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Abstract
Parameterized tiled loops—where the tile sizes are not fixed at
compile time, but remain symbolic parameters until later—are
quite useful for iterative compilers and “auto-tuners” that produce
highly optimized libraries and codes. Tile size parameterization
could also enable optimizations such as register tiling to become
dynamic optimizations. Although it is easy to generate such loops
for (hyper) rectangular iteration spaces tiled with (hyper) rectan-
gular tiles, many important computations do not fall into this re-
stricted domain. Parameterized tile code generation for the general
case of convex iteration spaces being tiled by (hyper) rectangular
tiles has in the past been solved with bounding box approaches or
symbolic Fourier Motzkin approaches. However, both approaches
have less than ideal code generation efficiency and resulting code
quality. We present the theoretical foundations, implementation,
and experimental validation of a simple, unified technique for gen-
erating parameterized tiled code. Our code generation efficiency
is comparable to all existing code generation techniques including
those for fixed tile sizes, and the resulting code is as efficient as, if
not more than, all previous techniques. Thus the technique provides
parameterized tiled loops for free! Our “one-size-fits-all” solution,
which is available as open source software can be adapted for use
in production compilers.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Compilers, Optimization

General Terms Algorithms, Experimentation, Performance

Keywords parameterized tiling, bounding box, Fourier-Motzkin
elimination, code generation

1. Introduction
Tiling [12, 27, 18, 31] is a loop transformation that matches pro-
gram characteristics (locality, parallelism, etc.) to those of the ex-
ecution environment (memory hierarchy, registers, number of pro-
cessors, etc.) Many problems relating to tiling have been exten-
sively studied: how to pre-process a loop to make tiling legal (e.g.
loop-skewing and other unimodular transformations) [31, 18]; tile
shape optimization [7, 26, 11]; and tile size selection to optimize for
memory hierarchy as well as interprocessor communication [8, 4].
However, as noted by Goumas et al. [9], the code generation prob-
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lem after tiling has not received as much attention. Until their paper,
most compilers and automatic parallelizers did not generate tiled-
code for arbitrary parallelepiped-shaped tiles, and arbitrary polyhe-
dral iteration spaces, even though an algorithm was described in the
early work of Irigoin and Triolet [12]. The techniques of Goumas
et al. are the current state of the art when the tile sizes are fixed at
compile time. In this paper we address the problem when tile sizes
are not compile-time constants, but remain symbolic parameters in
the code.

There are many reasons why the parameterized tiled code gen-
eration problem is important. First, iterative compilers [16, 17] and
“autotuners” or application-specific code generators such as AT-
LAS [29] and SPIRAL [24], optimally tune parameters including
tile sizes, through exploration of a design-space of parameter val-
ues. A recent study of tiling for stencil computations [14] found
that selecting the tile size that results in the “best” performance is
difficult. With a fixed tiled code generator, the code needs to be re-
peatedly generated and recompiled for each tile size, whereas, with
a parameterized tiled code generator, the code is generated only
once and used for all the tile sizes.

Second, parameterized tiled code enables run-time feedback
and dynamic program adaptation. For example, run-time tile size
adaptation has been successfully used improve execution on shared
cache processors [22] and also for adapting parallel programs to
varying workloads [21]. Finally, parallelizing compilers should
generate code that enables the number of processors to be set at
run time [2]. For polyhedral iteration spaces, this problem is simi-
lar to the general problem of generating parameterized tiled code;
therefore, any solution for generating parameterized tiled code can
be directly adapted to enable setting the number of processors at
runtime.

There is an easy solution to the parameterized tiled loop gen-
eration problem: simply produce a parameterized tiled loop for the
bounding box of the iteration space, and introduce guards to test
whether the point being executed belongs to the original iteration
space. When the iteration space is itself (hyper) rectangular, as in
matrix multiplication, this method is obviously efficient. However,
many important computations, such as LU decomposition, triangu-
lar matrix product, symmetric rank updates, do not fall within this
category. Moreover, even if the original iteration space is (hyper)
rectangular, the compiler may choose to perform skewing transfor-
mations to exploit temporal locality (e.g. stencil computations) thus
rendering it parallelepiped shaped. Parallelepiped-shaped iteration
spaces also occur when skewing is performed to make (hyper) rect-
angular tiling legal. For such programs, the bounding box strategy
results in poor code quality, because a number of so called “empty
tiles” are visited and tested for emptiness. Another drawback for
the bounding box strategy is that calculating the bounding box of
arbitrary iteration spaces may be time-consuming. The worst-case
time complexity of computing a bounding box is exponential [5].
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The main difficulty with generating parameterized tiled loop
code has been the fact that the Fourier-Motzkin elimination tech-
nique that is used for scanning polyhedra [3] does not naturally han-
dle symbolic tile sizes, and leads to a nonlinear formulation. Ama-
rasinghe proposed a symbolic extension of the standard Fourier-
Motzkin elimination technique [2, 1] and implemented it in the
SUIF system [30]. It is well known that Fourier-Motzkin elimina-
tion has doubly exponential worst case complexity. The symbolic
extension inherits this worst case complexity, adds to the number
of variables in the problem, and reduces the possibilities for redun-
dancy elimination.

In this paper, we present a simple and efficient approach for
generating parameterized tiled code that handles any polyhedral
iteration space and parameterized (hyper) rectangular tilings. We
show that the problem can be formulated into the subproblems of
generating loops that iterate over tile origins, and loops that iterate
over the points within tiles. These subproblems can be formulated
as a set of linear constraints where the tile sizes are parameters,
similar to problem size parameters. This allows us to reuse exist-
ing code generators for polyhedra, such as CLooG [6], and imple-
ment our code generator through simple pre- and post-processing
of the CLooG input and outputs. The key insight is expressing the
bounds for the tile loops as a superset of the original iteration space
and then post processing the generated loops by adding a stride and
modifying the computation of the lower bounds. In addition, we de-
velop and prove the correctness of two loop overhead optimization
techniques that avoid visiting empty tiles and avoid unnecessary
guards for full tiles. This paper makes the following contributions:

• We present an algorithm that generates tiled loops from any
parameterized polyhedral iteration space, while keeping the tile
sizes symbolic variables. The fact that our algorithm can be
directly applied to the case when the tile sizes are fixed, makes
our method a one-size-fits-all solution, ideal for inclusion in
production compilers.

• An empirical evaluation on benchmarks such as LUD and tri-
angular matrix product show that our algorithm is both efficient
and delivers good code quality. Our experiments present the
first quantitative analysis of the cost of parameterization in tiled
loops.

• We also present an algorithm that separates the loops into those
that iterate over partial tiles and those that iterate over full tiles.
Such a separation has the added benefit that it enables trans-
formations like loop unrolling or software pipelining, (which
are often applied only to rectangular loops) to be applied to the
(rectangular) loops that iterate over the full tiles.

• Our implementation is available as open source software [28].

In the next section, we present the important issues involved in
tiled code generation. Next, Section 3 resolves the first problem,
namely scanning the tile origins, and Section 4 describes how to
scan the individual tiles. In Section 5, we present the experimental
validation of our method. Section 6 then describes the optimization
that enables splitting the full and partial tiles, together with the
proof of the technique. Section 7 discusses related work, and we
conclude in Section 8.

2. Anatomy of Tiled Loop Nests
Tiling is an iteration reordering transformation that transforms a d-
depth loop nest into one of depth up to 2d. In this section we study
the structure of tiled loops and develop an intuition for the concepts
involved in generating them. In later sections, these concepts are
formalized and used in deriving a simple and efficient algorithm
for the generation of tiled loops.

for (k = 1; k <= Nk;k++)
for (i = k+1; i <= k+Ni;i++)

S1(k,i);

Figure 1. 2D iteration space found commonly in stencil computa-
tions. The body of the loop is represented with the macro S1 for
brevity.

Consider the iteration space of a 2D parallelogram such as
the one shown in Figure 1, which is commonly found in stencil
computations [18]. Figure 2 shows a geometric view of the iteration
space superimposed with a 2 × 2 rectangular tiling. Observe that
there are three types of tiles: full—which are completely contained
in the iteration space, partial—which have a partial, non-empty
intersection with the iteration space, and empty—which do not
intersect the iteration space. The lexicographically earliest point in
a tile is called its origin. The goal is to generate a set of loops
that scans (i.e., visits) each integer point in the original iteration
space based on the tiling transformation, where the tiles are visited
lexicographically and then the points within each tile are visited
lexicographically. We can view the four loops that scan the tiled
iteration space as two sets of two loops each, where the first set of
two loops enumerate the tile origins and the next set of two loops
visit every point within a tile. We call the loops that enumerate the
tile origins the tile-loops and those that enumerate the points within
a tile the point-loops.

2.1 Bounding Box Method

One solution for generating the tile-loops is to have them enumerate
every tile origin in the bounding box of the iteration space and
push the responsibility of checking whether a tile contains any valid
iteration to the point-loops. The tiled loop nest generated with this
bounding box scheme is shown in Figure 3. The first two loops
(kT and iT) enumerate all the tile origins in a bounding box of
size Nk × (Ni + Nk) and the two inner loops (k and i) scan the
points within a tile. A closer look at the point-loop bounds reveals
its simple structure. One set of bounds are from what we refer to
as the tile box bounds, which restrict the loop variable to points
within a tile. The other set of bounds restricts the loop variable
to points within the iteration space. Combining these two sets of
bounds we get the point loops that scan points within the iteration
space and tiles. Geometrically, the point loop bounds correspond to
the intersection of the tile box (or rectangle) and the iteration space,
here the parallelogram in Figure 2.

The bounding box scheme provides a couple of important in-
sights into the tiled loop generation problem. First, the problem can
be decomposed into the generation of tile-loops and the generation
of point-loops. Such a decomposition leads to efficient loop gener-
ation, since the time and space complexity of loop generation tech-
niques is a doubly exponential function of the number of bounds.
The second insight is the scheme of combining the tile box bounds
and iteration space bounds to generate point-loops. Another impor-
tant feature of the bounding box scheme is that tile sizes need not
be fixed at loop generation time, but can be left as symbolic param-
eters. This feature enables generation of parameterized tiled loops,
which has many applications as discussed in the previous section.
However, the bounding box scheme can suffer from inefficiency
in the generated loops in that the tile-loops can enumerate many
empty tiles.

2.2 When Tile Sizes Are Fixed

When the tile sizes can be fixed at the loop generation time an exact
tiled-loop nest can be generated. Tile-loops that only enumerate
origins of tiles that have a non-empty rational intersection with
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Figure 2. A 2×2 rectangular tiling of the 2D stencil iteration space
with Ni = Nk = 6 is shown. The bounding box of the iteration
space together with full, partial, and empty tiles and their origins
are also shown.

for (kT = 1; kT <= Nk; kT += Sk)
for (iT = 2; iT <= Ni+Nk; iT += Si)
for (k= max(kT ,1);k<=min(kT+Sk -1,Nk);k++)
for (i= max(iT,k+1);i<=min(iT+Si-1,k+Ni);i++)

S1(k,i);

Figure 3. Tiled loops generated using the bounding box scheme.

the iteration space are exact. Ancourt and Irigoin [3] proposed the
first and now classic solution for generating the exact tiled loops
when the tile sizes are fixed. When the tile sizes are fixed the tiled
iteration space can be described as a set of linear constraints and
the loops that scan this set can be generated using Fourier-Motzkin
elimination [3, 31]. The exact tiled loop nest for the 2D stencil
example is shown in Figure 4. Note that the efficiency due to the
exactness of the tile-loops has come at the cost of fixing the tile
sizes at generation time. Such loops are called fixed tiled loops.

The classic scheme, in addition to requiring fixed tile sizes, also
suffers from loop generation inefficiency. It takes as input all the
constraints that describe the bounds of the 2d loops of the tiled
iteration space, where d is the depth of the original loop nest. Since
the method is doubly exponential on the number of constraints, this
increased number of constraints might lead to situations where the
loop generation time may become prohibitively expensive [9].

for(kT=0;kT <=�(Nk/2)�;kT++)
for(iT=max(1,kT);

iT <=min(�(2*kT+Ni+1)/2�,�Nk+Ni/2�);iT++)
for(k=max(max(1,2*kT),2*iT-Ni);

k<=min(min(2*kT+1,2*iT),Nk);k++)
for(i=max(2*iT ,k+1);

i<=min(2*iT+1,k+Ni);i++)
S1(k,i) ;

Figure 4. Tiled loops generated for fixed tile sizes using the classic
scheme.

Figure 5. A 2 × 2 rectangular tiling of the 2D stencil iteration
space with Ni = Nj = 6. The outset and bounding box are also
shown. Compare the number of empty tile origins contained in each
of them.

Goumas et al. [9] improve on the classic scheme by dividing
the loop generation problem into two subproblems, similar to the
approach taken with bounding box, but their generated code visits
fewer empty tiles than bounding box. However, their solution is still
only applicable to fixed tile sizes.

2.3 Best Of Both

We propose a tiled code generation method that achieves the best
of both worlds: the simple decomposed loop structure used by the
bounding box method and the Goumas et al. technique, the code
quality provided by the fixed tile size methods, and the benefits of
parameterized tile sizes provided by the bounding box method. We
develop formal theory and use it to derive a method which provides
efficient generation of efficient parameterized tiled loops.
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kTLB = -Sk+2; kTLB = �kTLB/Sk�*Sk;
for(kT = kTLB; kT <= Nk; kT += Sk)
iTLB = kT-Si+2; iTLB = �iTLB/Si�*Si;
for(iT = iTLB; iT <= kT+Ni+Sk -1; iT += Si)
for(k= max(kT ,1);k<=min(kT+Sk -1,Nk);k++)
for(i=max(iT,k+1);i<=min(iT+Si -1,k+Ni);i++)

S1(k,i);

Figure 6. Parameterized tiled loops generated using outset. The
variables kTLB and iTLB are used to shift the first iteration of the
loop so that it is a tile origin, and explained later (Section 3.2.2).

The key insight is the construction of a set called the outset,
which contains all possible tile origins for non-empty tiles. The
outset is similar to the Tile Origin Space (TOS) constructed by
Goumas et al. [9], but there are two important differences. First, the
outset we construct includes the tiles sizes as parameters, whereas
the tile sizes are fixed for the TOS. Second, we feed the outset to
any code generator capable of scanning polyhedra, and then post-
process the resulting code to add a step size and shift the lower
bounds of the tile loops. Goumas et al. generate tile loops that
iterate over the image of the TOS after applying tiling.

The outset has all the benefits of a bounding box, but enumerates
very few empty tiles. In general, it is parameterized by the tile size,
but for illustration purposes Figure 5 shows the outset instantiated
for the 2D stencil example and 2 × 2 tiles. In this example, the
outset includes only one empty tile origin at (0, 0), far fewer than
the number of empty tiles that the bounding box includes.

Geometrically, the outset construction can be viewed as shifting
of the hyper-planes that define the lower bounds of the loops. For
our 2D example, we shift the left vertical line and the two 45
degree lines, where the left vertical line and the top 45 degree
line constitute the lower bound of k, and the bottom 45 degree
line forms the lower bound for i. These lines are shifted out so
that they will contain the origin of any tile which has a non-
empty intersection with the iteration space, i.e., any tile that would
contain a valid iteration point. Loops that scan the outset are post-
processed and then used as the tile-loops. The tiled loops generated
by scanning the outset is shown in Figure 6.

The outset has several important properties. It can be con-
structed without fixing the tile sizes, hence can be used for gen-
erating parameterized tiled loops. Second, it can be constructed
very efficiently—in time and space linear in the number of loop
bounds. In comparison, automatic construction of the bounding
box is more expensive—we are not aware of any linear time al-
gorithm that constructs a bounding box given the constraints that
define an iteration space. Third, the outset can be used to decom-
pose tiled loop generation into separate tile-loop and point-loop
generation. Fourth, it can be used efficiently in cases when the tile
sizes are fixed, parameterized or mixed, i.e., some are fixed and
some are left as parameters. These properties lead to a single sim-
ple efficient algorithm for both parameterized as well as fixed tiled
loop generation. The following sections discusses these properties
in more detail.

3. Generating the Tile-Loops with Outset
In this section, we describe our method for generating the tile-
loops. We first formally define the set that contains all the non-
empty tile origins and then motivate a relaxation of this set which
can be computed efficiently. We then reduce the problem of gen-
erating tile-loops to one of generating loops that scans the inter-
section of the outset polyhedron and a parameterized lattice. We
describe a single method that can be used to generate tile-loops for
both fixed as well as parameterized tile sizes.

Our input model is perfectly nested loops. Our techniques are
applicable to cases where rectangular tiling is valid or can be made
valid by any loop transformation. Many important applications
contain loops of this kind. We assume that the input loop nest is
appropriately transformed so that rectangular tiling is (now) valid.

3.1 The Outset and its Approximation

For correctness, tiled code should visit all the tiles that contain
points in the original iteration space. To generate the tile loops
separately from the point loops, we visit all of the tile origins within
a polyhedron we call the outset. The outset includes all possible tile
origins where the tile for that tile origin includes at least one point
from the original iteration space.

The original loop is represented as a set of inequalities

Piter = {�z | Q�z ≥ (�q + B�p)},
where z is the iteration vector of size d, Q is a m × d matrix, �q is
a constant vector of size m, �p is a vector of size n containing sym-
bolic parameters for the iteration space, and B is a m × n matrix.
The tiling is represented with the vector �s, where si indicates the
size of the tile in dimension i, for i = 1 . . . d.

We define the true outset polyhedron as the set of points in the
original iteration space that, if they were tile origins, would define
a tile that includes at least one point in the original iteration space.
Formally, let tile(�x) specify the set of points that belong to the tile
whose origin is �x,

tile(�x) = {�z | �x ≤ �z ≤ �x + �s′},
where �s′ = �s − �1 with �1 being a size d vector containing all ones.
The true outset is

Pout = {�x | tile(�x) ∩ Piter �= ∅}.
Pout as defined above is an union of all tiles whose intersection

with Piter is non-empty. Computing this set explicitly is very
expensive. So, we derive a reasonably tight approximation of Pout

that is a single polyhedron and can be directly computed from the
constraints of Piter. We denote this approximation by dPout. As
a comparison, one could also view the bounding box as a very
loose approximation of Pout. dPout can be computed in time and
space linear in the number of constraints in Piter. On the other
hand, to the best of our knowledge, we are not aware of any linear
time algorithm for computing the bounding box from constraints in
Piter. Henceforth we call dPout the outset. The outset discussed in
previous sections also refers to dPout.

We compute the outset, dPout, by shifting all the lower bounds
of the original iteration space along the normal that faces out of the
iteration space. The outset is defined as

dPout = {�x | Q�x ≥ (�q + B�p) − Q+�s′},
where Q+ is a m × d matrix defined as follows:

Q+
ij =

j
Qij , if Qij ≥ 0
0, if Qij < 0

Note that the dPout is defined using the constraint matrix, Q of
the iteration space polyhedron. We can compute Q+ with a single
pass over the entries of Q and hence in time linear on the number
of constraints of Piter. We now formally prove that dPout contains
all the non-empty tile origins.

THEOREM 1. Pout ⊆ dPout.

Proof:
If a point �x is in Pout, then there exists a point �z such that �z is

in Piter , �z is in tile(�x), and �z = �x +�i, where �0 ≤�i ≤ �s′. Since �z
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is in Piter , the following is true:

Q�z ≥ (�q + B�p).

By substituting �z with �x +�i, we derive the following:

Q�x + Q�i ≥ (�q + B�p), for �0 ≤�i ≤ �s′.

Due to the constraints on �i and the fact that Q+ ≥ Q, it follows
that Q+�s′ ≥ Qi, and so the point �x is also in dPout:

Q�x + Q+�s′ ≥ (�q + B�p).

Thus, each point that is in Pout is also in dPout.
Notice that though the tile sizes are not fixed and are included

as parameters, the outset is still a polyhedron. This key property
enables us to generate parameterized tile-loops, for now we can
use all the theory and tools developed for generating loops that scan
parameterized polyhedra.

3.2 Generating tile-loops

The tile-loops enumerate the tile origins. Two choices are available:
(i) enumerate the tile origins as tile numbers in the tile space or (ii)
enumerate the tile origins in the coordinates of the original iteration
space. When the former is chosen, we need additional computations
to map the tile numbers from the tile space to tile origins in the
iteration space coordinates. Our method avoids this computation
and generates loops that directly enumerate the tile origins in the
original iteration space coordinates.

We can view the set of tile origins as the points in a lattice whose
period is the tile sizes. We define the tile origin lattice, L(�s), as the
lattice whose period is given by the symbolic tile size vector �s.
Note, that we are not fixing the tile sizes. Hence, L(�s) is actually
a parameterized tile origin lattice. We also do not require that the
tile origin lattice start at any particular coordinate.

The outset contains all the non-empty tile origins and also other
points which are not tile origins. The key insight is to generate
loops that scans the whole of outset and modify them so that they
skip the iterations that are not tile origins. Formally, we want to
visit the points in the intersection of the outset and the tile origin
lattice, i.e., dPout ∩ L(�s).

3.2.1 Striding the loops

Figure 7 shows an outset and a tile origin lattice for a 2 × 3 tiling.
Let us call the loops that scan all the integer points in the outset
as outset-loops. For a moment assume that the first iteration of
every loop is aligned with a tile origin. Then we can skip the non-
tile origins by just adding a stride to the loop variable with the
corresponding tile size parameter. This simple post-processing of
the loops that scans the outset gives us the loops that scans the
intersection of outset and tile origin lattice. Note that the stride
can be a fixed constant or a symbolic parameter. This allows us
to use the same method for generating tile loops for both fixed and
parameterized tile sizes.

3.2.2 Shifting Lower Bounds

We now address the issue of aligning the first iteration of the outset-
loops to a tile origin. Figure 7 shows two non-tile origins that
correspond to first iterations of the i loop. We need to shift the lower
bound to an iteration that corresponds to the next tile origin. Let
LBi be the lower bound of a loop variable i. Note that LBi could
be a function of the outer loop indices and parameters. The required
shift can be thought of as the difference between the value of LBi

and the next tile origin. This shift can be computed as
l

LBi
si

m
× si.

We would like to emphasize that this shift can be generated for fixed
as well as parameterized tile sizes. This yields a single method for
both fixed and parameterized tiled loop nest generation.

Figure 7. Intersection of a tile origin lattice for 2× 3 tiles and the
outset is shown. The original iteration space is omitted for ease of
illustration. Note that the first iteration of the loops that scans the
outset could be a non-tile origin. We need to shift this iteration to
the next iteration that is tile origin.

The code previously presented in Figure 6 showing the param-
eterized tiled loops for the 2D stencil example (Figure 1) was gen-
erated using the scheme described above. Note how the skipping
of the non-tile origins naturally translates into parametric strides
of the loop variables. Also note how the lower bound shifts can be
expressed as loop variable initializations.

3.2.3 Implementation

Our code generator takes as input the constraints that define Piter.

It constructs the outset ( dPout), which is parameterized by the pro-
gram and tile parameters. The outset-loops are generated using a
standard loop generator for parameterized polyhedra. Thanks to our
theory, all that is required to turn them into tile loops is a simple
post-processing, actually pretty-printing, to add strides and lower
bound shifts. These tile loops are then composed with the point-
loops whose generation is described in the next section.

4. Generating the Point Loops
The point-loops make up a loop nest that enumerates all the points
within a tile. To ensure that they scan points only in the original
iteration space, their bounds are composed of tile bounds as well
as iteration space bounds. When the point-loops are generated
separately, the tile origin is not known.

Consider the triangular iteration space shown in Figure 8. Es-
sentially, the intersection of a tile (without fixing the tile origin) and
the iteration space is the set of points to be scanned by point-loops.
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Figure 8. A triangular iteration space and tiles

To generate them, we can construct the intersection that is now pa-
rameterized by both program parameters and tile origin index. This
approach does, however, increase the number of dimensions, which
is a major factor at code generation time.

Since the tile bounds for rectangular tiling are simple, we can
optimize the generation of the point loops. We first construct a
loop nest that scans the original iteration space. Then, for each
lower bound lbi and upper bound ubi, we add the tile lower bound,
tlbi, and upper bound, tlbi − si + 1, (si is the tile size of i-th
dimension) producing the lower bound max(lbi, tlbi) and upper
bound min(ubi, tlbi − si + 1) of the point-loops. The point-
loops for the example in Figure 8 are given below, with iT and
jT representing the tile origin indices, and Si and Sj representing
the sizes of the tiles along the i and j dimensions.

for i=max(1,iT) to min(N,iT-Si+1)
for j=max(1,jT) to min(i,jT-Sj+1)

body;

In addition, we can also generate simple point loops where
iteration space bounds are not included. As shown in Figure 8, if a
tile is a full tile, i.e., a subset of the iteration space, then the bounds
for the original iteration space are not necessary. Such simple point
loops are useful for the optimization described in Section 6.

5. Implementation and Experimental Results
We implement four different tiled loop generators: two for fixed
tile sizes and two for parameterized tile sizes. The loop generator
is available as open source software [28]. For fixed-size tiles, we
implement the classic and decomposed methods. For the classic
method, the constraints that represent the tiled iteration space are
constructed from the original loop bounds and then fed to CLOOG to
generate the tiled loops. For the decomposed method, we construct
an outset with fixed tile sizes and use them to generate tile-loops
and generate the point loops separately as discussed in the previous
sections. For parameterized tiled code generation, we implement
the parameterized decomposed method presented in this paper and
the bounding box method. For the bounding box method, we as-
sume that the bounding box is provided as an input. The bounding
box is used in the place of outset to generate tile-loops and the
parameterized point loops are generated as in the fixed methods ex-
cept the tile sizes are now symbolic parameters for the point loops.
For the parameterized decomposed method, we first generate the
outset from the input loop bounds and use it to generate the tile-
loops. We then generate the parameterized point loops and embed
them in the tile-loops to get the final tiled loop nest.

Description Loop depth/ #
tiled loops

SSYRK Symmetric Rank k Update. 3 / 2
LUD LU decomposition of a matrix

without pivoting.
3 / 2

STRMM Triangular matrix multiplica-
tion.

3 / 2

3D Stencil Gauss-Seidel Style 2D/3D
stencil computation.

3 / 3

Table 1. Benchmarks used for code quality evaluation.

The experiments compare the various loop generating tech-
niques in terms of the quality of the generated tile code and the effi-
ciency of the tiled loop generation. Both of these measures depend
heavily on the underlying code generator, because the techniques
presented in this paper enable the implementation of parameterized
decomposed tiling to use any loop generator capable of generat-
ing loops that scan a polyhedron as a black box. For generating the
loops that scan a polyhedron we use the CLOOG loop generator,
which has been shown to quickly generate high quality loops [6].
However, it is possible to replace the CLOOG generator with a dif-
ferent code generator such as the Omega code generator [23].

5.1 Experimental Setup

To evaluate the quality of the generated code, we use linear algebra
computation kernels from BLAS3 and a stencil computation, as
listed in Table 1. The stencil computation has a 3D iteration space,
and operates on two dimensions of data. It is necessary to skew
the stencil computation before applying tiling. Column 3 in Table 1
indicates the loop depth of the original loop, and the number of
loops that are tiled.

We ran the experiments on an Intel Core2 Duo processor run-
ning at 1.86 GHz with an L2 cache of size 2MB. The system is
running SMP Linux. For compiling our tiled loop nests we used
g++ version 4.1.1. with the highest optimization level (-O3). The
timings use gettimeofday().

5.2 Results

For each combination of benchmark and implemented tiled code
generation method, we time an approximation of loop overhead, the
total run of the tiled benchmark, and the time required to generate
the tiled code.

Figure 9 shows the loop overhead for SSYRK (symmetric rank
k update) as a percentage of the total loop execution time. We time
the execution time of the tiled loop bounds with only a counter as
the body and divide the measured execution time by the execution
time for the loop with the full body including the loop counter. The
loop overhead is only approximate, because in the loop with the full
loop body some of the loop bound instructions can be scheduled
with instructions from the body, therefore this measure is an upper
bound on the loop overhead. The approximate loop overhead on
average can be as high as 40%. Figure 10 shows the total execution
time for the SSYRK as the tile sizes vary. Notice that as the tile
sizes become large enough to result in improved performance of
the overall loop, the approximate percentage of time spent on loop
overhead increases.

Figures 10-13 show the total execution time for the various
benchmarks as the tile size varies. The cache effect that occurs as
the tile size better uses cache can most clearly be seen for STRMM,
3D Stencil, and SSYRK. In general, the quality of the generated
tiled code is comparable. The outliers occur at smaller tile sizes,
where the parameterized tiled code generator based on bounding
box significantly increases the running time for all benchmarks.
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Figure 9. Percentage loop overhead =(counter / body and
counter)×100 of the SSYRK for matrices of size 3000 × 3000.
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Figure 10. Total execution time for symmetric rank k update for
matrices of size 3000 × 3000.

For cache tiling, the smaller tile sizes do not experience the best
performance improvement; however, smaller tile sizes are critical
for register tiling [13]. The parameterized decomposed method
presented in this paper performs much better than bounding box
at smaller tile sizes.

We also performed the same set of experiments on an AMD
Opteron dual core processor running at 2.4 GHz with a cache of
size 1MB, and obtained similar results as presented here.

The compilation time (in milliseconds) for the four tiled loop
generation methods, viz., fixed classic, fixed decomposed, param-
eterized bounding box, and parameterized outset are shown in Ta-
ble 2. The timings shown in the table are the average over five runs
for each benchmark and each method. The timings include file IO.
Further, the timings for the parameterized bounding box method do
not include the time to generate the bounding box from the iteration
space polyhedron. For the experiments it was given as user input.
In a fully automated scenario, this additional time for generating
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Figure 11. Total execution time for LUD on a matrix of size
3000 × 3000.
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Figure 12. Total execution time for STRMM for matrices of size
3000 × 3000.

the bounding box will add to the generation time of the bounding
box method.

Overall, the cost of code generation for the three methods, viz.,
fixed decomposed, bounding box, and parameterized outset, falls
within the range of 45 to 55 milliseconds. Hence they have very
comparable generation efficiency (even when the time to generate
the bounding box is not included). Though the fixed classic method
seems to be significantly more efficient than the fixed decomposed
method, as observed by Goumas et al. [9], it is expected to have
scaling problems as the number of number of tiled loops increase.

In summary, the parameterized decomposed method presented
in this paper generates code with performance comparable if not
better than both fixed and parameterized tiled code generation
methods. For parameterized tiled code generation, the parame-
terized decomposed method based on the outset is clearly better
than the traditional bounding box method, especially for smaller
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Comparison of generated loops for 3D Stencil
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Figure 13. Total execution time for 3D Stencil on a 2D data grid
of size 3000 × 3000 over 3000 time steps.

LUD SSYRK STRMM 3D Stencil
fClassic 32.4 28.6 29.0 26.0
fDecom 55.2 51.0 50.4 45.0
pBbox 53.5 53.2 51.2 54.0
pOutset 52.0 53.8 52.1 54.1

Table 2. Tiled loop generation times (in milliseconds) of the four
methods on the four benchmarks. The four methods fixed classic,
fixed decomposed, parameterized bounding box, and parameter-
ized outset are denoted by fClassic, fDecom, pBbox, and pOutset
respectively.

tile sizes. The code generation time for all of the methods is com-
parable and quite small.

6. Finding Full Tiles Using the Inset
One possible source of loop overhead occurs within the loop
bounds for each tile, which contain the bounds for the original
iteration space as well as the tile so that no iterations outside of
the original iteration space are executed. Ancourt and Irigoin [3]
suggest that tiled code may be optimized by generating different
code for full tiles versus partial tiles. Previous work [13] uses index
set splitting to break the iteration space into full and partial tiles so
that iteration bounds can be removed from the bounds for the full
tiles. Other work [9] indicates that they differentiate between full
and partial tiles, but details are not provided. Since distinguishing
between full and partial tiles is important for register tiling and
possibly hierarchical tiling, we present two possible approaches for
doing just that. Both approaches are based on constructing the inset
polyhedron such that any tile origins within the inset polyhedron
Pin are tile origins for full tiles.

Distinguishing between full and partial tiles is applicable to all
of the tiled code generation techniques discussed in Section 2. The
inset can be computed as quickly as the outset, and it is possible to
show that points are in the calculated inset if and only if they are
possible tile origins for full tiles. Once the inset has been computed,
it is possible to leverage existing code generators to generate the tile

loops that traverse the inset executing only full tiles and the outset
minus the inset executing partial tiles.

6.1 Algorithm for Computing Inset

As in Section 2, the original loop in question is represented as a set
of inequalities

Piter = {�z | Q�z ≥ (�q + B�p)},
where z is the iteration vector of size d, Q is a m × d matrix, �q
is a constant vector of size m, �p is a vector of size n containing
symbolic parameters for the iteration space, and B is a m × n
matrix. The vector �s specifies the (hyper) rectangle tiling, with si

indicating the tile size for the ith dimension of the iteration space.
We define the inset polyhedron Pin such that any tile origins

that lie within the inset polyhedron are tile origins for full tiles. All
the points in a tile satisfy an inequality constraint if and only if
the extreme points for the tile satisfy the constraint. The extreme
points of a (hyper) rectangle tile can be calculated as follows. Let
�s′ = �s − �1 and let S′ = diag(�s − �1). Then S′ times any binary
vector of size d is an extreme point of the tile. Formally, the inset is

Pin = {�z | ∀�b ∈ {0, 1}d, Q(�z + S′�b) ≥ (�q + B�p)},
It is possible to compute the inset directly from the definition,

but that would result in m∗2d constraints, with many of them being
redundant. Instead, we calculate a matrix Q− from the Q matrix in
the constraints for the original iteration space, such that

Q−
ij =

j
Qij , if Qij < 0
0, if Qij ≥ 0

.

The algorithm for computing Q− is O(md) and results in m
constraints for the inset,dPin = {�z | Q�z ≤ (�q + B�p) − Q−(�s′ −�1)},
where �s is the size d vector of tile sizes and �1 is a size d vector
containing all ones.

THEOREM 2. dPin = Pin.

Proof: The proof proceeds by construction. First, we write each
bound for Pin on a separate line.0

@ Q11S
′
11b1 ... Q1dS′

ddbd

... ... ...
Qm1S

′
11b1 ... QmdS′

ddbd

1
A ≥ (�q + B�p) − Q�z

Note that the above inequality is true for all binary vectors �b.
Each row represents 2d constraints: one for each possible value of
the binary vector �b. Since all of the entries in the S′ matrix are
non-negative, it is possible to select a particular binary vector for
each row that results in the least possible value for each entry and
therefore provides a tight bound for all the constraints represented
by that row. Specifically that binary vector has entry bj equal to one
if and only if Qij is negative. Selecting the binary vector for each
row, which results in the tightest bound is equivalent to calculating
the matrix Q−.

For all binary vectors�b, the following is true:0
@ Q11S

′
11b1 ... Q1dS′

ddbd

... ... ...
Qm1S

′
11b1 ... QmdS′

ddbd

1
A ≥ Q−�s′ ≥ (�q + B�p) − Q�z,

where �s′ = �s−�1. Therefore, dPin is Pin with all redundant bounds
removed.

6.2 Code Generation Implementation

One property of an inset Pin is that tile(z) ∩ Piter = tile(z) for
all z ∈ Pin. In other words, constraints on the iteration space are
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redundant for any tile whose origin is in the inset. By removing
these unnecessary loop bounds in the point loops, we can possibly
reduce the loop overhead further. One may perform this optimiza-
tion by checking whether a tile origin belongs to the inset before
executing point loops or by splitting the inset from the outset.

To use the check approach, code must be generated that deter-
mines if a particular iteration lies within the inset. The other ap-
proach is to split the inset from the outset. Consider the fact that
Pin ⊆ Pout. We associate a statement X1 with Pin and a state-
ment X2 with Pout and feed both polyhedra to a code generator.
Now, if a loop nest scans both Pout and Pin without guards, then
loops that scan the inset must include both statements. incorporat-
ing. and Pin without guards different statements, statements. Now,
we know that iteration constraints are redundant whenever there are
two statements in the loop since Pin ⊆ Pout. Therefore, we replace
the loop bodies with statements X1 and X2 with the tile loops for
full tiles, and we replace the loop bodies with statement X2 only
with tile loops for partial tiles. one statement,

This splitting scheme based on the union of inset and outset
provides a way to enable a full versus partial tile optimization for
parameterized tile code. Also, it is easy to incorporate this scheme
using existing code generators. Note that many code generators
have been designed and developed to remove guards by splitting
the iteration space into disjoint regions associated to different sets
of statements.

The tradeoff between splitting and inserting a check has not
been fully explored. For register tiling, it would seem that checking
each tile to determine if it is full clearly introduces too much
overhead. However, splitting can result in significant blowup in
code size, which can cause instruction cache problems. it reduces
loop overhead without introducing another overhead checking is
preferable in terms of code size.

7. Related Work
Ancourt and Irigoin proposed a technique [3] for scanning a single
polyhedron, based on Fourier-Motzkin elimination over inequality
constraints. Le Verge et al. [19, 20] proposed an algorithm that ex-
ploits the dual representation of polyhedra with vertices and rays
in addition to constraints. The general code generation problem for
affine control loops requires scanning unions of polyhedra. Kelly
et al. [15] solved this by extending the Ancourt-Irigoin technique,
and together with a number of sophisticated optimizations, devel-
oped the widely distributed Omega library [23]. The SUIF [30] tool
includes a similar algorithm. Quillere et al. proposed a dual repre-
sentation algorithm [25] for scanning the union of polyhedra, and
this algorithm is implemented in the CLooG code generator [6] and
its derivative Wloog is used in the WRaP-IT project.

Techniques for generating loops that scan polyhedra can also
be used to generate code for fixed tile sizes, thanks to Irigoin and
Triolet’s’ proof that the tiled iteration space is a polyhedron if the
tile sizes are constants [12]. Either of the above tools may be used
(in fact, most of them can generate such tiled code). However, it
is well known that since the worst case complexity of Fourier-
Motzkin elimination is doubly exponential in the number of dimen-
sions, this may be inefficient. Methods for generating code for non-
unimodular transformations use techniques similar to ours, how-
ever they use fixed lattices and we use a parameterized lattice.

Our work is similar in scope to that of Goumas et al. [9], who
decompose the generation into two subproblems, one to scan the
tile origins, and the other to scan points within a tile, thus obtaining
significant reduction of the worst case complexity. They proposed
a technique to generate code for fixed-sized, parallelogram tiles.
Their technique computes an approximation to the outset, similar
to our dPout. Specifically, they compute the image of dPout by the

tiling transformation, H , and generate code to scan this image.
Because of this, their code has ceiling and floor operations, and
the loop body must compute an affine function of the loop indices
to determine the tile origins. Their method can handle arbitrary
parallelogram shaped tiles, and they also use a technique similar
to our inset to optimize the code. Note however, that all their
techniques are applicable only to fixed tile sizes.

Comparatively our algorithm handles parameterized tile sizes.
The key insight is that we view the outset as a polyhedron with,
other than the program parameters, n additional parameters, namely
the tile sizes. This allows us to efficiently leverage most of the well
developed tools, and our technique performs as well as, if not better
than, all others, at no additional cost.

There are also a number of additional differences. Our algo-
rithm generates tile loops whose indices always remain in the co-
ordinate space of the original loop. This avoids floor and ceiling
functions, and enables us to generate tile loops through a very sim-
ple post-processing: adjust the lower bounds, and introduce a stride
corresponding to the tile size. Our method is restricted to transfor-
mations that can be expressed as a composition of a unimodular
transformation, followed by a rectangular tiling (blocking).

There has been relatively little work for the case where tile
sizes are symbolic parameters, except for the very simple case of
orthogonal tiling: either rectangular loops tiled with rectangular
tiles, or loops that can be easily transformed to this. For the more
general case, the standard solution, as described in Xue’s text [31]
has been to simply extend the iteration space to a rectangular one
(i.e., to consider its bounding box), apply the orthogonal technique
with appropriate guards to avoid computations outside the original
iteration space.

Amarasinghe and Lam [1, 2] implemented, in the SUIF tool set,
a version of FME that can deal with a limited class of symbolic
coefficients (parameters and/or block sizes), but the full details have
not been made available.

Größlinger et al. [10] proposed an extension to the polyhedral
model, in which they allow arbitrary rational polynomials as coeffi-
cients in the linear constraints that define the iteration space. Their
genericity comes at the price of requiring computationally expen-
sive machinery like quantifier elimination in polynomials over the
real algebra, to simplify constraints that arise during loop genera-
tions. Due to this their method does not scale with the number of
dimensions and the number of non-linear parameters.

Jiménez et al. [13] develop code generation techniques for reg-
ister tiling of non-rectangular iteration spaces. They generate code
that traverses the bounding box of the tile iteration space to en-
able parameterized tile sizes. The focus of their paper is applying
index-set splitting to tiled code to traverse parts of the tile space
that include only full tiles. Their approach involves less overhead
in the loop nest that visits the full tiles; however, the resulting code
experiences significant code expansion. We suggest two possible
approaches for differentiating between full and partial tiles: either
generate a check to determine if the tile being visited is a full tile,
or associate two different loop bodies with the inset and outset and
let any polyhedra scanning code generator generate the appropriate
code. The trade-off between the overhead due to the check versus
the cost due to code expansion that occurs using index-set splitting
or loops that scan the union of polyhedra is unclear and an area for
further study.

8. Conclusions
Iteration space tiling is an essential transformation for match-
ing computation/communication characteristics of programs with
loops to those of the resources (memory hierarchy as well as in-
terprocessor communication). Parameterized tiled loop generation
is the problem of producing tiled code where the tile sizes remain
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symbolic parameters until link, or even run time. Previous solu-
tions to this problem were based on either the bounding box, or
on symbolic Fourier Motzkin elimination. The bounding box tech-
nique, although very simple, has poor code quality, especially for
non-rectangular iteration spaces, where the overhead after tiling
may be as high as 50%. The symbolic Fourier Motzkin elimina-
tion technique, has high complexity. We presented a single, simple
technique for fixed and parameterized tiled loop generation that
subsumes all previously known algorithms. Our experiments com-
pared the generation efficiency and code quality of the parameter-
ized technique with those for fixed tile sizes. They demonstrate that
in terms of generation efficiency, the parameterized technique is as
good as the state of the art for fixed tile sizes. The generated code
is also as efficient as the tiled loops with fixed tile sizes. Thus the
technique provides parameterized tiled loops for free!

Our ongoing work involves more detailed experimentation and
incorporation of the generator in an autotuner for special applica-
tion domains. We are currently working on using the concepts of
inset and outset to generate multi-level parameterized tiled code.
As a future work, we plan to extend the outset based technique to
generate parameterized tiled loops for imperfect loop nests.
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