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Position and displacement analysis of a spherical model of a human knee joint using the vector method was 

presented. Sensitivity analysis and parameter estimation were performed using the evolutionary algorithm 
method. Computer simulations for the mechanism with estimated parameters proved the effectiveness of the 
prepared software. The method itself can be useful when solving problems concerning the displacement and loads 
analysis in the knee joint. 
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1. Introduction 

 
 Proper understanding of the human knee joint kinematics can be useful in operation planning of the 

knee damaged through illness, overuse and in prosthetics. Medical papers on this topic contain mainly 
descriptions of: the knee joint elements, possible injuries, their diagnosis and treatment. On the other hand, 
papers concerning biomechanics are mostly focused on the analysis of relative displacements of the femur 
and the tibia or the loads analysis using one of the appropriate knee models. 

 Models of the knee joint can be divided into planar and spatial. The simplified, planar model of the 
knee (Fig.1a) (Stępniewski, 2010) can be analyzed as a mechanism of 3rd class with one linear actuator. 
Cruciate ligaments (A1B1, A2B2), connected to the femur by revolute joints (B1, B2) and to the tibia by 
revolute joints (A1, A2), may be considered as rockers of the 4-bar linkage. The drive part of the knee joint 
consists of the patella (C2), the patellar tendon (C1C2) and the muscle (s). Contraction of this muscle 
generates torque of the femur with respect to the tibia. A planar model of the knee might be sufficient to 
analyze the displacements and loads occurring during flexion/extension motion of the knee in the sagittal 
plane, e.g., model of pedaling a bicycle, squatting. However, using a spatial model actual displacements and 
loads can be analyzed more accurately. 

 Several variations of the spatial model of the knee joint are presented in Ottoboni et al. (2010). In 
every model there is: a moving platform corresponding to the femur, a basis corresponding to the tibia and 
three ligaments (collateral and two cruciate). Ligaments are modeled as fixed-length links connected to the 
basis and moving platform by spherical joints. 
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 Respective variants differ in shape of the articular surface of the femur and the tibia. Figure 1c 
presents the model in which articular surfaces are spherical (indicated by k12, k34 – femur and k21, k43 – tibia). 

 
 

 
 

 

b) 

a) 
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Fig.1. a) Planar model of the knee joint, where: A1B1, A2B2 – cruciate ligaments connected to the femur by 

revolute joints (B1, B2) and to the tibia by revolute joints (A1, A2), C2 – patella, C1C2 – patellar 
tendon, s – substitute muscle. b) Spherical model, where: A1B1, A2B2 – cruciate ligaments, A3 – center 
of the spherical joint that connects two platforms. c) Spatial model, where: A1B1, A2B2 – cruciate 
ligaments, A3B3 – collateral tendon, k12, k34 and k21, k43 – spherical surfaces. Coordinate systems:  
{xt yt zt} – tibia reference frame, {xf yf zf} – femur reference frame. 

 
 Displacement analysis of the knee joint, presented in Blankevoort et al. (1990), leads to the 

conclusion that the relative displacement of the femur with respect to the tibia can be described as spherical. 
A spherical model of the knee joint (Fig.1b) consists of two platforms connected by the spherical joint (A3) 
and two fixed-length links (A1B1, A2B2 – cruciate ligaments) connected to platforms by spherical joints. 
Coordinates of the center of the joint (A3) that connects two platforms can be computed numerically from the 
geometrical set of the instantaneous screw axes of the femur with respect to the tibia described in the tibia 
and in the femur reference frames. 

 In Ottoboni et al. (2010), Sancisi and Parenti-Castelli (2010) a comparison of the experimental data 
and results obtained using a spherical and a spatial model (Fig.1c) is presented. 
 
2. Analysis of the spherical model of the knee joint 

 
2.1. Research problem 

 
 Position and displacement analysis of the spherical model of the human knee joint using the 

constraint equations method (fixed distance between ligaments attachments) leads to a system of 5 nonlinear 
equations numerically solved in Ottoboni et al. (2010), Sancisi and Parenti-Castelli (2010). In contrast, the 
vector method (Morecki et al., 2002) yields a closed-form solution dependant on one input variable. 

 Given two unit vectors o
ie , o

je  and dot products of those vectors with a third, unknown unit vector, 
o
ke  can be determined using the following formula 

 

         2
ik ij jk jk ij ik k ijc c c c c c D 1 c       

o o o o o
k i j i je e e e e  (2.1) 

 

where:   , , , .2 2 2
ij ik jk k ij ik jk ij ik jkc c c D 1 c c c 2c c c         o o o o o o

i j i k j ke e e e e e  

c) 
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 In equations mentioned below the following nomenclature is used: 

ia  – position vector of point t
iA  with respect to point Ot, 

ija  – vector from point t
iA  to point tAj ,   

ib  – position vector of point t
iB  with respect to point Ot, 

ijb  – vector from point 
t
iB  to point tB j , 

ijd  – vector from point 
t
iB ( t

iA ) to point tAj ( tB j ). 

  

 
 

 
 

Fig.2. a) First tetrahedron (at basis). b) Second tetrahedron (at moving platform). 
 

 The spherical mechanism of the knee joint can be divided into two tetrahedrons (Fig.2). In the first 

tetrahedron (Fig.2a) only the unit vector d o
11  that determines the axis of the first cruciate ligament is 

unknown. The Dot product of the unknown vector d o
11  with the unit vector a o

13  can be written using  
a cosine formula 

 

  .
2 2 2

o o 11 13 13
13 11

11 13

d a d

2d a

 
 a d   (2.2) 

a) 

b) 
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  The Dot product of unit vectors a o
12  and d o

11  is the input variable in the model and is denoted as 
follows 
 

  cosδo o
12 11 . a d   (2.3) 

 
 The unit vector d o

11  is obtained using Eq.(2.1). It is important that d o
11  can define two different 

directions depending on the sign before the square root. 

 Given the unit vector d o
11  the vector 12d  can be calculated 

  

  .o
12 12 11 11d d a d   (2.4) 

 

 Coordinates of point t
1B  are now known and can be computed using the following formula 

 

  .o
1 1 11 11d b a d   (2.5) 

 

 In the second tetrahedron (Fig.2b) the unit vector bo
12  is unknown. In order to find it, unit vectors 

d o
12 , d o

13  and their dot products with bo
12  are required. The unit vector d o

12  can be obtained by dividing the 

vector 12d  by its length. The Dot product of vectors bo
12  and d o

12  can be written using a cosine formula 
 

  .
2 2 2

o o 12 12 22
12 12

12 12

b d d

2b d

 
 b d   (2.6) 

 

 It is worth noting that vector 13d  can be obtained using the following formula 
 
  .13 3 1 d a b   (2.7) 

 

 The only unknown that remains is the dot product of vectors d o
13  and bo

12 . In this case it is also 
possible to find it using cosine formula 

 

  .
2 2 2

o o 12 13 23
12 13

12 13

b d d

2b d

 
 b d   (2.8) 

 

 Lastly, formula (2.1) can be used to obtain the unit vector bo
12  

 

  .o
2 1 12 12b b b b   (2.9) 

 

 Thus, the coordinates of points t
1B  and t

2B  in the tibia reference frame are obtained. It is worth 
mentioning that to compute the position and rotation of the moving platform (femur) with respect to the basis 
(tibia) only one input variable is required – angle δ.  

 Furthermore, the second cruciate ligament  22d  can be used in the displacements analysis of the 

spherical mechanism. However, such approach yields limited results. 
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2.2. Computing linear and angular displacements 

 
 Position and displacement analysis of the spherical model for the knee joint using the vector method 

gives the solution in the form of position vectors of three points located on the femur and described in the 
tibia reference frame {xt yt zt}. For the known coordinates of these vectors it is possible to find the rotation 
matrix and translation vector of the femur reference frame with respect to the tibia by using Horn’s closed-
form solution of absolute orientation described by unit quaternions and presented in Horn (1987). 

 Sets of the coordinates of vectors bi (i = 1...n, n ≥ 3) that define the positions of points Bi in two 
reference frames {xt yt zt} and {xf yf zf} are used to find the position vector of the centroid in respective 
reference frames 

 

  .,
n n

ff
c i c i

i 1 i 1

1 1
    

n n 

  b b b b   (2.10) 

 
 If the coordinates of the centroid are subtracted from the coordinates of the given points, then 

experimental data can be expressed with respect to the centroid (in respective reference frames) 
 

  , .f f f
ic i c ic i c       b b b b b b   (2.11) 

 
 Then the values of nine variables , ,xx xy zzS S   S,   are computed as follows 

 

  , ., ..
n n

f f
xx icx icx xy icx icy

i 1 i 1

S b b    S b b
 

     (2.12) 

 
and so on. In the next step a unit quaternion is calculated. This quaternion defines the axis of rotation and the 
angle of rotation around this axis. In order to find it the following matrix is required 
 

  ,

a e h j

e b f i

h f c g

j i g d

 
 
 
 
 
 

N   (2.13) 

 
where: ,xx yy zz a S S S    ,xx yy zzb S S S    ,xx yy zzc S S S     ,xx yy zzd S S S     ,yz zye S S 

,xy yxf S S   ,yz zyg S S   ,zx xzh S S   ,zx xzi S S   .xy yxj S S 
 

 The unit quaternion 0 x y zq q q q   q i j k
 
is obtained as an eigenvector corresponding to the 

largest eigenvalue of N. After this, the rotation matrix can be calculated as follows 
 

  ,
11 12 13

21 22 23

31 23 33

r r r

r r r

r r r

 
   
  

R   (2.14) 

 
where 
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 ,2 2 2 2
11 0 x y zr q q q q                 ,12 x y 0 zr 2 q q q q               ,13 x z 0 yr 2 q q q q   

 

   ,21 y x 0 zr 2 q q q q              ,2 2 2 2
22 0 x y zr q q q q                 ,23 y z 0 xr 2 q q q q   

 

   ,31 z x 0 yr 2 q q q q               ,32 z y 0 xr 2 q q q q            .2 2 2 2
33 0 x y zr q q q q     

 
         The translation vector p can be obtained as a difference between two position vectors: position of the 
centroid described in the tibia reference frame and the same point described in the rotated femur reference 
frame 

 

  .f
c cp b R b   (2.15) 

 
 The sequence of rotations is assumed as per (Ottoboni et al., 2010; Sancisi and Parenti-Castelli, 

2010) and presented earlier in Grood and Suntay (1983) 
 

  ,

                
       
                

c  c s  s  s s  c c  s  s c  s

R s  c c  c s

c  s s  s  c s  s c  s  c c  c

  (2.16) 

 
where sα = sin α, cα = cos α. 

 Values of individual angles can be calculated using the following formulas 
 

   tan , ,2
23 23a 2 r  1 r      (2.17) 

 

  tan , ,
cos β cos β

21 22r r
a 2  

 
   

 
  (2.18) 

 

  tan , .
cos β cos β

13 33r r
a 2

 
   

 
  (2.19) 

 
 In medical terminology the following description is used: α – flexion(+)/extension(–),  

β – abduction(–)/adduction(+), γ – external(–)/internal(+) rotation. 
 

2.3. Coordinates of the center of the spherical joint that connects the platforms 
 

 It is worth noting that the center of the spherical joint that connects two platforms is a virtual point. 
Coordinates of this point can be numerically computed using a set of several positions of the femur and tibia 
as parts of the knee joint. Positions of these parts can be determined from coordinate measurements of the 
points located on the studied knee. 

 In order to find the coordinates of the spherical joint center, the mechanism dimensions and the set of 
several positions of the knee joint parts are required. Given two different positions of a rigid body, screw 
parameters of this body displacement can be computed. Knowing the number of the body positions it is  
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possible to calculate a geometric set of the instantaneous screw axes. In this article the method based on 
Rodrigues equation (Fenton and Shi, 1990) is used to compute the screw parameters. 

 Coordinates of the joint A3 in the femur and the tibia reference frames can be obtained numerically 
(Ottoboni et al., 2010). Evolutionary algorithm is used to find the point A3 with minimum of g 

 

  ,
n

2
j

j 1

g l


    (2.20) 

 
where: jl  – distance of the selected point from the j instantaneous screw axis, n – number of instantaneous 

screw axes. 
 A great advantage of the evolutionary algorithm is that there is no need for the starting solution. One 

of its drawbacks is high computational complexity that greatly depends on the number of instantaneous 
screw axes.  

 
2.4. Data preparation 
 

 Input data set for the displacement analysis contains vectors: f
ib  (i = 1, 2) – vector positions of 

points Bi, 
f

3a – vector position of point A3 in the femur reference frame, ai (i = 1, 2, 3) defining positions of 

points Ai in the tibia reference frame and ligaments lengths d11 and d22. The assumed 20 parameters – 
ligaments lengths and coordinates of points in [mm] – are listed below 

 
  . ,  . ,11 22d 36 6 d 44 3    

 

  

. . .

. , . , . ,

. . .
1 2 3

17 8 23 9 3 6

3 8 15 3 17 0

0 7 7 9 9 3

      
              
            

a a a  

 

  

. . .

. , . , . .

. . .

f f f
1 2 3

6 4 1 8 5 6

4 8 2 3 0 1

6 5 0 2 7 0

      
              
          

b b a

 
 

 Vectors a1, a2, 
f

1b  and f
2b  are assumed as per (Sancisi and Parenti-Castelli, 2008). Vectors a3 and 

f
3a  were computed from the geometrical set of the instantaneous screw axes using the aforementioned 

procedure. The set of positions of the knee joint parts, needed to compute a3 and f
3a , was assumed as per 

(Sancisi and Parenti-Castelli, 2008). 
 

2.5. Numerical example 
 
 A numerical example of the transformation matrix calculated at δ 60   is presented below. The 

input data set was mentioned before. Using formulas (2.2)-(2.9) vectors 1b  and 2b  were calculated. After 
this, coordinates of the centroid were computed using Eqs (2.10) (measured in [mm]) 
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. . . .

. ,  . , . , . .

. . . .

f
1 2 c

9 0 2 6 3 3 3 4

20 8 19 5 19 1 0 8

3 5 1 2 2 3 0 1

         
                 
                

cb b b b   

 
 In the next step the point coordinates with respect to the centroid were obtained using Eqs (2.11). 

Then, the values of the nine variables , ,xx xy zzS S   S,  were calculated using Eqs (2.12). Finally, the 

elements  a,b,...,i  of the matrix N were computed using Eq.(2.13) (in [mm2]) 
 

  

. . . .

. . . .
.

. . . .

. . . .

142 8 0 3 37 5 42 4

0 3 45 9 39 2 30 1

37 5 39 2 127 9 51 9

42 4 30 1 51 9 31 0

 
    
   
  

N   

 
 Eigenvalues and eigenvectors of the aforementioned matrix were found with the help of the 

mathematical software (e.g., MATLAB). The resulting unit quaternion that corresponds to the largest 
eigenvalue of N is written below 

 
  . . . . .0 9524 0 0293 0 0670 0 2961   q i j k   

 
 Given the unit quaternion q the rotation matrix and translation vector were calculated using Eqs 
(2.15) and (2.16) 

 

  

. . . .

. . . , .

. . . .

0 8157 0 5601 0 1450 0 1

0 5679 0 8229 0 0162 20 4 mm.

0 1102 0 0956 0 9893 1 7

     
       
       

R p   

 
2.6. Sensitivity analysis 

 
 Sensitivity analysis enables the user to select the geometrical parameters of the model that have the 

greatest influence on the results.  
 In order to study the sensitivity of the model the value of the examined parameter was modified by 

±1mm. Then, its influence on the results was computed as a sum of indicators Δβ, Δγ, Δpx, Δpy, Δpz. Each 
indicator can be calculated as per (Sancisi and Parenti-Castelli, 2008) 

 

     
n

2
s i r i2

x i 1

1
x x α x α

n z 

       (2.21) 

 

where: x  – indicator of  , , , ,x y zx p p p   ,  s ix   – value of x obtained using the spherical model at iα  
(here: ; ,i 0 80     i 10   ),  r ix   – measured value of x at i , xz  – range of x obtained from 

experimental data, n – number of the flexion angle set elements (here: n = 9). The influence of the examined 
parameter can be computed as follows 
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    %1 2 3 x 4 y 5 z 1w β w γ w p w 0w 0p p             (2.22) 

 
where: iw  – weight factor of the respective indicator (here: wi = 1 (i = 1..5)).  

 The range of the flexion angle is limited because out of the assumed range the real solution of the 
spherical model did not occur (using initial data set). 
 
Table 1. Sensitivity analysis – selected results. 

 

Linear parameter 22d  f
2xb  3

f
ya  f

2ya  ... t
1za  

σ [%] 42.4 30.3 29.0 26.5 ... 0.4 

 

 The cruciate ligament length 22d  and parameters f
2xb , 3

f
ya  have the greatest influence on the results. 

On the contrary, parameters , ft
1z 1za  b  are negligibly influential. Sensitivity analysis allows the exclusion of 

two geometrical parameters from the estimation procedure and the numerical complexity of this task is 
reduced. 
 
2.7. Parameters estimation 
 

 Parameters estimation was implemented using an evolutionary algorithm. The evolutionary 
algorithm was chosen because of ease of rejecting unsatisfactory solutions (e.g., flexion angle’s range too 
narrow, no real solution, real solution out of the knee range of motion).  

 A comparison of the results obtained from the spherical model and experimental data is performed 
using the aforementioned relative indicators calculated using Eq.(2.21). Hence, the objective function can be 
written as follows 

 

    ,1 2 3 x 4 y 5 zf w β w γ w p w p w p r            (2.23) 

 
where: iw  – weight factor of the respective indicator (here: wi = 1 (i = 1..5)), r – penalty function (assumes  

a large value if for the selected dataset there is no real solution or the range of the flexion angle is 
unsatisfactory). It is worth mentioning that parameters estimation is now a single-objective, bounded 
optimization problem. 

 The working principle of the evolutionary algorithm is exemplified on the flow chart presented in 
Fig.3. Note that a group of specimens is called population and an individual specimen is a solution (set of 
geometrical parameters). The initial population is drawn (although values of the geometrical parameters are 
bounded). Then the evolutionary algorithm uses the principles of evolution, through appropriately designed 
genetic operators (selection, crossover, mutation), to generate new populations using the initial population as 
the basis. The procedure stops if there is no improvement of solution, generations limit or time limit has been 
reached. 
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Fig.3. Flow chart – parameters estimation procedure. 
 

3. Results 
 
 Parameters estimation was performed twice – first for the model with 20 geometrical parameters and 

then for the model with 18 geometrical parameters (selected with sensitivity analysis). Such an approach 
enables the evaluation of the validity of sensitivity analysis. Results of the parameters estimation for the 
model with 20 parameters are as follows (points coordinates and ligaments lengths in [mm])  

 
  . , . ,11 22d 38 8    d 45 6    

 

  

. . .

. , . , . ,

. . .
1 2 3

16 1 23 1 3 0

5 8 18 0 20 0

0 1 4 9 10 0

      
              
            

a a a   

 
. . .

. , . , . .

. . .

b b a

      
            
          

f f f
1 2 3

3 9 0 0 3 1

6 0 0 1 0 4

8 8 3 2 6 9

 

 
 Summarized results of the parameters estimation of the model with 18 parameters and 2 constant 

coordinates (selected with sensitivity analysis: , ft
1z 1za  b ) are presented below (coordinates and ligaments 

lengths in [mm]) 
 
  . , . ,11 22d 36 7 d 44 6    

 

  

. . .

. , . , . ,

. . .
1 2 3

16 7 22 5 2 5

2 3 16 8  18 8

0 7 6 1 10 8

      
              
            

a a a   
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. . .

. ,  . , . .

. ..

f f f
1 2 3

6 1 0 2 4 2

6 8 1 1  0 6

2 25 16 8

      
              
          
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 Assuming the estimated parameters values for the spherical model the set of consecutive positions 

for the instantaneous screw axis of the femur with respect to the tibia were calculated. The determined axes 
intersect at point A3. A hodograph is a curve created by the end of the vector with direction of the 
instantaneous screw axis and magnitude proportional to the angle of rotation about that axis. It is worth 
noting that angular displacements about consecutive instantaneous screw axes are almost the same. In Fig. 4a 
paths of points B1 and B2 were also included. 

 The consecutive positions of the spherical model calculated at  ; ; ;10   35   60   85      are 

illustrated in Fig.4b. The moving platform is shown only in the first position  =10  . It is noteworthy that 

the cruciate ligaments in the spherical model can be seen as intersected in the projection on the sagittal plane 
(xt yt) and as skew in space (as in reality). 

  

 
 

Fig.4.  a) Hodograph of the vector that has a magnitude proportional to the angular displacement about the 
instantaneous screw axis in the tibia reference frame. b) Set of several positions of the spherical 
mechanism in the tibia reference frame. Where: A1B1, A2B2 – cruciate ligaments (points B1 and B2 
with caption are calculated at flexion angle 10°), A3 – center of the spherical joint connects the 
platforms, α – flexion/extension angle. 

 

a)             b)      
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 Functions of displacements obtained from simulation are shown in Fig.5. The resulting set of 

estimated geometrical parameters allows very good mapping of the knee joint motion in the range of the 
flexion/extension angle from 10° to 90°. The greatest incompatibility can be seen in the course of the angle 
β. In order to evaluate the usefulness of the sensitivity analysis results obtained from the model with 20 
parameters and 18 parameters are presented in graphs in Fig.5. Exclusion of two parameters did not have  
a noticeable influence on the results. 

 

 
 

Fig.5.  Simulation results: β, γ – orientation angles, px, py, pz – coordinates of the position vector of the 
femur reference frame in regard to tibia reference frame of the flexion/extension angle α, solid line – 
spherical model, dotted line – spherical model with sensitivity analysis, dashed line – spatial model 
(as per (Sancisi and Parenti-Castelli, 2008)). 

 
4. Conclusion 
 

 Positions and angular displacements of the spherical model of the knee joint were analysed using the 
vector method. Sensitivity analysis and then parameters estimation were performed. Numerical simulations 
proved the effectiveness of the prepared software, the parameters estimation using the vector method and the 
purpose of sensitivity analysis. This software might be useful in reengineering a damaged joint and designing 
orthotics for an injured knee as well as a rehabilitation device. 
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 Simulations were performed for two different data sets obtained through sensitivity analysis and 
parameters estimation (without sensitivity analysis – spherical model with 20 variable parameters and – 
spherical model with 18 variable parameters and 2 constants). These procedures used a third, experimental 
data set assumed as per (Sancisi and Parenti-Castelli, 2008) (also called in this paper: input data set). It is 
important that using different data sets, acquired through parameters estimation, similar results were 
obtained. Sensitivity analysis helped to simplify the task of parameters estimation.  

 The vector method was confirmed advantageous in research concerning displacements in the knee 
joint. It has low numerical complexity because it provides a closed-form solution for the spherical model of 
the joint.  

 It seems expedient to use a 3-D scanner to measure the coordinates of the points located on bones on 
the actual joint and to find a way to perform such experiment as a noninvasive, in vivo test. 

 
Nomenclature 
 
 ia  – position vector of the tibia point t

iA  with respect to the origin of the tibia reference frame Ot 

 ija  – vector from point t
iA  to point t

jA  

 ib  – position vector of the femur point t
iB  with respect to the origin of the tibia reference frame Ot 

 ijb  – vector from point
 

t
iB  to point t

jB  

 cb  – position vector of the centroid with respect to point Ot 

 ijd  – vector from point
 

t
iB  t

iA  to point t
jA  t

jB  

 f – objective function used in parameters estimation 
 g – objective function used to find the A3 
 jl  – distance of the selected point from the j instantaneous screw axis 

 N – matrix used to find the unit quaternion q described with elements  a,b,...,i  computed using variables 
, ,xx xy zzS S   S,   

 p – translation vector of the origin of the femur reference frame with respect to the tibia reference frame, 
T

x z yp p p   p   

 q – unit quaternion obtained as an eigenvector corresponding to the largest eigenvalue of the matrix N 
 R

 
– rotation matrix of the femur reference frame with respect to tibia reference frame 

 r – penalty function 
 iw  – weight factor of the respective indicator (i = 1..5) 

  r ix   – measured value of x at selected i  
– flexion angle at position i 

  s ix   – value of x obtained using the spherical model at i  – flexion angle at position i 

 xz  – range of x obtained from experimental data 

 
 

– flexion(+)/extension(–) angle of the femur with respect to the tibia 
   – abduction(–)/adduction(+) angle of the femur with respect to the tibia 
   – external(–)/internal(+) rotation angle of the femur with respect to the tibia 
   – input variable in the spherical model – the angle between the first cruciate ligament and the basis (the 

tibia) 
   – influence of the examined, geometrical parameter 

 x  – indicator of  β, , , ,x y zx γ p p p  

 The following applies to vectors: non-bold symbol stands for the length of the vector, superscript index o
 

stands for the unit vector, superscript index f stands for the femur reference frame (no index means that the vector is 
described in the tibia reference frame), subscript indices i and j can assume values of {1, 2, 3}. 
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