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Abstract 

Electrophysiological signals across species and recording scales exhibit both periodic and 

aperiodic features. Periodic oscillations have been widely studied and linked to numerous 

physiological, cognitive, behavioral, and disease states, while the aperiodic “background” 1/f 

component of neural power spectra has received far less attention. Most analyses of oscillations 

are conducted on a priori, canonically-defined frequency bands without consideration of the 

underlying aperiodic structure, or verification that a periodic signal even exists in addition to the 

aperiodic signal. This is problematic, as recent evidence shows that the aperiodic signal is 

dynamic, changing with age, task demands, and cognitive state. It has also been linked to the 

relative excitation/inhibition of the underlying neuronal population. This means that standard 

analytic approaches easily conflate changes in the periodic and aperiodic signals with one 

another because the aperiodic parameters—along with oscillation center frequency, power, and 

bandwidth—are all dynamic in physiologically meaningful, but likely different, ways. In order to 

overcome the limitations of traditional narrowband analyses and to reduce the potentially 

deleterious effects of conflating these features, we introduce a novel algorithm for automatic 

parameterization of neural power spectral densities (PSDs) as a combination of the aperiodic 

signal and putative periodic oscillations. Notably, this algorithm requires no a priori specification 

of band limits and accounts for potentially-overlapping oscillations while minimizing the degree 

to which they are confounded with one another. This algorithm is amenable to large-scale data 

exploration and analysis, providing researchers with a tool to quickly and accurately 

parameterize neural power spectra. 

Introduction 

In addition to being one of the first-ever observed features in human electrophysiology dating 

back to the original human electroencephalography (EEG) performed in 19291, neural 

oscillations are widely-studied in neuroscience, with tens-of-thousands of publications to date. 

Close to a century of research has shown that oscillations may aid in coordinating interregional 

information transfer2,3, and suggest that oscillations influence a variety of cognitive, perceptual, 

and behavioral states4,5. Oscillatory dysfunctions have also been implicated in nearly every 

major neurological and psychiatric disorder6,7. Following historical traditions, the vast majority of 

the studies examining oscillations analyze canonical bands of interest, which are approximately 

defined as: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), low gamma (30-60 
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Hz), high gamma (60-250 Hz), and fast ripples (200-400 Hz). Although all of these bands are 

frequently described as oscillations, standard approaches to analyzing these frequency bands 

fail to assess whether an oscillation—meaning rhythmic activity at a particular frequency—is 

truly present. 

Given that there is a great deal of variability in oscillation center frequency across species8, 

age9,10, and cognitive/behavioral states11-13, it is easy to conflate power changes with center 

frequency differences (Fig. 1). This variability in oscillation characteristics is, at best, ignored by 

most approaches examining predefined bands and, at worst, can lead to misinterpretations of 

obtained results. For example, what is thought to be a difference in oscillatory band power 

could, in fact, reflect center frequency differences between groups of interest14 (Fig. 1C). 

Additionally, interpretation of band-limited power differences is confounded by the fact that 

oscillations are embedded within an aperiodic, 1/f signal that is also dynamic and may represent 

both background neural noise as well as physiologically relevant signals (Fig. 1). This means 

that power within a predefined frequency range does not necessarily imply oscillatory power. 

Because of this, a change in aperiodic slope between two groups—which might reflect tonic 

differences in excitation/inhibition balance15—or an event-related change in slope—such as 

seen in visual cortex16—might manifest as a simultaneous low-frequency power decrease and 

high-frequency increase, or vice versa (Fig. 1C). In this framing, changes in power ratios 

between bands may in fact reflect aperiodic slope differences totally free of any change in true 

oscillatory power in any band. 

In addition to the slope of the aperiodic signal, the offset of the aperiodic signal also likely 

carries physiological information, such as total population spiking of the neuronal population17,18. 

Fluctuations in the broadband offset may be linked to the fMRI BOLD signal19, making it a 

potentially crucial bridge between microscale and macroscale neurophysiological and cognitive 

features. Parameters of the aperiodic signal are dependent on cognitive and perceptual16 states, 

and are altered in aging20 and disease21. The fact that the aperiodic signal is itself dynamic and 

may index physiological features that are, at least partially, independent from the physiological 

generators of oscillations, strongly suggests that oscillatory power should be explicitly measured 

separately from this background.  

To summarize, each of these four features—oscillation frequency8-13, oscillation power22,23, 

aperiodic broadband offset17-19, and aperiodic slope15,16,20,24-26—can and do change in 
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behaviorally and physiologically meaningful ways, and may be inter-related27. Therefore, it is 

imperative that they are each carefully parametrized to avoid conflating them with one another, 

and to avoid confusing the physiological basis of “oscillatory” activity that may not be oscillatory 

at all. That is, changes in any and all of those four features can give rise to exactly the same 

change in total narrowband power, while the power of the periodic oscillation against the 

aperiodic signal need not necessarily change (Fig. 1C,D). For example, if activity is analyzed in 

a narrow band without considering the aperiodic signal, an apparent change in e.g., 10 Hz alpha 

power may actually be due to a "see-saw rotation" of the overall PSD, with a pivot point at 

around 20-30 Hz (Fig 1C.iv,D.iv). In this scenario—which is has been observed to occur in a 

task-related manner in human cortex16—power in all frequencies <20 Hz will have decreased 

while power at frequencies >20 Hz will have increased. However, it would be a 

mischaracterization to say that there was a task-related decrease in the alpha band because 

that is not the signal feature that was truly altered. 

Furthermore, reliance on a priori frequency bands may result in the inclusion of aperiodic activity 

from outside the true physiological oscillatory band—whose center frequency and bandwidth 

does not fall exactly within the a priori band—thus masking crucial behaviorally and 

physiologically relevant information (Fig. 1C.ii). Additionally, a priori filtering can give rise to 

changes in apparent oscillatory power that might not arise from a change in the oscillation, per 

se, but rather is caused by a shift in the aperiodic offset or slope (Fig. 2A). This can manifest as 

illusory oscillations where no oscillation exists (Fig. 2B). This is critical because many aperiodic 

signals—such as white noise, pink (1/f) noise, or even a single impulse function—have power at 

all frequencies despite there being, by definition, no periodic oscillation in the signal (Fig. 2B). 

To overcome these limitations of narrowband analyses, we introduce an efficient algorithm for 

automatically parameterizing neural power spectral densities (PSDs) into periodic and aperiodic 

components. This algorithm extracts putative, periodic oscillatory components parameterized by 

their center frequency, power, and bandwidth, as measured from Gaussian model fits; it also 

extracts the offset and slope parameters of the aperiodic signal (Fig. 3). Importantly this 

algorithm requires no specification of narrowband regions to look for oscillations; rather the 

algorithm finds them automatically. While methods for identifying individual differences in 

oscillations exist, they are mostly restricted to identifying the frequency at which the power 

spectrum peaks within a specific sub-band11. This has resulted in a broad literature that has 
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examined at least some aspects of variation within canonical oscillation bands, in particular the 

peak frequency within and across individuals, most commonly of the alpha band11,13. However, 

none of these methods address limitations regarding the use of canonical bands and the 

conflation of periodic activity with the periodic signal; additionally, they often assume only one 

peak within a particular band. Importantly, all of these methods measure total band power rather 

than power of the periodic oscillation relative to the aperiodic signal, further conflating the 

aperiodic and periodic processes. 

 
Figure 1 | Overlapping nature of periodic and aperiodic spectral features. (A) Oscillations manifest as 
narrowband peaks in power above the aperiodic signal (blue dotted line)25,28, such as here, with the strong 8-12 Hz 
alpha peak (blue shaded region) and secondary beta peak (no marked). Narrowband filtering (e.g., 8-12 Hz), without 
careful parameterization of the data, will give a numerical result even when, (B), there is no detectable oscillation 
present (here, artificially removed from (A)). (C, D) This can lead to misrepresentation and misinterpretation of 
physiological phenomena, because apparent changes in narrowband power can mimic several different physiological 
processes. These include: (i) a reduction in true oscillatory power22,23; (ii) a shift in the frequency of the oscillation8-13; 
(iii) a reduction in broadband power17-19; or; (iv) a change in the aperiodic slope15,16,20,24-26. In each case, total 
measured narrowband power is similarly changed (green bar), while only in the true power reduction case (i), is the 8-
12 Hz oscillatory power relative to the aperiodic signal actually reduced (purple bar). Although the case shown in (i) is 
frequently assumed when narrowband power changes are observed, each of the alternative cases can also manifest 
as apparent oscillatory power changes, even when there is no oscillation present, such as in (D). Adjudicating 
between each of the physiological cases in i-iv, and between true and illusory oscillations, requires careful 
parameterization of the power spectrum. 
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Figure 2 | False oscillatory power changes and illusory oscillations. (A) A spectral change, such as seen in 
aging20—and artificially introduced in real data here—manifests as a dramatic difference between the time domain 
signals. This affects apparent narrowband power when an a priori filter is applied. This is despite the fact that the true 
oscillatory power relative to the aperiodic signal is unaffected. (B) Even when no oscillation is present, such as the 
case with the white and pink (1/f) noise examples here (blue and green, respectively), narrowband filtering gives rise 
to illusory oscillations where no periodic feature exists. 
 

 

 

Figure 3 | Algorithm schematic on real data. (A) The power spectral density (PSD) is first fit with an estimated 

aperiodic signal (green), defined by two parameters in semilog-power space: a slope and an offset. (B) The estimated 

aperiodic portion of the signal is subtracted from the raw PSD, the residuals of which are assumed to be a mix of 

periodic oscillatory peaks and noise. (C) The maximum (peak) of the residuals is found. If this peak is above the 

noise floor (2std; red dashed line) then a Gaussian (green) is fit around this peak based on the peak’s frequency, 

amplitude, and estimated bandwidth. The fitted Gaussian is then subtracted, and the process is iterated until the 

noise floor is reached (bottom). These values are used as seeds for the multi-Gaussian fitting in D. (D) Having 

identified the number of putative oscillations, based on the number of peaks above the noise floor, multi-Gaussian 

fitting is then performed on the aperiodic-adjusted signal from B to account for the joint power contributed by all the 
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putative oscillations, together. (E) This multi-Gaussian model is then subtracted from the original PSD from A. (F) 

This is done to give a better estimate of the aperiodic signal—one that is less corrupted by the large oscillations 

present in the original PSD. (G) This re-fit aperiodic signal is combined with the multi-Gaussian model to give the final 

fit. (H) The final fit—here parameterized as a line (aperiodic signal) and two Gaussians (putative oscillations)—

captures >99% of the variance of the original PSD. In this example, the extracted parameters for the aperiodic signal 

are: broadband offset = -21.4 au; slope = -1.12 au/Hz. Two Gaussians were found, with the parameters: (1) 

frequency = 10.0 Hz amplitude = 0.69 au, bandwidth = 3.18 Hz; (2) frequency = 16.3 Hz, amplitude = 0.14 au, 

bandwidth = 7.03 Hz. 

 

METHODS 

Our parameterization method quantifies frequency characteristics of electro- or 

magnetophysiology data. This algorithm decomposes the original PSD into the aperiodic 

component and oscillatory peaks superimposed thereupon. While many methods can be used 

to calculate the PSD to be submitted to the algorithm for parametrization, here, for illustrative 

purposes, we use Welch’s method. The algorithm considers the PSD as the linear sum of an 

aperiodic signal and oscillations, or frequency regions of power over and above this aperiodic 

process, referred to as “peaks”. These peaks are considered to be putative oscillations, and are 

individually modeled as Gaussian functions. Each Gaussian is taken to represent an oscillation, 

whereby the three parameters that define a Gaussian are used to define the oscillation (Fig. 3). 

This formulation fits the power spectrum as: 

𝑃 = 𝐿 +	∑ 𝐺(
)
(*+  ,  (1) 

Where power, P, is a linear combination of the aperiodic signal, L, and there are N total 

Gaussians, G. Each Gn is a Gaussian fit to a peak, for N total peaks extracted from the power 

spectrum, modeled as: 

𝐺( = 𝑎 ∗ 𝑒𝑥𝑝(
2(324)6

786 ), (2) 

Where a is the amplitude, c is the center frequency, w is the bandwidth of the Gaussian, and F 

is the vector of input frequencies. 

The aperiodic signal, L, is modeled using an exponential function in semilog-power space (linear 

frequencies and logged power values) as:  
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𝐿 = 𝑏 − log	(𝑘 + 𝐹@),  (3) 

Where b is the broadband offset, χ is the slope, and k is the “knee” parameter, controlling for the 

bend in the aperiodic signal29, with F as the vector of input frequencies. Note that this 

formulation is equivalent to fitting a line in log-log space, when k=0, which we refer to as the 

“fixed” model. Fitting with k allows for modelling bends, or knees, in the aperiodic signal that are 

present in broad frequency ranges, especially in intracranial recordings29. 

The final outputs of the algorithm are the parameters defining the best fit for the aperiodic signal 

and the N Gaussians. In addition to the Gaussian parameters, transformed parameters are also 

returned, in which we define: (1) center frequency as the mean of the Gaussian; (2) amplitude of 

the peak as the distance between the peak of the Gaussian and the aperiodic fit (this is different 

from the amplitude in the case of overlapping Gaussians), and; (3) bandwidth as 2std. Notably, 

this algorithm extracts all these parameters together in a manner that accounts for potentially 

overlapping oscillations; it also minimizes the degree to which they are confounded and requires 

no specification of canonical oscillation frequency bands. 

To accomplish this, the algorithm first finds an initial fit of the aperiodic signal in log(power) by 

linear(frequency) space (Fig. 3A). This first fitting step is crucial, and not straightforward, as any 

normal fitting method such as linear regression, or even robust regression methods designed to 

account for the effect of outliers on linear fitting, can still be significantly pulled away from the 

aperiodic region due to the overwhelming effect of the putative oscillation peaks. To account for 

this, we introduce a procedure that attempts to fit the aperiodic aspects of the spectrum only. To 

do so, initial seed values for offset and slope are set to the amplitude of the first frequency in the 

PSD and -2.0 au/Hz, respectively (the latter being a good-enough guess for least-squares fitting 

based on empirical slopes24); these seed values are used to estimate a first-pass fit. The 

original PSD is then subtracted from this fit, creating a flattened spectrum, from which an 

amplitude threshold (set at the 2.5 percentile) is used to find the lowest amplitude points among 

the residuals, such that this excludes any regions with peaks that have high amplitude values in 

the flattened spectrum. This approach identifies only the data points along the frequency axis 

that are most likely to not be part of an oscillatory peak, thus isolating the parts of the spectrum 

that are most likely to represent the aperiodic signal (Fig. 3A). A second fit of the original PSD is 

then performed only on these frequency points, giving a better estimate of the aperiodic signal. 

This is, in effect, similar to approaches that have attempted to isolate the aperiodic signal from 
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oscillations by fitting only to spectral frequencies outside of an a priori oscillation20, but does so 

in a more unbiased fashion. The percentile threshold value can be adjusted, if needed, but in 

practice rarely needs to be. 

After the estimated aperiodic signal is isolated it is regressed out, leaving mostly the non-

aperiodic features (putative oscillations) and noise (Fig. 3B). From this aperiodic-adjusted (i.e., 

flattened) PSD, an iterative process searches for peaks that are then each individually fit with a 

Gaussian (Fig. 3C). Here, each iteration finds the highest peak in the aperiodic-adjusted 

(flattened) PSD. The location of this peak along the frequency axis is extracted, along with the 

peak amplitude. These stored values are used to fit a Gaussian around the peak, however a 

standard deviation is still needed. Thus, the standard deviation is estimated from the full-width, 

half-maximum (FWHM) around the peak by finding the distance between the half-maximum 

amplitudes on the left- and right flanks of the putative oscillation. In the case where there are 

two overlapping oscillations, this estimate can be very wide, so the FWHM is estimated as twice 

the shorter of the two sides. From FWHM, the standard deviation of the Gaussian can be 

estimated via the equivalence: 

𝑠𝑡𝑑 =
3DEF

7√7H(7
  (4) 

This estimated Gaussian is then subtracted from the flattened PSD, the next peak is found, and 

the process is repeated. By default, this oscillation-search step halts when it reaches the noise 

floor, based on a parameter defined in units of the standard deviation of the flattened spectrum 

(default = 2 std). Optionally, this step can also be controlled by setting an absolute amplitude, 

and/or a maximum number of Gaussians to fit. The amplitude thresholds (relative or absolute) 

determine the minimum amplitude beyond the noise floor that a peak must extend in order to be 

considered to be a putative oscillation. Once the iterative Gaussian fitting process halts, in order 

to handle edge cases, Gaussian parameters that heavily overlap (within 1.5 std), and/or are too 

close to the edge (<= 1.0 std) of the spectrum are then dropped. The remaining collected 

oscillation parameters for the N putative oscillations (center frequency, amplitude, and 

bandwidth) are used as seeds in a multi-Gaussian fitting method (Python: 

scipy.optimize.curve_fit). Each fitted Gaussian is constrained to be close to (within 1.5 

std) of its original guessed Gaussian. This process attempts to minimize the square error 

between the flattened spectrum and N Gaussians simultaneously (Fig. 3D). 
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This multi-Gaussian model is then subtracted from the original PSD, in order to isolate an 

aperiodic signal from the modeled and parameterized oscillatory peaks (Fig. 3E). This 

oscillations-removed PSD is then re-fit, allowing for a more precise estimation of the aperiodic 

signal (Fig. 3F). This, when combined with the equation for the N-Gaussian model (Fig. 3G), 

gives a highly-accurate parameterization of the original PSD using few features (Fig. 3H; in this 

example, >99% of the variance in the original PSD is accounted for by the combined aperiodic + 

periodic model). Goodness-of-fit is estimated by comparing each fit to the original power 

spectrum in terms of the RMSE error of the fit as well as the R2 of the fit. Optional parameters 

allow for tuning algorithmic performance based on different datasets, such as invasive LFP 

versus M/EEG. These optional parameters can define: (1) the maximum number of peaks; (2) 

limits on the possible bandwidth of extracted peaks, and; (3) absolute, rather than relative, 

amplitude thresholds. 

Code for this algorithm is available as an open-source Python package, with support for Python 

>= 3.5, under the Apache-2.0 license, and is available on the Python Package Indexii. The 

package includes documentation and a test-suite, with a series of tutorials also available on the 

project GitHub pageiii. Its package dependencies are limited to numpy and scipy (>= version 

0.19). On contemporary hardware (3.5 GHz Intel i7 MacBook Pro), a single PSD is fit in 

approximately 10-20 msec. Because each PSD is fit independently, this package has support 

for running in parallel across PSDs to allow for high-throughput parameterization. 

DISCUSSION 

Despite the ubiquity of oscillatory analyses—tens-of-thousands of peer reviewed publications 

indexed in PubMed—there are several analytic assumptions and potential artifacts that 

significantly impact the physiological interpretation of previous oscillatory research. In brief: 1) 

oscillations should be measured relative to the aperiodic (1/f) signal because, strictly speaking, 

oscillations are defined as any regions of the power spectrum that rise above the 1/f 

background28 (Fig. 1); yet this is rarely done, and; 2) most tools for quantifying oscillations 

assume that oscillations exist even though they may not even be present in the signal (Fig. 2); 

verification of the presence of an oscillation is also rarely done. Without careful parameterization 

                                                 
ii
 https://pypi.python.org/pypi/fooof/ 

iii https://github.com/voytekresearch/fooof/ 
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of all the components of the power spectrum, it is easy to misinterpret the physiological 

relevance of any narrowband signal changes (Fig. 1). 

To address this problem, we introduce a novel method for algorithmically extracting oscillatory 

components in electro- and magnetophysiological data. This algorithm addresses often-

overlooked problems in cognitive and systems neuroscience. In particular, implicit reliance on 

canonical frequency bands can lead to both false positive, and false negative, results. For 

example, apparent group differences in oscillatory power may be the result of shifts in the center 

frequency of the oscillation (Fig. 1C) and not changes in true oscillation power. This can be 

illustrated by aging research wherein it is well-accepted that alpha frequency decreases with 

aging, yet there have also been reports of a decrease in alpha power with age9,10. If it is the 

case that younger adults have a 10 Hz alpha center frequency, while older adults have an 

equally high-power alpha that has slowed to 8 Hz, canonical frequency band analysis in the 8-

12 Hz alpha range will give the false appearance of lower alpha power in older, relative to 

younger, adults due to the alpha oscillation moving outside the a priori alpha band, despite the 

fact that power need not have changed. 

In another example, changes in the aperiodic signal, as seen with aging20 and behavior16, will 

shift total narrowband power despite the fact that power in a narrowband oscillation has not 

changed relative to the aperiodic process7 (see Fig. 2A). Note that the see-saw rotation 

phenomenon of the aperiodic signal parsimoniously explains the ubiquitous negative correlation 

between low frequency (<30 Hz) and high frequency (> 40 Hz) signals30. That is, when a full 

spectral parameterization is performed, rather than multiple narrowband analyses, it becomes 

clear that, rather than there being multiple interacting oscillatory processes such as an alpha 

oscillator and a gamma oscillator operating in a push/pull fashion, there may only be one 

physiological process that is changing: the slope of the aperiodic signal7. A change in the 

aperiodic slope also manifests in the time-domain as oscillatory amplitude and raw voltage 

differences (Fig. 2A). Given that such differences in the slope of the aperiodic signal have been 

observed across many different groups, such as in aging20 and disease21, it may be that 

differences in time-domain averaging based analyses, such as with event-related potentials or 

event-related spectral perturbations, may be partially explainable by aperiodic slope differences 

between groups or across conditions. 
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There are currently several algorithms for identifying oscillations in specific ways that have 

attempted to address some of these concerns individually, but never conjointly. In particular, an 

approach called BOSC (Better OSCillation Detector)31 is akin to the one presented here, 

beginning by fitting a linear regression to the log-log PSD to estimate the aperiodic signal. This 

is used to determine a power threshold, which is then used in combination with a duration 

threshold to define oscillations in wavelet-based decompositions of the time series data. 

However, a significant limitation of this and other similar methods is that a simple linear fit of the 

background spectrum can be significantly skewed by the presence of oscillations—especially 

large oscillations—and therefore mischaracterizes the aperiodic signal. This suboptimal 

aperiodic signal fit, in turn, hampers oscillation detection because the background fit is used to 

set a power threshold for extracting oscillations. Another similar approach is the irregular-

resampling auto-spectral analysis (IRASA) method, which seeks to explicitly separate the 

periodic and aperiodic components through a resampling procedure32. Though conceptually 

similar, this resampling method is computationally much more expensive, prohibiting large-scale 

deployment, and has trouble separating large amplitude oscillations as it tends to blur them in 

frequency space. Other methods, such as lagged-coherence33, offer time-series analysis that is 

designed to differentiate rhythmic activity from transients, while principle component variants fail 

to separate periodic and aperiodic features, and require manual component selection18. While 

we show that the aperiodic signal is of significant physiological and behavioral interest, all of 

these methods treat it as a nuisance variable rather than a feature to be explicitly modeled. 

Further, none of these techniques offer full parameterization, making large-scale analysis and 

data aggregation difficult. Our algorithm addresses these limitations through improved 

background fitting, using an iterative approach that considers the background and oscillations 

together. 

Traditional canonical frequency band analyses commit researchers to tacit acceptance of 

predefined oscillatory bands having a functional role, rather than considering the underlying 

physiological mechanisms that may generate different spectral features. Further, they fail to 

address inter-individual differences. For example, variations in peak-frequencies within 

oscillation bands have functional correlates and are of theoretical interest13. By providing a tool 

to more precisely parameterize such features, further study of such features is facilitated. In 

addition, recent advances in cross-frequency coupling analyses, such as phase-amplitude 

coupling (PAC), have provided a powerful means for probing the potential mechanisms of 
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neural communication3,34-36. These analyses typically rely on canonical frequency bands, which 

is problematic given that true multiple-oscillator PAC is known to exhibit different phase coupling 

modes as a function of cortical region35,37. Additionally, the appearance of interacting oscillators 

can just as easily arise as an artifact of narrowband signal processing methods38,39. With proper 

parameterization of neural power spectra in such a way as to first characterize oscillatory 

components, it may be possible to identify phase coupling modes across brain regions, task, 

and time, thus increasing the specificity and accuracy of cross-frequency coupling analyses. 

Relying on a priori frequency bands and averaging spectral features can also blur critical 

variability. There may exist a wide range of low gamma frequencies within subjects such that 

averaging across those bands decreases overall statistical power40. Furthermore, specific 

frequency bands, such as alpha, have been linked to a wide-array of sometimes-conflicting 

processes, such as inhibition or cortical potentiation22, periodic sampling41, and prediction42. It 

may be that many different physiological processes—including changes in the slope or offset of 

the aperiodic signal, and periodic oscillatory changes—are being conflated43, resulting in many 

different physiological processes being grouped together as “oscillatory alpha”44. 

Our approach is a principled method for quantifying the neural power spectrum. Such an 

algorithm may allow us to better link macroscale electrophysiology to microscale synaptic and 

firing parameters45-47, providing a better understanding of the relationship between microscale 

synaptic dynamics, mesoscale LFP and ECoG/iEEG, and the macroscale EEG and MEG48. Our 

parameterization approach increases analytical power by disentangling the aperiodic and 

periodic components of neural power spectra. This allows researchers to take full advantage of 

the rich and meaningful variability present in neural field potential data, rather than treating that 

variability as noise to be averaged away. This approach has the potential to provide greater 

insight into both the physiological mechanisms underlying oscillations, as well as the role that 

oscillatory variability may play in explaining individual differences in cognitive functioning in 

health, aging, and disease. Finally, because of the speed and ease of the algorithm, and 

interpretability of the fitted parameters, this tool opens avenues for the high-throughput, large-

scale analyses that will be critical for data-driven approaches to neuroscientific research49. 
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