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Abstract

Robust model predictive control (RMPC) is an area of significant practical importance that has received a lot
of research attention in recent years. Despite this, there still remains a considerable challenge, that of reaching
a reasonable compromise between computational tractability and degree of optimality. Early results [1] were
based on an open–loop worst case optimization, but were only practicable for low dimension systems and could
be considerably suboptimal. Tube MPC [2–12] provides an effective and efficient alternative which nevertheless
is still based on a semi closed–loop optimization. Optimality can be achieved through the use of closed–loop
optimization [13, 14], but computational complexity grows exponentially with respect to the prediction horizon.
The so–called disturbance affine control policy [15–18] provides a reasonable compromise and it is the aim of this
paper to propose a new methodology which supersedes the disturbance affine control policy in that it provides a
more general nonlinear framework with which to achieve more optimal results at the same computational cost.
The work is based on a suitable parameterization of state and input tubes for systems which are subject to additive
polytopic uncertainty and is underpinned by guarantees of strong system theoretic properties for the controlled
uncertain dynamics.

Keywords: robust model predictive control, tube model predictive control, set invariance, set–dynamics.

1 Introduction

Tube model predictive control (TMPC) [2–12] forms a sensible approximate solution methodology for the control
synthesis problem in the presence of constraints and uncertainty, and offers a computationally tractable alternative
to dynamic programming [19–21]. The development of TMPC is made possible by making use of a particular
parameterization of the control policy that allows for the direct handling of uncertainty and its interaction with the
system dynamics, constraints and performance. More precisely, in the case of linear systems with additive, bounded,
uncertainty and convex constraint sets, the deployment of separable control policies allows for the separation of
the evolution of the nominal system (uncertainty free system) and the evolution of the local uncertain system. In
this construction, the propagation of the uncertainty can be accounted for by considering the exact reachable tubes
centered around the trajectories of the nominal system and invoking suitably modified constraints on the nominal
variables. Early proposals employing this construction include [22–30]. These approaches employ the state and
control tubes with the time varying cross–sections and result in a reduction of the computational complexity and
guaranteed desirable system theoretic properties. More recent proposals [3,5,6,9,31] offer several novel and distinct
features such as use of tubes with constant cross–sections, the optimization of the initial condition of the nominal
system and robust stability and attractivity of the corresponding minimal invariant set. Additional investigations on
the topic [4,7–12] provided generalizations of tube MPC handling the output feedback case [7,12] and some classes of
nonlinear systems [4,8,10,11,31]. Further advances of TMPC are recently reported in [32,33] where the homothetic
state and control tubes and a more general control policy is employed. The homothetic tube model predictive control
(HTMPC) [32,33] employed several novel features including: a more general parameterization of the state and control
tubes based on homothety and invariance; a more flexible form of the terminal constraint set; and a relaxation of the
dynamics of the sets that define the state and control tubes. As its predecessors, HTMPC [32,33] is computationally
efficient and it induces strong system theoretic properties.

In this paper, we propose a novel TMPC allowing uniquely for simultaneous online optimization of the state
and control tubes as well as the corresponding control policy. The proposed parameterization of the state and
control tubes and the corresponding control policy is more general than existing methods while the online op-
timization reduces to a single tractable linear programming problem. The main idea behind our proposal is to
employ the state decomposition in the sense that at time k within the prediction horizon NN := {0, 1, . . . , k, . . . , N},

the possible state xk is decomposed into k + 1 components x(0,k), x(1,k), . . . , x(k,k) satisfying xk =
∑k

j=0 x(j,k).
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The state decomposition motivates the corresponding control action uk(xk) decomposition into k + 1 components

u(0,k)(x(0,k)), u(1,k)(x(1,k)), . . . , u(k,k)(x(k,k)) satisfying uk(xk) =
∑k

j=0 u(j,k)(x(j,k)). The state and control decom-
positions allow, in turn, for the utilization of the controlled but nominal dynamics of the state components via the
recursion x(j,k+1) = Ax(j,k) + Bu(j,k)(x(j,k)) leading to the overall state at time k + 1 given by the sum of k + 2
components x(0,k+1), x(1,k+1), . . . , x(k,k+1), x(k+1,k+1) where the last component x(k+1,k+1) accounts for the effect of

the uncertainty wk (i.e. xk+1 =
∑k+1

j=0 x(j,k+1) and x(k+1,k+1) = wk).
As is customary in TMPC, the presence of the uncertainty is accounted for by utilizing the state and control tubes

that are sequences of sets XN := {Xk}k∈NN
and UN−1 := {Uk}k∈NN−1

. The state and control action decompositions
naturally suggest the parameterization of the state and control tubes by utilizing the partial state and control tubes
sets. Namely, at time k within the prediction horizon NN the state tube cross–section (i.e. Xk) is obtained from a
collection of partial state tube cross–sections X(0,k), X(1,k), . . . , X(k,k). Similarly, the control tube cross–section at
time k (i.e. Uk) is obtained from a collection of partial control tube cross–sections U(0,k), U(1,k), . . . , U(k,k). More

precisely, the state tube cross–sections at time k are parameterized via Xk =
⊕k

j=0 X(j,k) and, likewise, the control

tubes are parameterized via Uk =
⊕k

j=0 U(j,k). Aside the parameterized state and control tubes XN = {Xk}k∈NN
and

UN−1 = {Uk}k∈NN−1
we also utilize the separable control policy ΠN−1 := {πk(·, Xk, Uk)}k∈NN−1

. Namely, for each k

the control laws πk(·, Xk, Uk) : Xk → Uk are such that for all y ∈ Xk, πk(y,Xk, Uk) =
∑k

j=0 π(j,k)(yj , X(j,k), U(j,k))

where y0, y1, . . . , yk represents the decomposition of y (so that y =
∑k

j=0 yj with yj ∈ X(j,k)) and, where for each j

and k, π(j,k)(·, X(j,k), U(j,k)) : X(j,k) → U(j,k) are the partial control laws at time k.
The state and control tube parameterization XN = {Xk}k∈NN

and UN−1 = {Uk}k∈NN−1
deployed in this paper

is exact in that explicit use is made of additive uncertainty set (assumed to be polytopic and described by its extreme
points) in such a way that the employed state tube XN contains only all possible state trajectories when the input
trajectories are chosen to lie in the control tube UN−1 and, at each prediction time, the additive disturbance is
allowed to take any value within the polytopic uncertainty set.

In this manuscript, we focus on the linear systems with polytopic constraint sets and develop a TMPC method,
termed throughout as the parameterized TMPC (PTMPC), which allows for the efficient computation of the pa-
rameterized state and control tubes as well as the corresponding control policy via optimization. We introduce a
parameterized tube optimal control (PTOC) problem, discuss its relevant topological properties and provide its refor-
mulation as a single tractable linear programming problem. We also study the application of PTOC to the synthesis
of robustly stabilizing PTMPC laws guaranteeing strong system theoretic properties of the controlled constrained
but uncertain dynamics. Under mild conditions, we establish that the proposed PTMPC control law guarantees
relevant set invariance and robust stability properties. We also discuss necessary computational issues and offer
three illustrative examples. We demonstrate the advantages of our method and, in particular, we show that it is
more general than recent method for robust model predictive control synthesis utilizing the so–called disturbance
affine control policies [15–18].

Paper Structure

Sections 2 and 3 provide preliminaries and discuss the main idea of parameterized state and control tubes. Section 4
discusses the relevant tube model predictive control terminal constraint set and examines the local behavior of the
parameterized state tubes within that set (and also indicates relevant properties for the corresponding control tubes).
Section 5 introduces the parameterized tube optimal control problem and comments on the corresponding topological
properties. Section 6 discusses the parameterized tube model predictive control and establishes the relevant system
theoretic properties. Section 7 comments on computational issues and provides illustrative examples while Section 8
closes the paper with a few concluding remarks.

Basic Nomenclature and Definitions

The sets of non–negative, positive integers and non–negative reals are denoted by N, N+, and R+, respectively, i.e.
N := {0, 1, 2, . . .}, N+ := {1, 2, . . .} and R+ := {x ∈ R : x ≥ 0}. Given non–negative integers a ∈ N and b ∈ N

such that a < b we denote N[a:b] := {a, a + 1, . . . , b − 1, b}; We write Nb for N[0:b]. Given a matrix M ∈ R
n×n, ρ(M)

denotes the largest absolute value of its eigenvalues.
Given two sets X ⊂ R

n and Y ⊂ R
n and a vector x ∈ R

n, the Minkowski set addition is defined by X ⊕ Y :=
{x + y : x ∈ X, y ∈ Y }, we write x ⊕ X instead of {x} ⊕ X. Given a set X and a real matrix M of compatible
dimensions (possibly a scalar) the image of X under M is denoted by MX := {Mx : x ∈ X}. Given a set
Z ⊂ R

n+m its projection onto R
n is denoted by ProjectionRn(Z) = {x ∈ R

n : ∃y ∈ R
m such that (x, y) ∈ Z}.

If f (·) is a set–valued function from, say, X into U , namely, its values are subsets of U , then its graph is the set
graph(f) := {(x, y) : x ∈ X, y ∈ f(x)}.

A set X ⊂ R
n is said to be a non–trivial set if it is a proper, non–empty, subset of R

n and it is not a singleton set.
A set X ⊂ R

n is a C–set if it is compact, convex, and contains the origin. A set X ⊂ R
n is a proper C–set, or just a

PC–set, if it is a C–set and contains the origin in its (non–empty) interior. A polyhedron is the (convex) intersection
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of a finite number of open and/or closed half–spaces and a polytope is the closed and bounded polyhedron. The
interior of a set X is denoted by interior(X). Given a set X ⊂ R

n, convh(X) denotes its convex hull. Given a
non–empty closed convex set X ⊂ R

n the support function S(X, ·) is given by:

S(X, y) := sup
x
{y′x : x ∈ X} for y ∈ R

n.

Given a PC–set L in R
n, the function G(L, ·) defined by:

G(L, x) := min
µ

{µ : x ∈ µL, µ ∈ R+} for x ∈ R
n

is called the gauge (Minkowski) function of L. If L is a symmetric PC–set in R
n, then the gauge (Minkowski)

function of L induces the vector norm |x|L := G(L, x). Given a symmetric PC–set L in R
n and a non–empty closed

set X ⊂ R
n, the function dist(L, ·, X) given by:

dist(L, y,X) := inf
x
{|x − y|L : x ∈ X} for y ∈ R

n,

is called the distance function associated with the set X (often abbreviated to the distance function for the typo-
graphical reasons).

For typographical convenience, we distinguish row vectors from column vectors only when needed and employ the
same symbol for a variable x and its vectorized form in the algebraic expressions. For clarity, proofs of less obvious
statements are given in the appendices.

2 Preliminaries & Motivation for Tube Patameterization

2.1 Setting and Basic Definitions

We consider linear, time–invariant, discrete time systems, given by:

x+ = Ax + Bu + w, (2.1)

where x ∈ R
n is the current state, u ∈ R

m is the current control, x+ is the successor state, w ∈ R
n is the disturbance

taking values in the set W ⊂ R
n and matrices A and B are of compatible dimensions, i.e. (A,B) ∈ R

n×n × R
n×m.

Thus, if at any time k ∈ N the state is xk, the applied control is uk and the disturbance is wk, the state at time k +1
satisfies xk+1 = Axk + Buk + wk. The system variables x, u and w are subject to hard constraints:

x ∈ X, u ∈ U and w ∈ W. (2.2)

The following standing assumptions and clarifying interpretation will be employed throughout the paper:

Assumption 1 The matrix pair (A,B) ∈ R
n×n × R

n×m is stabilizable.

Assumption 2 The state and control constraint sets X and U are PC–polytopic sets in R
n and R

m, respectively,
given by irreducible representations:

X := {x ∈ R
n : ∀i ∈ N[1:p], FT

i x ≤ 1}, and, (2.3a)

U := {u ∈ R
m : ∀i ∈ N[1:r], GT

i u ≤ 1}. (2.3b)

The disturbance constraint set W is a non–trivial C–polytopic set in R
n given by:

W := convh({w̃i ∈ R
n : i ∈ N[1:q]}), (2.4)

where w̃i ∈ R
n, i ∈ N[1:q] are extreme points of the disturbance set W and are known.

Interpretation 1 At any time instance k ∈ N, the state xk is known when the current control action uk is de-
termined, while the current disturbance wk and future disturbances wk+i, i ∈ N+ are not known and can take any
arbitrary values wk+i ∈ W, i ∈ N.

For a given control function κ (·) : R
n → R

m, the controlled uncertain dynamics takes the form:

x+ = Ax + Bκ(x) + w, (2.5)

whose variables are, in view of (2.2), subject to constraints:

x ∈ Xκ := {x ∈ X : κ(x) ∈ U} and w ∈ W. (2.6)

We can now recall basic set invariance and stability related notions utilized in this manuscript.
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Definition 1 A set Ω ⊆ R
n is said to be a robust positively invariant (RPI) set for the system x+ = Ax+Bκ(x)+w

given by (2.5) and the constraint set (Xκ, W) given by (2.6) if and only if Ω ⊆ Xκ and for all x ∈ Ω and all w ∈ W

it holds that Ax + Bκ(x) + w ∈ Ω.

Definition 2 A set Ω ⊆ R
n is robustly exponentially stable for the system x+ = Ax + Bκ(x) + w given by (2.5)

and the constraint set (Xκ, W) given by (2.6) with the basin of attraction being equal to the set Ω̄ ⊆ R
n if and only

if Ω ⊆ Ω̄ ⊆ Xκ, and, for any sequence {xk}k∈N, generated by (2.5) with any arbitrary x0 ∈ Ω̄ and any arbitrary
disturbance sequence {wk}k∈N, it holds that, for all k ∈ N, dist(L, xk, Ω̄) = 0 and dist(L, xk,Ω) ≤ akbdist(L, x0,Ω)
for some scalars a ∈ [0, 1) and b ∈ [0,∞) and where L is a symmetric, PC–set in R

n.

2.2 Separable Prediction Scheme

Let x = x0 denote the current state, xk for k ∈ N[1,N ] denote the state at prediction time k and wk for k ∈ NN−1

the relevant value of the additive disturbance at prediction time k. Linearity of the system (2.1), in conjunction
with Interpretation 1, suggests that if at any prediction time k ∈ N it was known that the state xk satisfied
xk =

∑k
j=0 x(j,k) and the applied control uk was given by uk =

∑k
j=0 u(j,k) then the state at time k + 1 ∈ N would

satisfy xk+1 =
∑k+1

j=0 x(j,k+1) with, for all j ∈ Nk, x(j,k+1) = Ax(j,k) + Bu(j,k) and x(k+1,k+1) = wk. The benefit of
treating each of w0, w1, ... separately is (as will become apparent in the sequel) that it avoids the exponential growth
of the number of extreme points necessary to describe the effect of the propagation of the polytopic uncertainty over
the prediction horizon. These observations suggest that it would be beneficial within the context of model predictive
control under uncertainty to perform both the prediction and corresponding optimization by utilizing the separable
prediction scheme shown in Table 1.

x(0,N) x(0,0) = x x(0,1) = Ax(0,0) + Bu(0,0) x(0,2) = Ax(0,1) + Bu(0,1) . . . x(0,N−1) = Ax(0,N−2) + Bu(0,N−2) x(0,N) = Ax(0,N−1) + Bu(0,N−1)

u(0,N−1) u(0,0) u(0,1) u(0,2) . . . u(0,N−1)

x(1,N) x(1,1) = w0 x(1,2) = Ax(1,1) + Bu(1,1) . . . x(1,N−1) = Ax(1,N−2) + Bu(1,N−2) x(1,N) = Ax(1,N−1) + Bu(1,N−1)

u(1,N−1) u(1,1) u(1,2) . . . u(1,N−1)

x(2,N) x(2,2) = w1 . . . x(2,N−1) = Ax(2,N−2) + Bu(2,N−2) x(2,N) = Ax(2,N−1) + Bu(2,N−1)

u(2,N−1) u(2,2) . . . u(2,N−1)

...
...

...
...

...

x(N−1,N) x(N−1,N−1) = wN−2 x(N−1,N) = Ax(N−1,N−1) + Bu(N−1,N−1)

u(N−1,N−1) . . . u(N−1,N−1)

x(N,N) x(N,N) = wN−1

xN x = x(0,0) x1 =
∑1

j=0 x(j,1) x2 =
∑2

j=0 x(j,2) . . . xN−1 =
∑N−1

j=0 x(j,N−1) xN =
∑N

j=0 x(j,N)

uN−1 u0 = u(0,0) u1 =
∑1

j=0 u(j,1) u2 =
∑2

j=0 u(j,2) . . . uN−1 =
∑N−1

j=0 u(j,N−1)

Table 1: The Separable Prediction Scheme.

Within the context of robust model predictive control, the separable prediction scheme illustrated in Table 1
motivates the prediction and optimization over the sets of state and control sequences x(k,N) and u(k,N−1) specified
as follows:

∀k ∈ NN , x(k,N) := {x(k,k), x(k,k+1), . . . , x(k,N−1), x(k,N)}, and, (2.7a)

∀k ∈ NN−1, u(k,N−1) := {u(k,k), u(k,k+1), . . . , u(k,N−1)}, (2.7b)

and satisfying, for all k ∈ NN−1,

∀l ∈ N[k:N−1], x(k,l+1) = Ax(k,l) + Bu(k,l), (2.8)

with the additional conditions that x(0,0) = x and, for all k ∈ N[1:N ], x(k,k) = wk−1. The sets of state sequences
{x(k,N)}k∈NN

and corresponding control sequences {u(k,N−1)}k∈NN−1
satisfying (2.7)–(2.8) are shown in the rows of

Table 1 and are referred to as the partial state and control sequences. Clearly, the partial state and control sequences
x(0,N) and u(0,N−1) are uncertainty free from the time instant j = 0. Likewise, for any k ∈ N[1:N−1], the partial
state and control sequences x(j,N) and u(j,N−1) are uncertainty free from time instants j ∈ N[1:k] and the singleton
partial state sequence x(N,N) = {x(N,N)} is uncertainty free at the time instant j = N .

As the prediction has to be made at time j = 0, the knowledge of the actual sets of partial state sequences
{x(k,N)}k∈NN

and corresponding control sequences {u(k,N−1)}k∈NN−1
is incomplete due to the uncertainty and this

has to be taken into account appropriately. More precisely, at time instant j = 0, only partial state and control
sequences x(0,N) and u(0,N−1) are uncertainty free, while the possible knowledge of the sets of partial state sequences
{x(k,N)}k∈N[1:N]

and corresponding control sequences {u(k,N−1)}k∈N[1:N−1]
is limited due to dependence of the partial

initial conditions x(k,k) on the actual values of the uncertainty wk−1 (the knowledge of which is not available at the
time instant j = 0 but becomes available at the time instant j = k). This crucial difficulty can be avoided, under
Assumption 2, by considering assumed sets of extreme control sequences {u(i,k,N−1)} and the corresponding sets of
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extreme partial state sequences {x(i,k,N)} specified as follows:

∀k ∈ N[1:N ], ∀i ∈ N[1:q], x(i,k,N) := {x(i,k,k), x(i,k,k+1), . . . , x(i,k,N−1), x(i,k,N)}, and, (2.9a)

∀k ∈ N[1:N−1], ∀i ∈ N[1:q], u(i,k,N−1) := {u(i,k,k), u(i,k,k+1), . . . , u(i,k,N−1)}, (2.9b)

and satisfying, for all k ∈ N[1:N−1] and all i ∈ N[1:q],

∀l ∈ N[k:N−1], x(i,k,l+1) = Ax(i,k,l) + Bu(i,k,l), (2.10)

with the additional conditions that, for all k ∈ N[1:N ] and all i ∈ N[1:q], x(i,k,k) = w̃i where w̃i is the ith extreme point
of the disturbance set W. In accordance with usual MPC practice it would be customary to consider the extreme
control sequences {u(i,k,N−1)} only as degrees of freedom, but here for notational convenience both {x(i,k,N)} and
{u(i,k,N−1)} are treated as degrees of freedom which of course need to obey the equality constraint (2.10).

In this paper we formalize the utilization of the separable prediction scheme within the context of model predictive
control under uncertainty. We make use of the prediction and optimization over the sets of extreme partial state
and corresponding control sequences (i.e. the sequences x(0,N) and u(0,N−1) as well as the sequences {x(i,k,N)} and
{u(i,k,N−1)}) and develop a computationally efficient tube model predictive control synthesis method. The prediction
and optimization over the sets of extreme partial state and corresponding control sequences (i.e. the sequences x(0,N)

and u(0,N−1) as well as the sequences {x(i,k,N)} and {u(i,k,N−1)}) leads naturally to the parameterized state and
control tubes discussed next.

3 Parameterized State and Control Tubes

Our first step is to introduce the notions of parameterized state and control tubes utilizing our preliminary observa-
tions outlined in Section 2. This is done in two stages; first, the partial state and control tubes parameterization is
introduced, and, second, the state and control tubes parameterization is provided.

3.1 Partial State and Control Tubes : Parameterization & Controlled Dynamics

As already indicated in Section 2, we consider a set of extreme partial state and corresponding control sequences
which lead to the notions of partial state and control tubes. Namely, for any time instant k ∈ NN , the partial state
tube is a sequence of sets X(k,N) := {X(k,l)}l∈N[k:N]

formed from the corresponding sets of extreme partial state
sequences {x(i,k,N)} specified in (2.9a). More precisely, for any time instant k ∈ NN , the partial state tube is formed
from the sets X(k,l) referred to as the partial state tube cross–sections and specified by:

∀l ∈ NN , X(0,l) := {x̃(0,l)}, and, (3.1a)

∀k ∈ N[1:N ], ∀l ∈ N[k:N ], X(k,l) := convh({x̃(i,k,l) ∈ R
n : i ∈ N[1:q]}). (3.1b)

Similarly, for any time instant k ∈ NN−1, the partial control tube is a sequence of sets U(k,N−1) := {U(k,l)}l∈N[k:N−1]

formed from the corresponding sets of extreme partial control sequences {u(i,k,N−1)} specified in (2.9b). As above,
for any time instant k ∈ N[1:N−1], the partial control tube is formed from the sets U(k,l) referred to as the partial
control tube cross–sections and given by:

∀l ∈ NN−1, U(0,l) := {ũ(0,l)}, and, (3.2a)

∀k ∈ N[1:N−1], ∀l ∈ N[k:N−1], U(k,l) := convh({ũ(i,k,l) ∈ R
m : i ∈ N[1:q]}). (3.2b)

It is noted that x̃(0,l) and ũ(0,l) are going to be taken (respectively) for the elements x(0,l) and u(0,l) of the nominal
sequences x(0,N) and u(0,N−1); the tilde symbol is used here in order to keep the notation uniform.

Due to the presence of the uncertainty it is necessary to consider a generalized form of the separable prediction
scheme given in Table 1. Namely, it is necessary to employ the tube separable prediction scheme given in Table 2,
wherein the partial state and control tubes X(k,N) and U(k,N−1) as well as their corresponding cross–sections X(j,k)

and U(j,k) are shown in the rows of Table 2.
As in (2.10), the partial state tubes controlled dynamics is specified via following recursions:

∀l ∈ NN−1, x̃(0,l+1) = Ax̃(0,l) + Bũ(0,l), (3.3a)

∀k ∈ N[1:N−1], ∀i ∈ N[1:q], ∀l ∈ N[k:N−1], x̃(i,k,l+1) = Ax̃(i,k,l) + Bũ(i,k,l), (3.3b)

with, in addition, conditions that:

x̃(0,0) = x, and, (3.4a)

∀k ∈ N[1:N ], ∀i ∈ N[1:q], x̃(i,k,k) = w̃i, (3.4b)
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X(0,N) X(0,0) X(0,1) X(0,2) . . . X(0,N−1) X(0,N)

U(0,N−1) U(0,0) U(0,1) U(0,2) . . . U(0,N−1)

X(1,N) X(1,1) X(1,2) . . . X(1,N−1) X(1,N)

U(1,N−1) U(1,1) U(1,2) . . . U(1,N−1)

X(2,N) X(2,2) X(2,N−1) X(2,N)

U(2,N−1) U(2,2) . . . U(2,N−1)

...
...

...
...

...

X(N−1,N) X(N−1,N−1) X(N−1,N)

U(N−1,N−1) . . . U(N−1,N−1)

X(N,N) X(N,N)

XN X0 = X(0,0) X1 =
⊕1

j=0 X(j,1) X2 =
⊕2

j=0 X(j,2) . . . XN−1 =
⊕N−1

j=0 X(j,N−1) XN =
⊕N

j=0 X(j,N)

UN−1 U0 = U(0,0) U1 =
⊕1

j=0 U(j,1) U2 =
⊕2

j=0 U(j,2) . . . UN−1 =
⊕N−1

j=0 U(j,N−1)

Table 2: The Tube Separable Prediction Scheme.

where w̃i, i ∈ N[1:q] are extreme points of the disturbance set W (so that for all k ∈ N[1:N ] we have X(k,k) = W).
A closer inspection of relations (3.1)–(3.4) reveals that the controlled dynamics of the partial state tubes is

deterministic and, in fact, the controlled partial state tubes X(k,N) are induced from the initial partial state tube
cross–section X(k,k) and the corresponding partial control tube U(k,N−1) via (3.3) and (3.4). A more relevant
property of partial state and control tubes stems from the fact that once the uncertain state component x(k,k) =
wk−1 ∈ W becomes known at time instant k ∈ N[1:N−1] it is possible to select at least one particular control sequence
u(k,N−1) = {u(k,k), u(k,k+1), . . . , u(k,N−1)} whose terms belong to the corresponding partial control tube U(k,N−1)

and which ensures that the corresponding controlled partial state sequence x(k,N) = {x(k,k), x(k,k+1), . . . , x(k,N)}
(where ∀l ∈ N[k:N−1], x(k,l+1) = Ax(k,l) + Bu(k,l)) is maintained within the partial state tube X(k,N). We now
proceed to demonstrate this desirable property.

Let for any k ∈ N[1:N−1], λ(k,k) := (λ(1,k,k), λ(2,k,k), . . . , λ(q,k,k)) ∈ R
q and let Λ := {λ ∈ R

q : ∀i ∈ N[1:q], λ(i,k,k) ≥
0, and,

∑q
i=1 λ(i,k,k) = 1}. We define, for any k ∈ N[1:N−1] with N ≥ 2,

∀x(k,k) ∈ X(k,k), Λ(k,k)(x(k,k)) := {λ(k,k) ∈ Λ : x(k,k) =

q
∑

i=1

λ(i,k,k)x̃(i,k,k)}, (3.5a)

∀x(k,k) ∈ X(k,k), λ∗
(k,k)(x(k,k)) := arg min

λ(k,k)

{ λT
(k,k)λ(k,k) : λ(k,k) ∈ Λ(k,k)(x(k,k))}, and, (3.5b)

∀x(k,k) ∈ X(k,k), u∗
(k,N−1)(x(k,k)) := {u∗

(k,k)(x(k,k)), u
∗
(k,k+1)(x(k,k)), . . . , u

∗
(k,N−1)(x(k,k))}, with, (3.5c)

∀l ∈ N[k:N−1], u∗
(k,l)(x(k,k)) :=

q
∑

i=1

λ∗
(i,k,k)(x(k,k))ũ(i,k,l). (3.5d)

We note that for any arbitrary fixed N ∈ N+ with N ≥ 2, k ∈ N[1:N−1] and x ∈ R
n, and any fixed partial

state and control tubes X(k,N) and U(k,N−1) satisfying relations (3.1)–(3.4), the set Λ(k,k)(x(k,k)) is a polytope
in R

q for each fixed x(k,k) ∈ X(k,k). Furthermore, the graph of the set–valued map Λ(k,k) (·), namely the set
{(x(k,k), λ(k,k)) : x(k,k) ∈ X(k,k), λ(k,k) ∈ Λ(k,k)(x(k,k))} is a polytopic set in R

n+q. Consequently, standard
results [34] yield the fact that the function λ∗

(k,k) (·) : X(k,k) → Λ, defined in (3.5b), is also, in general, a single–
valued, piecewise affine and continuous function of x(k,k) ∈ X(k,k). With this in mind, it follows that the function
u∗

(k,N−1) (·) defined in (3.5c) is, in general, a single–valued, piecewise affine and continuous function of x(k,k) ∈ X(k,k).

By construction, the function u∗
(k,N−1) (·) satisfies, for all x(k,k) ∈ X(k,k) and all l ∈ N[k:N−1],:

u∗
(k,l)(x(k,k)) =

q
∑

i=1

λ∗
(i,k,k)(x(k,k))ũ(i,k,l) ∈ convh({ũ(i,k,l) ∈ R

m : i ∈ N[1:q]}) = U(k,l)

and ensures that, for all x(k,k) ∈ X(k,k) and all l ∈ N[k:N−1], x(k,l+1) = Ax(k,l) + Bu∗
(k,l)(x(k,k)) ∈ X(k,l+1). This

follows by a direct mathematical induction argument given that x(k,k) =
∑q

i=1 λ∗
(i,k,k)(x(k,k))x̃(i,k,k) and:

x(k,l+1) = Ax(k,l) + Bu∗
(k,l)(x(k,k)) = A

q
∑

i=1

λ∗
(i,k,k)(x(k,k))x̃(i,k,l) + B

q
∑

i=1

λ∗
(i,k,k)(x(k,k))ũ(i,k,l)

=

q
∑

i=1

λ∗
(i,k,k)(x(k,k))

(

Ax̃(i,k,l) + Bũ(i,k,l)

)

=

q
∑

i=1

λ∗
(i,k,k)(x(k,k))x̃(i,k,l+1)

∈ convh({x̃(i,k,l+1) ∈ R
m : i ∈ N[1:q]}) = X(k,l+1).

These relevant observations are summarized formally by:
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Proposition 1 Pick arbitrary N ∈ N+ with N ≥ 2, k ∈ N[1:N−1] and x ∈ R
n, and fix an arbitrary pair of the partial

state and control tubes X(k,N) = {X(k,l)}l∈N[k:N]
and U(k,N−1) = {U(k,l)}l∈N[k:N−1]

satisfying (3.1)–(3.4). Then: (i)
the function λ∗

(k,k) (·) : X(k,k) → Λ is, in general, single–valued and continuous piecewise affine function, and, (ii)

the function u∗
(k,N−1) (·) : X(k,k) → U(k,k) × U(k,k+1) × . . . × U(k,N−1) is, in general, single–valued and continuous

piecewise affine function such that

∀x(k,k) ∈ X(k,k), ∀l ∈ N[k:N−1], x(k,l+1) = Ax(k,l) + Bu∗
(k,l)(x(k,k)) ∈ X(k,l+1).

We note that for N = 1 the partial state and control tubes are composed from singletons, i.e. X(0,1) =
{x̃(0,0), x̃(0,1)} and U(0,0) = {ũ(0,0)}, satisfying x̃(0,1) = Ax̃(0,0) + Bũ(0,0). Likewise, if N ≥ 2, then for k = 0
the partial state and control tubes are also composed from singletons , i.e. X(0,N) = {x̃(0,0), x̃(0,1), . . . , x̃(0,N)} and
U(0,N−1) = {ũ(0,0), ũ(0,1), . . . , ũ(0,N)}, satisfying by construction, for all l ∈ N[0:N−1], x̃(0,l+1) = Ax̃(0,l) + Bũ(0,l).
Note that Proposition 1 establishes the relevant properties of the functions λ∗

(k,k) (·) and u∗
(k,N−1) (·) in the general

case; in particular special cases (e.g. when the disturbance set W is a simplex) the functions λ∗
(k,k) (·) and u∗

(k,N−1) (·)

can take the linear/affine form rather than piecewise affine.

Remark 1 Notice that for any arbitrary N ∈ N+ with N ≥ 2, k ∈ N[1:N−1] and x ∈ R
n, and any arbitrary but

fixed pair of the partial state and control tubes X(k,N) and U(k,N−1) satisfying (3.1)–(3.4), the functions λ∗
(k,k) (·) :

X(k,k) → Λ and u∗
(k,N−1) (·) : X(k,k) → U(k,k)×U(k,k+1)× . . .×U(k,N−1) can be constructed and/or evaluated without

the need to explicitly compute the convex hull operation appearing in (3.1b) and (3.2b). As evident from (3.5) what
is required is the knowledge of the sets of points {x̃(i,k,k)}

q
i=1 and {ũ(i,j,k)}

q
i=1 forming the sets of extreme points

of the initial partial state tube cross–section X(k,k) = W and the corresponding partial control tubes U(k,N−1) =
{U(k,k), U(k,k+1), . . . , U(k,N−1)}. Indeed, for any k ∈ N[1:N−1], the value of the function λ∗

(k,k)(x(k,k)) can be evaluated

for any fixed x(k,k) ∈ X(k,k) by solving a qudratic programming problem in (3.5b), while the value of the function
u∗

(k,N−1)(x(k,k)) is then easily calculated by performing algebraic operations in (3.5d). Furthermore, we can, by

utilizing our construction, induce actual partial state sequences {x(k,N)}k∈N[0:N]
via the following recursions:

∀l ∈ N[0:N−1], x̃(0,l+1) = Ax̃(0,l) + Bũ(0,l), with x̃(0,0) = x, (3.6a)

∀k ∈ N[1:N−1], ∀l ∈ N[k:N−1], x(k,l+1) = Ax(k,l) + Bu∗
(k,l)(x(k,k)), with x(k,k) = wk−1, (3.6b)

where u(0,N−1) is the partial control sequence associated with the partial state sequence x(0,N) and the partial control
sequences {u(k,N−1)}k∈N[0:N−1]

are obtained by utilizing (3.5). We note that if we set:

u0 = ũ(0,0), and, ∀k ∈ N[1:N−1], uk = ũ(0,k) +

k
∑

j=1

u∗
(j,k)(x(j,j)). (3.7)

Then, for any admissible disturbance sequence wN−1 := {wk ∈ W}k∈NN−1
, the corresponding state sequence {xk}k∈NN

generated by:
∀k ∈ N[0:N−1], xk+1 = Axk + Buk + wk, (3.8)

for x = x̃(0,0), satisfies:

∀k ∈ N[1:N ], xk = x̃(0,k) +
k
∑

j=1

x(j,k), (3.9)

where partial state components x(j,k) are given as in (3.6b). We note that (for any k ∈ N[0:N−1] and any j ∈ N[0:k])
our construction and Propositions 1 yield the fact that if x(j,k) ∈ X(j,k) then x(j,k+1) = Ax(j,k) + Bu∗

(j,k)(x(j,j)) ∈
X(j,k+1). Consequently, we can guarantee at the time instant j = 0 that any actual state and control sequences
generated via (3.7)–(3.9), for any x ∈ R

n (with, of course, x̃(0,0) = x) and for any admissible disturbance sequence
wN−1 := {wk ∈ W}k∈NN−1

, satisfy:

∀k ∈ NN , xk ∈
k
⊕

j=0

X(j,k) and ∀k ∈ NN−1, uk ∈
k
⊕

j=0

U(j,k). (3.10)

Hence, the partial state and control tubes provide a feedback mechanism to account for and counteract the uncertainty
and its effect on the system evolution within the prediction horizon in a feedback fashion.

3.2 State and Control Tubes : Parameterization, Controlled Dynamics & Induced

Control Policy

Following the discussion of Remark 1, relations (3.6)–(3.10) suggest that, as already indicated in Table 2, the partial
state and control tubes can be employed to obtain the parameterized state and control tubes. More precisely, the
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parameterized state tube is a sequence of sets XN := {Xk}k∈NN
where sets Xk are given, for all k ∈ NN , by:

Xk :=

k
⊕

j=0

X(j,k), (3.11)

and the sets X(0,k), X(1,k), . . . , X(k,k) are the partial state tubes cross–sections at time k given as in (3.1). Likewise,
the parameterized control tube is a sequence of sets UN−1 := {Uk}k∈NN−1

where sets Uk are given, for all k ∈ NN−1,
by:

Uk :=
k
⊕

j=0

U(j,k), (3.12)

and the sets U(0,k), U(1,k), . . . , U(k,k) are the partial control tubes cross–sections at time k given as in (3.2).

Remark 2 Before proceeding, we wish to stress that the Minkowski sum and convex hull operations employed for
the parameterization of the partial and overall state and control tubes are merely utilized for the purpose of necessary
analysis. We will demonstrate that the actual implementation of our method does not require any explicit computation
of the relevant set theoretic operations and is computationally tractable.

We now demonstrate that our construction and Proposition 1 allows us to induce a separable control policy ΠN−1

alluded to in the introduction and associated with the parameterized state and control tubes XN and UN−1 satisfying
relations (3.1)–(3.4) and (3.11)–(3.12). Namely, Proposition 1 and discussion of Remark 1 imply that, once a pair
of the parameterized state and control tubes XN = {X0, X1, . . . , XN} and UN−1 = {U0, U1, . . . , UN−1} satisfying
relations (3.1)–(3.4) and (3.11)–(3.12) is chosen, we can ensure the controlled transition from the parameterized
state tube cross–section Xk at the time instant k ∈ N[0:N−1] to the parameterized state tube cross–section Xk+1

at the time instant k + 1 ∈ N[1:N ] regardless the presence of the uncertainty. Furthermore, the appropriate control
actions uk applied at the possible states xk of the the parameterized state tube cross–section Xk at the time instant
k ∈ N[0:N−1] can be generated in such a way that they belong to the corresponding parameterized control tube
cross–section Uk at the time instant k. Suppose that N ∈ N+ is such that N ≥ 2 as otherwise there is nothing
to discuss. Let, for any k ∈ N[1:N−1] and any j ∈ N[1:k], λ(j,k) := (λ(1,j,k), λ(2,j,k), . . . , λ(q,j,k)) ∈ R

q. Let also
Λ := {λ ∈ R

q : ∀i ∈ N[1:q], λ(i,j,k) ≥ 0, and,
∑q

i=1 λ(i,j,k) = 1}. Similarly as in (3.5), we define, for any
k ∈ N[1:N−1] and any j ∈ N[1:k],

∀x(j,k) ∈ X(j,k), Λ(j,k)(x(j,k)) := {λ(j,k) ∈ Λ : x(j,k) =

q
∑

i=1

λ(i,j,k)x̃(i,j,k)}, (3.13a)

∀x(j,k) ∈ X(j,k), λ∗
(j,k)(x(j,k)) := arg min

λ(j,k)

{ λT
(j,k)λ(j,k) : λ(j,k) ∈ Λ(j,k)(x(j,k))}, and, (3.13b)

∀x(j,k) ∈ X(j,k), π(j,k)(x(j,k), X(j,k), U(j,k)) :=

q
∑

i=1

λ∗
(i,j,k)(x(j,k))ũ(i,j,k). (3.13c)

In view of the discussion succeeding relations (3.5), we stress that for any given x ∈ R
n and any fixed pa-

rameterized state and control tubes XN and UN−1 satisfying relations (3.1)–(3.4) and (3.11)–(3.12) and for any
k ∈ N[1:N−1] and any j ∈ N[1:k], the set Λ(j,k)(x(j,k)) is a polytope in R

q for each fixed x(j,k) ∈ X(j,k) and, fur-
thermore, the set {(x(j,k), λ(j,k)) : x(j,k) ∈ X(j,k), λ(j,k) ∈ Λ(j,k)(x(j,k))} is a polytopic set in R

n+q. Consequently,
the functions λ∗

(j,k) (·) : X(j,k) → Λ and π(j,k)(·, X(j,k), U(j,k)) : X(j,k) → U(j,k), defined in (3.13b) and (3.13c),
are, in general, single–valued, piecewise affine and continuous function of x(j,k) ∈ X(j,k). Furthermore the function
π(j,k)(·, X(j,k), U(j,k)) ensures, by construction, that for all x(j,k) ∈ X(j,k) it holds that:

x(j,k+1) = Ax(j,k) + Bπ(j,k)(x(j,k), X(j,k), U(j,k)) = A

q
∑

i=1

λ∗
(i,j,k)(x(j,k))x̃(i,j,k) + B

q
∑

i=1

λ∗
(i,j,k)(x(j,k))ũ(i,j,k)

=

q
∑

i=1

λ∗
(i,j,k)(x(j,k))

(

Ax̃(i,j,k) + Bũ(i,j,k)

)

=

q
∑

i=1

λ∗
(i,j,k)(x(j,k))x̃(i,j,k+1)

∈ convh({x̃(i,j,k+1) ∈ R
m : i ∈ N[1:q]}) = X(j,k+1).

These observations are summarized formally by:

Proposition 2 Pick an arbitrary N ∈ N+ with N ≥ 2 and x ∈ R
n, and fix an arbitrary pair of the parameterized

state and control tubes XN = {X0, X1, . . . , XN} and UN−1 = {U0, U1, . . . , UN−1} satisfying relations (3.1)–(3.4)
and (3.11)–(3.12). Then, for any k ∈ N[1:N−1] and any j ∈ N[1:k],: (i) the function λ∗

(j,k) (·) : X(j,k) → Λ is,

in general, single–valued and continuous piecewise affine function, and, (ii) the function π(j,k)(·, X(j,k), U(j,k)) :
X(j,k) → U(j,k) is, in general, single–valued and continuous piecewise affine function such that:

∀x(j,k) ∈ X(j,k), Ax(j,k) + Bπ(j,k)(x(j,k), X(j,k), U(j,k)) ∈ X(j,k+1).
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Remark 3 Similarly as discussed in Remark 1, the functions λ∗
(j,k) (·) : X(j,k) → Λ and π(j,k)(·, X(j,k), U(j,k)) :

X(j,k) → U(j,k) can be constructed and/or evaluated without the need to compute explicitly the convex hull operation
appearing in (3.1b) and (3.2b). The knowledge of the sets of points {x̃(i,j,k)}

q
i=1 and {ũ(i,j,k)}

q
i=1 forming the set

of extreme points of the corresponding partial state and control tubes cross–sections X(j,k) and U(j,k) suffices for the
necessary computations. Indeed, for any k ∈ N[1:N−1] and any j ∈ N[1:k], the value of the function λ∗

(j,k)(x(j,k)) can

be evaluated for any fixed x(j,k) ∈ X(j,k) by solving a quadratic programming problem in (3.13b), so that the value of
the function π(j,k)(x(j,k), X(j,k), U(j,k)) is then easily calculated by performing algebraic operations in (3.13c).

Our next observation shows that once the parameterized state and control tubes XN and UN−1 satisfying
relations (3.1)–(3.4) and (3.11)–(3.12) are fixed we can construct a separable control policy ΠN−1 ensuring the
controlled transition from the parameterized state tube cross–section Xk at the time instant k ∈ N[0:N−1], regardless
the presence of the uncertainty, to the parameterized state tube cross–section Xk+1 at the time instant k+1 ∈ N[1:N ]:

Proposition 3 Pick an arbitrary N ∈ N+ with N ≥ 2 and x ∈ R
n, and fix an arbitrary pair of the parameterized

state and control tubes XN = {X0, X1, . . . , XN} and UN−1 = {U0, U1, . . . , UN−1} satisfying relations (3.1)–(3.4)
and (3.11)–(3.12). Then (i) for all k ∈ N[0:N ] and all j ∈ N[0:k],

∀xk ∈ Xk, ∃{x(j,k) ∈ X(j,k)}
k
j=0 such that xk =

k
∑

j=0

x(j,k),

and, (ii) for all k ∈ N[0:N−1] and all j ∈ N[0:k],

∀{x(j,k) ∈ X(j,k)}
k
j=0, xk =

k
∑

j=0

x(j,k) ∈ Xk, (3.14a)

πk(xk, Xk, Uk) := ũ(0,k) +

k
∑

j=1

π(j,k)(x(j,k), X(j,k), U(j,k)) ∈ Uk and Axk + Bπk(xk, Xk, Uk) ⊕ W ⊆ Xk+1, (3.14b)

where the functions π(j,k)(·, X(j,k), U(j,k)) : X(j,k) → U(j,k) are defined as in (3.13).

The main consequence of Propositions 2 and 3 is summarized next:

Corollary 1 Pick an arbitrary N ∈ N+ with N ≥ 2 and x ∈ R
n, and fix an arbitrary pair of the parameterized

state and control tubes XN = {X0, X1, . . . , XN} and UN−1 = {U0, U1, . . . , UN−1} satisfying relations (3.1)–(3.4)
and (3.11)–(3.12). Let wN−1 := {wk ∈ W}N−1

k=0 be an arbitrary uncertainty sequence. Let also, for all k ∈ N[1:N ],
x(k,k) = wk−1. Finally let:

∀k ∈ N[0:N−1], xk+1 = Axk + Bπk(xk, Xk, Uk) + wk, and,

∀k ∈ N[1:N−1], ∀l ∈ N[k:N−1], x(k,l+1) = Ax(k,l) + Bπ(k,l)(x(k,l), X(k,l), U(k,l)),

where functions π(j,k)(·, X(j,k), U(j,k)) and πk(·, Xk, Uk) are defined as in (3.7) and (3.8). Then:

∀k ∈ N[0:N ], xk = x̃(0,k) +

k
∑

j=1

x(j,k) ∈ Xk, and,

∀k ∈ N[0:N−1], πk(xk, Xk, Uk) = ũ(0,k) +

k
∑

j=1

π(j,k)(x(j,k), X(j,k), U(j,k)) ∈ Uk.

Remark 4 At this stage we are ready to make a few remarks indicating advantages of the introduced parameterization
of the state and control tubes over some of existing proposals in the literature. As evident, the implicit representation
of parameterized state tubes requires the knowledge of the sets of points {x̃(0,k)}k∈NN

and {x̃(i,j,k)} where i ∈ N[1:q],
k ∈ N[1:N ] and j ∈ N[k:N ]. Consequently, the parameterized state tube is induced from NXN

n–dimensional variables

(where NXN
:= N +1+q

N(N+1)
2 ) or, equivalently, from n(N +1)+qn

N(N+1)
2 real numbers. Likewise, the parameter-

ized control tube is induced from NUN−1
m–dimensional variables (where NUN−1

:= N + q
(N−1)N

2 ) or, equivalently,

from mN + qm
(N−1)N

2 real numbers. Therefore, the total number of real variables characterizing a pair of param-

eterized state and control tubes is given by n(N + 1) + qn
N(N+1)

2 + mN + qm
(N−1)N

2 and is, clearly, a quadratic
function of the horizon length N . We also note that the sets of points {x̃(0,k)}k∈NN

and {x̃(i,j,k)} where i ∈ N[1:q],
k ∈ N[1:N ] and j ∈ N[k:N ] can be eliminated by utilizing the equality constraints (2.10) which, in turn, reduces the
free variables to those belonging to the sets of points {ũ(0,k)}k∈NN−1

and {ũ(i,j,k)} where i ∈ N[1:q], k ∈ N[1:N−1]

and j ∈ N[k:N−1] and which are clearly induced from mN + qm
(N−1)N

2 real numbers. This is in strong contrast with
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proposals [13,14] which suffer from the fact that the total number of decision variables employed in methods of [13,14]
is an exponential function of the horizon length N (i.e. it grows proportionally to qN ). In addition, as established in
Propositions 2, the functions π(j,k)(·, X(j,k), U(j,k)), k ∈ N[1:N−1], j ∈ N[1:k] are, in general, single–valued, piecewise
affine and continuous functions of x(j,k) ∈ X(j,k). Hence,the control policy specified via (3.14b) and (3.13) is more
general than the so–called disturbance affine control policy utilized in [15–18]. The benefits of this extra degree of
generality are illustrated by means of a numerical example in Section 7.

As the parameterized state and control tubes allow for the prediction under uncertainty in a feedback fashion,
our next step is to study the local behavior of the parameterized state and control tubes.

4 Local Behavior of Parameterized State and Control Tubes in Termi-

nal Constraint Set

As it is customary in robust model predictive control, an appropriate terminal constraint set is introduced in order
to guarantee the relevant invariance and stability properties. The terminal constraint set is, as usual, obtained by
considering simpler local state and control tube dynamics which are guaranteed to satisfy constraints. More precisely,
we consider the simpler form of local dynamics under uncertainty induced by utilizing a linear state feedback control
law u = Kx:

x+ = (A + BK)x + w. (4.1)

We invoke the standard assumptions on the terminal constraint set and the corresponding matrix K ∈ R
m×n:

Assumption 3 (i) The matrix K ∈ R
m×n is such that A+BK is strictly stable, i.e. ρ(A+BK) < 1, and, (ii) The

terminal constraint set Xf is the maximal robust positively invariant set for the system (4.1) and the constraint set
(XK , W) where XK := {x ∈ X : Kx ∈ U}, i.e. Xf is the maximal set (with respect to the set inclusion) such that

(A + BK)Xf ⊕ W ⊆ Xf , Xf ⊆ X, and, KXf ⊆ U, (4.2)

and, in addition, is a PC–polytopic set in R
n with its irreducible representation given by:

Xf := {x ∈ R
n : ∀i ∈ N[1:t], HT

i x ≤ 1}. (4.3)

Remark 5 We note that, as is well known (e.g. [35, 36]), Assumption 3 is easily satisfied under rather mild con-
ditions. In particular, Assumption 3(ii) is satisfied under Assumptions 1, 2 and 3(i) and an additional requirement
that the minimal robust positively invariant set (e.g. [35,37,38]), which is given by X∞ =

⊕∞

i=0(A+BK)i
W, satisfies

X∞ ⊆ interior(XK), XK = {x ∈ X : Kx ∈ U}. In fact, it is also well known that [38, 39], the minimal robust
positively invariant set X∞ is an exponentially stable attractor for the induced set–dynamics X+ = (A+BK)X ⊕W

with the basin of attraction being the space of compact subsets of the maximal robust positively invariant set Xf .
Consequently, any set sequence {Yk}

∞
k=0 generated, for all k ∈ N, by Yk+1 = (A + BK)Yk ⊕ W, with Y0 being an

arbitrary compact subset of Xf , converges exponentially fast, with respect to the Hausdorff distance, to the minimal
robust positively invariant set X∞ as k → ∞ while satisfying, for all k ∈ N, Yk ⊆ Xf .

The first observation of interest is concerned with the local state and control tubes ZN := {Z0, Z1, . . . , ZN} and
VN−1 := {V0, V1, . . . , VN−1} given, for any N ∈ N+ and z ∈ Xf , by:

Z0 := z and ∀k ∈ N[1:N ], Zk := (A + BK)kz ⊕
k
⊕

j=1

(A + BK)k−j
W, and, (4.4a)

V0 := Kz and ∀k ∈ N[1:N−1], Vk := K(A + BK)kz ⊕
k
⊕

j=1

K(A + BK)k−j
W. (4.4b)

The relevant properties of the local state and control tubes given above in (4.4) are summarized by:

Proposition 4 Suppose Assumptions 1, 2 and 3 hold and take any arbitrary N ∈ N+. Then, for all z ∈ Xf , the
local state and control tubes ZN := {Z0, Z1, . . . , ZN} and VN−1 := {V0, V1, . . . , VN−1} given by (4.4) satisfy:

∀k ∈ NN , Zk ⊆ Xf ⊆ X, (4.5a)

∀k ∈ NN−1, Vk ⊆ KXf ⊆ U, and, (4.5b)

∀k ∈ NN−1, Zk+1 = (A + BK)Zk ⊕ W. (4.5c)
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Clearly, Proposition 4 establishes that the local state and control tubes as specified in (4.4) form a feasible
parameterized state and control tubes for any x ∈ Xf . This observation is helpful in selecting a sensible cost function
leading to appropriate stabilizing properties of PTMPC discussed in the sequel of this manuscript. We proceed
to discuss a more important consequence of Assumption 3 (ii), which allows us to indicate appropriate invariance
properties relevant for PTMPC. To this end, let, for any N ∈ N+,

YN := ỹ(0,N) ⊕
N
⊕

j=1

Y(j,N) with

ỹ(0,N) ∈ R
n and ∀j ∈ N[1:N ], Y(j,N) := convh({ỹ(i,j,N) ∈ R

n : i ∈ N[1:q]}). (4.6)

The set YN taking the form specified in (4.6) represents a parameterized state tube cross–section XN (see (3.11)).
Our next objective is to show that for any set YN satisfying YN ⊆ Xf it is possible to construct sets ŶN (y(1,N))

and V̂N−1(y(1,N)), for any y(1,N) ∈ Y(1,N), such that ŶN (y(1,N)) = (A + BK)
(

(ỹ(0,N) + y(1,N)) ⊕
⊕N

j=2 Y(j,N)

)

⊕W,

ŶN (y(1,N)) ⊆ Xf ⊆ X and V̂N−1(y(1,N)) ⊆ U and taking structural form of parameterized state and control tube
cross–sections XN and UN−1 as specified in (3.11) and (3.12). This property plays an important role in establishing
relevant invariance properties of PTMPC analyzed in the sequel of the manuscript. In particular, it allows the
assertion of recursive feasibility of the PTMPC according to which if the online optimization of PTMPC is feasible
at any particular time instant, then it is guaranteed to be feasible at the next (and by recursion) at all subsequent
time instants.

Proposition 5 Suppose Assumptions 1, 2 and 3 hold, consider any arbitrary N ∈ N+ and any arbitrary set YN

given as in (4.6) satisfying that YN ⊆ Xf . Then for all y(1,N) ∈ Y(1,N) it holds that:

ŶN (y(1,N)) ⊆ Xf ⊆ X,

V̂N−1(y(1,N)) ⊆ KXf ⊆ U, and,

ŶN (y(1,N)) = (A + BK)



(ỹ(0,N) + y(1,N)) ⊕
N
⊕

j=2

Y(j,N)



⊕ W, (4.7)

where

ŶN (y(1,N)) := ŷ(0,N) ⊕
N
⊕

j=1

Ŷ(j,N), with,

ŷ(0,N) := (A + BK)(ỹ(0,N) + y(1,N)), ∀j ∈ N[1:N−1], Ŷ(j,N) := (A + BK)Y(j+1,N), and, Ŷ(N,N) := W,

V̂N−1(y(1,N)) := v̂(0,N−1) ⊕
N−1
⊕

j=0

V̂(j,N−1), with,

v̂(0,N−1) := K(ỹ(0,N) + y(1,N)), and, ∀j ∈ N[1:N−1], V̂(j,N−1) := KY(j+1,N). (4.8)

We are now ready to utilize our preliminary analysis of Sections 3 and 4 in order to formulate an appropriate
parameterized tube optimal control problem and discuss its utilization for the synthesis of parameterized tube model
predictive control.

5 Parameterized Tube Optimal Control

In the absence of information on the values of future uncertainty, the local linear feedback control law discussed
in Section 4 provides an obvious control strategy for steering the current state to the minimal robust invariant set
X∞. However this is only feasible within the terminal constraint set Xf while it may not be feasible outside of
it on account of the state and input constraints and a sensible solution, in this case, is to minimize a cost that
measures the distance away from the dynamical behavior induced by the local linear feedback control law discussed
in Section 4. This feature has obvious advantages in terms of performance but also allows the assertion of a guarantee
of closed–loop robust stability and will be utilized in this paper. Clearly, in the PTMPC context the distance away
from the local linear feedback control law has to be measured in terms of the distance of the tubes structure of
Section 3 away from the terminal control tube structures of Section 3 as discussed next.

5.1 Simplifying State Substitution

We first introduce a simplifying state substitution which is motivated by stability considerations. We express equiv-
alently the partial state and control tubes X(0,N) and U(0,N−1) by employing, for any horizon length N ∈ N+ and
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any x ∈ X, the following substitutions:

∀k ∈ NN , x̃(0,k) := (A + BK)k(x − ẽ(0,0)) + ẽ(0,k), and, (5.1a)

∀k ∈ NN−1, ũ(0,k) := K(A + BK)k(x − ẽ(0,0)) + ṽ(0,k). (5.1b)

The sequences e0 := {ẽ(0,k)}k∈NN
and v0 := {ṽ(0,k)}k∈NN−1

are required to satisfy, in view of (3.3a), the following
dynamic constraint:

∀k ∈ NN−1, ẽ(0,k+1) = Aẽ(0,k) + Bṽ(0,k), (5.2)

which ensures that the sequences {x̃(0,k)}k∈NN
and {ũ(0,k)}k∈NN−1

satisfy (3.3a) and, in addition, that x̃(0,0) = x

as required in (3.4a). With this simplifying substitution, the partial state and control tubes X(0,N) and U(0,N−1)

satisfy X(0,N) = {(A + BK)k(x − ẽ(0,0)) + ẽ(0,k)}k∈NN
and U(0,N−1) = {K(A + BK)k(x − ẽ(0,0)) + ṽ(0,k)}k∈NN−1

and are, for a given x ∈ X, completely characterized by the sequences e0 = {ẽ(0,k)}k∈NN
and v0 = {ṽ(0,k)}k∈NN−1

.
We also note that the initial term ẽ(0,0) of the sequence e0 = {ẽ(0,k)}k∈NN

can be freely chosen subject to adequate
stabilizing constraint specified below in (5.3c).

5.2 Admissible Set of Parameterized State and Control Tubes

For any horizon length N ∈ N+ let θN := {XN ,UN−1} denote a pair of parameterized state and control tubes.
In order to ensure that the state, control and terminal constraints are robustly satisfied as well as to allow for the
minimization of the distance of the tubes structure of Section 3 away from the terminal control tube structures of
Section 3, for a given horizon length N ∈ N+ and initial state x ∈ X, we require the parameterized state and control
tubes XN and UN−1 to satisfy the following set of constraints:

∀k ∈ NN−1, Xk ⊆ X, XN ⊆ Xf , (5.3a)

∀k ∈ NN−1, Uk ⊆ U, and, (5.3b)

x − ẽ(0,0) ∈ Xf . (5.3c)

The set of admissible pairs of parametrized state and control tubes, for a given x ∈ X, is specified as a value of the
set–valued map ΘN (·) evaluated at x:

ΘN (x) := {θN : (3.1), (3.2), (3.3b), (3.4b), (3.11), (3.12), (5.1), (5.2) and (5.3) hold} (5.4)

First, we note that the stabilizing constraint (5.3c) does not affect any of other constraints specified in (5.4) since
it can be trivially satisfied for any x ∈ X. We also remark that the graph of the set–valued map ΘN (·) admits an
equivalent tractable polyhedral reformulation of the set–valued map ΘN (·) provided in Section 7 where we address
the corresponding computational issues.

5.3 Parameterized State and Control Tubes: Sensible Cost Function

For any horizon length N ∈ N+ and with any pair of parameterized state and control tubes θN = {XN ,UN−1} we
associate a cost function VN (·) given by:

VN (θN ) := V(0,N)(e0,v0) +

N−1
∑

k=1

V(k,N)(X(k,N),U(k,N−1)) + V(N,N)(X(N,N)), (5.5)

which is composed from the partial cost functions V(k,N) (·) , k ∈ NN associated with the partial state and control
tubes X(k,N) and U(k,N). The partial cost functions V(k,N) (·) , k ∈ NN are specified as discussed next. Since, as

already noticed, the partial state and control tubes X(0,N) = {(A + BK)k(x − ẽ(0,0)) + ẽ(0,k)}k∈NN
and U(0,N−1) =

{K(A + BK)k(x − ẽ(0,0)) + ṽ(0,k)}k∈NN−1
are, for a given x ∈ X, completely characterized by the sequences e0 =

{ẽ(0,k)}k∈NN
and v0 = {ṽ(0,k)}k∈NN−1

we specify the partial cost function V(0,N) (·) : R
(N+1)n+Nm → R+ by:

V(0,N)(e0,v0) :=

N−1
∑

l=0

(

G(Q, ẽ(0,l)) + G(R, ṽ(0,l))
)

+ G(P, ẽ(0,N)). (5.6)

We recall that, for any k ∈ N[1:N−1], as specified in (3.1) and (3.2) the partial state and control tubes X(k,N) and
U(k,N) are completely characterized by the sequences of the corresponding sets of extreme partial state and control
sequences {x(i,k,N)} and {u(i,k,N−1)} specified in (2.9). Consequently, we specify, for any k ∈ N[1:N−1], the partial

cost functions V(k,N) (·) : R
q(N+1−k)n+q(N=k)m → R+ by:

V(k,N)(X(k,N),U(k,N−1)) :=

q
∑

i=1

(

N−1
∑

l=k

(

G(Q, x̃(i,k,l) − x̄(i,k,l)) + G(R, ũ(i,k,l) − ū(i,k,l))
)

+ G(P, x̃(i,k,N) − x̄(i,k,N))

)

,

(5.7)
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where, for all i ∈ N[1:q], all k ∈ N[1:N−1] and all l ∈ N[k:N−1],

x̄(i,k,l) := (A + BK)l−kw̃i, ū(i,k,l) := K(A + BK)l−kw̃i and x̄(i,k,N) := (A + BK)N−kw̃i. (5.8)

The partial cost function V(N,N) (·) : R
qn → R+ is specified by:

V(N,N)(X(N,N)) :=

q
∑

i=1

G(P, x̃(i,N,N) − x̄(i,N,N)), (5.9)

where, as above for all i ∈ N[1:q], x̄(i,N,N) := w̃i.
Our final standard assumption is concerned with the relevant properties of the sets Q, R and P utilized via the

gauge (Minkowski) function to specify the parameterized state and control tubes θN = {XN ,UN−1} cost function
VN (·):

Assumption 4 The sets Q, R and P are symmetric PC–polytopic sets in R
n, R

m, and R
n, respectively, given by

irreducible representations:

Q := {x ∈ R
n : ∀i ∈ N[1:s1], QT

i x ≤ 1} (5.10a)

R := {u ∈ R
m : ∀i ∈ N[1:s2], RT

i u ≤ 1}, and, (5.10b)

P := {x ∈ R
n : ∀i ∈ N[1:s3], PT

i x ≤ 1}. (5.10c)

Furthermore, for all x ∈ R
n it holds that:

G(P, (A + BK)x) − G(P, x) ≤ − (G(Q, x) + G(R,Kx)) . (5.11)

5.4 Parameterized Tube Optimal Control: Formulation and Basic Properties

The parameterized tube optimal control (PTOC) problem PN (x) is specified, for all x ∈ X, by:

V 0
N (x) := min

θN

{VN (θN ) : θN ∈ ΘN (x)}, and, (5.12a)

θ0
N (x) := arg min

θN

{VN (θN ) : θN ∈ ΘN (x)}. (5.12b)

The effective domain of the value function V 0
N (·) is referred to as N–step parameterized tubes controllability set

and is, clearly, given by, for any N ∈ N+,:

XN := {x : ΘN (x) 6= ∅}, and, X0 := Xf . (5.13)

At this stage, we wish to stress that, under Assumptions 1–4, the PTOC problem PN (x), x ∈ X admits an
equivalent reformulation as a single and tractable linear programming problem. The corresponding algebraic details
will be provided in in Section 7. In fact, under Assumptions 1–4, the following facts can be asserted:

Proposition 6 Suppose Assumptions 1–4 hold. Then:

(i) The N–step parameterized tubes controllability set XN is a PC–polytopic set in R
n such that Xf ⊆ XN ⊆ X,

(ii) The value function V 0
N (·) : XN → R+ is convex, piecewise affine and continuous function such that ∀x ∈

Xf , V 0
N (x) = 0 and ∀x ∈ XN \ Xf , V 0

N (x) > 0, and

(iii) There exist piecewise affine and continuous functions e∗0 (·) : XN → R
(N+1)n, v∗

0 (·) : XN → R
Nm,

x∗
(i,k,N) (·) : XN → R

(N+1−k)n, i ∈ N[1:q], k ∈ N[1:N ] and u∗
(i,k,N) (·) : XN → R

(N−k)m, i ∈ N[1:q], k ∈

N[1:N−1] inducing the parameterized state and control tube pair θ∗N (x) = {X∗
N (x),U∗

N−1(x)} such that for all
x ∈ XN it holds that θ∗N (x) ∈ θ0

N (x) (here θ∗N (·) denotes a selection of θ0
N (·)). Furthermore, for all x ∈ Xf it

holds that:

∀k ∈ NN , ẽ∗(0,k)(x) = 0, ∀k ∈ NN−1, ṽ∗
(0,k)(x) = 0,

∀i ∈ N[1:q], ∀k ∈ N[1:N ], ∀l ∈ N[k:N ], x̃∗
(i,k,l)(x) = (A + BK)l−kw̃i,

∀i ∈ N[1:q], ∀k ∈ N[1:N−1], ∀l ∈ N[k:N−1], ũ∗
(i,k,l)(x) = K(A + BK)l−kw̃i.

In other words, for all x ∈ Xf , θ0
N (x) is a singleton and it takes the form of the local state and control tubes

pair given as in (4.4) (with x = z).
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For any x ∈ XN , the selection of the solution of the (PTOC) problem PN (x), namely θ∗N (x), is well–defined and al-

lows for the construction of optimal parameterized state and control tubes X∗
N (x) = {X∗

k(x) =
⊕k

j=0 X∗
(j,k)(x)}k∈NN

and U∗
N−1(x) = {U∗

k (x) =
⊕k

j=0 U∗
(j,k)(x)}k∈NN

given via:

∀l ∈ NN , X∗
(0,l)(x) := {(A + BK)l(x − ẽ∗(0,0)(x)) + ẽ∗(0,l)(x)}, and, (5.14a)

∀k ∈ N[1:N ], ∀l ∈ N[k:N ], X∗
(k,l)(x) := convh({x̃∗

(i,k,l)(x) ∈ R
n : i ∈ N[1:q]}), (5.14b)

and

∀l ∈ NN−1, U∗
(0,l)(x) := {K(A + BK)l(x − ẽ∗(0,0)(x)) + ṽ∗

(0,l)(x)}, and, (5.15a)

∀k ∈ N[1:N−1], ∀l ∈ N[k:N−1], U∗
(k,l)(x) := convh({ũ∗

(i,k,l)(x) ∈ R
m : i ∈ N[1:q]}), (5.15b)

The optimal pair of the parameterized state and control tubes X∗
N (x) and U∗

N−1(x), given above in (5.14) and (5.15),
satisfies, by construction, all relationships specified in (3.3b), (3.4b), (3.11), (3.12), (5.1), (5.2) and (5.3). In addition,
Propositions 1 and 2 allow for the construction of the associated separable control policy Π∗

N−1(x) according to
either (3.5) or (3.13), which is, in view of Propositions 1, 2 and 6, composed, in general, from the sequence of
continuous piecewise affine control laws.

An appropriate utilization of Proposition 5 allows us to utilize the optimal pair of the parameterized state
and control tubes X∗

N (x) and U∗
N−1(x), given in (5.14) and (5.15), to construct a feasible and cost decreas-

ing parameterized state and control tubes pair θ̂N (y(x, x(1,1))) := {X̂N (y(x, x(1,1))), ÛN−1(y(x, x(1,1)))} for any
y(x, x(1,1)) := Ax + B(K(x − ẽ∗(0,0)(x)) + ṽ∗

(0,0)(x)) + x(1,1), x(1,1) ∈ X∗
(1,1)(x) = W as discussed next. With any

x(1,1) ∈ X∗
(1,1)(x) = W we associate the sequences {x∗

(1,k)(x(1,1))}k∈N[1:N]
and {u∗

(1,k)(x(1,1))}k∈N[1:N−1]
by setting:

∀l ∈ N[1:N−1], u∗
(1,l)(x(1,1)) :=

q
∑

i=1

λ∗
(i,1,1)(x(1,1))u

∗
(i,1,l)(x(1,1)) and (5.16a)

∀l ∈ N[1:N−1], x∗
(1,l+1)(x(1,1)) := Ax∗

(1,l)(x(1,1)) + Bu∗
(1,l)(x(1,1)) with x∗

(1,1)(x(1,1)) := x(1,1), (5.16b)

where the function λ∗
(1,1) (·) is given by (3.5). We recall that by Proposition 1 it holds that, for all x(1,1) ∈ X∗

(1,1)(x) =

W and all l ∈ N[1:N−1], u∗
(1,l)(x(1,1)) ∈ U∗

(1,l)(x) as well as x∗
(1,l)(x(1,1)) ∈ X∗

(1,l)(x) and x∗
(1,N)(x(1,1)) ∈ X∗

(1,N)(x).

We set, for all k ∈ N[0:N ], X̂k(y(x, x(1,1))) :=
⊕k

j=0 X̂(j,k)(y(x, x(1,1))) and, for all k ∈ N[0:N−1], Ûk(y(x, x(1,1))) :=
⊕k

j=0 Û(j,k)(y(x, x(1,1))) with:

∀l ∈ NN , X̂(0,l)(y(x, x(1,1))) := {(A + BK)l(y(x, x(1,1)) − ê(0,0)(y(x, x(1,1)))) + ê(0,l)(y(x, x(1,1)))}, with,

∀l ∈ NN−1, ê(0,l)(y(x, x(1,1))) := ẽ∗(0,l+1)(x) + x∗
(1,l+1)(x(1,1)) − (A + BK)lx(1,1), and,

ê(0,N)(y(x, x(1,1))) := (A + BK)
(

ẽ∗(0,N)(x) + x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)

)

, and, (5.17a)

∀k ∈ N[1:N ], ∀l ∈ N[k:N ], X̂(k,l)(y(x, x(1,1))) := convh({x̂(i,k,l)(y(x, x(1,1))) ∈ R
n : i ∈ N[1:q]}), with,

∀k ∈ N[1:N−1], ∀i ∈ N[1:q], ∀l ∈ N[k:N−1], x̂(i,k,l)(y(x, x(1,1))) := x̃∗
(i,k+1,l+1)(x), and,

∀i ∈ N[1:q], x̂(i,k,N)(y(x, x(1,1))) := (A + BK)x̃∗
(i,k+1,N)(x), and, x̂(i,N,N)(y(x, x(1,1))) := w̃i, (5.17b)

and

∀l ∈ NN−1, Û(0,l)(y(x, x(1,1))) := {K(A + BK)l(y(x, x(1,1))) − ê(0,0)(y(x, x(1,1)))) + v̂(0,l)(y(x, x(1,1)))}, with,

∀l ∈ NN−2, v̂(0,l)(y(x, x(1,1))) := ṽ∗
(0,l+1)(x) + u∗

(1,l+1)(x(1,1)) − K(A + BK)lx(1,1), and,

v̂(0,N−1)(y(x, x(1,1))) := K
(

ẽ∗(0,N)(x) + x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)

)

, and, (5.18a)

∀k ∈ N[1:N−1], ∀l ∈ N[k:N−1], Û(k,l)(y(x, x(1,1))) := convh({û(i,k,l)(y(x, x(1,1))) ∈ R
m : i ∈ N[1:q]}), with,

∀k ∈ N[1:N−2], ∀i ∈ N[1:q], ∀l ∈ N[k:N−2], û(i,k,l)(y(x, x(1,1))) := ũ∗
(i,k+1,l+1)(x), and,

∀i ∈ N[1:q], û(i,k,N−1)(y(x, x(1,1))) := Kx̃∗
(i,k+1,N)(x), and, û(i,N−1,N−1)(y(x, x(1,1))) := Kw̃i. (5.18b)

Indeed, the following result guarantees robust recursive feasibility of the PTOC problem PN (x), x ∈ XN :

Proposition 7 Suppose Assumptions 1–4 hold. Then for all x ∈ XN and all y(x, x(1,1)) := Ax+B(K(x−ẽ∗(0,0)(x))+

ṽ∗
(0,0)(x)) + x(1,1), x(1,1) ∈ X∗

(1,1)(x) = W it holds that:

y(x, x(1,1)) ∈ X∗
1 (x), (5.19a)

θ̂N (y(x, x(1,1))) ∈ ΘN (y(x, x(1,1))), and, consequently, X∗
1 (x) ⊆ XN , and, in addition, (5.19b)

V 0
N (y(x, x(1,1))) − V 0

N (x) ≤ VN (θ̂N (y(x, x(1,1)))) − V 0
N (x) ≤ −

(

G(Q, ẽ∗(0,0)(x)) + G(R, ṽ∗
(0,0)(x))

)

, (5.19c)

where θ̂N (y(x, x(1,1))) is specified via (5.16)–(5.18).
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Remark 6 A direct consequence of Propositions 5 and 7 is the fact that the N–step parameterized tubes controllability
sets XN given by (5.13), in addition to the PC–polytopic property asserted in Proposition 6 (i), satisfy that for all
N ∈ N, XN ⊆ XN+1.

6 Parameterized Tube MPC

We now examine the repetitive online application of the solution of the PTOC problem PN (x), x ∈ X in the context
of the PTMPC. Namely, we consider the parameterized tube model predictive controller κ0

N (·) : XN → U given by:

κ∗
N (x) = ũ∗

(0,0)(x) = ṽ∗
(0,0)(x) + K(x − ẽ∗(0,0)(x)). (6.1)

Under Assumptions 1–4, Proposition 6 establishes that the functions ṽ∗
(0,0) (·) and ẽ∗(0,0) (·) are single–valued piecewise

affine and continuous implying, in view of (6.1), that the control law κ∗
N (·) : XN → U is also a single–valued piecewise

affine and continuous function. The parameterized tube model predictive controller κ∗
N (·) : XN → U induces the

controlled, uncertain, dynamics given, for all x ∈ XN , by:

x+ ∈ F(x) := {Ax + Bκ∗
N (x) + w : w ∈ W}, (6.2)

and it ensures, by construction, that for all x ∈ XN :

F(x) = X∗
1 (x) = X∗

(0,1)(x) ⊕ X∗
(1,1)(x) = x̃∗

(0,1)(x) ⊕ X∗
(1,1)(x)

= ((A + BK)(x − ẽ∗(0,0)(x)) + ẽ∗(0,1)(x)) ⊕ W ⊆ XN , (6.3)

as evident from (3.4), (3.10), (5.1) and Proposition 7.
The dynamical behavior of the controlled, uncertain, dynamics given in (6.2) is examined by utilizing the value

function V 0
N (·) : XN → R+ as a Lyapunov function relative to the terminal constraint set Xf . Namely, we proceed

to show that any state sequence {xk}k∈N generated by (6.2) with x0 ∈ XN and the corresponding control actions
sequence {uk}k∈N with uk = κ∗

N (xk) for each k, for any admissible disturbance sequence {wk}k∈N with wk ∈ W for
each k, converge respectively to the sets Xf and KXf , as k → ∞, exponentially fast and in a stable fashion for any
realized state sequence {xk}k∈N arising due to an admissible disturbance sequence {wk}k∈N.

Before proceeding, we note that Proposition 6 establishes that the value function V 0
N (·) : XN → R+ is a convex

piecewise affine and continuous function, and, in addition, that for all x ∈ Xf it holds that V 0
N (x) = 0, ẽ∗(0,0)(x) = 0

and ṽ∗
(0,0)(x) = 0. In turn, in view of (6.1) and (6.2), it follows that for all x ∈ Xf we have:

κ∗
N (x) = Kx and F(x) = (A + BK)x ⊕ W. (6.4)

We now establish the relevant technical and preliminary results, which lead to our main result summarizing the
properties of the introduced PTMPC. Our first technical lemma is:

Lemma 1 Suppose Assumptions 1–4 hold. Then:

(i) for all x ∈ Xf it holds that |ẽ∗(0,0)(x)|Q = 0 and |ṽ∗
(0,0)(x)|R = 0, and, for all x ∈ XN \ Xf it holds that

|ẽ∗(0,0)(x)|Q > 0;

(ii) for all x ∈ XN it holds that c1|ẽ
∗
(0,0)(x)|Q ≤ dist(Q, x, Xf ) ≤ |ẽ∗(0,0)(x)|Q for some scalar c1 ∈ (0, 1) and

0 ≤ dist(R, κ∗
N (x),KXf ) ≤ |ṽ∗

(0,0)(x)|R.

Our second observation is concerned with the desirable properties of the value function V 0
N (·):

Proposition 8 Suppose Assumptions 1–4 hold. Then there exist a scalar c2 ∈ [1,∞) such that for all x ∈ XN it
holds that:

|ẽ∗(0,0)(x)|Q ≤ V 0
N (x) ≤ c2|ẽ

∗
(0,0)(x)|Q, (6.5a)

(|ẽ∗(0,0)(x)|Q + |ṽ∗
(0,0)(x)|R) ≤ V 0

N (x) ≤ c2(|ẽ
∗
(0,0)(x)|Q + |ṽ∗

(0,0)(x)|R), and, (6.5b)

∀x+ ∈ F(x), V 0
N (x+) − V 0

N (x) ≤ −(|ẽ∗(0,0)(x)|Q + |ṽ∗
(0,0)(x)|R), (6.5c)

where F (·) is given by (6.2).

Our third observation is a direct, but important, consequence of Proposition 8:
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Corollary 2 Suppose Assumptions 1–4 hold. Then there exists a scalar pair (āN , b̄N ) ∈ [0, 1)× (0,∞) such that the
inequalities

∀k ∈ N, V 0
N (xk) ≤ āk

NV 0
N (x0), (6.6a)

∀k ∈ N, (|ẽ∗(0,0)(xk)|Q + |ṽ∗
(0,0)(xk)|R) ≤ āk

N b̄N (|ẽ∗(0,0)(x0)|Q + |ṽ∗
(0,0)(x0)|R), and, (6.6b)

∀k ∈ N, |ẽ∗(0,0)(xk)|Q ≤ āk
N b̄N |ẽ∗(0,0)(x0)|Q. (6.6c)

hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2).

We are now able to verify the relevant and strong system theoretic properties of the developed PTMPC. This is
achieved by utilizing results of Lemma 1, Propositions 7 and 8 and Corollary 2:

Theorem 1 Suppose Assumptions 1–4 hold. Then:

(i) For all x ∈ XN it holds that κ∗
N (x) ∈ U and F(x) ⊆ XN , i.e. the N–step parameterized tubes controllability set

XN is a robust positively invariant set for the system x+ = Ax + Bκ∗
N (x) + w and the constraint set (Xκ∗

N
, W)

where Xκ∗

N
:= {x ∈ X : κ∗

N (x) ∈ U}.

(ii) There exists a scalar pair (aN , bN ) ∈ [0, 1) × (0,∞) such that the inequalities:

∀k ∈ N, dist(Q, xk,XN ) = 0 and dist(Q, xk, Xf ) ≤ ak
NbN dist(Q, x0, Xf ),

∀k ∈ N, dist(R, κ∗
N (xk), U) = 0 and dist(R, κ∗

N (xk),KXf ) ≤ ak
NbN ,

hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2).

(iii) The set Xf is robustly exponentially stable for the system x+ = Ax + Bκ∗
N (x) + w and the constraint set

(Xκ∗

N
, W) with the basin of attraction being equal to the N–step parameterized tubes controllability set XN .

Recalling Remark 6 and the fact pointed out in (6.4) we can establish a stronger stability and convergence related
properties:

Corollary 3 Suppose Assumptions 1–4 hold. Then:

(i) There exists a scalar pair (ãN , b̃N ) ∈ [0, 1) × (0,∞) such that the inequalities:

∀k ∈ N, dist(Q, xk,XN ) = 0 and dist(Q, xk, X∞) ≤ ãk
N b̃N dist(Q, x0, X∞),

∀k ∈ N, dist(R, κ∗
N (xk), U) = 0 and dist(R, κ∗

N (xk),KX∞) ≤ ãk
N b̃N ,

hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2) where the set
X∞ is the minimal robust positively invariant set for the system x+ = (A + BK)x + w given by X∞ =
⊕∞

i=0(A + BK)i
W.

(ii) The minimal robust positively invariant set X∞ is also the minimal set with respect to the set inclusion which
is robustly exponentially stable for the system x+ = Ax+Bκ∗

N (x)+w and the constraint set (Xκ∗

N
, W) with the

basin of attraction being equal to the N–step parameterized tubes controllability set XN .

Remark 7 As far as the implementation of the PTMPC is concerned, the online implementation of the PTMPC can
be performed via the standard convex optimization software. To this end, we provide in Section 7 a computationally
relevant reformulation of the PTOC problem PN (x) given in (5.12) which, for any fixed x ∈ XN , reduces to a standard
and numerically tractable linear programming problem.

7 Computational Issues & Illustrative Examples

In this section, we discuss computational issues relevant for efficient implementation of PTOC and PTMPC.
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7.1 PTOC & PTMPC: Tractable Linear Programming Formulation & Online Imple-

mentation

As already pointed out in Remark 2, the Minkowski set addition and convex hull operations are only utilized for the
analysis and their actual explicit computation is not needed for the efficient implementation of PTOC and PTMPC.
Similarly as in [40], we utilize convexity and the basic properties of the support function in order to demonstrate
that the set inclusions ∀k ∈ NN−1, Uk ⊆ X, ∀k ∈ NN−1, Xk ⊆ X and XN ⊆ Xf , where the sets Uk, k ∈ NN−1 and
Xk, k ∈ NN are given via the relationships (3.1), (3.2), (5.1), (3.11) and (3.12), can be equivalently expressed as a
tractable set of affine/linear inequalities without the explicit computation of the involved Minkowski set addition and
convex hull operations. Namely, by utilizing convexity and the basic properties of the support function, it follows
that, for any k ∈ NN−1, the set inclusion

⊕k
j=0 U(j,k) ⊆ U holds true if and only if for all l ∈ N[1:r] it holds that

S(
⊕k

j=0 U(j,k), Gl) ≤ 1. We recall that, by the additivity of the support function in the first argument [41, 42], we
have, for all l ∈ N[1:r],:

S(
k
⊕

j=0

U(j,k), Gl) =
k
∑

j=0

S(U(j,k), Gl).

Since U(0,k) = {K(A + BK)k(x − ẽ(0,0)) + ṽ(0,k)} and U(j,k) = convh({ũ(i,j,k) : i ∈ N[1:q]}) for j ∈ N[1:k] it follows

that, for all l ∈ N[1:r], S(U(0,k), Gl) = GT
l (K(A + BK)k(x − ẽ(0,0)) + ṽ(0,k)) and all j ∈ N[1:k], S(U(j,k), Gl) =

maxi∈N[1:q]
GT

l ũ(i,j,k). Hence, the set inclusion
⊕k

j=0 U(j,k) ⊆ U is equivalently expressed as:

∀l ∈ N[1:r], ∃g(l,k) := {g(l,j,k) ∈ R : j ∈ N[1:k]} such that (7.1a)

∀j ∈ N[1:k], ∀i ∈ N[1:q], GT
l ũ(i,j,k) ≤ g(l,j,k), and, (7.1b)

GT
l (K(A + BK)k(x − ẽ(0,0)) + ṽ(0,k)) +

k
∑

j=1

g(l,j,k) ≤ 1. (7.1c)

By the same token, the set inclusion Xk ⊆ X which takes the form
⊕k

j=0 X(j,k) ⊆ X is equivalently expressed as:

∀l ∈ N[1:p], ∃f(l,k) := {f(l,j,k) ∈ R : j ∈ N[1:k]} such that (7.2a)

∀j ∈ N[1:k], ∀i ∈ N[1:q], FT
l x̃(i,j,k) ≤ f(l,j,k), and, (7.2b)

FT
l ((A + BK)k(x − ẽ(0,0)) + ẽ(0,k)) +

k
∑

j=1

f(l,j,k) ≤ 1. (7.2c)

Likewise, the set inclusion XN ⊆ Xf which takes the form
⊕N

j=0 X(j,N) ⊆ Xf is equivalently expressed as:

∀l ∈ N[1:t], ∃h(l,N) := {h(l,j,N) ∈ R : j ∈ N[1:N ]} such that (7.3a)

∀j ∈ N[1:N ], ∀i ∈ N[1:q], HT
l x̃(i,j,N) ≤ h(l,j,N), and, (7.3b)

HT
l ((A + BK)N (x − ẽ(0,0)) + ẽ(0,N)) +

N
∑

j=1

h(l,j,N) ≤ 1. (7.3c)

We can now provide a computationally relevant reformulation of PTOC which reduces to a computationally
tractable linear programming problem. This is achieved by utilizing the facts stated in relationships (7.1)–(7.3)
as well as the fact that minimization of the cost function VN (·) specified via the relationships (5.5)–(5.10) can be
achieved by minimizing the sum of an adequate number of slack variables subject of appropriate cost–reformulation
constraints (these slack variables yield the values of the gauge functions involved in the definition of the cost function
VN (·)). To this end, we introduce the decision variable:

dN := (dT
(N,X),d

T
(N,U),d

T
(N,f),d

T
(N,g),d

T
(N,h),d

T
(N,α),d

T
(N,β))

T ∈ R
Ntot , where, (7.4a)

Ntot :=
1

2
[q(n + m + 2) + p + r]N2 +

1

2
[(2 + q)n + (2 − q)m + 2t − p − r + 4]N + n + 1. (7.4b)

As evident, the overall decision variable is composed from the variables d(N,X), d(N,U), d(N,f), d(N,g), d(N,h), d(N,α)

and d(N,β). The vectorized form of the variable d(N,X) is composed from the sequence e0 and the sequences x(i,k,N)

belonging to the set of extreme partial state sequences {x(i,k,N) : i ∈ N[1:q], k ∈ N[1:N ]} characterizing the partial
state tubes X(k,N) and, in turn, the overall state tube XN . Likewise, the vectorized form of the variable d(N,U) is
composed from the sequence v0 and the sequences u(i,k,N−1) belonging to the set of extreme partial control sequences
{u(i,k,N−1) : i ∈ N[1:q], k ∈ N[1:N−1]} characterizing the partial state tubes U(k,N−1) and in turn the overall state
tube UN−1. The vectorized forms of the variables d(N,f), d(N,g) and d(N,h) collect, respectively, all the slack variables
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(i.e. slack variables f(l,k), l ∈ N[1:p], k ∈ N[1:N−1], g(l,k), l ∈ N[1:r], k ∈ N[1:N−1] and h(l,N), l ∈ N[1:t]) needed to
ensure the satisfaction of the set inclusions ∀k ∈ NN−1, Xk ⊆ X, ∀k ∈ NN−1, Uk ⊆ U and XN ⊆ Xf according
to the relationships (7.1)–(7.3). Finally, the vectorized form of the variables d(N,α) and d(N,β) collect all the slack
variables utilized to obtain the equivalent cost reformulation of the cost function VN (·). A comprehensive account
of the corresponding algebraic details addressing the corresponding vectorization and providing precise definitions
of variables d(N,X), d(N,U), d(N,f), d(N,g), d(N,h), d(N,α) and d(N,β) as well as the overall decision variable dN is
provided in Appendix B − 1.

The computationally tractable reformulation of PTOC takes the form:

V 0
N (x) = min

dN

{γT dN : (x,dN ) ∈ ΓN}, (7.5a)

d0
N (x) = arg min

dN

{γT dN : (x,dN ) ∈ ΓN}, where, (7.5b)

ΓN = {(x,dN ) ∈ R
n+Ntot : Mxeqx + MdeqdN = Neq, Mxineqx + MdineqdN ≤ Nineq}, and, (7.5c)

γ = (0T ,1T )T , with 0 = (0, 0, . . . , 0)T ∈ R
Ntot−(qN2+2N+1) and 1 = (1, 1, . . . , 1)T ∈ R

qN2+2N+1 (7.5d)

The detailed from of the set ΓN is provided in Appendix B − 2. The matrices Mxeq, Mdeq, Mxineq, Mdineq and
vectors Neq and Neq satisfy Mxeq ∈ R

Neq×n, Mdeq ∈ R
Neq×Ntot , Mxineq ∈ R

Nineq×n, Mdineq ∈ R
Nineq×Ntot and

vectors Neq ∈ R
Neq and Neq ∈ R

Nineq where:

Neq =
1

2
qnN2 + (1 +

1

2
q)nN, and, (7.6a)

Nineq =
1

2
q(p + r + s1 + s2)N

2 + [p + r + t + s1 + s2 + qs3 −
1

2
(p + r + s1 + s2)]N + 2t + s3. (7.6b)

The equalities Mxeqx + MdeqdN = Neq appearing in the definition of the set ΓN are obtained from the relation-
ships (5.2), (3.3b) and (3.4b). The inequalities Mxineqx + MdineqdN ≤ Nineq appearing in the definition of the
set ΓN are obtained from: (i) the reformulation of the set inclusions ∀k ∈ NN−1, Xk ⊆ X, ∀k ∈ NN−1, Uk ⊆ U,
XN ⊆ Xf according to the relationships (7.1)–(7.3), (ii) the stabilizing constraint (5.3c) and (iii) the cost reformu-
lation constraints. The detailed definition of the set ΓN is provided in Appendix B − 2.

Remark 8 As evident, the dimension of the overall decision variable and the total number of equality and inequality
constraints are all quadratic functions of the horizon length N . This implies in turn that, the computationally relevant
reformulation of PTOC is numerically tractable and that it scales favorably with respect to the horizon length N .

Remark 9 By utilizing algebraic details provided in Appendix B − 2, it follows that for all x ∈ X we have:

∃θN ∈ ΘN (x) if and only if ∃dN ∈ R
Ntot such that (x,dN ) ∈ ΓN ,

where Θ(·) and ΓN are given, respectively, by (5.4) and (7.5c) (with the understanding that ΓN is constructed as
discussed in Appendix B − 2). Furthermore, it also holds that:

XN = ProjectionRn(ΓN ) = {x ∈ R
n : ∃dN ∈ R

Ntot such that (x,dN ) ∈ ΓN},

which, in turn, verifies the fact (i) asserted in Proposition 6 (since XN is closed polyhedral PC–set which contains
the PC–polytopic set Xf and is contained in the PC–polytopic set X). We also note that due to Assumption 4
the values of the slack variables collected in the variables d(N,α) and d(N,β) are all lower bounded by 0 and hence,
since, ΓN is, by construction, a closed polyhedral set in R

n+Ntot , it follows that the linear programming problem
specified in (7.5) is well–posed. In turn, it follows, as also asserted in Proposition 6 (ii), that the value function
V 0

N (·) is convex, piecewise affine and continuous function [34] which is, in addition, such that ∀x ∈ Xf , V 0
N (x) = 0

and ∀x ∈ XN \ Xf , V 0
N (x) > 0 (due to Assumption 3 and the relationships (4.4) and (4.5)). Finally, the standard

results [34] imply the existence of piecewise affine and continuous function d∗
N (·) such that:

∀x ∈ XN , d∗
N (x) ∈ d0

N (x),

where we note that the function d0
N (·) given by (7.5b) is not necessarily single–valued. The above mentioned piecewise

affine and continuous function d∗
N (·) verifies in turn the fact (ii) asserted in Proposition 6.

Remark 10 The explicit form of the functions V 0
N (·), d∗

N (·) and κ∗
N (·) can be, in principle, obtained by utilizing the

standard computational geometry software as offered in [43–45] The explicit form of the function κ∗
N (·) when available

permits for the implementation of PTMPC without online optimization; however this approach is limited to lower
dimensional problems and, in general, the online optimization broadens significantly the range of the applicability
of PTMPC. The online implementation of PTMPC reduces to solving the linear programming problem in (7.5) at
the state xk encountered in the process and evaluating the value of the PTMPC law κ∗

N (xk) by utilizing the value
of optimizing decision variable d∗

N (xk). We note that as long as the initial state x0 is such that the corresponding
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online optimization is feasible then it is guaranteed that the online optimization will remains feasible for all the
future time k ∈ N and at all possible states xk encountered in the control process. The previous fact is true as the
initial optimization is feasible for all state x ∈ XN and the N–step parameterized tubes controllability set XN is
robust positively invariant set for the system x+ = Ax + Bκ∗

N (x) + w and the constraint set (Xκ∗

N
, W) as asserted in

Theorem 1 (see also Proposition 7). Finally, since ∀x ∈ Xf , V 0
N (x) = 0, and, consequently, ∀x ∈ Xf , κ∗

N (x) = Kx

we note that online optimization can be terminated once the state xk enters the set Xf .

Remark 11 We also note that the variable d(N,X) in (7.5), can be eliminated by employing the relationships (3.3b)

and (3.4b) which, in turn, reduces the number of decision variables by 1
2qnN(N+1). However, the form of constraints

we have utilized seems to be both the numerically and structurally preferred option even in the case of the nominal
MPC [46].

7.2 Illustrative Examples

We provide first two examples illustrating advantages of the developed PTOC and PTMPC over the methods proposed
in [13,14] as well as in [15–18].

Illustrative Example 1 The first illustrative example is a variant of the example used in [13]. The system is one
dimensional system given by:

x+ = x + u + w,

with the state and control constraint sets:

X = [−30, 30] = {x ∈ R :
1

30
x ≤ 1, −

1

30
x ≤ 1}, and, U = [−2, 2] = {u ∈ R :

1

2
u ≤ 1, −

1

2
u ≤ 1}.

The disturbance set W is given by:

W = convh({1,−1}) so that q = 2, w̃1 = 1 and w̃2 = −1.

The matrices Q and R defining the sets Q and R as well as their gauge functions utilized for the cost function VN (·)
are given by:

Q = (1, −1)T and R = (2, −2)T .

The local linear feedback u = kx, the terminal constraint set Xf and the matrix P defining the set P and its gauge
function utilized for the cost function VN (·) are given by:

k = −
1

2
, Xf = [−4, 4] = {x ∈ R :

1

4
x ≤ 1, −

1

4
x ≤ 1}, and, P = (4, −4)T .

In this example, any initial condition x0 ∈ X is min–max controllable to a target set within N = 26 steps. In
particular, for the initial conditions x′

0 = 30 and x′′
0 = −30 the min–max controllability to a target set Xf can be

guaranteed if and only if N = 26. So, we choose the initial condition x0 = 30 and consider the horizon length

0 10 20 30 40 50

−30

−20

−10

0

10

20

30

k

x
X × [0, 54]

Xf × [0, 54]
X∞ × [0, 54]

XPTMPC = {[xl
k, xu

k ]}k∈N54

Figure 1: Parameterized Model Predictive Control State Tube.

N = 26. In this setting, the methods of [13, 14] require the utilization of the decision variable whose dimension is
226 = 67108864 and the corresponding optimization requires the utilization of a number of constraints that is linearly
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proportional to 226 = 67108864. Clearly, even with the most sophisticated optimization software, this would lead
to an almost impossible computational task (realistically speaking, this task is, in fact, an impossible mission). On
the contrary, the proposed PTMPC method requires the utilization of the decision variable dN whose dimension is
Ntot = 4162 while the total number of equality and inequality constraints for the underlying linear programming
problem satisfy Nineq = 5674 and Neq = 728. This simple scalar example demonstrates clearly computational
advantages of the proposed method over those suggested in [13, 14]. The performance of the PTMPC is additionally
illustrated in Figure 1 where we show the tube XPTMPC := {[xl

k, xu
k ]}k∈N composed from the extreme trajectories

generated from {xl
k}k∈N and {xu

k}k∈N which satisfy:

xl
k+1 = xl

k + κ∗
N (xl

k) + w∗(xl
k, κ∗

N (xl
k)), and xu

k+1 = xu
k + κ∗

N (xu
k) + w∗(xu

k , κ∗
N (xu

k)),

where xl
0 = −30, xu

0 = 30 and the function w∗ (·, ·) is the maximizing disturbance function taking the form w∗(x, u) =
1 if x+u ≥ 0, w∗(x, u) = −1 if x+u ≤ 0 and w∗(x, u) can be either 1 or −1 if x+u = 0. As evident from the Figure,
the PTMPC law induces the controlled, uncertain, dynamics with strong system theoretic properties. Clearly, the tube
XPTMPC := {[xl

k, xu
k ]}k∈N composed from the extreme trajectories converges exponentially fast to the minimal robust

positively invariant set X∞ = [−2, 2] (exhibiting also the exponential convergence to the maximal robust positively
invariant set Xf = [−4, 4]) as expected by Theorem 1 and Corollary 3.

Illustrative Example 2 Our second illustrative example demonstrates the advantages of the developed PTOC and
PTMPC over the methods utilizing the so–called afine disturbance feedbacks discussed in [15–18]. At the conceptual
level, these methods are subsumed within our method as they can be recovered from our method by invoking an
additional constraint on the control tubes, namely, by requiring that:

∀i ∈ N[1:q], ∀k ∈ N[1:N−1], ∀j ∈ N[k:N−1], ũ(i,j,k) = M(j,k)w̃i

for a set of design matrices M(j,k) ∈ R
m×n and introducing these relationships as an additional set of constraints in

the corresponding optimization for PTOC (where one optimizes over the set of M(j,k) which then induce the set of
ũ(i,j,k)). Clearly, whenever the optimization with this additional set of constraints is feasible so is the one without
enforcing these additional constraints. Hence, whenever the methods of [15–18] are feasible so is our proposal. We
prove that the opposite is not true by providing an example where the methods of [15–18] fail to be feasible for the
RMPC synthesis while our PTMPC method allows for a feasible RMPC synthesis.

The system is two dimensional system specified by:

x+ = Ax + Bu + w, with, A =
1

2

(

cos(π
3 ) − sin(π

3 )
sin(π

3 ) cos(π
3 )

)

, and, , B =

(

1
1

)

.

The state and control constraint sets are given by:

X := {x ∈ R
2 : (0.0176, 0.0655)x ≤ 1, (−0.0428, 0.0428)x ≤ 1, (−0.0747, −0.0200)x ≤ 1,

(−0.0176, −0.0655) ≤ 1, (0.0428, −0.0428)x ≤ 1, (0.0747, 0.0200)x ≤ 1}, and,

U := {u ∈ R :
1

3
u ≤ 1, −

1

3
u ≤ 1}.

The disturbance set W is given by:

W = convh({w̃i : i ∈ N[1:q]}) where q = 18, and, w̃1 = (−1.8660, −4.2321), w̃2 = (−2.7321, −3.7321),

w̃3 = (2.7321, −3.7321), w̃4 = (1.8660, −4.2321), w̃5 = (0, −4.7321), w̃6 = (4.5981, 0.5000),

w̃7 = (4.5981, −0.5000), w̃8 = (4.0981, −2.3660), w̃9 = (2.7321, 3.7321), w̃10 = (4.0981, 2.3660),

w̃11 = (1.8660, 4.2321), w̃12 = (0, 4.7321), w̃13 = (−1.8660, 4.2321), w̃14 = (−4.5981, 0.5000),

w̃15 = (−4.5981, −0.5000), w̃16 = (−4.0981, −2.3660), w̃17 = (−2.7321, 3.7321), w̃18 = (−4.0981, 2.3660).

The sets Q and R utilized for the cost function VN (·) via the associated gauge functions are given by:

Q := {x ∈ R
2 : (1, 0)x ≤ 1, −(1, 0)x ≤ 1, (0, 1)x ≤ 1, −(0, 1)x ≤ 1}, and, R := {u ∈ R : u ≤ 1, −u ≤ 1}.

The local linear feedback u = Kx, the terminal constraint set Xf and the set P utilized in the cost function VN (·)
via the associated gauge function are given by:

Xf = {x ∈ R
2 : (0.0473, 0.1765)x ≤ 1, −(0.0473, 0.1765)x ≤ 1, (0.1314, 0.0352)x ≤ 1, −(0.1314, 0.0352)x ≤ 1},

K = −(0.3943, 0.1057), and,

P := {x ∈ R
2 : (1.0635, 3.9692)x ≤ 1, −(1.0635, 3.9692)x ≤ 1, (2.9564, 0.7922)x ≤ 1, −(2.9564, 0.7922)x ≤ 1}.

Similarly as in the previous example, any initial condition x0 ∈ X is min–max controllable to a target set Xf

within N = 2 steps. In particular, for the initial conditions equal to the extreme points of the set X the min–max
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controllability to a target set Xf can be guaranteed if and only if N = 2. The state constraint set X is in this
case equal to 2–step parameterized tubes controllability set X2 for this example. We consider the initial condition
x0 = −(10.0127, 12.5832) and the horizon length N = 2. Let x̃(0,0) = x0. The only feasible control u ∈ U for
this initial condition permitting for the min–max controllability to a target set Xf is u = 3 so we are forced to set
ũ(0,0) = 3 and, in turn, we get x̃(0,1) = (5.9455, −4.4814)T which is one of the extreme points of the set X1 ⊖ W.
This fixes the state tube cross–section X1 to X1 = x̃(0,1) ⊕ W. The initial condition x̃(0,0) = x0, the state x̃(0,1) and
the state tube cross–section X1 are shown in Figure 2. The 1– and 2–step parameterized tubes controllability sets X1,
X2 as well as effective target sets at times 1 and 2, namely the sets X1⊖W and Xf ⊖W are also show in Figure 2 (a)
using the different levels of gray scale shading. In order to implement the proposed PTMPC we need to find the
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Figure 2: Geometry and PTOC State Tubes for Illustrative Example 2.

partial control tube cross sections U(0,1) = {ũ(0,1)} and U(1,1) = {ũ(i,1,1) : i ∈ N[1:q]} satisfying the constraints:

∀i ∈ N[1:18], ũ(0,1) + ũ(i,1,1) ∈ U, and,

∀i ∈ N[1:18], Ax̃(0,1) + Bũ(0,1) + Aw̃i + Bũ(i,1,1) ∈ Xf ⊖ W.

This task is possible to accomplish since, by inspection of Figure 2 (b), we see that the state tube cross–section X1

satisfies X1 ⊆ X1 and the set X1 is the 1–step parameterized tubes controllability set. We solve PTOC for this problem
and in Figure 2 (b) we show the corresponding PTOC state tubes X2 = {X0 = {x̃(0,0)}, X1 = x̃(0,1) ⊕ X(1,1), X2 =
x̃(0,2)⊕X(1,2)⊕X(2,2)} obtained from the corresponding PTOC control tubes U1 = {U0 = {ũ(0,0)}, U1 = ũ(0,1)⊕U(1,1)}
given by:

ũ(0,0) = 3, ũ(0,1) = −1.9251 and

U(1,1) = convh({0.5, 0.8943, −0.6830, −0.5774, −0.1830, −1.0749, −1.0749, −1.0749, −1.0749,

− 1.0749, −1.0749, −0.5000, 0.2887, 1.7604, 1.866, 1.683, 0.683, 1.366}) so that

U(1,1) = [−1.0749, 1.8660], and, ũ(0,1) ⊕ U(1,1) = [−3,−0.059] ⊆ U.

In Figure 2 (b), we also depict the set x̃(0,2) ⊕ X(1,2) in order to illustrate that the partial state tube cross–section
X(1,2) has been transformed in a non linear fashion by the control rule induced from the partial control tube U(1,1) in
order to meet the constraints X2 = x̃(0,2) ⊕ X(1,2) ⊕ X(2,2) ⊆ Xf .

By construction it follows that for the methods of [15–18] to be applicable it is necessary to find ũ(0,1) and a
matrix M ∈ R

1×2 satisfying the constraints:

∀i ∈ N[1:18], ũ(0,1) + Mw̃i ∈ U, and,

∀i ∈ N[1:18], Ax̃(0,1) + Bũ(0,1) + (A + BM)w̃i ∈ Xf ⊖ W.

However, these constraints can not be satisfies as we have verified numerically and, hence, the methods of [15–18]
are not applicable to this problem. From the inspection of the Figure, it is not surprising that we can not find an
affine function of states belonging to the state tube cross–section X1 generating the admissible controls actions for
the extreme points of X1 ensuring that the state tube cross–section X2 = Ax̃(0,1) + Bũ(0,1) ⊕ (A + BM)W ⊕ W

satisfies X2 ⊆ Xf (or equivalently Ax̃(0,1) + Bũ(0,1) ⊕ (A + BM)W ⊆ Xf ⊖ W) and that the corresponding control
tube cross–section U1 = ũ(0,1) ⊕ MW ⊆ U. This should come without any surprises as there are 18 extreme points
4 of which lie on the boundary of the 1–step parameterized tubes controllability set X1 and we are allowed to select
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only three variables namely ũ(0,1), m1 and m2 (where M = (m1, m2)). To sum up, our example demonstrates that
the methods of [15–18] may fail to be applicable when our proposal is applicable.

Illustrative Example 3 Our third illustrative example is two dimensional system specified by:

x+ = Ax + Bu + w, with, A =

(

1 1
0 1

)

, and, , B =

(

1
2
1

)

.

The state and control constraint sets are given by:

X := {x ∈ R
2 : (

1

50
, 0)x ≤ 1, (−

1

20
, 0)x ≤ 1, (0,

1

2
)x ≤ 1, (0, −

1

10
)x ≤ 1}, and, U := {u ∈ R : u ≤ 1, −u ≤ 1}.

The disturbance set W is given by:

W = convh({w̃i : i ∈ N[1:q]}) where q = 4, and, w̃1 = (0.1, 0.1), w̃2 = (0.1, −0.1), w̃3 = −w̃1 and w̃4 = −w̃2.

The sets Q and R utilized for the cost function VN (·) via the associated gauge functions are given by:

Q := {x ∈ R
2 : (1, 0)x ≤ 1, −(1, 0)x ≤ 1, (0, 1)x ≤ 1, −(0, 1)x ≤ 1}, and, R := {u ∈ R : u ≤ 1, −u ≤ 1}.

The local linear feedback u = Kx, the terminal constraint set Xf and the set P utilized in the cost function VN (·)
via the associated gauge function are given by:

Xf = {x ∈ R
2 : −(0.1974, 0.0329)x ≤ 1, (0.1095, −0.1277)x ≤ 1, (0, 0.5)x ≤ 1,

(0.3750, 1.0625)x ≤ 1, −(0.3750, 1.0625)x ≤ 1},

K = −(0.375, 1.0625), and,

P := {x ∈ R
2 : (35.8103, 5.9684)x ≤ 1, −(35.8103, 5.9684)x ≤ 1, (0, 90.7194)x ≤ 1,

− (0, 90.7194)x ≤ 1, (68.0396, 192.7788)x ≤ 1, −(68.0396, 192.7788)x ≤ 1}.

We set the horizon length N = 7. In Figure 3 (a), we show the state constraint set X, the 7–step parameterized tubes
controllability set X7, the terminal constraint set Xf and the minimal robust positively invariant set X∞. The 7–step

−20 −10 0 10 20 30 40 50
−12

−10

−8

−6

−4

−2

0

2

4

x1

x2

X
X7

Xf

X∞

X
∗
N (x3

0)

X
∗
N (x7

0)

X
∗
N (x9

0)

x̃1
(0,0) = x1

0

X∗
1 (x1

0)

X∗
3 (x1

0)

X∗
5 (x1

0)
X∗

7 (x1
0)

(a) PTOC State Tubes.
−20 −10 0 10 20 30 40 50

−12

−10

−8

−6

−4

−2

0

2

4

x1

x2

XX7

Xf

x̃1
(0,0) = x1

0

{x
(1,l)
2 }l∈N[1:37]

{x
(1,l)
k }

l∈N[1:37]

k∈N

{x
(1,l)
k }l∈N[1:37] , k → ∞

(b) Sample PTMPC Controlled Trajectories.

Figure 3: PTOC State Tubes and Sample PTMPC Controlled Trajectories from Extreme Point of the Set X7.

parameterized tubes controllability set X7 has 17 extreme points and we solve PTOC for a set of initial conditions
being equal to the extreme points of X7. The corresponding PTOC state tubes are also shown in Figure 3 (a). As
evident, they satisfy state constraints as they remain with the sets X7 and the final tube tube cross–sections are
all included in the terminal constraint set Xf . In Figure 3 (b), we show a number of trajectories generated by the
controlled uncertain dynamics obtained from the implementation of the PTMPC law for a set of random extreme
disturbance sequences. As expected in view of results established in Theorem 1 and Corollary 3, all these trajectories
converge exponentially fast to the minimal robust positively invariant set X∞.
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8 Concluding Remarks

In this paper we considered the robust model predictive control synthesis problem for constrained linear discrete
time systems. We introduced a parameterized tube model predictive control synthesis method which utilizes the
parameterized state and control tubes and the corresponding control policy and permits for their online optimization
via a single tractable linear programming problem. It was shown that the corresponding control policy possessed
a higher degree of nonlinearity compared to a set of existing proposals for robust model predictive control allowing
us, in turn, to demonstrate that our proposal is, in fact, also more general than a variety of recently proposed
robust model predictive control synthesis methods. Furthermore, we shown that, under rather mild assumptions,
the developed method is computationally efficient while it guarantees strong system theoretic properties for the
controlled uncertain dynamics.

APPENDIX A: Proofs

A–1: Proof of Proposition 1

The claims of Proposition 1 summarize the discussion preceding it.

A–2: Proof of Proposition 2

As in the case of Proposition 1, the claims of Proposition 2 follow from the discussion preceding it.

A–3: Proof of Proposition 3

The fact (i) and the asserted fact in (3.14a) both follow from the definition of the Minkowski set addition since

Xk :=
⊕k

j=0 X(j,k). The claimed fact in (3.14b) follows from Proposition 2.

A–4: Proof of Corollary 1

Corollary 1 is a direct consequence of Proposition 3.

A–5: Proof of Proposition 4

Pick an integer N ∈ N+ and take any arbitrary z ∈ Xf and consider the local state and control tubes ZN =
{Z0, Z1, . . . , ZN} and VN−1 = {V0, V1, . . . , VN−1} specified by (4.4). We first note that by construction relation-
ship (4.5c) is true (the relationship (4.4a) is merely obtained by the iteration of (4.5c) with Z0 = {z}). Take a
k ∈ N[0:N ] and assume that Zk ⊆ Xf . Then, by construction, Zk+1 = (A + BK)Zk ⊕ W and (A + BK)Zk ⊕ W ⊆
(A + BK)Xf ⊕ W ⊆ Xf and, in turn, Zk+1 ⊆ Xf . Hence, since Z0 = {z} ⊆ Xf and Xf ⊆ X, the fact that for all
k ∈ N[0:N ], Zk ⊆ Xf ⊆ X is true. By (4.4b) we have that for all k ∈ N[0:N−1], Vk = KZk and, hence, since for all
k ∈ NN , Zk ⊆ Xf and KXf ⊆ U, it follows that for all k ∈ NN−1, Vk = KZk ⊆ KXf ⊆ U as claimed.

A–6: Proof of Proposition 5

Pick an integer N ∈ N+ and take any arbitrary set YN = ỹ(0,N) ⊕
⊕N

j=1 Y(j,N) ⊆ Xf as specified by (4.6). Pick any

arbitrary y(1,N) ∈ Y(1,N) and note that by direct inspection of (4.7) and (4.8) it follows that the fact ŶN (y(1,N)) =

(A + BK)(ỹ(0,N) + y(1,N) ⊕
⊕N

j=2 Y(j,N)) ⊕ W is clearly true. Now, we have that ỹ(0,N) + y(1,N) ⊕
⊕N

j=2 Y(j,N) ⊆

ỹ(0,N) ⊕
⊕N

j=1 Y(j,N) = YN . Hence, since YN ⊆ Xf , we have that (A + BK)(ỹ(0,N) + y(1,N) ⊕
⊕N

j=2 Y(j,N)) ⊕ W ⊆
(A + BK)YN ⊕ W. But, (A + BK)YN ⊕ W ⊆ (A + BK)Xf ⊕ W ⊆ Xf and Xf ⊆ X. Hence, (A + BK)(ỹ(0,N) +

y(1,N) ⊕
⊕N

j=2 Y(j,N)) ⊕ W ⊆ Xf ⊆ X and, in turn, in view of (4.8) we have that ŶN (y(1,N)) ⊆ Xf ⊆ X as claimed.

Since ỹ(0,N) + y(1,N) ⊕
⊕N

j=2 Y(j,N) ⊆ YN ⊆ Xf we have that V̂N−1(y(1,N)) = K(ỹ(0,N) + y(1,N) ⊕
⊕N

j=2 Y(j,N)) ⊆

KYN ⊆ KXf . Hence, since KXf ⊆ U, it follows that V̂N−1(y(1,N)) ⊆ KXf ⊆ U as claimed.

A–7: Proof of Proposition 6

(i) As pointed out in Remark 9, the N–step parameterized tubes controllability set XN is closed polyhedral PC–set
being a projection of a closed polyhedral set ΓN given by (7.5c) (see also Appendix – B for algebraic details). By
construction, the set XN contains the PC–polytopic set Xf and is contained in the PC–polytopic set X. Hence,
it follows that XN is a PC–polytopic set in R

n such that Xf ⊆ XN ⊆ X as claimed. (ii) Since the equivalent
PTOC problem reformulation provided in (7.5a) takes the form of a parametric linear programming problem, the
value function V 0

N (·) : XN → R+ is convex, piecewise affine and continuous functions by standard results in
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parametric mathematical programming [34]. Feasibility of local state and control tubes, specified by (4.4), established
in Proposition 4 combined with the facts that the cost function is non–negative and the value of the cost function for
the local state and control tubes is 0 establishes that ∀x ∈ Xf , V 0

N (x) = 0. The fact that ∀x ∈ XN \ Xf , V 0
N (x) > 0

is also true as otherwise there is a contradiction. Namely, V 0
N (x) = 0 implies that the value of any optimal ẽ0

(0,0)(x)

must satisfy G(Q, ẽ0
(0,0)(x)) = 0 and, in turn, ẽ0

(0,0)(x) = 0. In view of (5.3c) it holds that x − ẽ0
(0,0)(x) ∈ Xf

which implies that x ∈ Xf revealing a contradiction to the assumed fact that x ∈ XN \ Xf . Hence, as claimed
∀x ∈ XN \ Xf , V 0

N (x) > 0. (iii) As above, since the equivalent PTOC problem reformulation in (7.5b) reduces to
a parametric linear programme, the piecewise affine and continuous nature of functions e∗0 (·) : XN → R

(N+1)n,
v∗

0 (·) : XN → R
Nm, x∗

(i,k,N) (·) : XN → R
(N+1−k)n, i ∈ N[1:q], k ∈ N[1:N ] and u∗

(i,k,N) (·) : XN → R
(N−k)m, i ∈

N[1:q], k ∈ N[1:N−1] follows by the standard results in parametric mathematical programming [34]. Additional
properties in (iii) follow directly from our construction and the feasibility of local state and control tubes, specified
by (4.4), established in Proposition 4.

A–8: Proof of Proposition 7

Claimed Relationship (5.19a)

First, we note that, by construction, for all x ∈ XN , it holds that y(x, x(1,1)) := Ax + B(K(x − ẽ∗(0,0)(x)) +

ṽ∗
(0,0)(x)) + x(1,1), x(1,1) ∈ X∗

(1,1)(x) = W satisfies y(x, x(1,1)) = Ax + B(K(x − ẽ∗(0,0)(x)) + ṽ∗
(0,0)(x)) + x(1,1) =

(A + BK)(x− ẽ∗(0,0)(x)) + Aẽ∗(0,0)(x) + Bṽ∗
(0,0)(x) + x(1,1) = (A + BK)(x− ẽ∗(0,0)(x)) + ẽ∗(0,1)(x) + x(1,1) ∈ X∗

(0,1)(x)⊕

X∗
(1,1)(x) = X∗

1 (x). Hence, the relation in (5.19a) holds true.

Claimed Relationship (5.19b)

Pick any arbitrary x ∈ XN and any arbitrary x(1,1) ∈ X∗
(1,1)(x) = W and consider the corresponding y(x, x(1,1)) =

Ax + B(K(x − ẽ∗(0,0)(x)) + ṽ∗
(0,0)(x)) + x(1,1) and θ̂N (y(x, x(1,1))) specified via (5.16)–(5.18). We need to show that

θ̂N (y(x, x(1,1))) ∈ ΘN (y(x, x(1,1))). By construction relationships (3.1), (3.2), (3.3b), (3.4b), (3.11), (3.12) and (5.1)
are satisfied so we need to verify the relationships (5.2) and (5.3).

Relationship (5.2)

We note that, for all l ∈ NN−2 it holds that:

Aê(0,l)(y(x, x(1,1))) + Bv̂(0,l)(y(x, x(1,1))) =

A
(

ẽ∗(0,l+1)(x) + x∗
(1,l+1)(x(1,1)) − (A + BK)lx(1,1)

)

+ B
(

ṽ∗
(0,l+1)(x) + u∗

(1,l+1)(x(1,1)) − K(A + BK)lx(1,1)

)

=

ẽ∗(0,l+2)(x) + x∗
(1,l+2)(x(1,1)) − (A + BK)l+1x(1,1) = ê(0,l+1)(y(x, x(1,1))).

Similarly,

Aê(0,N−1)(y(x, x(1,1))) + Bv̂(0,N−1)(y(x, x(1,1))) =

A
(

ẽ∗(0,N)(x) + x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)

)

+ BK
(

ẽ∗(0,N)(x) + x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)

)

=

(A + BK)(ẽ∗(0,N)(x) + x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)) = ê(0,N)(y(x, x(1,1))).

Hence, the relationships specified in (5.2) hold true.

Relationship (5.3a)

To verify the relationships in (5.3a) we note that:

∀l ∈ N[N−1], X̂(0,l)(y(x, x(1,1))) = x∗
(1,l+1)(x(1,1)) ⊕ X∗

(0,l+1)(x) = {x̃∗
(0,l+1)(x) + x∗

(1,l+1)(x(1,1))}, and,

X̂(0,N)(y(x, x(1,1))) = (A + BK)x∗
(1,N)(x(1,1)) ⊕ (A + BK)X∗

(0,N)(x) = {(A + BK)(x̃∗
(0,N)(x) + x∗

(1,N)(x(1,1)))},

where
∀l ∈ N[1:N ], x̃∗

(0,l)(x) = (A + BK)l(x − ẽ∗(0,0)(x)) + ẽ∗(0,l)(x),
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and, for all l ∈ N[1:N ], x∗
(1,l+1)(x(1,1)) is specified in (5.16b). Furthermore,

∀k ∈ N[1:N−1], ∀l ∈ N[k:N−1], X̂(k,l)(y(x, x(1,1))) = X∗
(k+1,l+1)(x), and,

∀k ∈ N[1:N−1], X̂(k,N)(y(x, x(1,1))) = (A + BK)X∗
(k+1,N)(x), and, X̂(N,N)(y(x, x(1,1))) = W.

In turn, since Xf ⊆ X, it follows that for all k ∈ NN−1 it holds that:

X̂k(y(x, x(1,1))) =

k
⊕

j=0

X̂(j,k)(y(x, x(1,1))) = x̃∗
(0,k+1)(x) + x∗

(1,k+1)(x(1,1)) ⊕
k
⊕

j=1

X∗
(j+1,k+1)(x) ⊆

x̃∗
(0,k+1)(x) ⊕ X∗

(1,k+1)(x) ⊕
k
⊕

j=1

X∗
(j+1,k+1)(x) = X∗

k+1(x) ⊆ X.

In addition, we also have:

X̂N (y(x, x(1,1))) =

N
⊕

j=0

X̂(j,N)(y(x, x(1,1))) = (A + BK)(x̃∗
(0,N)(x) + x∗

(1,N)(x(1,1))) ⊕ (A + BK)

N
⊕

j=2

X∗
(j,N)(x) ⊕ W

(A + BK)



x̃∗
(0,N)(x) + x∗

(1,N)(x(1,1)) ⊕
N
⊕

j=2

X∗
(j,N)(x)



⊕ W

which, since x̃∗
(0,N)(x) + x∗

(1,N)(x(1,1)) ⊕
⊕N

j=2 X∗
(j,N)(x) ⊆ x̃∗

(0,N)(x) ⊕ X∗
(1,N)(x) ⊕

⊕N
j=2 X∗

(j,N)(x) = X∗
N (x) ⊆ Xf

and x∗
(1,N)(x(1,1)) ∈ X∗

(1,N)(x), by Proposition 5 yields that:

X̂N (y(x, x(1,1))) ⊆ Xf .

Therefore, the relationships in (5.3a) hold true.

Relationship (5.3b)

A similar argument to the one deployed to verify the relationships in (5.3a) demonstrates that the relationships
in (5.3b) also hold true. We note that:

∀l ∈ N[N−2], Û(0,l)(y(x, x(1,1))) = u∗
(1,l+1)(x(1,1)) ⊕ U∗

(0,l+1)(x) = {ũ∗
(0,l+1)(x) + u∗

(1,l+1)(x(1,1))}, and,

Û(0,N−1)(y(x, x(1,1))) = Kx∗
(1,N)(x(1,1)) ⊕ KX∗

(0,N)(x) = {K(x̃∗
(0,N)(x) + x∗

(1,N)(x(1,1)))},

where
∀l ∈ N[1:N−1], ũ∗

(0,l)(x) = K(A + BK)l(x − ẽ∗(0,0)(x)) + ṽ∗
(0,l)(x),

and, for all l ∈ N[1:N−1], u∗
(1,l+1)(x(1,1)) is specified in (5.16a). Furthermore,

∀k ∈ N[1:N−2], ∀l ∈ N[k:N−2], Û(k,l)(y(x, x(1,1))) = U∗
(k+1,l+1)(x), and,

∀k ∈ N[1:N−2], Û(k,N−1)(y(x, x(1,1))) = KX∗
(k+1,N)(x), and, Û(N−1,N−1)(y(x, x(1,1))) = KW.

In turn, it follows that for all k ∈ NN−2 it holds that:

Ûk(y(x, x(1,1))) =

k
⊕

j=0

Û(j,k)(y(x, x(1,1))) = ũ∗
(0,k+1)(x) + u∗

(1,k+1)(x(1,1)) ⊕
k
⊕

j=1

U∗
(j+1,k+1)(x) ⊆

ũ∗
(0,k+1)(x) ⊕ U∗

(1,k+1)(x) ⊕
k
⊕

j=1

U∗
(j+1,k+1)(x) = U∗

k+1(x) ⊆ U.

In addition, since X∗
(N,N)(x) = W, we also have:

ÛN−1(y(x, x(1,1))) =
N−1
⊕

j=0

Û(j,N)(y(x, x(1,1))) = K(x̃∗
(0,N)(x) + x∗

(1,N)(x(1,1))) ⊕ K

N−1
⊕

j=2

X∗
(j,N)(x)

= K



x̃∗
(0,N)(x) + x∗

(1,N)(x(1,1)) ⊕
N
⊕

j=2

X∗
(j,N)(x)





which, since x̃∗
(0,N)(x) + x∗

(1,N)(x(1,1)) ⊕
⊕N

j=2 X∗
(j,N)(x) ⊆ x̃∗

(0,N)(x) ⊕ X∗
(1,N)(x) ⊕

⊕N
j=2 X∗

(j,N)(x) = X∗
N (x) ⊆ Xf

and x∗
(1,N)(x(1,1)) ∈ X∗

(1,N)(x), by Proposition 5 yields that:

ÛN−1(y(x, x(1,1))) ⊆ KX̂N (y(x, x(1,1))) ⊆ KXf ⊆ U.

Therefore, the relationships in (5.3b) hold true.
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Relationship (5.3c)

We note that:
y(x, x(1,1)) − ê(0,0)(y(x, x(1,1))) = (A + BK)(x − ẽ∗(0,0)) + x(1,1)

so that due to Assumption 3 (in particular, the robust positive invariance property of the set Xf ) and since (x −
ẽ∗(0,0)) ∈ Xf and x(1,1) ∈ W we have that (A + BK)(x − ẽ∗(0,0)) + x(1,1) ∈ Xf , i.e.:

y(x, x(1,1)) − ê(0,0)(y(x, x(1,1))) ∈ Xf .

Finally, since x ∈ XN and x(1,1) ∈ X∗
(1,1)(x) = W were arbitrary, it follows that for all x ∈ XN and all y(x, x(1,1)) :=

Ax + B(K(x − ẽ∗(0,0)(x)) + ṽ∗
(0,0)(x)) + x(1,1), x(1,1) ∈ X∗

(1,1)(x) = W it holds that:

θ̂N (y(x, x(1,1))) ∈ ΘN (y(x, x(1,1))), and, consequently, X∗
1 (x) ⊆ XN ,

as claimed in (5.19b).

Claimed Relationship (5.19c)

To prove the claimed inequality in (5.19c) we first recall that the gauge (Minkowski) functions are subadditive
and convex functions [41,42]. Before proceeding with the proof, let for typographical convenience:

ê0 := {ê(0,k)(y(x, x(1,1)))}k∈NN
, v̂0 := {v̂(0,k)(y(x, x(1,1)))}k∈NN−1

,

and, for all k ∈ N[1:N ]:

X̂(k,N) := {X̂(k,l)(y(x, x(1,1)))}l∈N[k:N]
,

and, for all k ∈ N[1:N−1]:

Û(k,N−1) := {Û(k,l)(y(x, x(1,1)))}l∈N[k:N−1]
.

We now proceed with the proof. By construction we have that:

V(0,N)(ê0, v̂0) =
N−1
∑

l=0

(

G(Q, ê(0,l)(y(x, x(1,1)))) + G(R, v̂(0,l)(y(x, x(1,1))))
)

+ G(P, ê(0,N)(y(x, x(1,1)))).

But, for all l ∈ NN−1, we have:

G(Q, ê(0,l)(y(x, x(1,1)))) = G(Q, ẽ∗(0,l+1)(x) + x∗
(1,l+1)(x(1,1)) − (A + BK)lx(1,1))

≤ G(Q, ẽ∗(0,l+1)(x)) + G(Q, x∗
(1,l+1)(x(1,1)) − (A + BK)lx(1,1)).

by subadditivity of the gauge (Minkowski) function G(Q, ·). By the same token, for all l ∈ NN−2, we also have:

G(R, v̂(0,l)(y(x, x(1,1)))) = G(R, ṽ∗
(0,l+1)(x) + u∗

(1,l+1)(x(1,1)) − K(A + BK)lx(1,1))

≤ G(R, ṽ∗
(0,l+1)(x)) + G(R, u∗

(1,l+1)(x(1,1)) − K(A + BK)lx(1,1)),

and

G(R, v̂(0,N−1)(y(x, x(1,1)))) = G(R,K(ẽ∗(0,N)(x) + x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)))

≤ G(R,Kẽ∗(0,N)(x)) + G(R,K(x∗
(1,N)(x(1,1)) − (A + BK)lx(1,1))).

Similarly, by subadditivity of the gauge (Minkowski) function G(P, ·) we have that:

G(P, ê(0,N)(y(x, x(1,1)))) = G(P, (A + BK)(ẽ∗(0,N)(x) + x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)))

≤ G(P, (A + BK)ẽ∗(0,N)(x)) + G(P, (A + BK)(x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1))).
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Hence, it follows that:

V(0,N)(ê0, v̂0) ≤− (G(Q, ẽ∗(0,0)(x)) + G(R, ṽ∗
(0,0)(x))) +

N−1
∑

l=0

(

G(Q, ẽ∗(0,l)(x)) + G(R, ṽ∗
(0,l)(x))

)

+ G(P, ẽ∗(0,N)(x))

− G(P, ẽ∗(0,N)(x)) +
(

G(Q, ẽ∗(0,N)(x)) + G(R,Kẽ∗(0,N)(x))
)

+ G(P, (A + BK)ẽ∗(0,N)(x))

+
N−1
∑

l=1

(

G(Q, x∗
(1,l)(x(1,1)) − (A + BK)l−1x(1,1)) + G(R, u∗

(1,l)(x(1,1)) − K(A + BK)l−1x(1,1))
)

+ G(P, (x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1))) − G(P, (x∗

(1,N)(x(1,1)) − (A + BK)N−1x(1,1)))

+
(

G(Q, x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)) + G(R,K(x∗

(1,N)(x(1,1)) − (A + BK)N−1x(1,1)))
)

+ G(P, (A + BK)(x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)))

By Assumption 3 we have that:

−G(P, ẽ∗(0,N)(x)) +
(

G(Q, ẽ∗(0,N)(x)) + G(R,Kẽ∗(0,N)(x))
)

+ G(P, (A + BK)ẽ∗(0,N)(x)) ≤ 0

and

G(P, (A + BK)(x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1))) − G(P, (x∗

(1,N)(x(1,1)) − (A + BK)N−1x(1,1)))

+
(

G(Q, x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1)) + G(R,K(x∗

(1,N)(x(1,1)) − (A + BK)N−1x(1,1)))
)

≤ 0.

Hence, it follows that:

V(0,N)(ê0, v̂0) ≤ −(G(Q, ẽ∗(0,0)(x)) + G(R, ṽ∗
(0,0)(x))) + V(0,N)(ẽ

∗
0(x), ṽ∗

0(x)) + V ′
(1,N)(x

∗
(1,N),u

∗
(1,N−1)),

where x∗
(1,N) := {x∗

(1,l)(x(1,1))}(l∈N[1:N]), u∗
(1,N−1) := {u∗

(1,l)(x(1,1))}(l∈N[1:N−1]), and

V ′
(1,N)(x

∗
(1,N),u

∗
(1,N−1)) =

N−1
∑

l=1

(

G(Q, x∗
(1,l)(x(1,1)) − (A + BK)l−1x(1,1)) + G(R, u∗

(1,l)(x(1,1)) − K(A + BK)l−1x(1,1))
)

+ G(P, (x∗
(1,N)(x(1,1)) − (A + BK)N−1x(1,1))).

By the convexity of the gauge functions G(Q, ·), G(R, ·) and G(P, ·) it follows that the function V(1,N) (·) specified
in (5.7) is convex and hence, in view of (5.7), (5.8) and (5.16), it follows that:

V ′
(1,N)(x

∗
(1,N),u

∗
(1,N−1)) ≤ V(1,N)(X

∗
(1,N)(x),U∗

(1,N−1)(x)).

Therefore we have that:

V(0,N)(ê0, v̂0) ≤ −(G(Q, ẽ∗(0,0)(x)) + G(R, ṽ∗
(0,0)(x))) + V(0,N)(ẽ

∗
0(x), ṽ∗

0(x)) + V(1,N)(X
∗
(1,N)(x),U∗

(1,N−1)(x)).

Now, for all k ∈ N[1:N−1], we have by construction and a direct application of the standard argument [31] that:

V(k,N)(X̂(k,N), Û(k,N−1)) ≤ V(k+1,N)(X
∗
(k+1,N)(x),U∗

(k+1,N−1)(x)),

and, by construction,
V(N,N)(X̂(N,N)) = 0.

Hence, it follows that:

V(0,N)(ê0, v̂0) +

N−1
∑

k=1

V(k,N)(X̂(k,N), Û(k,N−1)) + V(N,N)(X̂(N,N)) ≤ −(G(Q, ẽ∗(0,0)(x)) + G(R, ṽ∗
(0,0)(x)))

+ V(0,N)(ẽ
∗
0(x), ṽ∗

0(x)) +

N−1
∑

k=1

V(k,N)(X
∗
(k,N)(x),U∗

(k,N−1)(x)) + V(N,N)(X
∗
(N,N)(x)).

Hence, we can now conclude that for all x ∈ XN and all y(x, x(1,1)) := Ax + B(K(x − ẽ∗(0,0)(x)) + ṽ∗
(0,0)(x)) +

x(1,1), x(1,1) ∈ X∗
(1,1)(x) = W it holds that:

VN (θ̂N (y(x, x(1,1)))) − V 0
N (x) ≤ −

(

G(Q, ẽ∗(0,0)(x)) + G(R, ṽ∗
(0,0)(x))

)
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But, by optimality of V 0
N (·), V 0

N (y(x, x(1,1)))) ≤ VN (θ̂N (y(x, x(1,1)))) and hence it follows that for all x ∈ XN and all
y(x, x(1,1)) := Ax + B(K(x − ẽ∗(0,0)(x)) + ṽ∗

(0,0)(x)) + x(1,1), x(1,1) ∈ X∗
(1,1)(x) = W it holds that:

V 0
N (y(x, x(1,1))) − V 0

N (x) ≤ VN (θ̂N (y(x, x(1,1)))) − V 0
N (x) ≤ −

(

G(Q, ẽ∗(0,0)(x)) + G(R, ṽ∗
(0,0)(x))

)

,

as claimed in (5.19c). The proof is completed.

A–9: Proof of Lemma 1

(i) The facts that for all x ∈ Xf it holds that |ẽ∗(0,0)(x)|Q = 0 and |ṽ∗
(0,0)(x)|R = 0 follows from the fact (iii) established

in Proposition 6. Since, by (5.3c), x−ẽ∗(0,0)(x) ∈ Xf it follows that for all x ∈ XN\Xf it holds that |ẽ∗(0,0)(x)|Q > 0. (ii)

We note that dist(Q, x, Xf ) = dist(Q, x− e+ e, Xf ) and hence, since x− ẽ∗(0,0)(x) ∈ Xf , we have that, for all x ∈ XN ,

dist(Q, x, Xf ) = dist(Q, ẽ∗(0,0)(x)+(x− ẽ∗(0,0)(x)), Xf ) ≤ |ẽ∗(0,0)(x)|Q. Since for all x ∈ Xf it holds that |ẽ∗(0,0)(x)|Q = 0

and dist(Q, x, Xf ) = 0 as well as for all x ∈ XN \Xf it holds that |ẽ∗(0,0)(x)|Q > 0 and dist(Q, x, Xf ) > 0, the continuity

of the functions | · |Q, ẽ∗(0,0) (·) as well as dist(Q, ·, Xf ) together with the compactness of the sets Xf and XN guarantee

the existence of a scalar c1 ∈ (0, 1) such that c1|ẽ∗(0,0)(x)|Q ≤ dist(Q, x, Xf ). Similarly, we have that, for all x ∈ XN ,

0 ≤ dist(R, κ∗
N (x),KXf ) = dist(R, ṽ∗

(0,0)(x)+K(x−ẽ∗(0,0)(x)),KXf ). But x−ẽ∗(0,0) ∈ Xf and so K(x−ẽ∗(0,0)) ∈ KXf .

Hence, as claimed, for all x ∈ XN it holds that c1|ẽ
∗
(0,0)(x)|Q ≤ dist(Q, x, Xf ) ≤ |ẽ∗(0,0)(x)|Q for some c1 ∈ (0, 1) and

0 ≤ dist(R, κ∗
N (x),KXf ) ≤ |ṽ∗

(0,0)(x)|R.

A–10: Proof of Proposition 8

By construction we have that, for all x ∈ XN it holds that |ẽ∗(0,0)(x)|Q ≤ V 0
N (x) and (|ẽ∗(0,0)(x)|Q + |ṽ∗

(0,0)(x)|R) ≤

V 0
N (x). By Proposition 6 and Lemma 1, the functions V 0

N (·) and ẽ∗(0,0) (·) are continuous functions satisfying that for

all x ∈ Xf it holds that V 0
N (x) = 0, and |ẽ∗(0,0)(x)|Q = 0 as well as that for all x ∈ XN \ Xf it holds that V 0

N (x) > 0

and |ẽ∗(0,0)(x)|Q > 0. Hence, since |ẽ∗(0,0)(x)|Q ≤ V 0
N (x), the continuity of the functions V 0

N (·), | · |Q and ẽ∗(0,0) (·) and

the compactness of the sets Xf and XN guarantee the existence of a scalar c2 ∈ [1,∞) such that, for all x ∈ XN

it holds that V 0
N (x) ≤ c2|ẽ

∗
(0,0)(x)|Q and, in turn, V 0

N (x) ≤ c2(|ẽ
∗
(0,0)(x)|Q + |ṽ∗

(0,0)(x)|R). By Proposition 7 we have

that for all x ∈ XN and all x+ ∈ F(x) it holds that V 0
N (x+) − V 0

N (x) ≤ −(|ẽ∗(0,0)(x)|Q + |ṽ∗
(0,0)(x)|R). Consequently,

the claimed facts are affirmative.

A–11: Proof of Corollary 2

The claimed facts are direct consequence of the inequalities established in Proposition 8. In particular, the scalar
pair (āN , b̄N ) ∈ [0, 1) × (0,∞) can be taken as āN = c2−1

c2
and b̄N = c2 where c2 ∈ [1,∞) is the scalar appearing in

the statement of Proposition 8.

A–12: Proof of Theorem 1

(i) By construction and (6.1), it follows that for all x ∈ XN it holds that κ∗
N (x) ∈ U. Since for all x ∈ XN it holds

that F(x) = X∗
1 (x) and since by Proposition 7 it holds that X∗

1 (x) ⊆ XN it follows that for all x ∈ XN we have that
F(x) ⊆ XN . Hence, since XN ⊆ X and due to the definition of the map F (·) in (6.2), it follows that the N–step
parameterized tubes controllability set XN is a robust positively invariant set for the system x+ = Ax+Bκ∗

N (x)+w

and the constraint set (Xκ∗

N
, W) where Xκ∗

N
:= {x ∈ X : κ∗

N (x) ∈ U}. (ii) By (i) it follows that the relationships:

∀k ∈ N, dist(Q, xk,XN ) = 0 and dist(R, κ∗
N (xk), U) = 0

hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2). By Corollary 2 we
have that the inequalities:

|ẽ∗(0,0)(xk)|Q ≤ āk
N b̄N |ẽ∗(0,0)(x0)|Q

hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2) where (āN , b̄N ) ∈
[0, 1) × (0,∞) is the scalar pair appearing in the statement of Corollary 2. In view of Lemma 1 it follows that the
inequalities:

dist(Q, xk, Xf ) ≤ āk
N b̄N

1

c1
dist(Q, x0, Xf )

hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2) where c1 ∈ (0, 1) is the
scalar appearing in the statement of Lemma 1. Similarly, by Lemma 1 we have that the inequalities

dist(R, κ∗
N (xk),KXf ) ≤ |ṽ∗

(0,0)(xk)|R ≤ |ṽ∗
(0,0)(xk)|R + |ẽ∗(0,0)(xk)|Q ≤ āk

N b̄N (|ṽ∗
(0,0)(x0)|R + |ẽ∗(0,0)(x0)|Q)
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hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2). Let:

c3 := max
x

{|ṽ∗
(0,0)(x)|R + |ẽ∗(0,0)(x)|Q : x ∈ XN}

and note that c3 ∈ (0,∞) since ṽ∗
(0,0) (·) and ẽ∗(0,0) (·) are continuous and the set XN is compact. Hence, the

inequalities:
dist(R, κ∗

N (xk),KXf ) ≤ āk
N b̄Nc3

hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2). Define:

aN = āN and bN := max{b̄N

1

c1
, b̄Nc3}

and note that (aN , bN ) ∈ [0, 1) × (0,∞). Finally, we have that the inequalities:

∀k ∈ N, dist(Q, xk, Xf ) ≤ ak
NbN dist(Q, x0, Xf ) and dist(R, κ∗

N (xk),KXf ) ≤ ak
NbN

hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2). Our second claim is
verified. (iii) In view of Definition 2, our third claim follows from the facts established in (ii).

A–13: Proof of Corollary 3

(i) We first note that KX∞, KXf , X∞ and Xf are compact sets such that X∞ ⊆ Xf and KX∞ ⊆ KXf . Hence,
since the functions κ∗

N (·), dist(Q, ·, X∞), dist(R, ·,KX∞), dist(Q, ·, Xf ) and dist(R, ·,KXf ) are continuous and the
sets Xf and XN are compact there exists a scalar c4 ∈ [1,∞) such that for all x ∈ XN \ Xf it holds that:

dist(Q, x, Xf ) ≤ dist(Q, x,X∞) ≤ c4 dist(Q, x, Xf ), and,

dist(R, κ∗
N (xk),KXf ) ≤ dist(R, κ∗

N (x),KX∞) ≤ c4 dist(R, κ∗
N (x),KXf ).

Hence, in view of the inequalities established in Theorem 1 (ii), it follows that the inequalities:

∀k ∈ N, dist(Q, xk, X∞) ≤ ak
NbNc4 dist(Q, x0, X∞) and dist(R, κ∗

N (xk),KX∞) ≤ ak
NbNc4

hold true for any x0 ∈ XN \ Xf and any corresponding state sequence {xk}k∈N generated by (6.2) where the scalar
pair (aN , bN ) ∈ [0, 1) × (0,∞) is the scalar pair appearing in the statement of Theorem 1. We recall that for all
x ∈ Xf the PTMPC control law κ∗

N (·) and the corresponding controlled uncertain dynamics take the form given
by (6.4), i.e. for all x ∈ Xf it holds that κ∗

N (x) = Kx and F(x) = (A + BK)x ⊕ W. With this in mind, the
well–known results [35,38,39] imply that the inequalities:

∀k ∈ N, dist(Q, xk, X∞) ≤ âk
N b̂N dist(Q, x0, X∞) and dist(R,Kxk,KX∞) ≤ âk

N b̂N

hold true for any x0 ∈ Xf and any corresponding state sequence {xk}k∈N generated by (6.2) for some scalar pair

(âN , b̂N ) ∈ [0, 1) × (0,∞). Let:

ãN = max{aN , âN} and b̃N = max{bNc4, b̂N}

and note that (ãN , b̃N ) ∈ [0, 1) × (0,∞). Finally, it follows that:

∀k ∈ N, dist(Q, xk, X∞) ≤ ãk
N b̃N dist(Q, x0, X∞) and dist(R, κ∗

N (xk),KX∞) ≤ ãk
N b̃N

hold true for any x0 ∈ XN and any corresponding state sequence {xk}k∈N generated by (6.2). (ii) In view of
Definition 2, our second claim follows from the facts established in (i).

APPENDIX B: Appropriate Vectorization & Detailed Form of the Set

ΓN

B–1: Appropriate Vectorization

For any N ∈ N+, let e0 := (ẽT
(0,0), ẽ

T
(0,1), . . . , ẽ

T
(0,N))

T ∈ R
(N+1)n, and, for all k ∈ N[1:N ] and all i ∈ N[1:q], let

x(i,k) := (x̃T
(i,k,k), x̃

T
(i,k,k+1), . . . , x̃

T
(i,k,N))

T ∈ R
(N+1−k)n and xk := (xT

(1,k),x
T
(2,k), . . . ,x

T
(q,k))

T ∈ R
q(N+1−k)n. With

this in mind, the parameterized state tube XN is vectorized via the variable d(N,X) specified by:

d(N,X) := (eT
0 ,xT

1 ,xT
2 , . . . ,xT

N )T ∈ R
N1 , N1 := (1 +

qN

2
)(N + 1)n.
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For any N ∈ N+, let v0 := (ṽT
(0,0), ṽ

T
(0,1), . . . , ṽ

T
(0,N−1))

T ∈ R
Nm, and, for all k ∈ N[1:N−1] and all i ∈ N[1:q], let

u(i,k) := (ũT
(i,k,k), ũ

T
(i,k,k+1), . . . , ũ

T
(i,k,N−1))

T ∈ R
(N−k)m and uk := (uT

(1,k),u
T
(2,k), . . . ,u

T
(q,k))

T ∈ R
q(N−k)m. As above,

the parameterized control tube UN−1 is vectorized via the variable d(N,U) specified by:

d(N,U) := (vT
0 ,uT

1 ,uT
2 , . . . ,uT

N−1)
T ∈ R

N2 , N2 := (1 +
q(N − 1)

2
)Nm.

For any N ∈ N+ and for all k ∈ N[1:N−1] and all l ∈ N[1:p] let f(l,k) := (f(l,1,k), f(l,2,k), . . . , f(l,k,k))
T ∈ R

k and

fk := (fT
(1,k), f

T
(2,k), . . . , f

T
(p,k))

T ∈ R
pk. The variable d(N,f) given by:

d(N,f) := (fT
1 , fT

2 , . . . , fT
N−1)

T ∈ R
N3 , N3 :=

N(N − 1)

2
p,

represents the slack variables associated with the reformulation of the set inclusion constraints ∀k ∈ NN−1, Xk ⊆ X as
outlined in (7.2). For any N ∈ N+ and for all k ∈ N[1:N−1] and all l ∈ N[1:r] let g(l,k) := (g(l,1,k), g(l,2,k), . . . , g(l,k,k))

T ∈

R
k and gk := (gT

(1,k), g
T
(2,k), . . . , g

T
(r,k))

T ∈ R
rk. As above, the variable d(N,g) given by:

d(N,g) := (gT
1 , gT

2 , . . . , gT
N−1)

T ∈ R
N4 , N4 :=

N(N − 1)

2
r,

represents the slack variables associated with the reformulation of the set inclusion constraints ∀k ∈ NN−1, Uk ⊆ U

as outlined in (7.1). For any N ∈ N+ and all l ∈ N[1:t] let h(l,N) := (h(l,1,N), h(l,2,N), . . . , h(l,N,N))
T ∈ R

N and
hN := (hT

(1,N), h
T
(2,N), . . . , h

T
(t,N))

T ∈ R
tN . As above, the variable d(N,h) given by:

d(N,h) := hN ∈ R
N5 , N5 := Nt,

represents the slack variables associated with the reformulation of the set inclusion constraints XN ⊆ Xf as outlined
in (7.3). For any N ∈ N+, let α0 := (α̃(0,0), α̃(0,1), . . . , α̃(0,N))

T ∈ R
(N+1), and, for all k ∈ N[1:N ] and all i ∈ N[1:q],

let α(i,k) := (α̃(i,k,k), α̃(i,k,k+1), . . . , α̃(i,k,N))
T ∈ R

(N+1−k) and αk := (αT
(1,k), α

T
(2,k), . . . , α

T
(q,k))

T ∈ R
q(N+1−k). With

this in mind, the variable d(N,α) specified by:

d(N,α) := (αT
0 , αT

1 , αT
2 , . . . , αT

N )T ∈ R
N6 , N6 := (1 +

qN

2
)(N + 1),

represents the state tube cost function related slack variables. For any N ∈ N+, let β0 := (β̃(0,0), β̃(0,1), . . . , β̃(0,N−1))
T ∈

R
N , and, for all k ∈ N[1:N−1] and all i ∈ N[1:q], let β(i,k) := (β̃(i,k,k), β̃(i,k,k+1), . . . , β̃(i,k,N−1))

T ∈ R
(N−k) and

βk := (βT
(1,k), β

T
(2,k), . . . , β

T
(q,k))

T ∈ R
q(N−k). As above, the variable d(N,β) specified by:

d(N,β) := (βT
0 , βT

1 , βT
2 , . . . , βT

N−1)
T ∈ R

N7 , N7 := (1 +
q(N − 1)

2
)N,

represents the control tube cost function related slack variables. Finally, for any N ∈ N+, we consider the decision
variable dN specified by:

dN := (dT
(N,X),d

T
(N,U),d

T
(N,f),d

T
(N,g),d

T
(N,h),d

T
(N,α),d

T
(N,β))

T ∈ R
Ntot , where,

Ntot :=
1

2
[q(n + m + 2) + p + r]N2 +

1

2
[(2 + q)n + (2 − q)m + 2t − p − r + 4]N + n + 1.

The introduced decision variable dN is utilized to provide an equivalent and computationally tractable reformulation
of the graph of the set of admissible pairs of the parameterized state and control tubes as outlined next.

B–2: Detailed Form of the Set ΓN

The dynamics of the parameterized state and control tubes leads to a set of equality constraints according to the
relationships (5.2), (3.3b) and (3.4b) as specified by the set Γ(N,EC):

Γ(N,EC) := {(x,dN ) ∈ R
n+Ntot : ∀k ∈ NN−1, ẽ(0,k+1) = Aẽ(0,k) + Bṽ(0,k),

∀i ∈ N[1:q], ∀k ∈ N[1:N ], x̃(i,k,k) = w̃i,

∀i ∈ N[1:q], ∀k ∈ N[1:N−1], ∀l ∈ N[k:N−1], x̃(i,k,l+1) = Ax̃(i,k,l) + Bũ(i,k,l)}.

Evidently, the total number of equality constraints Neq is:

Neq :=
1

2
qnN2 + (1 +

1

2
q)nN.
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The set inclusions ∀k ∈ NN−1, XK ⊆ X specified in (5.3a) lead to the constraint set Γ(N,SC) given by:

Γ(N,SC) := {(x,dN ) ∈ R
n+Ntot : ∀l ∈ N[1:p], FT

l x ≤ 1,

∀l ∈ N[1:p], ∀i ∈ N[1:q], ∀k ∈ N[1:N−1], ∀j ∈ N[1:k], FT
l x̃(i,j,k) ≤ f(l,j,k),

∀l ∈ N[1:p], ∀k ∈ N[1:N−1], FT
l ((A + BK)k(x − ẽ(0,0)) + ẽ(0,k)) +

k
∑

j=1

f(l,j,k) ≤ 1}.

The total number of state constraints related inequalities Nsineq is:

Nsineq :=
1

2
qpN2 + (1 −

1

2
q)pN.

The set inclusion XN ⊆ Xf specified in (5.3a) leads to the constraint set Γ(N,TC) given by:

Γ(N,TC) := {(x,dN ) ∈ R
n+Ntot : ∀l ∈ N[1:t], ∀i ∈ N[1:q], ∀j ∈ N[1:N ], HT

l x̃(i,j,N) ≤ h(l,j,N),

∀l ∈ N[1:t], HT
l ((A + BK)N (x − ẽ(0,0)) + ẽ(0,N)) +

N
∑

j=1

h(l,j,N) ≤ 1}.

The total number of terminal state constraints related inequalities Ntineq is:

Ntineq := tqN + t.

The set inclusions ∀k ∈ NN−1, UK ⊆ U specified in (5.3b) lead to the constraint set Γ(N,CC) given by:

Γ(N,CC) := {(x,dN ) ∈ R
n+Ntot : ∀l ∈ N[1:r], GT

l (K(x − ẽ(0,0)) + ṽ(0,0)) ≤ 1,

∀l ∈ N[1:r], ∀i ∈ N[1:q], ∀k ∈ N[1:N−1], ∀j ∈ N[1:k], GT
l ũ(i,j,k) ≤ g(l,j,k),

∀l ∈ N[1:r], ∀k ∈ N[1:N−1], GT
l (K(A + BK)k(x − ẽ(0,0)) + ṽ(0,k)) +

k
∑

j=1

g(l,j,k) ≤ 1}.

The total number of control constraints related inequalities Ncineq is:

Ncineq :=
1

2
qrN2 + (1 −

1

2
q)rN.

The stabilizing constraint specified in (5.3c) leads to the constraint set Γ(N,IC) given by:

Γ(N,IC) := {(x,dN ) ∈ R
n+Ntot : ∀l ∈ N[1:t], HT

l (x − ẽ(0,0)) ≤ 1}.

The total number of stabilizing constraints related inequalities Niineq is:

Niineq := t.

Finally, the minimization of the cost function VN (·) specified via the relationships (5.5)–(5.10) is, as is customary,
achieved by introducing appropriate constraints on slack variables d(N,α) and d(N,β) and minimizing their sum. The
corresponding constraints lead to the constraint set Γ(N,V C) given by:

Γ(N,V C) := {(x,dN ) ∈ R
n+Ntot : ∀k ∈ NN−1, ∀l ∈ N[1:s1], QT

l ẽ(0,k) ≤ α̃(0,k),

∀k ∈ NN−1, ∀l ∈ N[1:s2], RT
l ṽ(0,k) ≤ β̃(0,k),

∀l ∈ N[1:s3], PT
l ẽ(0,N) ≤ α̃(0,N),

∀k ∈ N[1:N−1], ∀j ∈ N[k:N−1], ∀i ∈ N[1:q], ∀l ∈ N[1:s1], QT
l (x̃(i,k,j) − (A + BK)j−kw̃i) ≤ α̃(i,k,j),

∀k ∈ N[1:N−1], ∀j ∈ N[k:N−1], ∀i ∈ N[1:q], ∀l ∈ N[1:s2], RT
l (ũ(i,k,l) − K(A + BK)j−kw̃i) ≤ β̃(i,k,j), and,

∀k ∈ N[1:N ], ∀l ∈ N[1:s3], ∀i ∈ N[1:q], PT
l (x̃(i,k,N) − (A + BK)N−kw̃i) ≤ α̃(i,k,N)}.

The total number of cost function reformulation related constraints results in Nvineq inequalities, where Nvineq is
given by:

Nvineq :=
1

2
q(s1 + s2)N

2 + [s1 + s2 + qs3 −
1

2
q(s1 + s2)]N + s3.

Thus the total number of inequalities describing the sets Γ(N,SC), Γ(N,TC), Γ(N,CC), Γ(N,IC) and Γ(N,V C) is upper
bounded by Nineq = Nsineq + Ntineq + Ncineq + Niineq + Nvineq (as some of inequalities in the description of these
sets might be redundant) and it satisfies:

Nineq =
1

2
q(p + r + s1 + s2)N

2 + [p + r + t + s1 + s2 + qs3 −
1

2
(p + r + s1 + s2)]N + 2t + s3.
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Finally, the set ΓN is given by:

ΓN := Γ(N,EC)

⋂

Γ(N,SC)

⋂

Γ(N,TC)

⋂

Γ(N,CC)

⋂

Γ(N,IC)

⋂

Γ(N,V C),

and it is, evidently from its definition, a closed polyhedral set taking the form:

ΓN = {(x,dN ) ∈ R
n+Ntot : Mxeqx + MdeqdN = Neq, Mxineqx + MdineqdN ≤ Nineq},

for suitable matrices Mxeq ∈ R
Neq×n, Mdeq ∈ R

Neq×Ntot , Mxineq ∈ R
Nineq×n, Mdineq ∈ R

Nineq×Ntot and vectors
Neq ∈ R

Neq and Neq ∈ R
Nineq (all these matrices are easily constructed by utilizing the definition of the sets Γ(N,EC),

Γ(N,SC), Γ(N,TC), Γ(N,CC), Γ(N,IC) and Γ(N,V C)).
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[9] S. V. Raković and D. Q. Mayne, “Robust model predictive control for obstacle avoidance: Discrete time case,”
Lecture Notes in Control and Information Sciences – Assessment and Future Directions of Nonlinear Model
Predictive Control, vol. 358, pp. 617–627, 2007.

[10] D. Q. Mayne and E. C. Kerrigan, “Tube–Based Robust Nonlinear Model Predictive Control,” in Proceedings of
the 7th IFAC Symposium – NOLCOS2007, Pretoria, South Africa., August 2007.
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