 4. MOD
analysis based on context-insensitive points-to analysis er-
roneously determines that the Mod sets for statements 1,
2, and 5 are {o3ε, o4ε}. Consider a MOD analysis based on
the object-sensitive points-to analysis from Section 3. The
statement at line 1 appears in two contexts: o3ε and o4ε.
Therefore, MMod(A.A, o3ε) is {o3ε} and MMod(A.A, o4ε) is
{o4ε}. The receiver for the call statement at line 2 is o3ε;
therefore the MOD analysis infers that Mod(2, o3ε) is {o3ε}.
Similarly Mod(5, o4ε) is {o4ε}.

7. EMPIRICAL RESULTS
We chose to implement one particular instantiation of the

parameterized object-sensitive points-to analysis. In this
instantiation we replicate implicit parameters this, formal
parameters, and return variables of instance methods and
constructors (i.e., S∗ is empty and R∗ contains this, for-
mals, and return variables of non-static methods). Given
that instance methods and constructors in Java are usually
short, keeping precise information for these variables has
the potential to improve considerably the points-to solution
without significant increase in analysis cost. This instan-
tiation, which we denote by ObjSens, was compared with
Andersen’s context-insensitive analysis (denoted by And).

The object-sensitive analysis is built on top of an exist-
ing constraint-based implementation of Andersen’s analy-
sis [20], using the optimization techniques described in Sec-
tion 5. We use the Soot framework (www.sable.mcgill.ca)
to process Java bytecode and to build a typed intermediate
representation [29]. The points-to analysis implementation
is based on the Bane toolkit (bane.cs.berkeley.edu) for
constraint-based program analysis [3].

All experiments were performed on a 360MHz Sun Ultra-
60 machine with 512Mb physical memory. The reported
times are the median values out of three runs. We used 23
publicly available data programs, ranging in size from 56Kb

Program User Size Whole-program
Class (Kb) Class Method Stmt

proxy 18 56.6 565 3283 58837
compress 22 76.7 568 3316 60010
db 14 70.7 565 3339 60747
jb-6.1 21 55.6 574 3393 60898
echo 17 66.7 577 3544 62646
raytrace 35 115.9 582 3451 62755
mtrt 35 115.9 582 3451 62760
jtar-1.21 64 185.2 618 3583 65112
jlex-1.2.5 25 95.1 578 3381 65437
javacup-0.10 33 127.3 581 3564 66463
rabbit-2 52 157.4 615 3770 68277
jack 67 191.5 613 3573 69249
jflex-1.2.2 54 198.2 608 3692 71198
jess 160 454.2 715 3973 71207
mpegaudio 62 176.8 608 3531 71712
jjtree-1.0 72 272.0 620 4078 79587
sablecc-2.9 312 532.4 864 5151 82418
javac 182 614.7 730 4470 82947
creature 65 259.7 626 3881 83454
mindterm1.1.5 120 461.1 686 4420 90451
soot-1.beta.4 677 1070.4 1214 5669 92521
muffin-0.9.2 245 655.2 824 5253 94030
javacc-1.0 63 502.6 615 4198 102986

Table 1: Characteristics of the data programs. First
two columns show the number and bytecode size
of user classes. Last three columns include library
classes.

to about 1Mb of bytecode. The same set of programs was
used in our previous work on Andersen’s analysis [20]. The
set includes programs from the SPEC JVM98 suite, other
benchmarks used in previous work on analysis for Java, as
well as programs from an Internet archive (www.jars.com)
of popular publicly available Java applications.

Table 1 shows some characteristics of the data programs.
The first two columns show the number of user (i.e., non-
library) classes and their bytecode size. The next three
columns show the size of the program, including library
classes, after using class hierarchy analysis (CHA) [9] to fil-
ter out irrelevant classes and methods.2 The number of
methods is essentially the number of nodes in the call graph
computed by CHA. The last column shows the number of
statements in Soot’s intermediate representation.

7.1 Analysis Cost
The measurements of analysis cost are presented in Ta-

ble 2. The first two columns show the running time and
memory usage of Andersen’s analysis.3 The last two columns
show the cost of ObjSens. The empirical results demon-
strate that the object-sensitive analysis is practical in terms
of running time and memory consumption. For the ma-
jority of programs it has comparable performance to Ander-
sen’s analysis. In certain cases (e.g., sablecc and creature)
the cost of the object-sensitive analysis is significantly lower

2CHA is an inexpensive analysis that determines the possi-
ble targets of a virtual call by examining the class hierarchy
of the program.
3The results for Andersen’s analysis reported in this paper
differ from those reported in [20] because of some minor
improvements in our current implementation.

Program And ObjSens

Time Memory Time Memory
[sec] [Mb] [sec] [Mb]

proxy 11.9 40 8.1 38
compress 22.8 46 23.5 46
db 23.4 47 24.0 46
jb 9.0 43 10.7 41
echo 44.2 60 47.2 59
raytrace 26.1 50 24.7 51
mtrt 27.0 50 25.1 51
jtar 45.0 58 44.5 56
jlex 13.1 44 17.5 46
javacup 29.6 56 34.0 55
rabbit 29.9 53 28.6 52
jack 85.5 62 88.6 62
jflex 40.2 68 39.5 70
jess 48.8 67 54.1 67
mpegaudio 32.0 53 29.7 52
jjtree 23.7 53 24.4 52
sablecc 136.6 112 73.1 94
javac 973.4 122 956.9 122
creature 176.1 90 126.3 87
mindterm 82.3 91 93.0 88
soot 146.1 130 171.8 131
muffin 236.3 144 214.0 133
javacc 165.2 110 169.5 112

Table 2: Running time and memory usage of the
analyses.

than the cost of the context-insensitive analysis.
There are two factors that could explain the cost of the

object-sensitive analysis. First, the improved precision pro-
duces smaller points-to sets, which results in less work and
reduced memory consumption for the analysis. In the case
when the points-to sets are significantly smaller, ObjSens

can actually run faster than And, as observed for some of our
data programs. Second, even if the points-to sets were the
same, for many statements And and ObjSens would perform
comparable amount of work. One might expect that be-
cause ObjSens analyzes context-dependent statements mul-
tiple times (once for each context), ObjSens would be more
expensive. However, for any statement s that accesses the
receiver object (e.g., any s containing this), there are as
many different contextual versions as the number of receivers
of the enclosing method. When And processes s, it has to
consider all of the possible receivers. The amount of work
that And has to perform for one receiver roughly corre-
sponds to the amount of work that ObjSens performs for
one contextual version. Therefore, for this statement And

and ObjSens have comparable cost. Given that many state-
ments in instance methods and constructors access the re-
ceiver object, one can explain why the two analyses exhibit
comparable costs.

7.2 Analysis Precision
We evaluated the precision improvements of object-sensi-

tive analysis over context-insensitive analysis with respect
to MOD analysis, call graph construction and virtual call
resolution.

Program And ObjSens

1-3 4-9 ≥10 1-3 4-9 ≥10
proxy 19% 6% 75% 75% 14% 11%
compress 23% 4% 73% 67% 9% 24%
db 20% 4% 76% 48% 25% 27%
jb 15% 5% 80% 67% 20% 13%
echo 25% 6% 69% 63% 11% 26%
raytrace 23% 5% 72% 66% 9% 25%
mtrt 23% 5% 72% 66% 9% 25%
jtar 18% 8% 74% 61% 15% 24%
jlex 17% 4% 79% 56% 34% 10%
javacup 14% 3% 83% 53% 38% 9%
rabbit 18% 5% 77% 47% 13% 40%
jack 17% 3% 80% 53% 8% 39%
jflex 19% 4% 77% 54% 34% 12%
jess 15% 5% 80% 60% 9% 31%
mpegaudio 23% 4% 73% 65% 9% 26%
jjtree 8% 2% 90% 32% 26% 42%
sablecc 20% 3% 77% 52% 15% 33%
javac 14% 4% 82% 37% 5% 58%
creature 18% 3% 79% 54% 13% 33%
mindterm 20% 8% 73% 55% 16% 29%
soot 16% 4% 80% 43% 15% 42%
muffin 16% 4% 80% 45% 7% 48%
javacc 10% 1% 89% 29% 49% 22%

Average 18% 4% 78% 54% 18% 28%

Table 3: Number of modified objects for program
statements. Each column shows the percentage of
statements whose number of modified objects is in
the corresponding range.

7.2.1 MOD Analysis
Using the MOD algorithm described in Section 6, we per-

formed measurements for ObjSens and And in order to es-
timate the impact of the analyses on MOD analysis. More
precise points-to analyses produce a smaller number of mod-
ified objects per statement.

We considered all methods that ObjSens determined to
be potentially executable (i.e., methods that are not dead).
For all statements in such methods, we computed (i) Mod

sets according to the algorithm from Figure 7, and (ii) Mod

sets using Andersen’s analysis and a corresponding context-
insensitive version of the algorithm from Figure 7. In order
to compare the output of the two analyses, for each state-
ment we merged the ObjSens-based Mod sets for different
contexts to obtain a single Mod set. For example, the ag-
gregate Mod set for line 1 in Figure 4 is {o3ε, o4ε}, which is
the union of Mod(1, o3ε) and Mod(1, o4ε).

Table 3 shows the distribution of the number of modi-
fied objects for the two analyses. Each column corresponds
to a specific range of numbers. For example, the first col-
umn corresponds to statements that may modify one, two
or three objects, while the last column corresponds to state-
ments that may modify at least 10 objects. Each column
shows what percentage of statements (counting only state-
ments that modify at least one object) corresponds to the
particular range of numbers of modified objects.

The measurements in Table 3 show that object sensitivity

Program (a) Resolved (b) Removed
Call Sites Targets

proxy 12% 3%
compress 19% 13%
db 17% 14%
jb 45% 5%
echo 10% 13%
raytrace 18% 15%
mtrt 18% 15%
jtar 39% 7%
jlex 40% 5%
javacup 26% 5%
rabbit 31% 11%
jack 5% 12%
jflex 23% 3%
jess 17% 14%
mpegaudio 20% 17%
jjtree 48% 6%
sablecc 24% 183%
javac 7% 10%
creature 21% 5%
mindterm 9% 9%
soot 5% 1%
muffin 3% 7%
javacc 15% 4%

Average 21% 16%

Table 4: Improvements over context-insensitive
analysis. (a) Increase in the number of resolved call
sites. (b) Reduction in the number of target meth-
ods.

significantly improves analysis precision. For MOD analysis
based on ObjSens, on average 54% of the statements modify
at most three objects. In contrast, for MOD analysis based
on And this percentage is 18%. It is also significant to note
that for And nearly 80% of the statements modify at least 10
objects. This indicates substantial imprecision, which can
be reduced significantly by using ObjSens.

The above empirical results show that object-sensitive
analysis is a promising candidate for producing useful side-
effect information. Such precise information is important for
(i) implementing advanced optimizations in aggressive op-
timizing compilers, and (ii) improving the precision of soft-
ware productivity tools, with the corresponding reduction
in human time and effort spent on software understanding,
restructuring, and testing.

7.2.2 Virtual Call Resolution and Call Graph
Construction

One application of points-to analysis is to determine the
potential target methods at virtual call sites. This informa-
tion can be used to construct the program call graph (which
is a prerequisite for all interprocedural analyses) and to iden-
tify virtual call sites that can be resolved to a single target
method. We performed measurements to evaluate the im-
provement of ObjSens over And for virtual call resolution
and call graph construction. (Andersen’s analysis itself al-
ready produces precise call graph results [20].)

To determine the improvement in points-to analysis pre-

cision, we considered call sites that could not be resolved
to a single target method by CHA. Let V be the set of all
CHA-unresolved call sites that occur in methods identified
by ObjSens as executable. We computed the number of sites
from V that were resolved to a single target method, accord-
ing to And and according to ObjSens. The improvement in
the number of resolved call sites for ObjSens over And is
shown in the first column of Table 4. On average, ObjSens

resolves 21% more sites than And. This increased precision
allows better removal of redundant run-time virtual dispatch
and enables additional method inlining.

We also computed the sum (over all sites in V) of the
number of target methods according to And, as well as the
corresponding sum according to ObjSens. The reduction in
the total number of target methods (i.e., call edges removed
at call sites) is shown in the second column of Table 4. On
average, ObjSens removes 16% of the target methods de-
termined by And. This improved precision is beneficial for
reducing the cost and improving the precision of subsequent
interprocedural analyses.

8. RELATED WORK
Flow-insensitive context-sensitive alias analysis for Java

has been developed by Ruf [21] in the context of a special-
ized algorithm for synchronization removal. Ruf’s analysis
uses method summaries to model context sensitivity and,
unlike our analysis, requires bottom-up traversal of the call
graph (i.e., a called method is analyzed before or together
with its callers). Also, our analysis is based on Andersen’s
analysis, which has cubic time worst case complexity [4];
Ruf’s algorithm is based on the almost-linear Steensgaard’s
points-to analysis for C [25]. Other context-sensitive points-
to analyses for Java are presented in [13, 6]. The algorithm
in [6] uses method summaries to model context sensitivity,
while [13] uses the call string approach. In general, these
analyses are more precise and significantly more costly than
ours, which is due to their flow sensitivity. Flow-insensitive
context-insensitive points-to analyses for Java are described
in [19, 26, 15, 20].

Class analysis for object-oriented languages computes a
set of classes for each program variable; this set approx-
imates the classes of all run-time values for this variable.
Typical clients of this information are call graph construc-
tion and virtual call resolution. Various practical context-
insensitive class analyses are presented in [17, 11, 5, 10, 28,
27]. Different mechanisms for context sensitivity have been
studied in the context of class analysis [16, 1, 18, 2, 13]; these
methods typically use some combination of the parameter
types to abstract context. The work in [16, 1, 2] presents
class analyses for Smalltalk and Self. Similarly to our analy-
sis, these analyses use information about the receiver object
in order to create and select contextual method versions.
Unlike our analysis, they use additional information (e.g.,
the method invocation site). The idea of object sensitiv-
ity is to use only the receiver object as context; we believe
that for the purposes of flow-insensitive points-to analysis
for Java, using invocation sites or other information may
be redundant in most cases. The non-parameterized object-
sensitive analysis from Section 3 can be expressed in the
general framework for context-sensitive class analysis pre-
sented in [13]; however, it is not identified or studied in [13].

Conceptually, our MOD analysis is based on similar MOD
analyses for C [23, 14, 22]. Razafimahefa [19] presents algo-
rithms for side-effect analysis for Java that are based on
context-insensitive information. The more precise of the
algorithms is based on context-insensitive points-to analy-
sis for Java derived from Steensgaard’s analysis for C [25].
Clausen [7] investigates side-effect analysis for Java in the
context of a Java bytecode optimizer. Clausen’s side-effect
analysis does not use points-to information, i.e., a modifica-
tion through field f is assumed to write all objects whose
class contains field f . This may result in less precise side-
effect information.

9. CONCLUSIONS AND FUTURE WORK
We present a framework for parameterized object-sensitive

points-to analysis and side-effect analysis based on it. The
basic idea of our approach is to distinguish among the dif-
ferent receiver objects of a method. We show that object-
sensitive analysis is capable of achieving significantly bet-
ter precision than context-insensitive analysis, while at the
same time remaining efficient and practical. Thus, object-
sensitive analysis is a better candidate for a relatively pre-
cise, practical, general-purpose points-to analysis for Java.

In our future work we plan to investigate other instantia-
tions of our framework, especially instantiations that involve
more precise object naming schemes. We are interested in
extending the theoretical model to support naming schemes
with arbitrary depth of enclosing objects in the context of a
framework for targeted replication. We plan to investigate
these analyses empirically.

We are currently working on precision comparison of object-
sensitive analyses with context-sensitive analyses that are
based on the call string approach. Our preliminary re-
sults indicate that for many programs, object-sensitive flow-
insensitive points-to analysis may be at least as precise as
infinite call string (k = ∞) flow-insensitive analysis. In
addition, it would be interesting to have theoretical and
empirical comparison between object sensitivity and other
instances of the functional approach to context sensitivity
(e.g., [6, 21]).

We also plan to investigate applications of points-to and
side-effect analyses in the context of software productivity
tools (e.g., tools for program understanding and testing).
Such tools can play a useful role during the development,
testing, and maintenance of large Java software systems.

10. ACKNOWLEDGMENTS
We would like to thank the ISSTA reviewers for their help-

ful comments. We would also like to thank Michael Hind for
his comments on relevant related work. This research was
supported by NSF grant CCR-9900988.

11. REFERENCES
[1] O. Agesen. Constraint-based type inference and

parametric polymorphism. In Static Analysis

Symposium, LNCS 864, pages 78–100, 1994.

[2] O. Agesen. The cartesian product algorithm: Simple
and precise type inference of parametric
polymorphism. In European Conference on

Object-Oriented Programming, 1995.

[3] A. Aiken, M. Fähndrich, J. Foster, and Z. Su. A
toolkit for constructing type- and constraint-based
program analyses. In International Workshop on

Types in Compilation, 1998.

[4] L. Andersen. Program Analysis and Specialization for

the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, 1994.

[5] D. Bacon and P. Sweeney. Fast static analysis of C++
virtual function calls. In Conference on

Object-Oriented Programming Systems, Languages,

and Applications, pages 324–341, 1996.

[6] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant
context inference. In Symposium on Principles of

Programming Languages, pages 133–146, 1999.

[7] L. R. Clausen. A Java bytecode optimizer using
side-effect analysis. Concurrency: Practice and

Experience, 9(11):1031–1045, 1997.

[8] M. Das. Unification-based pointer analysis with
directional assignments. In Conference on

Programming Language Design and Implementation,
pages 35–46, 2000.

[9] J. Dean, D. Grove, and C. Chambers. Optimizations
of object-oriented programs using static class
hierarchy analysis. In European Conference on

Object-Oriented Programming, pages 77–101, 1995.

[10] G. DeFouw, D. Grove, and C. Chambers. Fast
interprocedural class analysis. In Symposium on

Principles of Programming Languages, pages 222–236,
1998.

[11] A. Diwan, J. B. Moss, and K. McKinley. Simple and
effective analysis of statically-typed object-oriented
programs. In Conference on Object-Oriented

Programming Systems, Languages, and Applications,
pages 292–305, 1996.

[12] J. Gosling, B. Joy, and G. Steele. The Java Language

Specification. Addison-Wesley, 1996.

[13] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call
graph construction in object-oriented languages. In
Conference on Object-Oriented Programming Systems,

Languages, and Applications, pages 108–124, 1997.

[14] M. Hind and A. Pioli. Which pointer analysis should I
use? In International Symposium on Software Testing

and Analysis, pages 113–123, 2000.

[15] D. Liang, M. Pennings, and M. J. Harrold. Extending
and evaluating flow-insensitive and context-insensitive
points-to analyses for Java. In Workshop on Program

Analysis for Software Tools and Engineering, pages
73–79, June 2001.

[16] N. Oxhoj, J. Palsberg, and M. Schwartzbach. Making
type inference practical. In European Conference on

Object-Oriented Programming, pages 329–349, 1992.

[17] J. Palsberg and M. Schwartzbach. Object-oriented
type inference. In Conference on Object-Oriented

Programming Systems, Languages, and Applications,
pages 146–161, 1991.

[18] J. Plevyak and A. Chien. Precise concrete type
inference for object-oriented languages. In Conference

on Object-Oriented Programming Systems, Languages,

and Applications, pages 324–340, 1994.

[19] C. Razafimahefa. A study of side-effect analyses for
Java. Master’s thesis, McGill University, Dec. 1999.

[20] A. Rountev, A. Milanova, and B. G. Ryder. Points-to
analysis for Java based on annotated constraints. In
Conference on Object-Oriented Programming Systems,

Languages, and Applications, pages 43–55, Oct. 2001.

[21] E. Ruf. Effective synchronization removal for Java. In
Conference on Programming Language Design and

Implementation, pages 208–218, 2000.

[22] B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and
R. Altucher. A schema for interprocedural
modification side-effect analysis with pointer aliasing.
ACM Transactions on Programming Languages and

Systems, 23(2):105–186, Mar. 2001.

[23] M. Shapiro and S. Horwitz. The effects of the
precision of pointer analysis. In Static Analysis

Symposium, LNCS 1302, pages 16–34, 1997.

[24] M. Shapiro and S. Horwitz. Fast and accurate
flow-insensitive points-to analysis. In Symposium on

Principles of Programming Languages, pages 1–14,
1997.

[25] B. Steensgaard. Points-to analysis in almost linear
time. In Symposium on Principles of Programming

Languages, pages 32–41, 1996.

[26] M. Streckenbach and G. Snelting. Points-to for Java:
A general framework and an emprirical comparison.
Technical report, U. Passau, Sept. 2000.

[27] V. Sundaresan, L. Hendren, C. Razafimahefa,
R. Vallee-Rai, P. Lam, E. Gagnon, and C. Godin.
Practical virtual method call resolution for Java. In
Conference on Object-Oriented Programming Systems,

Languages, and Applications, pages 264–280, 2000.

[28] F. Tip and J. Palsberg. Scalable propagation-based
call graph construction algorithms. In Conference on

Object-Oriented Programming Systems, Languages,

and Applications, pages 281–293, 2000.

[29] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,
P. Pominville, and V. Sundaresan. Optimizing Java
bytecode using the Soot framework: Is it feasible? In
International Conference on Compiler Construction,
LNCS 1781, 2000.

