
Parameterized Synthesis�

Swen Jacobs1 and Roderick Bloem2
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Abstract. We study the synthesis problem for distributed architectures
with a parametric number of finite-state components. Parameterized
specifications arise naturally in a synthesis setting, but thus far it was
unclear how to decide realizability and how to perform synthesis. Us-
ing a classical result from verification, we show that for specifications in
LTL\X, parameterized synthesis of token ring networks is equivalent to
distributed synthesis of a network consisting of a few copies of a single
process. Adapting a result from distributed synthesis, we show that the
latter problem is undecidable. We then describe a semi-decision proce-
dure based on bounded synthesis and show applicability on a simple case
study. Finally, we sketch a general framework for parameterized synthesis
based on cut-off results for verification.

1 Introduction

Synthesis is the problem of turning a temporal logical specification into a reactive
system [1,2]. In synthesis, parameterized specifications occur very naturally. For
instance, Piterman, Pnueli, and Sa’ar illustrate their GR(1) approach with two
parameterized examples of an arbiter and an elevator controller [3]. Similarly, the
case studies given in [4,5] consist of a parameterized specification of the AMBA
bus arbiter. A simple example of a parameterized specification may be

∀i. G(ri → F gi) ∧ ∀i �= j. G(¬gi ∨ ¬gj).

This specification describes an arbiter serving an arbitrary number of clients,
say n. Client i receives an input ri for requests and controls an output gi for
grants. The specification states that for each client i, a request ri is eventually
followed by a grant gi, but grants never occur simultaneously.

Previous approaches have focused on the synthesis of such systems for a fixed
n. The question whether such a specification is realizable for any n is natural: it
occurs, for instance, in the work on synthesis of processes for the leader election
problem by Katz and Peled [6]. Only an answer to this question can determine
whether a parameterized specification is correct. A further natural question is

� This work was supported by the Austrian Science Fund (FWF) under the RiSE
National Research Network (S11406) and by the Swiss NSF Grant #200021 132176.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 362–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Parameterized Synthesis 363

how to construct a parameterized system, i.e., a recipe for quickly constructing
a system for an arbitrary n. Such a construction would avoid the steep increase
of runtime and memory use with n that current tools incur [4,5,7].

Parameterized systems have been studied extensively in the context of ver-
ification. It is well known that the verification of such systems is undecidable
[8,9], although it can be decided for some restricted cases. In particular, for re-
stricted topologies, the problem of verifying a network of isomorphic processes
of arbitrary size can be reduced to the verification of a small network [10,11].
As a corollary, synthesis of a network of an arbitrary number of processes can
be reduced to synthesis of a small network, as long as the restricted topology is
respected. In this paper, we focus on token ring topologies [10].

The question of synthesis of token rings is thus equivalent to the synthesis
of a small network of isomorphic processes. This question is closely related to
that of distributed synthesis [12,13,14]. Distributed synthesis is undecidable for
all systems in which processes are incomparable with respect to their informa-
tion about the environment. Our problem is slightly different in that we only
consider specifications in LTL\X and that our synthesis problem is isomorphic,
i.e., processes have to be identical. Unfortunately, this problem, and thus the
original problem of parameterized synthesis, is also undecidable.

Having obtained a negative decidability result, we turn our attention to a semi-
decision procedure, namely bounded synthesis [15,16], an approach that searches
for systems with a bounded number of states. We modify this approach to deal
with isomorphic token-passing systems. Bounded synthesis reduces the problem
of realizability to an SMT formula, a model of which gives an implementation
of the system. Using Z3 [17], we show that a simple parameterized arbiter can
be synthesized in reasonable time. Finally, we sketch a framework that extends
our approach to the more general topologies of [11], and other classes of systems
and specifications, in particular those that allow a cut-off for the corresponding
verification problem.

2 Preliminaries

We consider the synthesis problem for distributed systems, with specifications
in (fragments of) LTL. Given a system architecture A and a specification ϕ,
we want to find implementations of all system processes in A, such that their
composition satisfies ϕ.

Architectures. An architecture A is a tuple (P, env, V, I, O), where P is a finite
set of processes, containing the environment process env and system processes
P− = P \ {env}, V is a set of boolean system variables, I = {Ii ⊆ V | i ∈ P−}
assigns a set Ii of boolean input variables to each system process, and O =
{Oi ⊆ V | i ∈ P} assigns a set Oi of boolean output variables to each process,
such that ·⋃

i∈POi = V . In contrast to output variables, inputs may be shared
between processes. Wlog., we use natural numbers to refer to system processes,
and assume P− = {1, . . . , k} for an architecture with k system processes.
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Implementations. An implementation Ti of a system process i with inputs Ii
and outputs Oi is a labeled transition system (LTS) Ti = (Ti, ti, ρi, oi), where Ti

is a set of states including the initial state ti, ρi : Ti × P(Ii) → Ti a transition
function, and oi : Ti → P(Oi) a labeling function.

The composition of the set of system process implementations {T1, . . . , Tk}
is the LTS TA = (TA, t0, ρ, o), where the states are TA = T1 × · · · × Tk, the
initial state t0 = (t1, . . . , tk), the labeling function o : TA → P( ·

⋃
1≤i≤kOi)

with o(t1, . . . , tk) = o1(t1) ∪ · · · ∪ ok(tk), and finally the transition function
ρ : TA × P(Oenv) → TA with

ρ((t1, . . . , tk), e) = (ρ1(t1, (o(t1, . . . , tk)∪e)∩I1), . . . , ρk(tk, (o(t1, . . . , tk)∪e)∩Ik)),

i.e., every process advances according to its own transition function and input
variables, where inputs from other system processes are interpreted according to
the labeling of the current state.

A run of an LTS (T, t0, ρ, o) is an infinite sequence (t0, e0), (t1, e1), . . ., where
t0 = t0, e

i ⊆ Oenv and ti+1 = ρ(ti, ei). An LTS satisfies a formula ϕ if for every
run, the sequence o(t0) ∪ e0, o(t1) ∪ e1, . . . is a model of ϕ.

Asynchronous Systems. An asynchronous system is an LTS such that in
every transition, only a subset of the system processes changes their state. This
is decided by a scheduler, which can choose in every step which of the processes
(including the environment) is allowed to make a step. In our setting, we will
assume that the environment is always scheduled, and consider the scheduler as
a part of the environment.

Formally, Oenv contains additional scheduling variables s1, . . . , sk, and si ∈ Ii
for every i. We require ρi(t, I) = t for any i and set of inputs I with si �∈ I.

Token Rings. We consider a class of architectures called token rings, where
the only communication between system processes is a token. At any time only
one process can possess the token, and a process i which has the token can pass
it to process i+1 by raising an output sendi ∈ Oi ∩ Ii+1. For processes in token
rings of size k, addition and subtraction is done modulo k.

We assume that token rings are implemented as asynchronous systems, where
in every step only one system process may change its state, except for token-
passing steps, in which both of the involved processes change their state.

Distributed Synthesis. The distributed synthesis problem for a given architec-
ture A and a specification ϕ, is to find implementations for the system processes
of A, such that the composition of the implementations T1, . . . , Tk satisfies ϕ,
written A, (T1, . . . , Tk) |= ϕ. A specification ϕ is realizable with respect to an
architecture A if such implementations exist. Synthesis and checking realizabil-
ity of LTL specifications have been shown to be undecidable for architectures
in which not all processes have the same information wrt. environment outputs
in the synchronous case [13], and even for all architectures with more than one
system process in the asynchronous case [14].
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Bounded Synthesis. The bounded synthesis problem for given architecture A,
specification ϕ and a family of bounds {bi ∈ N | i ∈ P−} on the size of system
processes as well as a bound bA for the composition TA, is to find implementations
Ti for the system processes such that their composition TA satisfies ϕ, with
|Ti| ≤ bi for all process implementations, and |TA| ≤ bA.

3 Parameterized Synthesis

In this section, we introduce the parameterized synthesis problem. Using a clas-
sical result for the verification of token rings by Emerson and Namjoshi [10],
we show that parameterized synthesis for token ring architectures and specifica-
tions in LTL\X can be reduced to distributed synthesis of isomorphic processes
in a ring of fixed size. We then show that for this class of architectures and
specifications, the isomorphic distributed synthesis problem is still undecidable.

3.1 Definition

Parameterized Architectures and Specifications. Let A be the set of
all architectures. A parameterized architecture is a function Π : N → A.
A parameterized token ring is a parameterized architecture R with R(n) =
(Pn, env, Vn, In, On), where

– Pn = {env, 1, . . . , n},
– In is such that all system processes are assigned isomorphic sets of inputs,

consisting of the token-passing input sendi−1 from process i− 1 and a set of
inputs from the environment, distinguished by indexing each input with i.

– Similarly, On assigns isomorphic, indexed sets of outputs to all system pro-
cesses, with sendi ∈ On(i), and every output of env is indexed with all values
from 1 to n.

A parameterized specification ϕ is an LTL specification with indexed variables,
and universal quantification over indices. We say that a parameterized architec-
ture Π and a process implementation T satisfy a parameterized specification
(written Π, T |= ϕ) if for any n, Π(n), (T , . . . , T ) |= ϕ.

Example 1. Consider the parameterized token ring Rarb with Rarb(n) =
(Pn, env, Vn, In, On), where

Pn = {env, 1, . . . , n} (1)

Vn = {r1, . . . , rn, g1 . . . , gn, send1, . . . , sendn} (2)

In(i) = {ri, sendi−1} (3)

On(env) = {r1, . . . , rn} (4)

On(i) = {gi, sendi} (5)
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The architecture R(n) defines a token ring with n system processes, with each
process i receiving an input ri from the environment and another input sendi−1

from the previous process in the ring, and an output sendi to the next process,
as well as an output gi to the environment.

An instance of this parameterized architecture for n = 4 is depicted in Fig. 1.
Together with the parameterized specification from Section 1, we will use it in
Section 5 to synthesize process implementations for a parameterized arbiter.
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Fig. 1. Token ring architecture with 4 processes

Isomorphic and Parameterized Synthesis. The isomorphic synthesis prob-
lem for an architecture A and a specification ϕ is to find an implementation T
for all system processes (1, . . . , k) such that A, (T , . . . , T ) |= ϕ. The parameter-
ized synthesis problem for a parameterized architecture Π and a parameterized
specification ϕ is to find an implementation T for all system processes such that
Π, T |= ϕ. The parameterized (isomorphic) realizability problem is the question
whether such an implementation exists.

3.2 Reduction of Parameterized to Isomorphic Synthesis

Emerson and Namjoshi [10] have shown that verification of LTL\X properties for
implementations of parameterized token rings can be reduced to verification of a
small ring with up to five processes, depending on the form of the specification.

Theorem 1 ([10]). Let R be a parameterized token ring, T an implementation
of the isomorphic system processes that ensures fair token passing, and ϕ a
parameterized specification. Then

a) If ϕ = ∀i. fi, where fi is a formula that only refers to variables indexed by
i, then R, T |= ϕ ⇐⇒ R(2), T |= ϕ
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b) If ϕ = ∀i. fi,i+1, where fi,i+1 is a formula that only refers to variables
indexed by i and i+ 1, then R, T |= ϕ ⇐⇒ R(3), T |= ϕ

c) If ϕ = ∀i �= j. fi,j, where fi,j is a formula that only refers to variables
indexed by i and j, then R, T |= ϕ ⇐⇒ R(4), T |= ϕ

d) If ϕ = ∀i �= j. fi,i+1,j , where fi,i+1,j is a formula that only refers to variables
indexed by i, i+ 1, and j, then R, T |= ϕ ⇐⇒ R(5), T |= ϕ

This theorem implies that verification of such structures is decidable. For syn-
thesis, we obtain the following corollary:

Corollary 1. For a given parameterized token ring R and parametric specifica-
tion ϕ, parameterized synthesis can be reduced to isomorphic synthesis in rings
of size 2 (3, 4, 5) for specifications of type a) (b, c, d, resp.).

In the following, we will show that this reduction in general does not make the
synthesis problem decidable.

3.3 Decidability

The parameterized synthesis problem is closely related to the distributed syn-
thesis problem [12,13]. We will use a modification of the original undecidability
proof for distributed systems to show undecidability of isomorphic synthesis in
token rings, which in turn implies undecidability of parameterized synthesis.

Theorem 2. The isomorphic realizability problem is undecidable for token rings
with 2 or more processes and specifications in LTL\X.

Proof. The proof follows that of Pnueli and Rosner [12] (see also Finkbeiner
and Schewe [13]). The original proof is for two synchronous processes, neither
of which can observe the inputs or outputs of the other. The proof builds a
specification that allows a single implementation, and forces the two processes
to each simulate a Turing machine and halt. Thus, it is realizable iff the Turing
machine halts, which shows undecidability. We will show that we can specify (in
LTL\X) an asynchronous system in a token ring that simulates the behavior of
these two synchronous processes. The proof works for rings of arbitrary size, if
we assume that the specification is the same for all processes.

In the original proof, each process has a start signal that triggers the pro-
cesses to output the next configuration of the Turing machine. The specification
assumes that the number of start signals for the two processes is never different
by more than one and requires that the configurations that are output by the
two processes are either equal (if the number of start signals is equal) or that
they are successors (if the number of start signals is off by one). This is easily
specified because the processes are synchronized by a global clock.

We need to modify the original proof such that it works for asynchronous
systems, and the specification can be written without the X operator.
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This can be achieved by forcing the asynchronous system to simulate a syn-
chronous system by using the token for synchronization: We augment the spec-
ification to assume that the token starts at a designated process, say 1. A clock
cycle consists of a full cycle of the token, and we require that each process
changes its output only once in each cycle. Thus, the asynchronous system
simulates a synchronized system, where the synchronous states consist of the
state of the asynchronous system immediately after the token passes to 1. Us-
ing tok1 to identify these states, it is now possible to correlate the states of
the simulated system: for instance, X qi for the synchronous system corresponds
to ¬tok1 W (tok1 ∧ qi) for the asynchronous system, and G qi corresponds to
G(¬tok1 =⇒ ¬tok1 W tok1 ∧ qi). This allows us to translate the construction in
[12] to our setting, and remove all occurrences of X in the specification.

Finally, the token cannot be used to pass any additional information (beyond
the synchronization): the only freedom a process has is when to pass the token,
and by lack of a global clock and visibility of the input and output signals of
the other processes, a given process cannot measure this time or observe any
changes of the system during this time.

Thus, our asynchronous system simulates the synchronous system from [12]
and is realizable iff the Turing machine halts. ��

Combining Theorems 1 and 2, we obtain the following result.

Theorem 3. The parametric realizability problem is undecidable for token rings
and specifications of type (a), (b), (c), or (d).

Proof. By Theorem 1, the isomorphic realizability problem for a specification
of type (a) and two processes can be reduced to a parameterized realizability
problem of type (a). Since the former problem is undecidable, so is the latter.
The proof for cases (b)–(d) is analogous. ��

4 Bounded Isomorphic Synthesis

The reduction from Section 3 allows us to reduce parameterized synthesis to
isomorphic synthesis with a fixed number of processes. Still, the problem does
not fall into a class for which the distributed synthesis problem is decidable.

For distributed architectures that do not fall into decidable classes, Finkbeiner
and Schewe have introduced the semi-decision procedure of bounded synthe-
sis [15,16], which converts an undecidable distributed synthesis problem into
a sequence of decidable synthesis problems, by bounding the size of the imple-
mentation. In the following, we will show how to adapt bounded synthesis for
isomorphic synthesis in token rings, which by Corollary 1 amounts to parame-
terized synthesis in token rings.

4.1 Bounded Synthesis

The bounded synthesis procedure consists of three main steps:
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Step 1: Automata translation. Following an approach by Kupferman and
Vardi [18], the LTL specification ϕ (including fairness assumptions like fair
scheduling) is translated into a universal co-Büchi-automaton U which accepts
an LTS T iff T satisfies ϕ.

Step 2: SMT Encoding. Existence of an LTS which satisfies ϕ is encoded
into a set of SMT constraints over the theory of integers and free function sym-
bols. States of the LTS are represented by natural numbers, state labels as free
functions of type N → B, and the global transition function as a free function of
type N × B

|Oenv| → N. Transition functions of individual processes are defined
indirectly by introducing projections di : N → N, mapping global to local states.
To ensure that local transitions of process i only depend on inputs in Ii, we add
a constraint

∀i. ∀t, t′. ∀I, I ′. di(t) = di(t
′) ∧ I ∩ Ii = I ′ ∩ Ii → di(τ(t, I)) = di(τ(t

′, I ′)).

To obtain an interpretation of these symbols that satisfies the specification ϕ,
additional annotations of states are introduced. This includes labels λB

q : N → B

and free functions λ#
q : N → N, which are defined such that (i) λB

q (t) is true iff
the product of T and U contains a path from an initial state to a state (t, q) with
q ∈ Q, i.e., the product automaton can reach a state in which U is in q, among
other states, and (ii) valuations of the λ#

q must be increasing along paths of U ,
and strictly increasing for transitions that enter a rejecting state of U . Together,
this ensures that an LTS satisfying these constraints cannot have runs which
enter rejecting states infinitely often (and thus would be rejected by U).

Step 3: Iteration for Increasing Bounds. To obtain a decidable problem,
we restrict the number of states in the LTS that we are looking for, which allows
us to instantiate all quantifiers over state variables t, t′ explicitly with all values
in the given range. If the constraints are unsatisfiable for a given bound, we
increase it and try again. If they are satisfiable, we obtain a model, giving us an
implementation for the system processes such that ϕ is satisfied.

4.2 Adaption to Token Rings

We adapt the bounded synthesis approach for synthesis in token rings, and intro-
duce some optimizations we found vital for a good performance of the synthesis
method.

Additional Constraints and Optimizations. We use some of the general
modifications and optimizations mentioned in [16]:

– We use an additional constraint to ensure that the resulting system imple-
mentation is asynchronous. In general, we could directly add a constraint
∀i. ∀I. si �∈ I → di(τ(t, I)) = di(t) (where I is a set of inputs and si is the
scheduling variable for process i). For the particular case of token rings we
use a modified version, explained below.
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– We use symmetry constraints to encode that all processes should be isomor-
phic. Particularly, we use the same function symbols for state labels of all
system processes, and special constraints for the local transition functions,
also explained below.

– We use the semantic variant where environment inputs are not stored in
system states, but are directly used in the transition term that computes
the following state. This results in an implementation which is a factor of
|Oenv| smaller.1

Encoding Token Rings. For the particular case of token rings, we use the
following modifications to the SMT encoding:

– We want to obtain an asynchronous system in which the environment is
always scheduled, along with exactly one system process. Thus, we do not
need |P | scheduling variables, but can encode the index of the scheduled
process into a binary representation with log2(|P−|) inputs.

– We encode the special features of token rings: i) exactly one process should
have the token at any time, ii) only a process which has the token can send
it, iii) if process i is scheduled, currently has the token and wants to send
it, then in the next state process i+1 has the token and process i does not,
and iv) if process i has the token and does not send it (or is not scheduled),
it also has the token in the next state. Properties ii) – iv) are encoded in
the following constraints, where toki((di(t)) is true in state t iff process i has
the token, send(di(t)) is true iff i is ready to send the token, and schedi(I)
is true iff the scheduling variables in I are such that process i is scheduled:

∀i. ∀t. ∀I. tok(di(t)) → (send(di(t)) ∧ schedi(I)) ∨ tok(di(τ(t, I)))
∀i. ∀t. ¬tok(di(t)) → ¬send(di(t))
∀i. ∀t. ∀I. send(di(t)) ∧ schedi(I) → ¬tok(di(τ(t, I)))
∀i. ∀t. ∀I. send(di−1(t)) ∧ schedi(I) → tok(di(τ(t, I)))

We do not encode property i) directly, because it is implied by the remaining
constraints whenever we start in a state where only one process has the token.

– Token passing is an exception to the rule that only the scheduled process
changes its state: if process i is scheduled in state t, and both tok(di(t)) and
send(di(t)) hold, then in the following transition both processes i and i + 1
will change their state. The constraint which ensures that only scheduled
processes may change their state is modified into

∀i. ∀t. ∀I. ¬schedi(I) ∧ ¬(schedi−1(I) ∧ tok(di−1(t)) ∧ send(di−1(t)))
→ di(τ(t, I)) = di(t)

– Finally, we need to restrict local transitions in order to obtain isomorphic
processes. The general rule is that local transitions of process i should only

1 The different semantics (compared to the input-preserving LTSs used in [15,16]) is
already reflected in our definition of LTSs and satisfaction of LTL formulas.
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depend on the local state and inputs in Ii. With our definition, token passing
is an exception to this rule. The resulting constraints for local transitions
are:

∀i > 1. ∀t, t′. ∀I, I ′. d1(t) = di(t
′) ∧ sched1(I) ∧ schedi(I

′)
→ d1(τ(t, I)) = di(τ(t

′, I ′))
∀i > 1. ∀t, t′. ∀I, I ′. d1(t) = di(t

′) ∧ send(dn(t)) ∧ send(di−1(t
′))

∧ schedn(I) ∧ schedi−1(I
′) ∧ I ∩ I1 = I ′ ∩ Ii

→ d1(τ(t, I)) = di(τ(t
′, I ′))

Fairness of Scheduling and Token Passing. A precondition of Thm. 1 is
that the implementation needs to ensure fair token-passing. Thus, we always add

∀i. fair scheduling → (G(toki → F sendi))

to ϕ, where fair scheduling stands for ∀j. GF schedj . Note that with this condi-
tion, the formula does not fall into any of the cases from Thm. 1. However, in the
model of Emerson and Namjoshi, fairness of scheduling is an implicit assump-
tion, since otherwise fairness of token passing will also be violated. Thus, by
adding this formula, we are making explicit two of the assumptions of Emerson
and Namjoshi, and this formula does not need to be taken into account when
choosing which case of the theorem needs to be applied.

Similarly, the fair scheduling assumption needs to be added to any liveness
conditions of the specification, as without fair scheduling in general liveness
conditions cannot be guaranteed. As before, this does not need to be taken into
account considering Thm. 1.

Correctness and Completeness of Bounded Synthesis for Token Rings.
Based on completeness of the original bounded synthesis approach (and correct
modeling of the features of token rings), we obtain

Corollary 2. If a given specification ϕ is satisfiable in a token ring of a given
size n, then the bounded synthesis algorithm, adapted to token rings, will even-
tually find this implementation.

Finally, based on the correctness of our adaption of bounded synthesis, and
Corollary 1, we obtain

Theorem 4. If a given specification ϕ falls into class a (b,c,d) of Thm. 1 and
the adapted bounded synthesis algorithm finds an implementation that satisfies
ϕ in a token ring of size 2 (3,4,5), then this implementation satisfies ϕ in token
rings of arbitrary size.

5 Synthesizing a Parameterized Arbiter

In this section, we show how parameterized synthesis can be used to obtain pro-
cess implementations for token ring architectures. Our example is a parameter-
ized arbiter in a token ring as depicted in Fig. 1, with the following specification:
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∀i �= j. G¬(gi ∧ gj)
∀i. (G(ri → F gi))

Every process i has an input ri for requests from the environment, which it
can grant by activating an output gi. We want grants of all processes to be
mutually exclusive, and every request to be eventually followed by a grant. The
specification satisfies case c) in Theorem 1, i.e., a ring of size 4 is sufficient to
synthesize implementations that satisfy the specification for rings of any size.

According to the adapted bounded synthesis approach from Sect. 4.2, we need
to add the token fairness requirement, and add the fair scheduling assumption
to all liveness constraints. This results in the extended specification

∀i �= j. G¬(gi ∧ gj)
∀i. fair scheduling → (G(ri → F gi))
∀i. fair scheduling → (G(toki → F sendi)).

We translate the specification into a universal co-Büchi automaton, shown for 2
processes in Fig. 2. This automaton translates to a set of first-order constraints
for the annotations of an LTS implementing ϕ, a part of which is shown in
Fig. 3 (only constraints for states 0, 1, 3, 5 of the automaton are shown). These
constraints, together with general constraints for asynchronous systems, isomor-
phic processes, token rings, and size bounds, are handed to Z3 [17]. For correctly
chosen bounds (|TA| ≤ 4 and |Tp| ≤ 2), we obtain a model of the process imple-
mentation in ∼10 seconds (on an Intel Core i7 CPU @ 2.67 GHz). The solution
is very simple: every process needs only 2 states, with sendi and gi signals high
iff the process has the token. In the parallel composition of 4 such processes,
only 4 global states are reachable. Theorem 4 guarantees that with this process
implementation, ϕ will be satisfied for any instance of the architecture.

Note that synthesis is “easy” in this case because we can restrict it to a small
ring of 4 processes, and have a rather simple specification. For 5 processes (and
|TA| ≤ 5), Z3 already needs ∼100 seconds to solve the resulting constraints.
We expect similar increases in needed time for specifications with more system
variables.

The translation of specifications into SMT constraints is currently not fully
automated. We leave the development of an automatic tool and its application
to more complex case studies for future work.

6 A Framework for Parameterized Synthesis

Our approach for reduction of parameterized synthesis to distributed/isomorphic
synthesis is not limited to token rings. In the following, we sketch a framework
which allows us to lift decision procedures for the verification of parameterized
systems to semi-decision procedures for their synthesis.
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Fig. 2. Universal co-Büchi automaton for specification ϕ

6.1 General Token-Passing Systems

Clarke, Talupur, Touilli, and Veith [11] have extended the results of Emerson and
Namjoshi to arbitrary token-passing networks. They reduce the parameterized
verification problem to a finite set of model checking problems, where the number
of problems and the size of systems to be checked depends on the architecture
of the parameterized system and on the property to be proved.

To lift these results to the synthesis of parameterized token-passing systems in
general, we need to adapt the bounded synthesis algorithm further, such that it
searches for a process implementation which satisfies the required properties for
all verification problems in the set determined by architecture and specification.
This requirement can easily be encoded into corresponding constraints for the
SMT solver, but may of course increase complexity of synthesis significantly.

Encoding of token-passing into SMT constraints must be adapted to the pos-
sibility that processes may be able to choose which other process will receive
the token. Furthermore, Clarke et al. [11] have the assumption that the sys-
tem satisfies fair token passing. For synthesis, we must strengthen the given
specification of the system such that it will satisfy this property. For general
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λB

0(0)
tok(d1(0)) ∧ ∀i �= 1. ¬tok(di(0))

∀t. ∀I. λB

0(t) → λB

0(τ (t, I)) ∧ λ#
0 (τ (t, I)) ≥ λ#

0 (t)

∀i �= j. ∀t. λB

0(t) → ¬(g(di(t)) ∧ g(dj(t)))

∀i. ∀t. ∀I. λB

0(t) ∧ sched1(I) ∧ ri ∈ I → λB

1(t) ∧ λ#
1 (τ (t, I)) > λ#

0 (t)

∀i �= j. ∀t. ∀I. λB

1(t) ∧ ¬sched2(I) ∧ ¬g(d1(t)) → λB

3(t) ∧ λ#
3 (τ (t, I)) ≥ λ#

1 (t)

∀i �= j. ∀t. ∀I. λB

1(t) ∧ sched2(I) ∧ ¬g(d1(t)) → λB

5(t) ∧ λ#
5 (τ (t, I)) ≥ λ#

1 (t)

∀i �= j. ∀t. ∀I. λB

3(t) ∧ ¬sched2(I) ∧ ¬g(d1(t)) → λB

3(t) ∧ λ#
3 (τ (t, I)) ≥ λ#

3 (t)

∀i �= j. ∀t. ∀I. λB

5(t) ∧ ¬sched1(I) ∧ ¬g(d1(t)) → λB

5(t) ∧ λ#
5 (τ (t, I)) ≥ λ#

5 (t)

∀i �= j. ∀t. ∀I. λB

5(t) ∧ sched1(I) ∧ ¬g(d1(t)) → λB

1(t) ∧ λ#
1 (τ (t, I)) > λ#

5 (t)
. . . . . .

Fig. 3. Constraints that are equivalent to realizability of ϕ

token-passing networks, the assumption that every process that holds the token
will always eventually send it may not be enough to ensure fair token passing.
One possibility to ensure fair token-passing in general networks is to require

∀i.∀j.G(toki → F send(i,j)),

where i quantifies over all processes as usually, j over all processes which can
receive the token from process i, and send(i,j) means that i sends the token to j.

6.2 Other Results with Cutoffs

In the literature, there is a vast body of work on the verification of parameter-
ized systems, much of it going beyond token-passing systems (e.g., [19,20]). In
particular, many of these results prove a cutoff for the given class of systems and
specifications [21,22,23], making the verification problem decidable.

In principle, any verification result that provides a cutoff, i.e., reduces the
verification of LTL properties for parameterized systems to the verification of a
finite set of fixed-size systems, can be used in a similar way to obtain a semi-
decision procedure for the parameterized synthesis problem. Our limitation is the
ability to encode the special features of the class of systems in decidable first-
order constraints, and the specifications under consideration are omega regular.

Approaches that detect a cutoff for a given system implementation dynam-
ically [24,25] (i.e., not determined by architecture and specification) are less
suited for our framework: they could in principle be integrated with our ap-
proach, but cutoff detection would have to be interleaved with generation of
candidate implementations, making it hard or impossible to devise a complete
synthesis approach.

7 Conclusions

We have stated the problem of parameterized realizability and parameterized
synthesis: whether and how a parameterized specification can be turned into a



Parameterized Synthesis 375

simple recipe for constructing a parameterized system. The realizability problem
asks whether a parameterized specification can be implemented for any number
of processes, i.e., whether the specification is correct. The answer to the synthesis
question gives a recipe that can quickly be turned into a parameterized system,
thus avoiding the steeply rising need for resources associated with synthesis for
increasing n using classical, non-parameterized methods.

We have considered the problem in detail for token rings, and to some extent
for general token-passing topologies. Using results from parameterized verifica-
tion, we showed that the parameterized synthesis problem reduces to distributed
synthesis of a small network of isomorphic processes with fairness constraints on
token passing. Unfortunately, the synthesis problem remains undecidable.

Regardless of this negative result, we managed to synthesize an actual—albeit
very small—example of a parameterized arbiter. To this end, we used Schewe
and Finkbeiner’s results on bounded synthesis. In theory, this approach will
eventually find an implementation if it exists. In practice, this currently only
works for small implementations. One line of future work will be on making
synthesis feasible for larger systems, possibly as an extension of the lazy synthesis
approach [7].

For unrealizable specifications, our approach will run forever. It is an inter-
esting question whether it could be combined with incomplete methods to check
unrealizability.

We note that the topologies we considered do limit communication between
processes and therefore also the possible solutions. For our running example,
processes give grants only when they hold the token. Obviously, this means that
response time increases linearly with the number of processes, something that can
be avoided in other topologies. The use of more general results on parameterized
verification may widen the class of topologies that we can synthesize.
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