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1. Introduction

Many studies have considered censored samples which
are Type-l, Type-Il, hybrid and progressive hybrid
censoring scheme. The exponentiated-Weibull distribution
has been utilized for the analysis of life testing and
reliability data. Recently, progressive hybrid censoring
schemes (PHCSs) have become quite popular in a life
testing problems and reliability analysis. Kundu and
Joarder [6] proposed a PHCS, which is a mixture of
Type-11 progressive and hybrid censoring schemes, Childs
et al. [2] refer to this censoring scheme as a Type-1 PHCS
and proposed Type-lIl PHCS to overcome the obvious
drawback of the Type-I PHCS, that is maximum likelihood
estimator (MLE) may not always exist. Type-l and Type-
Il generalized progressive hybrid censoring schemes
(GPHCSs) proposed to overcome the drawbacks of the
Type-1 PHCS and Type-Il PHCS, respectively. Cho et al.
[3] proposed a new censoring scheme called GPHCS to
overcome the drawback of the Type-l PHCS. One
limitation of the Type-1 PHCS, that is cannot be applied it
when very few failures may occur before time T
accordingly the MLE for a parameter of underling lifetime
model of observations may not be computed or its
accuracy will be extremely low. Therefore, Cho et al. [3]
suggested this Type of censoring to allow the experiment
to continue beyond time T and observed a pre-specified
number of failures if very few failures had been observed
up to time T. Under GPHCS the experimenter would

ideally like to observe m-th failures, but is willing to
accept a bare minimum of k-th failures. Lee et al. [8]
refer to the GPHCS as a Type-1 GPHCS and proposed the
Type-l1l GPHCS to overcome the drawbacks in Type-II
PHCS is that it might take a very long time to observe
m-th failures and complete the life test. Type-1l GPHCS
is a modified for Type-1l PHCS by guaranteeing that the
test will be completed at time T,, therefore, T, represents

the absolute longest time that the researcher is willing to
allow the experiment to continue. They suggested this
type of censoring scheme to a guarantee the experiment
terminated at a pre-fixed time.

Some recent studies on Type-lI and Type-Il GPHCSs
have been carried out by many authors, including, Cho et
al. [3] considered the Bayesian and maximum likelihood
estimations for the entropy of Weibull distribution based
on Type-l GPHCS. Cho et al. [4] obtained the exact
distribution of the MLE as well as exact lower confidence
bound for the exponential parameter under Type-1 GPHCS.
Lee et al. [7] obtained the MLE for the unknown
parameter of exponential distribution under Type-II
GPHCS. They derived to the exact and approximate
conditional inference for the proposed estimator under
Type-11 GPHCS. Lee et al. [8] derived to exact inference
of the unknown parameters under the assumptions that the
lifetime distributions of different causes are independent
identically distributed (11D) exponential competing risks
model under Type-l GPHCS. Ashour and Elshahhat [1]
obtained the MLEs and Bayes estimators for the unknown
parameters of Weibull distribution based on Type-II
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GPHCS as well as they developed Bayes estimates and
Bayes risks under a square error loss (SEL) function.
The rest of the paper is organized as follows: In Section

2, Type-I and Type-1l GPHCSs are described. In Section 3,

the MLEs are introduced for the unknown parameters of
exponentiated Weibull (EW) distribution under Type-I and
Type-1l GPHCSs as well as some special cases are given,
approximate asymptotic variance-covariance (V-Cov)
matrix and approximate confidence interval (Cl) for the
MLEs using asymptotic distribution are obtained. In
Section 4, the Bayes estimators and Bayes risks are developed
under a SEL function and using independent non-informative
priors for the unknown parameters of EW distribution
based on Type-1 and Type-Il GPHCSs. It is clear that, the
Bayesian and non-Bayesian estimators for EW parameters
are not in closed forms, therefore, in Section 5, one
numerical example is considered to illustrate the proposed
estimators by using MathCad package version 14. Finally,
we conclude the paper in Section 6.

2. Model Description and Notation

Type-1 and Type-Il GPHCSs are proposed to overcome
the drawbacks of the Type-l and Type-ll PHCSs,
respectively, and they can be described as follows

2.1. Type-1 GPHCS

This censoring scheme proposed by Cho et al. [3] and
can be described as follows: Consider a life-testing
experiment in which n identical units are put to testing.

Assume that X(1)' X(z)'---' X(n) denote the corresponding

lifetimes from a distribution with cumulative distribution
function (CDF), F(x), and probability density function

(PDF), f(x). The fix integers k,me{L2,...,
fixed, such that k <m and Rj, j=12,..,

n} are pre-
m, are pre-fixed

R:+m=n and

integers which are satisfying ZJ 4R

Number of removals

//

Number of removals

//

Number of removals

//

Te(O,
R, of the remaining units are randomly removed.

Similarly, at the time of the second failure, R, of the

remaining units are removed, and so on. This
process continues until to terminate at time

T*=max{X(k),min{X(m),T}}, at this time all of the

oo) is a pre-fixed time. At the time of first failure,

remaining units are removed from the experiment. Let D
denote the number of observed failures up to time T. If
the m-th failure occurs before time T , terminate the
experiment at X(m) and the failures X(k+1),...,X(m) are

not observed. If the m-th failure occurs after T , or
otherwise, the experiment terminate at maX{X(k),T} asa

schematic illustration in the Figure 1.
Based on the Type-1 GPHCS, the observed data will be
one of the following three forms:

Case-1: {X(l)' X(z),..., X(k)}.

Case-ll : {X(l)' X(Z)""'

if T < X(k) < X(m)y
X(k)""* X(D)}v ifX(k) <T< X(m)‘
Case-lll :{X(l)’x(Z)""’ X(k)""' X(m)}' ifX(k) < X(m) <T.

The likelihood function of the Type-I GPHCS can be
written in the following form

L (6] X)

— Hlf( ) )[1 F( nt H)TJ A (T:6),

(1

where, =123 for Case-l,Il and Ill, respectively,
V]_:k, VZZD, V3=m, A,(T,Q)Z:L, for i=1,3,
7o (T30) =[1- F(T;0) O RY =n—k- 3

]1]’

Vi m
RDH:n—D—Z?:lRJ- and 7, = Jl_:l Z Ry +1).

R, Rpy Rj:_
w/ o w/ ../ () Case-I
X T X X,

Experiment
End

Rk Ra R;%
'/ -/ _/ ' ) Case-II
X, X T X o "

Experiment
End

R ik Rru
./ ./ o O Case-II
X, X, T

Experiment
End

Figure 1. Schematic illustration of Type-1 GPHCS
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Number of removals

//

Number of removals

Ry, 0 0 0 Ry
-/ // / -/ & {) Case-I
X X Xm—l) Xdl T:

'/

Number of removals

//

Experiment
End
Ry R,
/ / =) {3 Case-1I
X T, X, T,
Experiment
End
Ry, Ry, Rpa
/ o ../ / ° ) Case Il
X T, X, 5 X
Experiment
End

Figure 2. Schematic illustration of Type-11 GPHCS

2.2. Type-1l GPHCS

This censoring scheme proposed by Lee et al. [7] and
can be described as follows: Consider a life test in which
n identical items are put on test. Assume that

X(l),X(Z),...,X(n) denote the corresponding lifetimes
from a distribution with CDF F(x) and PDF f(x). The
integer m, times T; and T, are pre-assigned such that
m<n and 0<T;<T, <o, and also Ry,R,,...,R, are

pre-assigned integers satisfying ZT=1R1 +m=n.Let D

and D, denote the number of observed failures up to time
T, and T,, respectively. At the time of first observed
failure, Ry of the remaining items are withdrawn from the
test at random. Following the second observed failure, R,
of the remaining items are withdrawn and so on. This
process continues until the termination time
T*:max{Tl,min{X(m),Tz}}, at this time all of the

remaining units are removed from the experiment. If
X(m)<T1, then instead of terminating the test by
withdrawing the remaining R, items after the m-th

failure, the experiment continue to observe failures but
without any further withdrawals up to time T, therefore,

R;j=0, for j=mm+1..D. If T;< X(m) <T, ,
terminate the test at X(m). If X(m) >T, , terminate the

test at time T,, as a schematic illustration is depicted in

Figure 2.
Based on the Type-11 GPHCS, the observed data will be
one of the following three forms:

Case-l Z{X(l),..., X(m)' X(m+l)""’ X(dl)}’ if X(m) <T1 <T2,

Case-ll: {X 1), X(gg) -+ X(m) |

Case-lll: { X 1),..., X

if T, < X(m) <Tz

(dz)""’x(m)}' ile <T2 <X(m).

The likelihood function of the Type-l1l GPHCS can be
written in the following form

L (6]X)

_5Hf(() )[1 F(()H)}RjA(T,;H), @

j=1
where, i =1,2,3, for Case-l, Il and Ill, respectively, S; = Dy,
0)=[1-F(T,:0)] P for
respectively, A, (T,;0) =1,
m-1 * d
Rppsg =N—dy - 2 aRi » Ropu=n-dp-3, 2 R;

82 =m, S3=D2, AI(TT
i=13 and 7=12,

m

Si
and &, H Z R +1).

3. Maximum Likelihood Estimators

EW family introduced by Mudholkar and Srivastava [9],
which is a simple generalization of well-known two-
parameter Weibull distribution and is obtained by
introducing one additional shape parameter. The EW
distribution has been applied in areas of reliability analysis,
quality control, duration and failure time modeling.
Mudholkar et al. [10] presented and illustrated some
applications of the EW distribution in reliability and
survival studies. Mudholkar and Hutson [11] illustrate
usefulness of the EW distribution in modeling extreme
value data using the floods and Nassar and Eissa [12]
derived to expressions for the mode of the EW distribution.

Suppose that the observed failures are 11D from three-

parameter EW (e, 8,6) distribution with PDF
6-1

f(xa,p.0)= L _1e_(;]a 1—e_('2ja

x>0,a, B, 0>0,
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and CDF is

F(xa B.0)= 1—9_[;j , (@))

x>0, B,0>0,

where, o and @ both are the shape parameters and g is
the scale parameter.

The EW distribution has a two very well-known
lifetime distributions as a special cases, if =1 and
6 =1, the EW distribution (3) reduced to exponential
distribution with g is scale parameter and if 6 =1, the

EW distribution reduced to Weibull distribution with two-

parameter « is shape parameter and g is scale parameter.

Assuming that the failure times of the experimental
units are follows the three-parameter EW distribution with
PDF (3) and CDF (4), then the MLEs of the EW
parameters can be obtained under Type-l and Type-II
GPHCSs, respectively, as follows:

3.1. MLEs of EW Parameters Based on Type-
I GPHCS

Based on the PDF and the CDF of EW distribution (3)
and (4), respectively, then the likelihood function of the
Type-1 GPHCS (1) will be

Li (@] X)
-1
N\ a
Vi [xm] [(n]
I
=7 ad I x% e ’ 1-e “ (5)
p* ) i4 (i)
R.
o)
\a
[’m]
B .
x[1-|1-¢e Ai(T,Q),
where, 1=12,3, @ is parameter vector of the EW

distribution, i.e., @ =(a, 8,0),
Vi =k, A(T;@)=1 R =n—k- Z _,Rj , for Case-l,

P RD+1
v
V, =D, Ay (T;@)=|1-|1-e \/ :
RB+1:n—D—zlj3=1Rj, for Case-ll,
and
Vz=m, A(T;@)=1, for Case-llI.

Additionally, the corresponding log-likelihood function
of (5) can be written as follows

li (2] X) o {Vi '09£;_Z]+(“_1)z\?=1|09x(j)
z U+ (0- 12\?_llog(1—e_(u)aj (6)

+ Z\J":1 R; log {1— [1_9—(u e j‘g}rwi (T:o)}.

: X(i)
here, =123, U=—>,0Q=
where, i ; Q

T
i

W (T; @) =0, for Case-l,

0
W, (T;@) = Rpy Iog{l—[l—e(‘?)a] } for Case-Il,

and
W3 (T;@) =0, for Case-llI.
Differentiating (6) with respect to «,f and 6 ,
respectively, we get
o (e]X)
oa

- %(1—(1 log )+ Z\J/':l

=]
Ho-)Y e U“Iogu{l—e(u) j

V.
log X(j)~ J':1U “logu

A
HZ\J/'lRJe "‘Iog(U)[l—e_(U) j
o1
x{l—[l—e_(u)aj oW (T )
o
o (efX) v
op Z

-1 (UVZ, e -1
_“(ﬁ )Zf'le O [H v) J

(5 e Oyt |
B j=1 i
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where, i=1,2,3, W, (T;@)=0, for i=13,

oa

* _ o
= —0Rp.qe Y Q"

a 6-1 a 0
ongQ(l—e(Q) j {1—(14(‘3) j ] ,

oW, (T; 0 « ol o)
%:%RM ©"q (1_8 @ j

and

oW, (T ;Q) - —RB+1 (1— e_(Q)a ja

00
o7l
x log [1—e_(Q)a ][1_[1_53—((?)“ ] ]

Equating the first derivations (7) to zero and solving for
@, and @, we get the MLEs &, and 6 of o, and

6 based on Type-I GPHCS, respectively, in the following
forms

Gi(4.6)
=i {1y fog /) X4, 1ogu =% tog

s &i -1
(0 szf(w%ummmnpffw)j

. 6 \Gi-1
+¢9Z\J/' 1Rje uéi log (U )[l—e_(u) ' ]
-1
N -1
x 1_[1_e(u)0‘| j& _—BW;(T,Q)} .
Qi

Sy >]M}

o4
: X(i) T .
where, i=123 U=—"%, Q=—, W;(T;2)=0, for
i Bi
i=13,
oW, (T; @)
oa;

A~ w0V &
= —GRpe Q) Q%
1

& é|—1 ai éi
xlogQ(l—e(Q)lj 1—[1—e(Q)'j ,

oW, (T ,é))
op,
9 G - & é|—l
a, S RDe Ao [l—e(Q) I ]

i
-1

5\
X 1—(1—6_((2)0[I ] :

W, (T: @)
06,

and

ai \ Gi
:—Rgﬂ(l—e_(Q) ' ] Iog(l—e_(Q) J
-1

NG
Xl_@_gwfj

Clearly, the MLEs &,B and  of EW parameters «, 3

and 6 based on Type-l GPHCS, respectively, can be
obtained by solving set of nonlinear equations, this needs
computer facilities and numerical techniques. Also, Cho et
al. [4] results can be obtained as a special case from (6), if

putting « =6 =1, we get the MLE /;’ in the case of
exponential parameter g, if putting =1, we get the
MLEs ¢ and ﬁ in the case of Weibull parameters « and
S, respectively.
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3.2. MLEs of EW Parameters Based on
Type-11 GPHCS

Based on the PDF and the CDF of EW distribution (3)
and (4), respectively, then the likelihood function of the
Type-11 GPHCS (2) can be rewritten as follows:

Li (@/X)

a 0-1
- [X(n] [X(n]
=0 05_(9 I_II x%le p 1-e / ®)
pe | =)
I oRi
|0
B
x[1-|1-e A (T o),
where, =123, @ is parameter vector of EW
distribution, i.e., @ =(«, 8,6),
o TRD1+1
_[Ll]
S =Dy, A(Tio)=|1-|1-e \/ :
Raﬁl = n—dl—zi";lRi : for Case-l,
S;=m, A(T,;0)=1, for Case-1l,
and
0 RE)2+1
_[Lz]

Sg=Dy, Ag(Tpiw)=|1-[1-e |/ :
Rpy41=N-dy = 12 2R for Case-11l.

Additionally, the corresponding log-likelihood function
of (8) will be

' log[1- <>“]
I G
2\
+ 2R Iog{l—[l—e_(u) j ]
+Wi(TT;Q)}’
where, i=12,3 U—m r=12 for i=13
) — i) 1 - ﬁ i) — 4 ] — i)

respectively,

a 17
_[11)
Wi (Ty; @) = Raﬁl log|1-|1-¢e B , for Case-1,
W, (T, ;@) =0, for Case-Il,
and
_(sz‘” ’
Wy (T,;@) = Rp,.q log| 1-| 1-e p , for Case-11I.

Differentiating (9) with respect to «,f and 6 ,
respectively, we get

ol (@ X)

_Si Si Si (@
_;(1—alogﬁ)+zjzllogx(j)— (U logu

1
+(0-)Y % e ) U logu [1—e‘(u) j

N
“Iogu[l—e_(u) J

—6’2?'1R1e
0 -1
{ _[1_e(U)a] ] LW (Ti0)
oa
(<X
op
“ e

a(@—l)zsl e_(U)aU“[l—e_(U)a ]1
B 1=

j=1""]

P -1
X{l_{l_e(uf‘} } LW (Tri0)
op

ol (@ X)

SI Si —(U o
. . 00
3Ry - g1

-1
+0‘7st' Rie )" U“[l—e_(u)aJ

and
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T

where, =123, W, (T;;@)=0, Q :FT , 7=12, for
i =1,3, respectively,
8W| (Tz-;Q) _ —QRBT +1ei(Q)a Qa Iog Q
oa
6-1 o7t
X(1—e‘(Q)a ) 1—[1—e‘(Q)a J
6Wi (Tf,a)) ol R* o (Q)a Qa
Gﬂ ﬂ D +1
6-1 o7t
(1 e (Q” j 1—(1—e‘(Q)a ] ,
and

0
oW (T, @) * Q"
ST =—Rp, 4 |1-¢€

(04 o 0
xlog(l—e_(Q) jl_(l_e‘(Q) ]

Equating the first derivations (10) to zero and solving
for @, and 6, we get the MLEs &, and 6 of a, 8

and @ based on Type-ll GPHCS, respectively, as in the
following forms

a; (ﬁu 5%)
= (1-dilog /1) [ 25,07 logu - g

) & -1
—(é, —1)25' e W)y Iogu(l—e_(u) J

j=1

Si
+HZJ'1RJe

and

i)

-S{ERy [
xlog[l—e_(u) 'j 1—[1—e_(u) ']

where, i=1,2,3, WZ(T,;@):O, U:@, Q=-~%,

6

=12, for i =13, respectively,

M:_g RD e Q)% Q% logQ
oq;
~ -1
. éi—l & 9|
x[l—e Q) 'j 1—[1—e_(Q) ] ,
oW, (Tf;é) ae, RS e Q) ol
of; B
~ -1
-~ éﬁ—l dl 6
(1 e(Q)') 1—[1—e_(Q) J ,
and )
W (T50) v (. (o jé"
—651, = RDﬁl(l e
~ -1

N PN
xlog(l—e_((‘))wI j 1_(1_(;_((3) ' J

Clearly, the MLEs &,B and  of EW parameters «, 3

and & based on Type-ll GPHCS, respectively, do not
result in closed forms, this needs computer facilities and
numerical techniques to evaluated numerically. Some
special cases can be obtained from (9), Lee et al. [7]
results in the case of exponential distribution by putting
a=60=1. Also, Ashour and Elshahhat [1]) results in the
case of Weibull distribution by putting 6 =1.

Asymptotic V-Cov matrix of the MLEs for EW
parameters @ can be obtained by inverting the Fisher

information matrix I(), which is can be obtained by
taking the negative expectation for the second partial
derivatives of the natural logarithm likelihood function as
h(ofx)

> , a,b=123.
0" w

lab (Q) = _E{
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Cohen [5] concluded that the approximate V-Cov
matrix may be obtained by replacing expected values by

their MLEs, i.e., estimating 1o (@) by Ig* (&), then

1o (@)
- -1
‘32|i (“_’lﬁ) 52|i (Qlﬁ) azli (Qlﬁ)
aa’ dadp 2006
| (ex)  (elx) A (elX)
B dfoa 0B’ 8606
Ci(elX)  N(ex) A% (¢]X) (a=q) D)
| 06« o060p 00° —(ﬂ:ﬁ)
(0=0)
-, . A
Ou O-a,ﬂ Cu.0
= 6-,B,d 6'2 6ﬁ,9 .
69,05 69,0: &5

Based on the log-likelihood functions (6) and (9), the
approximate asymptotic V-Cov matrix for the MLEs of
the three-parameter EW distribution can be obtained based
on Type-l and Type-ll GPHCSs, respectively. The
elements of the observed information matrix (11) are
obtained based on the log-likelihood functions of Type-I
GPHCS (6) and Type-Il GPHCS (9) and reported in
Appendix A and B, respectively.

Under the regularity conditions for the asymptotic
properties of MLEs of EW parameters ¢ , § and &,

the asymptotic normality of the MLEs ¢; , ,éi and
éi is
@~ N(Q,Ial(@)). The 100(1-¢)% approximate Cls

approximately — multivariately normal, i.e.,

for EW parameters a , B and @ based on Type-l and
Type-1l GPHCSs can be obtained usmg the asymptotic
normality of the MLEs ¢;, ﬂ, and €i, respectively, as

follows:
~ ~2 5 ~2
Uit 2;9n0q, i £25240

and 6 +2,/2.4/65,1=1,23,

where, 62, 6'2, and 67 are the elements on the main

diagonal of the approximate asymptotic V-Cov matrix
(11), respectively, and Zg/2 is the percentile of the

standard normal
gf2-th.

distribution with upper probability

4. Bayes Estimators

Following Singh et al. (2005), the Bayes estimators can
be develop for the EW parameters «, # and & based on
Type-1 and Type-1l GPHCSs, we consider independent
non-informative priors g;(«), 9,(£) and g3(0), given as

gl(a):%, c>a>0
w(p)=7 A0
and
93(0) =%, 6> 0. (12)

Using a very well-known symmetric loss function is the
SEL function, £(8,0) =(6—-6)% , to obtain the Bayes

estimators for the three parameter of EW distribution
under Type-l and Type-ll GPHCSs. Under this loss
function, the Bayes estimator is the posterior mean as well
as the Bayes risk is the posterior variance. The Bayes
estimator is defined as

0=[0-z(6X)do
(C]
4.1. Bayes Estimators of EW Parameters
Based on Type-1 GPHCS

Based on the likelihood function (5), the non-
informative priors (12) and using the Bayes theorem, the
joint posterior distribution of @ given data X can be

written with proportional as follows
(a)|X)oc7r(a) (a)|X)
hence,

7(]X)
_ Vi

v @0} e ) (1-e—(u>“] (13)
op\ p> ) = ()

x[l—[l—e(u r JQT A(T:o),

the normalizing constant y of (13) is given by

gvllvlaia 70:9_1
II Io i I X5)e ©) [1_9 © )

INaN
x 1—(1—e(u) j A (T;0)dad pdo,
i X(i)
where, i=12,3, o=(a,$.0), U :7,
V; =Kk, A(Te)=1 R =n—k— rzilRi,forCase-l,
0 R,|5+1

. IJ
V, =D, A (T;@)=|1-|1-¢ [ﬂ

RB+1=n—D—Zi21Ri, for Case-Il,
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and

Vz=m, A(T;@)=1
Marginal posterior densities of the EW parameters

a, S and @ can be obtained, respectively, by integrating

(13) with respect to the other two parameters as follows

for Case-llI.

v
f(alx)=w1 LgVi l‘llx( )Ml, c>a>0, (14

f(8]x)=(v18)" B>0, (15)
and

f(6]x)=y1%0" M3, 60, (16)
where,

Oogvi—l a1\ e -1
Ml:_"o J'O ﬂaVi+1e () (1—6 ) j

NN
x{l—{l—e(u) ] } A (T;w)dpdo,

¢ oo Vievifl \' u (U e 6-1
Mzz.[o.[o aﬂavi jl‘:llx(j)e v [1_6 v J

AN
x{l—[l—e_(u) j ] A (T;w)dadé,

and

Y GO (1 ) o
I J.O ﬂav, J—l

oRi
x[l—(l—e(u)a]] A(T;w)dadp.

Based on the SEL function and the marginal PDF of
a,p and @ as in (14), (15) and (16) respectively, the

Bayes estimators &,/ and & of the EW parameters «, 8
and @, respectively, becomes

&= E(alx)

f=E(B|X

V.
-1 (C Vit 1 @
= | a IT x* Mqde,
41 IO i1 (i) 1

=l//1_1'j0 Mod s,
and

0=E(0]X)=w1*-[ 6 IMado.

Similarly, based on the marginal PDF of «, 8 and 0 as
in (14), (15) and (16) respectively, the corresponding
Bayes risk of the Bayes estimators &,/ and & under
SEL function will be

E(a2|g)—[E(a|5)]2,

R(@) =

R(5)=E(s2x)-[E(sIX)]".

and
R(0)=E(0%x)-[E(olx)]"
where,
E(a2|1) =,,,1—1.j§a\’i+2 ;/F_illx(“j)Mlda,
E(5°|X)=vi" [y AMad,
and
E(ez‘g) =yt [ 62 Myde

Clearly, the Bayes estimators and the corresponding
Bayes risks of the EW parameters «, 8 and & based on

Type-l1 GPHCS do not result in closed forms due to
involvement of multidimensional integrals which are not
solvable analytically. Therefore, the Bayes estimates and

the Bayes risks of &, 3 and & can be evaluated by using
computer facilities and numerical techniques.

4.2. Bayes Estimators of EW Parameters
Based on Type-11 GPHCS

Based on the likelihood function (8), non-informative
priors (12) and using the Bayes theorem, the joint
posterior distribution of @ given data X can be written

with proportional as follows

7(@]X) o 7 (w):

Li (2]X).

hence,

7(elX)
_ Si o 0-1
_vat[ad " e ) (1_e<u>“j 17
o\ p* ) = 0)

x!l—(l—e_(u)a Jer A (T o),

the normalizing constant y, of (17) is given by

NN @ V) (H—(U i j

ﬂaS|+1 _1 (J)
NN
{1_[1—&(“) ] } A (T,;0)ded Bdo,

X/ -
U :ﬂ , =12, for
B

aSipsit S|

where, i=12,3, o=(a,8.0),

i =1,3, respectively,
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97RO
_{Llj
S =Dy, A(Tie)=|1-|1-e \/ ,
RD1+1_n - IlR for Case-l,
S;=m, AT, 0)=1 for Case-Il,
and
RD,+1
o 2+
_(sz“
S3=D2, As(Tz,Q)Z 1— 1—e ﬂ ,
Roye1 =N—tpy = > 2 %2 g for Case-11l.

Marginal posterior densmes of «, and 6 obtained by

integrating (17) with respect to the other two parameters
as follows

f(a|§):y/£ 1aSi l'II X( )M4, c>a>0, (18)

F(Blx)=

(v28) " Ms, B>0, (19)

and
f(6]x)=y3'0% Mg, 650, (20)
where,

gsi*l e e -1
4 =j0 Io W'e ©) (1—e ) ]

AN
x[l—(l—e_(u) j ] Ai(TT;Q)dﬂda,

OO0{8, 08, -1 S,
aSI '= (J)

we=[;[;

and

-1
e I [1_6—(u ) J

Si i
j jw aaS, j—l
Rj

{1_[1_9—(@“ ﬂ A(

Based on the SEL function and the marginal PDF of
a,f and @ as in (18), (19) and (20) respectively, the

Bayes estimators &, and @ of the EW parameters «, 8
and @ can be defined, respectively, as follows

T,;o)dadp.

#=E(alX)=y

=E(BX)=

1 I (ZSI+1 H X( ) 4d0.’,

j Mcd 3,
and

6=E(0]X)=w3" [, 65 Medo.

Similarly, based on the marginal PDF of «, 8 and @ as
in (18), (19) and (20) respectively, the Bayes risk
associated with &, # and & under SEL function will be

R(d)=E(a?|X)-[E(elX)],
R(5)=E(s2x)-[E(sX)]".

and
R(0)=E(02Ix)-[E(ox)]".
where,
2 1 (€ s+ g
E(a{ |X):(//2 .J.Oal jl_:IlX(j)M4d0!,
E(2|X)=vz"[; AMsap,
and

E(ez‘g) =yzt [ 0% Medo.

Again, computer facilities and numerical techniques are
needed to solving this set of nonlinear equations due to the
Bayes estimators and Bayes risks of the EW parameters
a, f and @ based on Type-Il GPHCS do not result in

closed forms.

5. Real Data Analysis

Previous sections dealt with the analytical technique
and this section focuses on the numerical one through
practical data set, which was originally presented by
Nichols and Padgett [13]. This data set was obtained from
a process producing carbon fibers to be wused in
constructing fibrous composite materials. The ordered
data with n=100 observations on breaking stress of
carbon fibers (in Gba) are in Table 1.

Table 1. Breaking stress of carbon fibers

039 081 085 098 108 112 117 118 122 125
136 141 147 157 157 159 159 161 161 169
169 171 173 180 184 184 187 189 192 200
203 203 205 212 217 217 217 235 238 241
243 248 248 250 253 255 255 256 259 267
273 274 276 277 279 281 281 282 283 285
287 288 293 295 296 297 297 3.09 311 311
315 315 319 319 322 322 327 328 331 331
333 339 339 351 35 360 365 3.68 368 3.68
370 375 420 438 442 470 490 491 508 556
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One question arises about whether the data fit the EW
distribution or not. To check for the goodness of fit, we
compute the chi-square test. First, the EW distribution will
be fitting using the MLEs and then carrying out chi-square

goodness of fit test. The MLEs @:(&,/},HA) for the

unknown parameters = (e, 3,0) of the EW distribution,
respectively, will be

&(,&,é)

- n.{nlogﬁ—zilllog(xi )+Zin:155‘ log 3

=-na- ,é

_%. :‘21(5)07
and
~\—1
é(&,ﬁ):n {—Zinllog(l—e () J}
where, S:X—j~

Using the MathCad package and the real data set as in
Table 1, the maximum likelihood estimates of the
unknown EW parameters «, S and @ will be & =2.438,
,B =2.702 and 6 =1.294. The chi-square goodness of fit

test is a hypothesis test. The null and alternative
hypotheses being tested are:
Hg : The data set follow the EW distribution.

H; : The data set do not follow the EW distribution.

For chi-square goodness of fit test, the data are divided
into k bins and the test statistic is defined as

2 k 2
26 =2i4(0 -Ej) /Ei7
where, O; and Ej , is the observed and expected

frequency for bin i. The expected frequency is calculated
by

Ei=n-[F(y)-F(y)]

where, F is the CDF of the EW distribution, Y, and Y_

are the lower and upper limits for class i and n is the
sample size. The observed and the expected frequencies of
the ordered data set can be calculated and reported in
Table 2:

Table 2. Computed the expected frequencies of the data set

| G Ei 0 -E)/E
(0,15] 13 13.42 0013
(15.2] 17 1531 0.187
(2.25] 14 1881 1.230
(25.3] 23 18.41 1144

(3.6] 33 33.93 0025
Sum 2.599

Since )(g =2.599 less than the tabulated value
2 H -
)(1,0_05 =3.84, we cannot reject the null hypothesis that

the data are coming from the EW distribution at
significance level 0.05. Now, we created an artificial data
by progressive Type-1l censoring, we have n=100 and

m =40, at the time of any observed failure Rj =1 of the

survival items will be withdrawn from the life test at
random. Then, the observed failures of Type-Il
progressive censored sample are: 0.39, 0.85, 0.98, 1.12,
1.17, 1.18, 1.22, 1.36, 1.41, 1,57, 1.57, 1.59, 1.61, 1.61,
1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.92, 2.03,
2.03, 2.20, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.48, 2.48,
2.50, 2.53, 2.55, 2.55, 2.56, 2.59.

To obtain the maximum likelihood estimates and Bayes
estimates for the EW parameters under Type-I and Type-I1I
GPHCSs, the progressively Type-Il censored sample will
be proposed in a design under Type-l and Type-II
GPHCSs as in Table 3.

Notice that, in Table 3, (-) represents to a number of
observed failures at time which is less than the termination
point of the life test.

All computations were performed using MathCad
package version 14. The maximum likelihood estimates
and approximate Cls for the unknown parameters of EW
distribution « , B and € based on Type-lI and Type-II

GPHCSs are calculated and reported in Table 4 and Table
5, respectively. To evaluate the Bayes estimators, some
various values of hyper-parameter c=1,2 and 4 are
considered. The Bayes estimates and the corresponding
Bayes risks of the unknown EW parameters based on
Type-1 and Type-1l GPHCSs are reported in Table 6 and
Table 7, respectively.

Table 3. Design the progressively Type-Il censored sample of EW distribution based on Type-I and Type-11 GPHCSs

Type-1 GPHCS Type-11 GPHCS
Scheme n
d T k m dy T dy T, m
Case-I 100 25 15 30 40 40 3.2 - - 35
Case-Il 100 35 25 30 40 30 2 - - 40
Case-II1 100 - - 35 40 30 2 35 25 40
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6. Conclusions

In this paper, we have considered the Bayes and non-
Bayes estimations for the unknown parameters of the EW
distribution based on Type-1 and Type-Il GPHCSs. Some
special cases using exponential and Weibull distributions
are obtained, i.e., based on Type-1 GPHCS, Cho et al. [4]
results were generalized in the case of exponential and
Weibull distributions at « =8 =1 and 8 =1, respectively.
Also, based on Type-1l GPHCS, Lee et al. [7] results in
the case of exponential parameter can be obtained as a
special case at ¢ =6=1 as well as if putting =1,
Ashour and Elshahhat [1] results can be obtained as a
special case in the case of Weibull distribution. The
MLEs, approximate V-Cov matrix and the approximate
Cls based on the observed Fisher information matrix

have been discussed. Independent non-informative priors
are considered to provide the Bayes estimators and
the corresponding Bayes risks under the SEL function.
Based on Type-I and Type-1l GPHCSs, the MLEs and the
Bayes estimators for EW parameters do not result in
explicit forms, therefore, a numerical example has been
presented to illustrate all the inferential results established
here. As expected, Table 4 and Table 5 showed that the
maximum likelihood estimates for the unknown
parameters of EW distribution based on both Types
of GPHCSs are more precise than the Bayes estimates as
in Table 6 and Table 7. Therefore, if prior information
of the EW parameters is not available, then it is always
better to use the MLEs rather than the Bayes estimators,
because the Bayes estimators are computationally more
expensive.

Table 4. The maximum likelihood estimates, corresponding variances and approximate 95% two-sided Cls for EW parameters under Type-I

GPHCS
Type-1 GPHCS
Scheme Estimates Variances Cl
s | B | 6 || & | & P s 0
Case-1 1.872 2.487 1.895 0.093 0.098 0.091 (1.27,2.46) (1.87,3.10) (1.30,2.48)
Case-I1 1.849 2512 1.975 0.080 0.026 0.067 (1.29,2.40) (2.19,2.82) (1.47,2.48)
Case-I11 2.446 2.019 2.025 0.119 0.007 0.075 (1.76,3.12) (1.85,2.18) (1.48,2.56)

Table 5. The maximum likelihood estimates, corresponding variances and approximate 95% two-sided Cls for EW parameters under Type-I1

GPHCS
Type-11 GPHCS
Scheme Estimates Variances Cl
a i 6 62 65 53 a B 0
Case-I 1.685 2.730 1.750 0.057 0.033 0.049 (1.22,2.15) (2.37,3.08) (1.32,2.18)
Case-I1 2.287 1.946 2.250 0.102 0.007 0.094 (1.66,2.91) (1.78,2.11) (1.65,2.85)
Case-111 1.921 2.391 1.975 0.087 0.018 0.066 (1.34,2.50) (2.12,2.65) (1.47,2.48)
Table 6. The Bayes estimates and corresponding Bayes risks for EW parameters under Type-1 GPHCS
Type-1 GPHCS
Pa?gr%ee:er Scheme Bayes Estimates Variances
G ;i g Var (&) Var(ﬁ) Var(é)

Case-I 0.722 0.802 12.336 0.027 0.207 61.337

c=1 Case-11 0.746 0.774 12.846 0.023 0.164 63.259

Case-I11 0.872 0.654 13.780 0.011 0.021 39.009

Case-1 1.285 1.746 5.869 0.226 0.714 40.350

c=2 Case-II 1.422 1.819 4.894 0.252 0.477 31.296

Case-I11 1.456 1.418 5.034 0.064 0.132 10.103

Case-1 2.263 2.435 3.532 1.334 0.918 32.317

c=4 Case-11 2.565 2.544 2.747 1.274 0.675 22.584

Case-I11 2.648 2131 1.688 0.166 0.055 2.031
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Table 7. The Bayes estimates and corresponding Bayes risks for EW parameters under Type-11 GPHCS

Type-11 GPHCS
Hyper Bayes Estimates Variances
Parameter Scheme y
G ;i g Var (&) Var(ﬁ) Var(H)
Case-I 0.739 0.818 9.669 0.021 0.170 20.261
c=1 Case-11 0.888 0.698 12.008 0.005 0.018 7.856
Case-I11 0.803 0.893 9.442 0.018 0.108 15.792
Case-I 0.999 1.443 6.357 0.142 0.735 23.363
c=2 Case-11 1.641 1.562 3.976 0.067 0.078 3.705
Case-111 1.374 1.820 4.423 0.162 0.434 12.483
Case-1 1.287 1.792 5.812 0.559 1.191 23.761
c=4 Case-11 2.943 2.193 1.653 0.340 0.069 0.841
Case-111 2.395 2.521 2.429 0.886 0.571 8.619
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The elements of the observed Fisher information matrix (11) based on the log-likelihood function (6) will be
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