
Parameterized Verification of Transactional Memories ∗

Michael Emmi Rupak Majumdar Roman Manevich
University of California, Los Angeles
{mje,rupak,rumster}@cs.ucla.edu

Abstract
We describe an automatic verification method to check whether
transactional memories ensure strict serializability—a key property
assumed of the transactional interface. Our main contribution is
a technique for effectively verifying parameterized systems. The
technique merges ideas from parameterized hardware and proto-
col verification—verification by invisible invariants and symmetry
reduction—with ideas from software verification—template-based
invariant generation and satisfiability checking for quantified for-
mulæ (modulo theories). The combination enables us to precisely
model and analyze unbounded systems while taming state explosion.

Our technique enables automated proofs that two-phase locking
(TPL), dynamic software transactional memory (DSTM), and trans-
actional locking II (TL2) systems ensure strict serializability. The
verification is challenging since the systems are unbounded in sev-
eral dimensions: the number and length of concurrently executing
transactions, and the size of the shared memory they access, have
no finite limit. In contrast, state-of-the-art software model checking
tools such as BLAST and TVLA are unable to validate either system,
due to inherent expressiveness limitations or state explosion.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent Programming; D.2.4 [Software engineering]:
Software/Program Verification

General Terms Reliability, Verification

Keywords Transactional memory, Parameterized verification

1. Introduction
Transactional Memories Transactional memory (TM) [19, 23] is
a model of concurrent programming which allows programmers to
write code with coarse-grained atomic blocks whose interactions,
and possible conflicts, are managed at run time by a transaction man-
ager. The transaction manager provides the illusion that application-
level transactions (atomic sequences of data reads/writes, followed
by a commit) execute sequentially, at the expense of tracking, and
potentially aborting or re-executing, conflicting transactions.

By freeing the programmer from low-level book-keeping for
concurrency, TM systems hold the promise of higher programmer

∗ This research was sponsored in part by the NSF grants CCF-0546170 and
CCF-0702743, and DARPA grant HR0011-09-1-0037.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI ’10 June 5–10 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019-3/10/06. . . $10.00

productivity without sacrificing highly concurrent operations. Since
TM systems form the core algorithms on which the entire software
stack depends, it is crucial that they are implemented correctly.
This is not trivial, as transactional memories employ sophisticated
mechanisms to ensure efficiency, and in fact, several bugs have been
uncovered in existing TM implementations [12].

Ensuring Strict Serializability The above considerations indicate
that the formal verification of TM systems should be a rich and
important target for software verification research. Indeed, there
have been several attempts to verify TM algorithms [6, 15]. What
is missing, however, from the initial research is the automatic ver-
ification of transactional memories against a correctness property
such as strict serializability [27]. In principle, by encoding the TM
algorithm and the strict serializability specification as transition
systems, a state-exploration technique such as model checking can
prove the property automatically. Unfortunately, TM algorithms
are unbounded in several dimensions: in the number of interacting
threads and shared memory locations, and in the number and length
of transactions. This precludes simple applications of model check-
ers, and two approaches have been taken in previous work. First,
Cohen et al. [6, 7] and Taşiran [33] manually specify the refinement
relation between implementation and specification in order to use
an automated theorem prover. This annotation requires a thorough
understanding of both the implementation and specification, and
like most manual verification effort, carries a high cost. Second
Guerraoui et al. [15, 16] rely on a meta-theorem on the structure of
the TM algorithm to prove a “small model” result that says that the
TM algorithm is correct if and only if it is correct for two threads
and two locations. The small instance can be discharged using finite-
state model checking. While this goes a long way, the missing piece
is the (essentially manual) proof of the meta-theorem for each new
TM implementation.

Parameterized Verification In this paper, we describe a novel tech-
nique for the fully automatic, parameterized verification of TM im-
plementations. Our starting point is the formalization of TM systems
[15] and the deterministic specification of strict serializability [16].
Given a TM implementation parameterized by the number of threads
n and the number of shared locations k, our goal is to automatically
construct a family of simulation relations that demonstrates, for
all n > 0 and k > 0, that the TM implementation with n threads
and k locations refines the strict serializability specification. Using
standard techniques, this reduces to a uniform invariant verification
problem on the composition of the TM implementation and the strict
serializability specification.

Parameterized verification of program invariants is undecidable
in general [1], and our models do not fall into a known syntactic class
with a finite-model property, so we adopt a sound but potentially
incomplete technique. The standard approach [25] of showing that
a property ψ is a uniform invariant of a family M of parameterized
systems (i.e., ψ is an invariant for everyM(n, k) in the family) finds
a uniform inductive invariant ϕ of M that implies ψ, thus breaking

134

verification into two sub-problems: (A) to come up with potential
invariants ϕ, and (B) to check that ϕ is a uniform inductive invariant
of M and implies ψ. These problems are hard, since parameterized
systems typically involve quantified transitions and invariants.

We propose solutions to problems (A) and (B) that exploit the
structure of transactional memory implementations in the following
way. In transactional memory systems, conflicts (e.g., distinct
threads reading from or writing to the same location) are a central
notion. We notice that (i) the transition relation of these systems
is symmetric (i.e., “thread identifiers” are not made explicit), and
(ii) in the transition relations of these systems, an executing thread,
e.g., t, interacts only with either arbitrary threads u, or threads that
are conflict-adjacent (i.e., threads u that conflict with t, but not
threads u′ that conflict with u but not t). The symmetry suggests
that we can reason about arbitrary threads (and memory locations),
while conflict adjacency suggests we can restrict reasoning to small
neighborhoods surrounding particular threads. We propose the
following techniques that utilize these observations.

A. Candidate Invariant Generation Inspired by the method of
verification by invisible invariants [2, 28], we generate candidate
invariants from the set of reachable states of bounded instantiations
M(n0, k0) of the parameterized system M for small fixed values
of n0 and k0. On its own this is not enough, since the resulting
candidate invariants generated directly from the reachable states are
too large to be effectively discharged in the following validation
step, and as suggested by Arons et al. [2], are often too specific to be
uniform invariants—the arbitrary Boolean structure of the formula
prevents separating out “parts” of the candidate that are uniform
invariants from parts that are specific to the particular instance.

We fix these problems by combining the technique with a
novel application of template-based invariant generation [8, 32].
In particular, we fix a template language of formulæ, and look
for invariants of M(n0, k0) that are expressible as a conjunction of
templates instantiated with system predicates. The use of conjunctive
templates has two advantages. First, even if a conjunction of
candidate invariants is not a uniform invariant, we can generate
weaker candidates by discarding conjuncts which are not uniform
invariants. (Indeed this is necessary, since in our experiments,
often fewer than half of the small candidate invariants could be
validated.) Second, we can bias the search toward smaller invariants.
Intuitively, the small neighborhood observation of transactional
memory systems suggests that interesting system behaviors are
exercised with few threads and memory locations, and that small
template formulæ (e.g., involving few quantified variables) obtained
by generalizing the reachable states of small instances should
describe the interesting behaviors. Symmetry suggests that the
resulting invariants apply to any arbitrary threads and locations.

B. Invariant Validation Checking that candidate invariants are
uniform reduces to checking the validity of quantified first order
formulæ. While this validity checking problem is undecidable in
general, relying on well-engineered automatic (sound, but incom-
plete) theorem provers [9, 13, 34] has worked for our experiments.

We have implemented the steps above in a verification tool
built on top of TVLA’s abstract reachability engine [24] and the
SPASS theorem prover [34], and we have used our implementation
to automatically verify the correctness of several TM systems:
two-phase locking, DSTM [20], and TL2 [10]. The end-to-end
verification for TL2, the most complicated algorithm, took about 100
minutes, finding a quantified invariant with 416 conjuncts. The size
of the invariant shows the utility of having an automatic verification
algorithm. In contrast, our attempts to verify the same algorithms
with state-of-the-art software model checkers such as BLAST and
TVLA, as well as our implementation of the algorithm by Arons
et al. [2], failed due to expressiveness limitations (e.g., BLAST

cannot infer or reason with quantified invariants) or due to scalability
reasons (e.g., with manually provided instrumentation predicates,
TVLA timed out on the examples).

The key contributions of this paper are summarized as:

1. We develop an algorithm capable of automatically verifying that
common TM systems ensure strict serializability, and

2. We introduce an effective invariant generation technique by
combining verification by invisible invariants with template-
based invariant generation, effectively extending the applicability
of existing parameterized verification techniques.

Although we have applied our technique to transactional memory
systems, our algorithmic contributions are general, and are likely
to be useful in many other instances of parameterized software
verification.

2. Transactional Memory Verification
Transactions Let Thd be a set of threads and Loc a set of
shared memory locations. For each thread t ∈ Thd , let At =
{read(t, v),write(t, v) : v ∈ Loc} ∪ {commit(t), abort(t)} be
the set of system actions performed by t, and A =

S
{At : t ∈

Thd}. A system trace is a finite sequence w ∈ A∗.
Let w ∈ A∗ be a system trace. The projection w|t = a1a2 . . . ∈

A∗t of w on a thread t ∈ Thd is the subsequence of w consisting
only of actions performed by t. An action ai is finishing in w|t if
it is a commit or abort , and is starting in w|t if i = 1, or ai−1 is
finishing in w|t.

A consecutive subsequence u = b1b2 . . . bm of w|t is a trans-
action of t if (i) b1 is starting in w|t, (ii) if bi is finishing in w|t
then i = m, and (iii) if bm is not finishing in w|t then bm is the
last action of w|t. The transaction u is committing when bm is a
commit , aborting when bm is an abort , and unfinished otherwise.
For w ∈ A∗, we define the word com(w) ∈ A∗ to be the subse-
quence of w consisting of every action of committing transactions
of w. If bi = read(t, v) (resp., bi = write(t, v)) for some i we say
u reads (resp., writes) to location v, and call bi a read (resp., write)
to v. If bi is a read to v and for some j < i, bj is a write to v, we
call bi a local read; bi is otherwise a global read. By this definition
of transaction, we restrict our attention to the case where all reads
and writes to locations v ∈ Loc occur within some transaction.

Strict Serializability We consider a correctness criterion for trans-
actional systems called strict serializability [15, 16, 27] (SS). Intu-
itively, SS insists that each system trace may be reordered (while
preserving a conflict order, defined below) into an observationally
equivalent sequence such that transactions of distinct threads do not
overlap and the order of non-overlapping transactions is preserved.
This notion is a useful abstraction for programmers of concurrent
systems since each transaction can then be thought to execute in
isolation. We formalize SS following Guerraoui et al. [15].

Let w ∈ A∗ and let u1 and u2 be two transactions in w, possibly
of different threads. We say u1 precedes u2 in w, written u1<wu2,
when the last action of u1 occurs before the first action of u2 in w.
A trace in which transactions are totally ordered by <w is called
sequential.

Actions a1 of a transaction u1 and a2 of a transaction u2 with
u2 6= u1 are said to conflict in a trace w when there exists a location
v ∈ Loc such that either (i) a1 is a global read of v, u2 writes to v,
and a2 is a commit action, or (ii) a1 and a2 are commit actions,
and both u1 and u2 write to v. This notion of conflict assumes the
deferred update semantics of transactions [23], where values written
by a transaction u are not observed by other transactions until u
commits.

Two traces w1 = a1a2 . . . and w2 are strictly equivalent when

135

(i) w1|t = w2|t for every thread t ∈ Thd ,

(ii) ai occurs before aj in w2 whenever i < j and ai and aj

conflict in w1, and

(iii) if u1<w1u2 and u1 is not unfinished then u2 6<w2
u1.

A trace w is said to be strictly serializable when there exists a
sequential trace w′ that is strictly equivalent to com(w). The set of
strictly serializable traces is written LSS .

Transactional Memory A multi-threaded program Πn,k with n
threads and k locations is an n-tuple 〈π1, . . . , πn〉 of programs,
where for i = 1, . . . , n the program πi : B∗ → Ati is a map
from infinite binary trees to actions performed by thread ti. The
representation of programs as infinite binary trees, where intuitively
the left branch denotes “successful” execution and the right branch
denotes “aborted” execution of an operation, abstracts from specific
control flow structures. Let Π =

S
{Πn,k : n, k ∈ N>0} be the set

of all multi-threaded programs.
A transactional memory (TM) M is a function from multi-

threaded programs in π ∈ Π to sets M(π) ⊆ A∗ of traces. A TM
M is said to ensure strict serializability if for each multi-threaded
program π ∈ Π, and each tracew ∈M(π),w is strictly serializable,
i.e., M(π) ⊆ LSS . The verification problem we study here is:

Problem 1 (TM Verification). Does a given transactional memory
M ensure strict serializability?

Typical software transactional memory systems ensure strict se-
rializability [15]. For example, a two-phase locking (2PL) protocol
ensures that its traces are serializable by prohibiting overlapping
transactions from accessing write-open (resp., read- or write-open)
memory locations for reading (resp., writing). More complex sys-
tems (i.e., those allowing more concurrent behavior) such as Dy-
namic Software Transactional Memory [20] (DSTM), and Trans-
actional Locking II [10] (TL2), use more intricate mechanisms to
ensure strict serializability for which it is not obvious whether strict
serializability is ensured.

3. Parameterized Systems
The TM verification problem is an instance of parameterized
verification, as the property must be proved for programs with
arbitrarily many threads and arbitrarily many locations. We now
describe our verification approach on a logical representation for
parameterized systems.

Systems We fix a set T = {Thd ,Loc} of sorts of threads and
locations, and a sorted set X = {t, t1, t2, . . .} ∪ {v, v1, v2, . . .}
of logical variables, where by convention t, t1, . . . have sort Thd
and v, v1, . . . have sort Loc. When not clear from the context, we
explicitly write, e.g., t : Thd or v : Loc. We assume the only logical
variables occurring in formulæ come from X .

For a set of ranked and sorted predicates P , a P -formula
(resp., P -sentence) is a first-order logical formula (resp., sentence)
over a language consisting of the equality symbol “=” and the
predicates in P . We additionally define the set P ′ = {p′ : p ∈ P}
of ranked and sorted predicates p renamed to p′. For a P -formula
ϕ we write ϕ′ for the P ′-formula ϕ′ = ϕ[P ′/P], where each
predicate p of ϕ is renamed to p′. We omit the ranks and sorts
of predicates for readability. We write ϕ ≈ ψ when ϕ and ψ are
syntactically equal formulæ.

For n, k ∈ N>0, the parameterized system M(n, k) of size
〈n, k〉 is a tuple 〈U,P,A,Θ, g, ρ〉 consisting of:

• a sorted universe U of n threads and k memory locations,
• a finite set P of ranked and sorted predicates with sorts in T,

• a finite setA of actions a(~x) where ~x is a vector of sorted logical
variables in X ,

• a P -sentence Θ specifying the initial condition,
• for each action a(~x) ∈ A, a P -formula ga(~x) (called the guard

of a), and
• for each action a(~x) ∈ A, a P ∪ P ′-formula ρa(~x) of the form
∧p′∈P ′∀~y.p′(~y) ≡ ϕ(~x~y), where ϕ is a P -formula called the
transition of a.

We call M(n, k) an 〈n, k〉 instance of M , and we use M to denote
the family of instances {M(n, k) : n, k ∈ N>0}.

A state s of M(n, k) is an interpretation of the predicates P
over the universe U ; we use Σ to denote the set of states. A binding
b to logical variables X is a map from X to U , and b(x) ∈ U
denotes the binding of x. We lift b to vectors of variables, writing
b(~x) = ~u when |~x| = |~u| and b(xi) = ui for each 0 < i ≤ |~x|. We
denote the empty binding with ∅. For a P -formula ϕ(~x), a state s,
and a binding b to ~x, we define the satisfaction relation s, b |= ϕ
in the usual way [21]. When ϕ is a sentence (i.e., contains no free
variables), we write s |= ϕ instead of s, ∅ |= ϕ. We write ϕ |= ψ
when for all s and b such that s, b |= ϕ, we have s, b |= ψ. We
write 〈s, s′〉, b |= ϕ when ϕ is over the language of primed and
unprimed predicates and each p ∈ P is interpreted in s, and each
p ∈ P ′ = {p′ : p ∈ P} is interpreted in s′.

For an action a(~x) and a binding b of ~x such that ~u = b(~x),
we say a(~u) is enabled in a state s when s, b |= ga, and when
〈s, s′〉, b |= ga ∧ ρa we call s′ an a(~u)-successor of s. We say
M(n, k) is deterministic when for each state s, binding b, and
action a, there is at most one a(~u) successor of s, and M is
deterministic if M(n, k) is deterministic for each n, k. Let AU =
{a(b(~x)) : a(~x) ∈ A, b is a binding of ~x to U}. For w ∈ A∗U , a
w-computation σ of M(n, k) is a Σ-sequence s0s1 . . . such that

1. s0 is initial, i.e., s0 |= Θ, and

2. for each ` = 0, 1, . . ., the state s`+1 is an a(~u)-successor of s`,
and w` = a(~u).

The language L(M(n, k)) of M(n, k) is the set of words w for
which there exists a w-computation:

L(M(n, k)) = {w : ∃σ.σ is a w computation of M(n, k)}

and we write L(M) =
S
{L(M(n, k)) : n, k ∈ N>0}.

A state s is reachable in M(n, k) when s occurs in some
computation. A sentence ϕ is an invariant of M(n, k) if s |= ϕ for
every reachable state s, and ϕ is inductive when Θ |= ϕ and

ϕ ∧
_

a(~u)∈AU

∃~u.ga(~u) ∧ ρa(~u) |= ϕ′.

A sentence ϕ is a uniform invariant of M , written M |= ϕ, if ϕ is
an invariant of M(n, k) for all n, k ∈ N>0; in this case we also say
that M is ϕ-safe.

Example 1 (Specification of Strict Serializability). A TM specifi-
cation for strict serializability is a parameterized system SS(n, k)
such that L(SS) = LSS . Guerraoui et al. [16] show a deterministic
TM specification for strict serializability. We briefly recall its key
components; Appendix D contains the full description.

The set of predicates P consists of the “status” predicates
SS.finished(t), SS.started(t), SS.pending(t), SS.invalid(t), and

SS.rs(t, v), SS.ws(t, v) read & write sets
SS.prs(t, v), SS.pws(t, v) prohibited-read & -write sets

SS.wp(t1, t2). weak-predecessor

The predicate SS.rs(t, v) (resp., SS.ws(t, v)) holds when thread
t has read (resp., written) location v in its unfinished transac-

136

tion. When SS.prs(t, v) (resp., SS.pws(t, v)) holds, t will be-
come SS.invalid by reading (resp., writing) location v. When
SS.wp(t1, t2) holds, t1 must serialize after the unfinished transac-
tion of t2 in order for both threads to commit their transactions. As
syntactic sugar, we indicate status predicate valuations with atomic
formulæ, e.g., by writing SS.status(t) = finished to mean

SS.finished(t) ∧ ¬SS.started(t)

∧ ¬SS.invalid(t) ∧ ¬SS.pending(t).

The set ASS of actions is {read(t, v), write(t, v), commit(t),
abort(t)}. The initial condition is given by the sentence

∀t1, t2, v.SS.status(t1) = finished ∧ ¬SS.wp(t1, t2)

∧ ¬(SS.rs(t1, v) ∨ SS.ws(t1, v)

∨ SS.prs(tt, v) ∨ SS.pws(t1, v)).

The guards and actions are somewhat complex (see Appendix D),
though as an example, for the commit(t) action, the guard is
¬SS.invalid(t) ∧ ¬SS.wp(t, t), and the update formula for the
SS.wp predicate is

∀t1, t2.SS.wp′(t1, t2) ≡ t1 6= t ∧ t2 6= t

∧ (SS.wp(t1, t2) ∨ SS.wp(t, t2)

∧ (SS.wp(t1, t) ∨ ∃v.SS.ws(t1, v) ∧ SS.ws(t, v))).

It is interesting to note that the operational specification of strict se-
rializability is more complex than the TM implementations we con-
sider in this work. Whereas the SS specification does not correspond
to an efficient implementation, each actual TM implementation con-
servatively disallows many serializable concurrent interactions in
order to efficiently decide which transactions are allowed to commit.
Thus we rely on the result of Guerraoui et al. [16] to know that this
complex operational specification is correct.

Example 2 (DSTM). We model dynamic software transactional
memory [20] as a parameterized system with the status predi-
cates DSTM.finished(t), DSTM.validated(t), DSTM.invalid(t),
DSTM.aborted(t), and

DSTM.rs(t, v),DSTM.os(t, v). read & own sets

The set of actions is ASS ∪ {validate(t)}. The initial condition is

∀t, v.DSTM.status(t) = finished

∧ ¬DSTM.rs(t, v) ∧ ¬DSTM.os(t, v).

The full specification is given in Appendix B; as an example, the
commit(t) action is guarded by DSTM.validated(t), and updates
the DSTM.validated predicate by the formula

∀t1.DSTM.validated′(t1) ≡ t1 6= t ∧ DSTM.validated(t1)

∧ ¬∃v.DSTM.rs(t1, v) ∧ DSTM.os(t, v).

Refinement Let M1 = 〈U,P1, A1,Θ1, g1, ρ1〉 and M2 =
〈U,P2, A2,Θ2, g2, ρ2〉 be two parameterized systems. We say M1

is compatible withM2 ifA2 ⊆ A1 and P1∩P2 = ∅, and we sayM1

refinesM2, writtenM1 �M2, if L(M1(n, k))|A2
⊆ L(M2(n, k))

for every n, k ∈ N>0, where L|A is the projection of a language L
to the alphabet A.

If M1(n, k) is compatible with M2(n, k), we define the compo-
sition M1×M2(n, k) = 〈U,P1 ∪ P2, A1,Θ1 ∧ Θ2, g, ρ〉 of M1

and M2 where

ga(~x) =

(
g1a(~x) if a ∈ A1 \A2

g1a(~x) ∧ g2a(~x) if a ∈ A2

ρa(~x) =

(
ρ1a(~x) ∧

V
p∈P2

p′(~x) ≡ p(~x) if a ∈ A1 \A2

ρ1a(~x) ∧ ρ2a(~x) if a ∈ A2

Lemma 1. LetM1 andM2 be parameterized systems such thatM1

is compatible with M2 and M2 is deterministic. M1 �M2 iff

M1×M2 |=
^

a(~x)∈A2

∀~x. g1a(~x) =⇒ g2a(~x).

The proof is a standard reduction from the search for a simulation
relation to an invariant check [22]. Since M2 is deterministic, the
condition is both necessary and sufficient [11]. Thus we reduce
the TM verification problem to a parameterized model checking
problem on the product of the implementation and a deterministic
strict serializability model. For example, to showL(DSTM) ⊆ LSS ,
we construct the deterministic specification SS, and check if

DSTM×SS |=
^

a(~x)∈ASS

∀~x. gDSTM,a(~x) =⇒ gSS,a(~x).

It turns out that the guards for all actions of SS except for
commit(t) are true, and the guard for the commit(t) action in
SS and DSTM are respectively,

¬SS.invalid(t) ∧ ¬SS.wp(t, t), and DSTM.validated(t).

Thus the refinement verification question systematically reduces to

DSTM×SS |= ∀t.DSTM.validated(t)

=⇒ ¬SS.invalid(t) ∧ ¬SS.wp(t, t). (1)

This invariant verification problem still is a difficult one, since there
is no bound on the parameters (i.e., the number of threads n and
locations k), and the transition relations for SS and DSTM use
universal or existential quantification over threads and locations.

4. Parameterized Safety Verification
Here we present a technique to check if an first-order sentence ψ is
a uniform invariant of a parameterized system M . Our method is
based on the deductive safety verification rule [25]:

I1 : Θ |= ϕ
I2 : ϕ ∧

W
a(~x)∈A ∃~x.ga ∧ ρa |= ϕ′

I3 : ϕ |= ψ

M |= ψ
(INV)

To show that ψ is a uniform invariant of M , we use an auxiliary
inductive invariant ϕ such that (I1) the initial condition Θ of
M satisfies ϕ, (I2) transitions of M preserve ϕ, and (I3) ϕ is
stronger than ψ. Conditions I1 and I2 imply ϕ is a uniform
inductive invariant of M . The steps of deductive verification are
(i) generating the inductive invariant ϕ, and (ii) validating that ϕ
satisfies Conditions I1, I2, and I3. In our approach, we solve these
issues as follows:

(i) Invariant Generation We generate candidate invariants by in-
stantiating formulæ from a fixed template language. We then
performing reachability analysis on instances M(n, k) of the
parameterized family for small fixed values of n, k. Candidates
which are not invariants of the small instances are discarded.
Since M(n, k) is finite, the reachability analysis terminates.
The candidate inductive invariant is the conjunction, over all
formulæ instantiated from the template, of the formulæ that
are invariants of M(n, k) (i.e., that contain the set of reachable
states of M(n, k)).

(ii) Invariant Validation Since our formulæ use universal and ex-
istential quantifiers, checking each step of the deductive safety
verification rule INV is undecidable. Rather than develop our
own quantifier instantiation heuristics, we choose to rely on
highly engineered theorem provers to efficiently discharge each
implication query.

137

Input : Parameterized system M(n, k); initial bounds
n0, k0, j0; formula ψ, template enumeration TL.

Result: Whether or not M |= ψ.

〈n, k〉 ← 〈n0, k0〉; j← j0; Invariant← true;1
repeat2

// 1a. Explore the bounded instance

rs← Reach(M(n, k));3
if rs 6|= ψ then4

return “M is not ψ-safe”;5
end6

// 1b. Discard non-invariants

candidates← {ϕ : ϕ generated by TL[j] and rs |= ϕ};7

// 2. Candidate invariant weakening

recheck← true;8
while candidates 6= ∅ and recheck do9

recheck← false;10
foreach ϕ ∈ candidates do11

let ξa(~x) = Invariant ∧
V

candidates12
∧ ∃~x.(ga ∧ ρa);13

if exists a(~x)∈A s.t. not Check(ξa(~x) |= ϕ′)14
or not Check(Θ |= ϕ) then15

candidates← candidates \ {ϕ};16
recheck← true;17

end18
end19

end20

// 3. Check invariant strength

Invariant← Invariant ∧
V

candidates;21
if Check(Invariant |= ψ) then22

return “M is ψ-safe”23
end24

// Retry with bigger bounds

increment n, k, j;25
end26

Algorithm 1: Parameterized safety verification.

Our parameterized verification technique is summarized by
Algorithm 1. It takes as input a parameterized system M and a
property ψ. The parameters n0 and k0 range over the number of
threads and locations in finite instances, and the parameter j0 is used
to as an initial template enumeration index.

The algorithm has three phases. The first phase (lines 3–7)
generates a set of candidate invariants. The set of reachable states rs
of a finite instanceM(n, k) are computed (line 3); if some reachable
state violates ψ (lines 4–6), ψ cannot be a uniform invariant of M ,
and a safety violation is reported. Otherwise, a set of candidates is
generated by choosing each formula in the current invariant template
TL[j] that contains the set of reachable states (line 7).

The second “candidate invariant weakening” phase (on lines 8–
20) discards candidates that can not be proved inductive, either
because they are not preserved by some transition (line 14), or
because they are not initially valid (line 15). The conjunction of
candidates remaining at the end of the loop of lines 8–20 is a uniform
inductive invariant.

In the third phase the inductive invariant strength is checked. If
the current invariant implies ψ, then by the INV rule, ψ is a uniform
invariant. Otherwise, we increase the indexes n, k, and j, and repeat
the top-level loop of line 2.

It is easy to see that Algorithm 1 is sound. However, since it
is impossible to know the size (i.e., the number of quantifiers and
literals) of the required candidate invariants, there is no bound on the
template enumeration index j, and thus there is no telling when the
procedure may terminate. Supposing that the required invariants are
expressible in first-order logic, and the Check routine is complete
(though in actuality it is not), some template is guaranteed to
capture the required invariant, and termination would be eventually
guaranteed.

5. Template-Based Candidate Generation
We generate candidate invariants following the idea of verification
by invisible invariants [2, 28]. We compute the set of reachable
states of M(n, k) for fixed, finite thread- and location-count values
of n and k; this is possible since the state space of M(n, k) is finite.
A candidate uniform invariant for M is proposed by generalizing
invariants for M(n, k).

We depart from the technique of Arons et al. [2] to generate
candidate invariants for two reasons. First, the generated invariant
can be too specific. For example, let R be the set of reachable states
of M(n, k). The synthesized invariant of Arons et al. [2] has the
form ∀~x.

W
s∈R ψs(~x) where each ψs is a minterm corresponding

to a complete interpretation of the predicates P on the variables ~x
(i.e., for every predicate p ∈ P and sublist ~y of variables in ~x with
the proper sorts, either p(~y) or ¬p(~y) appears in ψs). Symmetries
between distinct minterms—for example, minterms which are
identical up to variable renaming—are not exploited, leading to
much redundancy and overly-specific invariants. Checking the
validity of such a large invariant is expensive. Second, the invariant
is often too specific to n and k to be a uniform invariant as a
whole. However, if a (monolithic) candidate invariant derived from
M(n, k) is not a uniform invariant, there is no clear way to proceed
to generate weaker candidate invariants.

Example 3. Let M = DSTM×SS. Although the sentence

∀t, v.(SS.pending(t)⇒ SS.wp(t, t)) (2)
∧ (DSTM.rs(t, v)⇒ ¬SS.pending(t))

∨ ¬DSTM.aborted(t)

is an invariant of M(2, 1), it is not an invariant of M(3, 2), and
hence not a uniform invariant. However, consider the invariants

∀t.SS.pending(t) ∧ DSTM.aborted(t)⇒ SS.wp(t, t),

∀t, v.SS.pending(t) ∧ DSTM.aborted(t) (3)
⇒ ¬DSTM.rs(t, v)

whose conjunction is logically equivalent to Equation 2. Both are
invariants of M(2, 1), though only the second is uniform. Here,
even though the conjunction it not uniform, we can extract a weaker
candidate (i.e., the second conjunct) that is.

Example 3 indicates that we should look for conjunctive can-
didate invariants. Algorithm 1 (lines 8-20) shows how conjunctive
invariants can be individually checked for inductiveness and weak-
ened by discarding conjuncts that are not inductive. We restrict
the shape of the extracted invariants by imposing template-based
invariant generation [8, 32] while generating candidate invariants.

Let Φ be a finite set of symbolic predicate variables. A template
τ is a Φ-sentence in prenex form, and a template schema T is a
finite set of templates. Let Ψ be a set of atomic formulas whose free
variables are a subset of the quantified variables of τ . A sentence
ϕ is generated by template τ when there exists a binding f from
the predicate variables Φ to atomic formulas in Ψ such that the
formula τ [f(Φ)/Φ] obtained by replacing each φ ∈ Φ with f(φ) is
syntactically equal to ϕ. We say ϕ is generated by template schema
T when ϕ is generated by some τ ∈ T .

138

To generate candidate invariants, we fix a template schema T and
fix the set of atomic formulæ Ψ = {p(x̄),¬p(x̄) | p ∈ P}∪{true}.
Then, for each ϕ generated from T , we check if ϕ is an invariant of
M(n, k). If so, it is added as a conjunct of the candidate invariant;
otherwise it is discarded. This is shown in line 7 of Algorithm 1.

In practice we restrict the template schema to small templates,
since enumerating all formulas generated by a template is expensive.
We found that templates of the form ∀t, v.φ1 ∧ φ2 ⇒ φ3 sufficed
to generate sufficiently strong uniform invariants.

If a necessary uniform invariant cannot be generated by a tem-
plate schema, then the verification will fail. In this case, Algorithm 1
achieves relative completeness by incrementing the template enu-
meration index j; for every first-order formula ϕ there is some j such
that ϕ is generated by TL[j] (lines 7 and 25). In practice, increment-
ing j has not been necessary.

Example 4. Using the template schema ∀t, v.φ1∧φ2 ⇒ φ3 and the
set of atomic formulas {p(v̄),¬p(v̄) | p ∈ PSS∪PDSTM}∪{true},
we generated 525 candidate invariants from the 〈2, 1〉-instance of
DSTM×SS; 341 of these proved to be uniform. The found invariants
include:

∀t, v.SS.rs(t, v) ∧ ¬DSTM.aborted(t)⇒ DSTM.rs(t, v)

∀t, v.SS.ws(t, v) ∧ ¬DSTM.aborted(t)⇒ DSTM.os(t, v)

∀t.DSTM.validated(t)⇒ ¬SS.wp(t, t)

∀t.DSTM.validated(t)⇒ ¬SS.invalid(t)

∀t.DSTM.validated(t)⇒ ¬SS.pending(t).

Notice that the refinement verification obligation of Equation 1 is
implied by the conjunction of these invariants.

6. Implementation and Experimental Evaluation
We have implemented our technique by extending the TVLA
framework [24] to compute the reachable state space of bounded
instances of the input systems and extract quantified candidate
invariants. The candidate invariants are subsequently checked using
the SPASS automated theorem prover [34].

Our models of the two-phase locking (TPL), dynamic software
transactional memory (DSTM), and transactional locking II (TL2)
implementations, along with the deterministic strict serializability
specification, are derived from the parameterized automaton models
provided by Guerraoui et al. [15, 16]. The models are listed in full
in Appendices A–D.

Since the SS specification remains fixed, we use our technique to
initially generate a uniform inductive invariant of SS once-and-for-
all, before considering the implementation and specification product
systems. We then use this invariant to strengthen the invariants of
each product system.

Experimental setting For our experimental evaluation we use
the fixed template schema ∀x, y.φ1 ∧ φ2 ⇒ φ3 to generate ev-
ery possible three-term formula over two universally quantified
variables—modulo typing concerns, and obvious syntactic sym-
metries, e.g., ∀x.p(x) ∧ q(x) ⇒ r(x) is logically equivalent to
∀x.q(x) ∧ p(x)⇒ r(x) and ∀x.p(x) ∧ ¬r(x)⇒ ¬q(x).

Following Algorithm 1, we perform an initial filtering to discard
the candidate invariants ϕ which are not invariants of a small system
instance M(n0, k0) by finding a reachable state of M(n0, k0)
which does not satisfy ϕ. To further reduce the number of candidates,
we discard invariants that are redundant with—i.e., implied by
the conjunction of—the known system constraints and previously-
extracted candidates. For example, constraints on the DSTM system
dictate that a single thread cannot be both DSTM.validated and

DSTM.aborted, so the invariant

∀t, v. DSTM.validated(t) ∧ ¬DSTM.rs(t, v)

⇒ ¬DSTM.aborted(t)

is redundant w.r.t. system constraints, while the uniform invariant of
Equation 3 is redundant w.r.t. the stronger invariant

∀t, v.DSTM.aborted(t)⇒ ¬DSTM.rs(t, v).

Due to scalability limitations of our inefficient implementation,
we did not check redundancy w.r.t. all previously generated candi-
dates. Instead, we split the generated candidates into 40 partitions,
and only redundancy w.r.t. candidates of the same partition (and sys-
tem constraints) is considered. Note that full redundancy elimination
may sometimes drop potential uniform invariants (and consequently
fail to verify a system), since a uniform invariant may be considered
redundant w.r.t. to a simpler non-uniform candidate. For example,
suppose the predicates x = 0 and x ≥ 0 are both invariants of a
finite instance, but only x ≥ 0 is a uniform invariant. By eliminating
x ≥ 0 because it is redundant w.r.t. x = 0, we may not find a strong
enough uniform invariant.

The second phase of our implementation checks inductiveness of
the remaining candidate invariants. In each weakening iteration
we attempt to validate each candidate via theorem prover with
a 10 second time limit. When a candidate cannot be validated—
either due to non-uniformity, or prover incompleteness/timeout—it
is discarded. At the end of a weakening iteration where no candidates
were discarded, we conclude that the conjunction of candidate
invariants is inductive. When a weakening iteration finishes after
discarding some candidate, we are obliged to start another iteration
to ensure that the discarding of one candidate does not invalidate
another.

Table 1 lists our experimental measurements. For each small in-
stance of each system, we record the number of reachable states and
the time spent exploring them in the second column group (“bounded
exploration”). The third column group (“template instantiations”)
lists (1) the total number of formulæ generated from templates
(column “total”), (2) the number of candidate formulæ from (1)
which were invariants of the given instance (column “invs.”), (3) the
number of non-redundant candidates from (2) (column “non-red.”),
and (4) the number of non-redundant candidates from (3) that were
finally validated as uniform invariants in the subsequent validation
and invariant weakening steps (column “val.”). The fourth column
group (column “iter”) lists the number of invariant weakening iter-
ations, and finally the last column group (“validation time”) lists
the average per-candidate validation time, and the total runtime,
including validating (or refuting) each candidate for each weakening
iteration.

Discussion In all cases except TPL, our crude prototype imple-
mentation only scales to systems with at most two threads and two
memory locations. For larger instances our tool runs for several min-
utes before exhausting a 2GB memory limit. Based on the system
instances we did explore, varying the number of memory locations
has little effect on the system behavior, though varying the number
of threads has a noticeable effect: only about half of the invariants of
one-thread DSTM and TL2 systems are invariants of the two-thread
systems. It would be interesting to measure how invariants vary with
more than two threads using a more scalable tool. In the case of the
simplistic TPL system, it is clear that all possible system behaviors
between two threads are expressed with only two threads, since
every 〈2, 1〉-invariant is uniform.

Although not strictly required, filtering candidate formulæ that
are either not invariants on the bounded instance, or are redundant
with other candidates, can greatly reduce the runtime of the subse-
quent invariant validation step. For example, in the 〈2, 1〉 instance of
DSTM× SS, only 525 of 14, 724 candidates survived the filtering.

139

bounded exploration template instantiations validation time
system 〈n, k〉 states time total invs. non-red. val. iter. per-cand. total

SS

〈1, 1〉 4 2.5s 2,542 780 346 6 0.38s 35m45s
〈1, 2〉 16 3.7s 3,520 2,542 780 346 6 0.38s 35m26s
〈2, 1〉 74 5.7s 1,313 432 377 3 0.65s 19m0s
〈2, 2〉 7296 3m28s 1,237 402 377 3 0.42s 12m29s

TPL× SS

〈1, 1〉 4 10.5s 3,344 434 430 2 0.38s 7m28s
〈1, 2〉 16 8.0s 0.41s 8m38s
〈2, 1〉 8 8.5s 3,330 430 430 1 0.38s 4m5s
〈2, 2〉 64 14.0s 4,924 0.39s 4m15s
〈2, 3〉 512 43.7s 0.46s 5m13s
〈3, 2〉 196 20.5s 0.44s 4m56s
〈3, 3〉 2,744 3m26s 0.41s 4m25s

DSTM× SS

〈1, 1〉 8 5.4s 9,806 1,230 298 6 0.92s 71m10s
〈1, 2〉 32 9.1s 14,724 9,806 1,230 298 6 0.74s 55m15s
〈2, 1〉 184 9.7s 4,512 525 341 3 1.71s 38m10s
〈2, 2〉 15.6K 5m6s 4,308 453 346 3 0.97s 21m56s

TL2× SS

〈1, 1〉 6 3.6s 10,068 1178 –‡ – – –
〈1, 2〉 36 5.4s 14,706 10,068 1,178 –‡ – – –
〈2, 1〉 344 13.4s 4,695 556 416 2 5.06s† 100m4s†

〈2, 2〉 100K 55m21s –∗ – – – – –

Table 1. Transactional memory verification experiments. The parameters n and k indicate the number of threads and memory locations per
instance. †The per-candidate theorem prover timeout was set to 30s. ‡The candidate invariants could not be proved inductive. ∗Invariant
extraction did not scale here.

Assuming the same 1.71s average time1 per validation step, the total
validation time without filtering the candidates would have been at
least seven hours, rather than only 38 minutes. Similarly, the size
of the initial bounded instance can seriously affect the validation
time by reducing the number of candidates. For instance, 5, 294
(705 non-redundant) quantified invariants of the 〈1, 1〉 DSTM×SS
instance are not invariants of the 〈2, 1〉 instance, thus cannot be
uniform invariants, and can be filtered from the concrete instance in
a few seconds. Note that the reachability computation (i.e., bounded
exploration) can be soundly terminated at any point, effectively
shifting the validation effort toward the theorem prover back-end.

It should also be noted that this redundant candidate elimination
scheme can result in somewhat unpredictable behavior. In the case
of TL2, discarding candidate invariants extracted from the 〈1, 1〉
and 〈1, 2〉 instances that are redundant with previously extracted
candidates failed to produce an uniform inductive candidate subset.
The candidates extracted from the 〈2, 1〉 instance were sufficient,
though the our extraction tool was unable to process the large
number of reachable states in the 〈2, 2〉 instance.

Although we did not implement more intricate redundant candi-
date elimination schemes, there are several possibilities. One idea
is to temporarily discard each redundant candidate ϕ, while record-
ing the candidates {ψi}i rendering ϕ redundant. When some ψi

is subsequently invalidated, ϕ can be reconsidered since it is no
longer redundant. This scheme would very likely reduce the overall
runtime of verification for TL2× SS. We leave all such strategies
for future work.

In only two cases did our very simple template schema not
produce strong enough candidate invariants. An important invariant
of SS states that weak-predecessors of a thread t that are not
SS.invalid or SS.pending have a read-write conflict with t, e.g.,

∀t1, t2.SS.wp(t1, t2) ∧ SS.finished(t2)

⇒ ∃v.SS.rs(t2, v) ∧ SS.ws(t1, v).

1 Though in actuality the time spent validating each candidate increases as
the number of candidates increases.

Second, a necessary invariant of TL2×SS states that a thread which
is both TL2.finished and SS.invalid or SS.pending must have some
memory location in both its read set and modified set. Although
these invariants can be captured by the template schema

∀x, y.φ1 ∧ φ2 ⇒ ∃z.φ3 ∧ φ4,

due to scalability limitations of our crude prototype implementation,
we prefer instead to augment the systems with the additional
predicates SS.rwc(t1, t2) and TL2.rmc(t) to encode “read-write
conflicts” in SS, and “read-modified conflicts” in TL2. These
additional predicates, along with the template schema fixed above,
allow us to express all the required invariants for our proofs.

Finally, probably due to the greater complexity of the TL2
system, we found it necessary to extend the 10s theorem prover
timeout to 30s in the candidate validation step.

Bug finding In addition to the verification of these models, our
technique was able to find (from a 〈2, 1〉-size instance in 6.4
seconds) the known bug [15] in a TL2 implementation which swaps
the order of the lock and validate actions: the trace

write(t1, v) write(t2, v) read(t2, v) read(t1, v)

validate(t1) validate(t2) lock(t2, v)

commit(t2) lock(t1, v) commit(t1)

is allowed by this alternate implementation, though is not strictly
serializable.

Limitations Although here we restrict the invariant language to
first-order logic, we have found that expressing inductive invariants
of certain TMs requires transitive closure. The TL2 model we’ve
verified executes the validate and commit actions atomically,
though an implementation performing these actions separately
seems to require the invariant “there are no SS.wp-cycles involving
only TL2.validated transactions.”

The systems we verify are modeled using high-level abstract
data types, e.g., the read- and write-sets are modeled as mathemat-
ical sets rather than a low-level heap encoding of sets. Although
real-world software TM implementations are indeed programmed

140

using linked data structures, establishing the link between ADT
specifications and ADT implementations is an orthogonal problem
and is better understood [29, 36].

7. Related Work
Our starting point is the formalization of transactional memory
implementations, and the strict serializability specification, as finite-
state automata by Guerraoui et al. [15]. Even with these models,
automatic parameterized verification for transactional memory
systems remained beyond the ability of existing verification tools.

The problem of verifying transactional memories has been stud-
ied before [6, 7, 15–17, 33]. Cohen et al. [6] verified refinement
mappings between small TM instances and a strict serializability
specification by explicit state model checking; they subsequently
extended their approach to parameterized TM verification via an
interactive proof assistant [7]. In both cases the proofs required
manually prescribing the refinement mappings—a task which re-
quires familiarity with the implementation, the specification, and the
relationship between the two. Taşiran [33] took a similar approach,
using existing software verification tools to verify TM implementa-
tions which were manually annotated with pre- and post-conditions
corresponding to an insightful proof decomposition. In contrast,
our use of intermediate invariants is invisible to the user, and the
resulting proof is automatic.

The approach of Guerraoui et al. [15, 16, 17] is based on a small
model theorem reducing parameterized TM verification to verifica-
tion on an instance with two threads and two memory locations; their
theorem applies only to systems satisfying certain conditions, some
of which are easy to check syntactically (e.g., thread symmetry),
and others which would be difficult to check for an arbitrary imple-
mentation, and seem to require human insight. In contrast, our proof
technique is sound for any transactional memory implementation—
regardless of the conditions of Guerraoui et al. [15], except for
symmetry—but like any heuristic, may fail to verify a given imple-
mentation. Our experimental results demonstrate that our approach
does succeed for common implementations.

Our experiments with existing software verification tools fell
short. Software model checkers based on predicate abstraction and
counterexample-guided abstraction refinement, such as SLAM [3]
and BLAST [18], typically implement a very coarse memory model
(e.g., based on an imprecise alias analysis) which is not sufficiently
detailed to reason about the interactions between arbitrarily many
threads and memory locations. In our experiments, the BLAST model
checker was unable to verify even finite instances of the implementa-
tions because of a coarse modelling of arrays. In addition, the default
counterexample refinement procedure in BLAST, which looks indi-
vidually at abstract counterexamples, could not infer the universally
quantified invariants that were required in the proof, instead entering
an infinite refinement loop.

Tools based on three-valued shape analysis [31] or separation
logic [30], such as TVLA [24] and SPACEINVADER [35], can the-
oretically prove properties of programs manipulating unbounded
heaps. In practice, however, their most successful applications have
been in proving complex data structure invariants in small code, or
simple data structure invariants in large code. Our attempts to verify
transactional memory using TVLA failed for two reasons: first, it
required intensive manual interactions to identify the instrumenta-
tion predicates necessary to rule out abstract counterexamples, and
second, the tool exhausted our time and space limitations before
finishing, even with a small number of instrumentation predicates.

We use and extend the idea of verification by invisible invari-
ants [2, 28] from the parameterized hardware and protocol verifica-
tion setting. Instead of generating invariants with arbitrary Boolean
structure, we combine the idea with template-based invariant gener-
ation to restrict invariants to the simple form of template formulæ

conjunctions. This ensures that even when the candidate formula
as a whole is not an invariant, useful parts of the formula can be
salvaged. In contrast, if the inductiveness check fails for a arbitrarily
structured Boolean formula, it is not clear how invalid parts of it can
be discarded. Our original attempt to synthesize inductive invariants
from concrete executions produced formulas containing hundreds,
or thousands, of cubes which we were not able to reduce. Various
optimization techniques, e.g., using BDDs, did not help. With tem-
plates we manage the size and complexity of potential invariants,
and can bias the search for candidate invariants using observations
made for the class of systems we consider. While template-based
invariant generation has been studied before, applications so far have
been limited to arithmetic constraints [5, 8, 32]. In contrast, our tem-
plates range over quantified predicates relating the data structures
of concurrently executing threads.

The initial filtering of candidate invariants on small system
instances can be seen as a variation of dynamic detection of likely
invariants [14], though there the initial candidate set is restricted to
much simpler formulæ (e.g., whether or not a pointer-value can be
null) or user-specified candidates.

Our idea of exploiting thread and memory location symmetry
is inspired by techniques from parameterized safety proofs in hard-
ware verification [26]. However, while the proof obligations in that
hardware setting after symmetry reduction were essentially Boolean
problems, we have generalized the techniques to incorporate expres-
sive first-order theories. Besides the increase in expressive power,
this enables us to reason about transition relations and inductive
invariants including both universal and existential quantifiers. In
contrast, the proof arguments of McMillan [26] require manually
specification of witnesses for existential formulæ explicitly by in-
cluding them as auxiliary state in the models.

Berdine et al. [4] extend three-valued shape analysis to reduce
reasoning about parameterized concurrent programs to the behavior
of individual threads. However, their technique does not handle
existentially quantified properties and requires manually specified
instrumentation predicates.

8. Conclusion
Although we have demonstrated the automatic verification of trans-
actional memory systems with respect to strict serializability, there
are several additional complications to consider in real-world im-
plementations. Some systems allow nested transactions, or non-
transactional shared memory accesses, and may be running on top
of weak memory models. Also, the actual implementations use
heap-based data structures; analysis generally requires showing a
correspondence between the abstract data types (e.g., read- and
write-sets) and the underlying implementations. Additional safety
(e.g., opacity) and liveness properties (e.g., obstruction freedom) are
also expected to hold, and should be verified.

Another interesting direction is to apply our template-based
algorithm to other systems, such as cache coherence protocols.

Acknowledgments
We would like to thank the anonymous referees, and Amit Goel,
Ranjit Jhala, and Todd Millstein for their helpful comments.

References
[1] K. R. Apt and D. Kozen. Limits for automatic verification of finite-state

concurrent systems. Inf. Process. Lett., 22(6):307–309, 1986.
[2] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized

verification with automatically computed inductive assertions. In CAV,
pages 221–234, 2001.

[3] T. Ball and S. K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL, pages 1–3, 2002.

141

[4] J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and S. Sagiv.
Thread quantification for concurrent shape analysis. In CAV, pages
399–413, 2008.

[5] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant
synthesis for combined theories. In VMCAI, pages 378–394, 2007.

[6] A. Cohen, J. W. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck.
Verifying correctness of transactional memories. In FMCAD, pages
37–44, 2007.

[7] A. Cohen, A. Pnueli, and L. D. Zuck. Mechanical verification of
transactional memories with non-transactional memory accesses. In
CAV, pages 121–134, 2008.

[8] M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant
generation using non-linear constraint solving. In CAV, pages 420–
432, 2003.

[9] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, pages 337–340, 2008.

[10] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC,
pages 194–208, 2006.

[11] D. L. Dill, A. J. Hu, and H. Wong-Toi. Checking for language inclusion
using simulation preorders. In CAV, pages 255–265, 1991.

[12] A. Dragojević, R. Guerraoui, and M. Kapałka. Dividing transactional
memories by zero. In TRANSACT, 2008.

[13] B. Dutertre and L. de Moura. The YICES SMT solver. http:
//yices.csl.sri.com.

[14] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

[15] R. Guerraoui, T. A. Henzinger, B. Jobstmann, and V. Singh. Model
checking transactional memories. In PLDI, pages 372–382, 2008.

[16] R. Guerraoui, T. A. Henzinger, and V. Singh. Completeness and non-
determinism in model checking transactional memories. In CONCUR,
pages 21–35, 2008.

[17] R. Guerraoui, T. A. Henzinger, and V. Singh. Software transactional
memory on relaxed memory models. In CAV, pages 321–336, 2009.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In POPL, pages 58–70, 2002.

[19] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA, pages 289–300, 1993.

[20] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III. Software
transactional memory for dynamic-sized data structures. In PODC,
pages 92–101, 2003.

[21] S. Kleene. Introduction to Metamathematics. North Holland, 1980.

[22] L. Lamport. Specifying concurrent program modules. ACM Trans.
Program. Lang. Syst., 5(2):190–222, 1983.

[23] J. R. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool
Publishers, 2006.

[24] T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static
analyses. In SAS, pages 280–301, 2000.

[25] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1992.

[26] K. L. McMillan. Verification of infinite state systems by compositional
model checking. In CHARME, pages 219–234, 1999.

[27] C. H. Papadimitriou. The serializability of concurrent database updates.
J. ACM, 26(4):631–653, 1979.

[28] A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive verification
with invisible invariants. In TACAS, pages 82–97, 2001.

[29] J. Reineke. Shape analysis of sets. Master’s thesis, Universität des
Saarlandes, Germany, June 2005.

[30] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74, 2002.

[31] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298,
2002.

[32] S. Srivastava and S. Gulwani. Program verification using templates
over predicate abstraction. In PLDI, pages 223–234, 2009.

[33] S. Taşiran. A compositional method for verifying software transac-
tional memory implementations. Technical Report MSR-TR-2008-56,
Microsoft Research, April 2008.

[34] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and
P. Wischnewski. SPASS version 3.5. In CADE, pages 140–145, 2009.

[35] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. W. O’Hearn. Scalable shape analysis for systems code. In CAV,
pages 385–398, 2008.

[36] K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of
linked data structures. In PLDI, pages 349–361, 2008.

A. Model of Two-Phase Locking
The two-phase locking system is a transaction manager which
ensures sequential behavior by associating two separate locks to
each memory location. Read-access is granted to any number of
threads so long as no thread has write-access, while any thread with
write-access to a location is guaranteed exclusive access. Our TPL
model uses the predicates TPL.rs(t, v) and TPL.ws(t, v) to mean
that t has read or write access to v. The initial condition

∀t, v.¬TPL.rs(t, v) ∧ ¬TPL.ws(t, v)

asserts that all access sets are uninhabited. The system is further
constrained by an invariant stating that only one thread is allowed
write access at any given time:

∀t1, t2, v.TPL.ws(t1, v) ∧ TPL.ws(t2, v)⇒ t1 = t2.

Although in principle this constraint can be encoded in the transition
relation, we state it here to avoid redundancy. This invariant should
be considered implicitly, without the need for validation, since it
corresponds to the implementation strategy of associating a write-
lock per location.

Read The read(t, v) action for TPL is guarded by

∀t1.TPL.ws(t1, v)⇒ t1 = t,

and the transition formula is given by the conjunction of

∀t1, v1.TPL.rs′(t1, v1) ≡
TPL.rs(t1, v1) ∨ ¬TPL.ws(t, v) ∧ t1 = t ∧ v1 = v

∀t1, v1.TPL.ws′(t1, v1) ≡ TPL.ws(t1, v1).

In other words, t can read v when no other thread has write-access,
in which case v is added to the read-set of t if v is not already in
the write set of t. From this point on we will omit writing identity
predicate update formulæ of the form ∀~x.p′(~x) ≡ p(~x); its presence
will be implicit whenever the update formula for p is omitted.

Write The write(t, v) action for TPL has the guard

∀t1.TPL.rs(t1, v) ∨ TPL.ws(t1, v)⇒ t1 = t,

and the transition formula is given by

∀t1, v1.TPL.ws′(t1, v1) ≡ TPL.ws(t1, v1) ∨ t1 = t ∧ v1 = v.

In other words, t can write to v when no other thread has read- or
write-access. In that case, v is added to the write set of t.

Commit & Abort The commit(t, v) and abort(t, v) actions for
TPL are always enabled (i.e., they have the guard true), and their
transition formulæ are given by the conjunction of

∀t1, v1.TPL.rs′(t1, v1) ≡ TPL.rs(t1, v1) ∧ t1 6= t

∀t1, v1.TPL.ws′(t1, v1) ≡ TPL.ws(t1, v1) ∧ t1 6= t.

Both the commit and abort action for TPL are essentially no-ops;
the read- and write-sets of the acting thread are simply cleared.

142

http://yices.csl.sri.com
http://yices.csl.sri.com

B. Model of Dynamic Software Transactional Memory
The DSTM system is a transaction manager which ensures perceived
sequential behavior by allowing only one transaction write-access to
a memory location, and ensuring that all values read by a transaction
have not been altered by other threads before committing. Our
DSTM model uses the thread-status predicates

DSTM.finished(t),DSTM.validated(t),

DSTM.invalid(t),DSTM.aborted(t),

as well as the predicates DSTM.rs(t, v) and DSTM.os(t, v) to
mean that t has read- or ownership- access to v. As syntactic sugar,
we indicate status predicate valuations with atomic formulæ, e.g., by
using the formula DSTM.status(t) = finished to mean

DSTM.finished(t) ∧ ¬DSTM.validated(t)

∧ ¬DSTM.invalid(t) ∧ ¬DSTM.aborted(t).

The initial condition

∀t.DSTM.status(t) = finished

∧ ∀t, v.¬DSTM.rs(t, v) ∧ ¬DSTM.os(t, v)

asserts that all access sets are initially uninhabited, and threads
begin in the finished state. The system is further constrained by the
invariants ∀t. exactly one of

DSTM.finished(t),DSTM.validated(t),DSTM.invalid(t),

DSTM.aborted(t)

holds, and

∀t1, t2, v.DSTM.os(t1, v) ∧ DSTM.os(t2, v)⇒ t1 = t2.

The first constraint is an artifact of encoding the four-phase DSTM
state with predicates, and the second corresponds to the implemen-
tation strategy of associating a write-lock per location.

Read The read(t, v) action for DSTM has the guard

¬DSTM.aborted(t) ∧ (¬DSTM.os(t, v)⇒ DSTM.finished(t)),

and the transition formula given by

∀t1, v1.DSTM.rs′(t1, v1) ≡
DSTM.rs(t1, v1) ∨ ¬DSTM.os(t, v) ∧ t1 = t ∧ v1 = v.

In other words, any thread t that has not aborted can read v so long
as t is in the finished state, or already owns v. If t does not already
own v, then v is added to t’s read set.

Write The write(t, v) action has the guard ¬DSTM.aborted(t)
and the transition formula given by the conjunction of

∀t1.DSTM.finished′(t1) ≡
DSTM.finished(t1) ∧ (¬DSTM.os(t, v)⇒ ¬ϕt,v

abt(t1))

∀t1.DSTM.validated′(t1) ≡
DSTM.validated(t1) ∧ (¬DSTM.os(t, v)⇒ ¬ϕt,v

abt(t1))

∀t1.DSTM.invalid′(t1) ≡
DSTM.invalid(t1) ∧ (¬DSTM.os(t, v)⇒ ¬ϕt,v

abt(t1))

∀t1.DSTM.aborted′(t1) ≡
DSTM.aborted(t1) ∨ ¬DSTM.os(t, v) ∧ ϕt,v

abt(t1)

∀t1, v1.DSTM.rs′(t1, v1) ≡
DSTM.rs(t1, v1) ∧ (¬DSTM.os(t, v)⇒ ¬ϕt,v

abt(t1))

∀t1, v1.DSTM.os′(t1, v1) ≡
(DSTM.os(t, v)⇒ DSTM.os(t1, v1))

∧ (¬DSTM.os(t, v)⇒

(t1 = t ∧ v1 = v ∨ DSTM.os(t1, v1))

∧ ¬ϕt,v
abt(t1))

where the sub-formula ϕt,v
abt(t1)

def
= t1 6= t ∧ DSTM.os(t1, v)

indicates that t1 is being aborted. In other words, any non-aborted
thread t is allowed to write to v; if t does not already own location
v, then any previous owners are evicted to the abort state.

Validate The validate(t) action has the guard DSTM.finished(t)
and the transition formula given by

∀t1.DSTM.finished′(t1) ≡
t1 6= t ∧ DSTM.finished(t1) ∧ ¬ϕt

abt(t1)

∀t1.DSTM.validated′(t1) ≡
t1 = t ∨ DSTM.validated(t1) ∧ ¬ϕt

abt(t1)

∀t1.DSTM.invalid′(t1) ≡
DSTM.invalid(t1) ∧ ¬ϕt

abt(t1)

∀t1.DSTM.aborted′(t1) ≡
DSTM.aborted(t1) ∨ ϕt

abt(t1)

∀t1, v1.DSTM.rs′(t1, v1) ≡ DSTM.rs(t1, v1) ∧ ¬ϕt
abt(t1)

∀t1, v1.DSTM.os′(t1, v1) ≡ DSTM.os(t1, v1) ∧ ¬ϕt
abt(t1)

whereϕt
abt(t1)

def
= t1 6= t∧∃v1.DSTM.rs(t, v1)∧DSTM.os(t1, v1).

In other words, any thread t in the finished state is allowed to validate
its read set; in doing so, every owner of a location which t read
becomes aborted.

Commit The commit(t) action has DSTM.validated(t) as the
guard, and the transition formula given by the conjunction of

∀t1.DSTM.finished′(t1) ≡
t1 = t ∨ DSTM.finished(t1) ∧ ¬ϕt

inv(t1)

∀t1.DSTM.validated′(t1) ≡
t1 6= t ∧ DSTM.validated(t1) ∧ ¬ϕt

inv(t1)

∀t1.DSTM.invalid′(t1) ≡
DSTM.invalid(t1) ∨ ϕt

inv(t1)

∀t1.DSTM.aborted′(t1) ≡
DSTM.aborted(t1) ∧ ¬ϕt

inv(t1)

∀t1, v1.DSTM.rs′(t1, v1) ≡ t1 6= t ∧ DSTM.rs(t1, v1)

∀t1, v1.DSTM.os′(t1, v1) ≡ t1 6= t ∧ DSTM.os(t1, v1),

where ϕt
inv(t1)

def
= t1 6= t∧∃v1.DSTM.os(t, v1)∧DSTM.rs(t1, v1).

In other words, any thread t in the validated state is allowed to
commit; in doing so, every read by another thread to a location v
which t owned becomes invalid, since t is updating v’s value.2

Abort The abort(t) action for DSTM has the guard true and the
transition formula given by the conjunction of

∀t1.DSTM.finished′(t1) ≡ t1 = t ∨ DSTM.finished(t1)

∀t1.DSTM.validated′(t1) ≡ t1 6= t ∧ DSTM.validated(t1)

∀t1.DSTM.invalid′(t1) ≡ t1 6= t ∧ DSTM.invalid(t1)

∀t1.DSTM.aborted′(t1) ≡ t1 6= t ∧ DSTM.aborted(t1)

∀t1, v1.DSTM.rs′(t1, v1) ≡ t1 6= t ∧ DSTM.rs(t1, v1)

∀t1, v1.DSTM.os′(t1, v1) ≡ t1 6= t ∧ DSTM.os(t1, v1).

The abort action simply clears the state of t.

2 This is due to the deferred update semantics we’ve assumed.

143

C. Model of Transactional Locking II
Transactional locking II is a transaction manager which ensures
perceived sequential behavior by giving exclusive locks to locations
a thread has written to upon committing, while ensuring that all
values read by a transaction have not been altered by others before
committing. Our TL2 model uses the status predicates

TL2.finished(t),TL2.validated(t), and TL2.aborted(t),

as well as predicates

TL2.rs(t, v),TL2.ws(t, v), read & write sets
TL2.ls(t, v),TL2.ms(t, v). lock & modified sets

The initial condition

∀t.TL2.status(t) = finished

∧ ∀t, v.¬TL2.rs(t, v) ∧ ¬TL2.ws(t, v)

∧ ¬TL2.ls(t, v) ∧ ¬TL2.ms(t, v)

asserts that threads begin in the finished state, all access sets are
initially uninhabited. The system is further constrained by the
invariant ∀t. exactly one of

TL2.finished(t),TL2.validated(t),TL2.aborted(t)

holds. This constraint is an artifact of encoding the three-phase
TL2 state with predicates. Although here we list separately TL2’s
validate and commit actions, due to the limitation mentioned
in Section 6, the model we verify assumes that validate(t) and
commit(t) execute together atomically.

Read The read(t, v) action for TL2 has the guard

TL2.finished(t) ∧ (TL2.ms(t, v)⇒ TL2.ws(t, v))

and the transition formula given by the conjunction of

∀t1, v1.TL2.rs′(t1, v1) ≡
TL2.rs(t1, v1) ∨ ¬TL2.ws(t, v) ∧ t1 = t ∧ v1 = v.

In other words, any thread t in the finished state can read v, so long
as v is only marked as modified when t has written to v. In that case,
v is added to t’s read-set if t has not already written to v.

Write The write(t, v) action has the guard TL2.finished(t) and
the transition formula given by the conjunction of

∀t1, v1.TL2.ws′(t1, v1) ≡ TL2.ws(t1, v1) ∨ t1 = t ∧ v1 = v.

In other words, any thread t in the finished state can write to v, in
which case v is added to t’s write-set.

Lock The lock(t, v) action for TL2 has the guard,

TL2.finished(t) ∧ TL2.ws(t, v),

and the transition formula given by the conjunction of

∀t1.TL2.finished′(t1) ≡ TL2.finished(t1) ∧ ¬ϕt,v
abt(t1)

∀t1.TL2.validated′(t1) ≡ TL2.validated(t1) ∧ ¬ϕt,v
abt(t1)

∀t1.TL2.aborted′(t1) ≡ TL2.aborted(t1) ∨ ϕt,v
abt(t1)

∀t1, v1.TL2.ls′(t1, v1) ≡ TL2.ls(t1, v1) ∨ t1 = t ∧ v1 = v

where ϕt,v
abt(t1)

def
= t1 6= t ∧ TL2.ls(t1, v). In other words, any

thread t in the finished state that has written to location v can lock
v; by doing so, threads that have previously locked v are evicted to
the aborted state.

Validate The validate(t, v) action for TL2 has the guard

TL2.finished(t)

∧ ¬∃v1.TL2.rs(t, v1) ∧ TL2.ms(t, v1)

∧ ∀v1.TL2.ws(t, v1) ≡ TL2.ls(t, v1)

and the transition formula given by the conjunction of

∀t1.TL2.finished′(t1) ≡ TL2.finished(t1) ∧ ¬ϕt
abt(t1)

∀t1.TL2.validated′(t1) ≡
t1 = t ∨ TL2.validated(t1) ∧ ¬ϕt

abt(t1)

∀t1.TL2.aborted′(t1) ≡ TL2.aborted(t1) ∨ ϕt
abt(t1)

∀t1, v1.TL2.rs′(t1, v1) ≡ TL2.rs(t1, v1) ∧ ¬ϕt
abt(t1)

∀t1, v1.TL2.ws′(t1, v1) ≡ TL2.ws(t1, v1) ∧ ¬ϕt
abt(t1)

where ϕt
abt(t1)

def
= t1 6= t ∧ ∃v2.TL2.rs(t, v2) ∧ TL2.ws(t1, v2).

In other words, any thread t in the finished state that has the lock
to every location it has written, and has not read from a modified
location, is allowed to validate its read set. By doing so, any thread
that has written to a location that t has read becomes aborted.

Commit The commit(t) action is guarded by TL2.validated(t)
and has a transition formula given by the conjunction of

∀t1.TL2.finished′(t1) ≡ t1 = t ∨ TL2.finished(t1)

∀t1.TL2.validated′(t1) ≡ t1 6= t ∧ TL2.validated(t1)

∀t1, v1.TL2.rs′(t1, v1) ≡ t1 6= t ∧ TL2.rs(t1, v1)

∀t1, v1.TL2.ws′(t1, v1) ≡ t1 6= t ∧ TL2.ws(t1, v1)

∀t1, v1.TL2.ls′(t1, v1) ≡ t1 6= t ∧ TL2.ls(t1, v1)

∀t1, v1.TL2.ms′(t1, v1) ≡ t1 6= t

∧ (TL2.ms(t1, v1) ∨ TL2.ws(t, v1) ∧ ϕact(t1)),

where ϕact(t1)
def
= ∃v2.TL2.rs(t1, v2) ∨ TL2.ws(t1, v2). In other

words, t can commit after it has validated; by doing so, the locations
that t has written to are added to the modified sets of all other active
threads.

D. Model of Strict Serializability
The strict serializability system is a deterministic executable specifi-
cation whose behaviors include exactly the set of strictly serializable
traces [16]. Our SS model uses the status predicates SS.finished(t),
SS.started(t), SS.invalid(t), and SS.pending(t), as well as predi-
cates encoding the read-sets SS.rs(t, v), write-sets SS.ws(t, v), pro-
hibited read-sets SS.prs(t, v), prohibited write-sets SS.pws(t, v),
and weak-predecessors SS.wp(t, t1) of each thread t. The initial
condition

∀t.SS.status(t) = finished ∧ ∀t1, t2.¬SS.wp(t1, t2)

∧ ∀t, v.¬SS.rs(t, v) ∧ ¬SS.ws(t, v)

∧ ¬SS.prs(t, v) ∧ ¬SS.pws(t, v)

asserts that threads begin in the finished state, all access sets are
initially uninhabited, and the weak-predecessor relation is empty.
SS is further constrained by the invariant, ∀t. exactly one of

SS.finished(t), SS.started(t), SS.invalid(t),SS.pending(t)

holds. The constraint is an artifact of encoding the four-phase SS
state with predicates.

Read The read(t, v) action for SS has the guard true and the
transition formula given by the conjunction of

∀t1.SS.finished′(t1) ≡ SS.finished(t1) ∧ ¬SS.ws(t, v)⇒ t1 6= t

∀t1.SS.started′(t1) ≡
(SS.ws(t, v)⇒ SS.started(t1))

∧ (¬SS.ws(t, v)⇒
t1 6= t ∧ SS.started(t1)

∨ t1 = t ∧ (SS.started(t1) ∨ SS.finished(t1))

144

∧ ¬SS.prs(t, v))

∀t1.SS.pending′(t1) ≡
SS.pending(t1) ∧ (¬SS.ws(t, v)⇒ ¬ϕt,v

inv(t1))

∀t1.SS.invalid′(t1) ≡ SS.invalid(t1) ∨ ¬SS.ws(t, v) ∧ ϕt,v
inv(t1)

∀t1, v1.SS.rs′(t1, v1) ≡
SS.rs(t1, v1) ∨ ¬SS.ws(t, v) ∧ t1 = t ∧ v1 = v

∀t1, t2.SS.wp′(t1, t2) ≡ SS.wp(t1, t2)

∨ ¬SS.ws(t, v)

∧ (t1 6= t ∧ t2 = t ∧ SS.ws(t1, v)

∨ t1 = t ∧ t1 6= t ∧ SS.prs(t2, v)

∨ t1 = t ∧ SS.pending(t2) ∧ SS.finished(t1)),

where ϕt,v
inv(t1)

def
= t1 = t∧SS.prs(t, v). In other words, any thread

t can always try to read a location v. If t has already written to v, this
action is a no-op. Otherwise, if t has been prohibited from writing
to v (i.e., SS.prs(t, v)), then t’s status is set to invalid; if not, then
t’s status is set to started. Since the commit of a write will invalidate
the value read from v, t becomes a weak-predecessor of any thread
that has written to v,3 and any thread that has been prohibited from
reading v becomes a weak-predecessor of t. Additionally, if this
was t’s first action for a given transaction, then any pending threads
also become weak-predecessors.

Write The write(t, v) action for SS has the guard true and the
transition formula given by the conjunction of

∀t1.SS.finished′(t1) ≡ t1 6= t ∧ SS.finished(t1)

∀t1.SS.started′(t1) ≡
(SS.started(t1) ∨ SS.finished(t1) ∧ t1 = t) ∧ ¬ϕt,v

inv(t1)

∀t1.SS.pending′(t1) ≡ SS.pending(t1) ∧ ¬ϕt,v
inv(t1)

∀t1.SS.invalid′(t1) ≡ SS.invalid(t1) ∨ ϕt,v
inv(t1)

∀t1, v1.SS.ws′(t1, v1) ≡ SS.ws(t1, v1) ∨ t1 = t ∧ v1 = v

∀t1, t2.SS.wp′(t1, t2) ≡ SS.wp(t1, t2)

∨ t1 = t ∧ t2 6= t ∧ SS.rs(t2, v)

∨ t1 = t ∧ t2 6= t ∧ SS.pws(t2, v)

∨ t1 = t ∧ SS.pending(t2) ∧ SS.finished(t1),

where ϕt,v
inv(t1)

def
= t1 = t∧SS.pws(t, v). In other words, a thread t

may always try to write to location v, though if t has been prohibited
from writing to v (i.e., SS.pws(t, v), then t’s status is set to invalid;
otherwise, t’s status is set to started. Any threads that have already
read v, or have been prohibited from writing to v, become weak-
predecessors of t. Additionally, if this was t’s first action for a
given transaction, then any pending threads also become weak-
predecessors.

Commit The commit(t) action for SS has the guard

¬SS.invalid(t) ∧ ¬SS.wp(t, t)

and the transition formula given by the conjunction of

∀t1.SS.finished′(t1) ≡ t1 = t ∨ SS.finished(t1) ∧ ¬SS.wp(t, t1)

∀t1.SS.started′(t1) ≡ t1 6= t ∧ SS.started(t1) ∧ ¬SS.wp(t, t1)

∀t1.SS.pending′(t1) ≡ t1 6= t ∧ SS.pending(t1) ∨ ϕt
pend(t1)

∀t1.SS.invalid′(t1) ≡ SS.invalid(t1) ∨ ϕt
inv(t1)

∀t1, v1.SS.rs′(t1, v1) ≡ t1 6= t ∧ SS.rs(t1, v1)

∀t1, v1.SS.ws′(t1, v1) ≡ t1 6= t ∧ SS.ws(t1, v1)

3 Again, the deferred update semantics guides this decision.

∀t1, v1.SS.prs′(t1, v1) ≡ t1 6= t

∧ (SS.prs(t1, v1)

∨ SS.wp(t, t1) ∧ (SS.prs(t, v1) ∨ SS.ws(t, v1)))

∀t1, v1.SS.pws′(t1, v1) ≡ t1 6= t

∧ (SS.pws(t1, v1)

∨ SS.wp(t, t1)

∧ (SS.pws(t, v1) ∨ SS.ws(t, v1) ∨ SS.rs(t, v1)))

∀t1, t2.SS.wp′(t1, t2) ≡ t1 6= t ∧ t2 6= t

∧ (SS.wp(t1, t2)

∨ SS.wp(t, t2)

∧ (SS.wp(t1, t) ∨ ∃v.SS.ws(t, v) ∧ SS.ws(t1, v)))

where

ϕt
inv(t1)

def
= t1 6= t ∧ SS.wp(t, t1)

∧ ∃v1.SS.ws(t, v1) ∧ SS.ws(t1, v1), and

ϕt
pend(t1)

def
= t1 6= t ∧ SS.wp(t, t1)

∧ ¬∃v1.SS.ws(t, v1) ∧ SS.ws(t1, v1).

In other words, any thread t that whose status is not invalid, and
is not a self weak-predecessor can commit. In that case, all state
involving t is cleared, and the status of every weak-predecessor t1
of t is either set to invalid, if t1 had a write-write conflict with t, or
pending otherwise. All weak-predecessors of t are then prohibited
from reading any location which t has written to, or has itself been
prohibited from reading. Similarly, all weak-predecessors of t are
prohibited from writing to any location which t has read or written,
or has itself been prohibited form writing to. Finally, any weak-
predecessor t2 of t becomes a weak-predecessor of any thread t1
which t preceded, or had a write-write conflict with.

Abort The abort(t) action for SS has the guard true and the
transition formula given by the conjunction of

∀t1.SS.finished′(t1) ≡ t1 = t ∨ SS.finished(t1)

∀t1.SS.started′(t1) ≡ t1 6= t ∧ SS.started(t1)

∀t1.SS.pending′(t1) ≡ t1 6= t ∧ SS.pending(t1)

∀t1.SS.invalid′(t1) ≡ t1 6= t ∧ SS.invalid(t1)

∀t1, v1.SS.rs′(t1, v1) ≡ t1 6= t ∧ SS.rs(t1, v1)

∀t1, v1.SS.ws′(t1, v1) ≡ t1 6= t ∧ SS.ws(t1, v1)

∀t1, v1.SS.prs′(t1, v1) ≡ t1 6= t ∧ SS.prs(t1, v1)

∀t1, v1.SS.pws′(t1, v1) ≡ t1 6= t ∧ SS.pws(t1, v1)

∀t1, v1.SS.wp′(t1, t2) ≡ t1 6= t ∧ t2 6= t ∧ SS.wp(t1, t2).

In other words, a thread t is always abort-enabled, and upon aborting
t’s state is completely cleared.

145

	Introduction
	Transactional Memory Verification
	Parameterized Systems
	Parameterized Safety Verification
	Template-Based Candidate Generation
	Implementation and Experimental Evaluation
	Related Work
	Conclusion
	Model of Two-Phase Locking
	Model of Dynamic Software Transactional Memory
	Model of Transactional Locking II
	Model of Strict Serializability

