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Abstract

The paper proposes a procedure to estimate the parameters of ex-
perimental manipulator robot samples in a series of tests that allows
discarding robot samples with parameters being unsuitable for the con-
structed mechanism. Features of this approach, providing numerical
estimates of the parameters are particularly useful in solving the prob-
lems of designing space manipulators that require a higher degree of
reliability performance. This procedure can also be used in other prac-
tice areas, such as analysis of indirect signs of corruption in the socio-
economic, financial, military, geopolitical and other structures.
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1 Introduction

An important stage in the process of machinery design and construction is
one of selecting their parameters by ad- equate performance characteristics, as
well as manufacturing and testing an experimental sample of its accordance
with the required characteristics. It means the parameters of the designed
mechanism should meet a set of requirements, consistent with the problems
which are supposed to be solved by the constructed mechanism [3, 8, 14, 15,
16]. This paper proposes a procedure for estimating the parameters of the
experimental sample in a series of tests to reject samples with unsuitable for
the constructed mechanism parameters. The prerequisites for the use of this
procedure is the assumption about multivariate normal distribution of test
results, as well as the assumption about opportunities for analytical description
of the domain boundaries of admissible values from the estimated parameters
vector in accordance with the technical requirements. The procedure is based
on the geometric properties of the normal distribution. Indeed, suppose it is
required to test a complex hypothesis that the parameter vector is in a given
domain. It follows from the geometric properties of the normal distribution
that a simple hypothesis is enough to be tested. A simple hypothesis assumes
that the parameter vector is a boundary point of a given domain, which is
maximum value of likelihood. In this case, likelihood is calculated according
to the probability distribution obtained from testing a statistical evaluation
of the parameters. This procedure is multiple- purpose and can be also used
in the other practice areas, such as analysis of indirect signs of corruption
in the socio – economic, financial, military, geopolitical and other structures
[1, 2, 7, 10].

2 Manipulation Robots

Manipulation robots are of important concern in everyday life and production.
They are used in traditionally high- technology areas such as space robotics,
medicine, military (reconnaissance aircraft, artillery, mine clearance) as well
as in industry. The range of tasks performed by robots in the industry is
very broad: vehicle assembly, conveyor assembly devices, welding, painting,
goods transporting. Due to the market conditions it is necessary to increase
the speedwork and accuracy of robot manipulators. However, increasing the
speedwork of manipulation robots leads to a risk of losing their accuracy.

Various motions of manipulators are provided mainly due to the two types
of kinematic mechanisms - rotational and translational motions. Length of
manipulators units are selected from the condition that a characteristic point
comes up to the executive body on a set position for a particular manipulation
complex.
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The general problem of modeling a mechanical system is the choice of a
sufficient degree of similarity between the model and the real modeled object.
In our case, the object of simulation is a mechanical unit in the form of a
system providing the necessary mechanical motions to perform the specified
manipulation functions [5, 9].

When designing assemblies of manipulator robots based on mathematical
calculations, the selection of optimal construc- tions should be made. Accord-
ing to the results of tests, the model that best meets the specified requirements
is chosen. Thus, the use of mathematical modeling in the development of ma-
nipulator robots eliminates producing a large number of experimental samples.

3 Estimation Of Manipulation Robots And Mech-

anisms Parameters

We assume that given parameters form an m-dimensional vector
Θ = (θ1, θ2, ..., θm)T (T is a transposition operator). A series of tests of
the experimental sample gives a set of measured values of the parameter
Θj = (θ1j, θ2j, ..., θmj)

T, j = 1, 2, ..., n, where j is a serial number of the test.
We also assume that the errors of parameters measurements are subject to
a multivariate normal distribution. Then the estimation of the testing sam-
ple parameters Θe in implemented series of tests, as well as estimation of the
variances matrix and mutual covariances of components of this vector are,
respectively,

Θe = n−1
∑

j=1,...,n

Θj, VΘ = n−1V,

where V = (n− 1)−1
∑

j=1,...,n(Θj −Θe)(Θj −Θe)T

and
∑

j=1,...,n is a summation operator.
The decision on the accordance of experimental sample with the speci-

fied requirements in terms of mathematical statistics can be formulated as a
hypothesis

H0 : EΘe = Θ0,

where E is an expectation operator.
To test the hypothesis H0 the following statistics may be used. In the

stated assumptions (if the hypothesis H0 is true) the value

γ = (Θe −Θ0)TV−1
Θ (Θe −Θ0) (1)

has the distribution χ2 in some approximation with m degrees of freedom (the
larger the sample volume n, the closer it is). In addition, we can construct m
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Student statistics. Let the orthogonal matrix Q reduce matrix VΘ to diagonal
form

QTVΘQ = Λ = diag(λ1, λ2, ..., λm),

then the components si (i = 1, 2, ...,m) of the vector

S = Λ−1/2QT(Θe −Θ0) (2)

have exactly Student distribution with degree of freedom n−1 under the same
assumptions. Assume the value significance point α is set (α = 0, 05 or α =
0, 01). Then we can reject a testing sample if at least one of the following
inequalities rejecting a hypothesis H0 is satisfied

γ > χ2
m(α) (3)

or

|si| > t
α/2
n−1, (i = 1, 2, ...,m) (4)

where the quantities χ2
m(α) and t

α/2
n−1 define appropriate boundaries for rejection

zone. With such a ”point” formulation of requirements to the parameters
we come up against a situation when we are interested to accept testable
hypothesis, rather than reject. This introduces certain difficulties for proving
the hypothesis, which leads to the need for artificial formulation of alternative
hypotheses in some cases.

However, the condition for the acceptance of the product can be formulated
in the form of requirement for a parameter vector to belong to some region ω in
m-dimensional real space (ω ⊂ Rm). In this case we assume that the boundary
∂ω of the region is defined by system of equations ϕk(Θ) = 0, k = 1,2, ...,kω,
where each function ϕk is differentiable in all arguments. Assume parameter
estimator Θe is in the region ω. In this situation, to make sure an experimental
sample is qualitative it is necessary to check the hypothesis Hcω : EΘe ∈ cω,
which is equivalent to EΘe /∈ ω (where cω is an addition to ω in Rm). Thus,
in this situation we have composite multivariate hypothesis. To check Hcω we
need to find a boundary point Θ∗ of the region ω, which is the solution of
Lagrange problems for Lagrangian functions defined as following:

Lk(Θ, λ) = ln(f(Θ,Θe,VΘ))− λϕk(Θ),

(k = 1, 2, ..., kω)
(5)

Here f(Θ,Θe,VΘ) is a density function of the multivariate normal distribution
N(Θe,VΘ) of parameter vector evaluation Θe. The value giving the maximum
likelihood of f(Θ∗,Θe,VΘ) should be chosen as the final solution of the system
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(5) Θ∗ from kω options. Thus, Θ∗ is a boundary point of maximum likelihood
for the distribution N(Θe,VΘ).

According to our assumption (Θe ∈ ω), denote that a probability measure
of ellipsoid insidedness

W∗ = {Θ : f(Θ,Θe,VΘ) = f(Θ∗,Θe,VΘ)}
with distribution N(Θe,VΘ) can be considered as a probability measure of
experimental sample reliability [4, 11, 12, 13]. In this context the ellipsoid W∗
should be denominated as a reliability ellipsoid.

To test the composite hypothesis Hcω we need to check a simple one H∗ :
Θe = Θ∗ . For this we use statistics

γ∗ = (Θe −Θ∗)
TVΘ

−1(Θe −Θ∗) and S∗ = Λ−1/2QT(Θe −Θ∗)

This statistics can be found from statistics 1 and 2 by substituting the value
Θ∗ instead of Θ0. If at least one of the inequalities γ∗ > χ2

m(α) or |s∗i| >
t
α/2
n−1, (i = 1, 2, ...,m) is satisfied, then for some selected value α we reject the

hypothesis H∗.
Now we show that we actually reject the hypothesis Hcω by rejecting the

hypothesis H∗. In other words we make sure in complete and statistically
reliable accordance of experimental sample with specified requirements.

Indeed, a composite hypothesis Hcω can be considered as a set of simple
hypotheses Hτ : EΘe = Θτ , (Θτ ∈ cω). Therefore, it is enough to make
sure that if the hypothesis H∗ for any value Θτ from region cω is rejected,
then hypothesis Hτ is also rejected [11]. With this end in view, we intro-
duce a generalized Euclidean metric in space Rm generated by the distribution
N(Θe,VΘ):

d2(Θ1,Θ2) = [(Θ1 −Θ2)TVΘ
−1(Θ1 −Θ2)]1/2. (6)

Obviously in this metric the point Θ∗ is closer to the point Θe than any
point Θτ : Θτ ∈ cω, which is provided by the maximum value of the likelihood
at the boundary point Θ∗ (see above) and a monotonic increase of the square
root. It follows from the above that if the inequality (3) for statistics calculated
in the point Θ∗ is satisfied, then this inequality is satisfied in any point Θτ , and
therefore, the hypothesis Hτ is rejected. For Student statistics of the form (2)
and the inequalities (4) we have a similar situation, as the use of these statistics
implies the transition to the equivalent metric under the metric d∞ (maximum
of component modulus) in the space under the linear transformation with

matrix operator Λ−1/2Q
T

(see remarks 1 and 2).
Remark 1. The concept of a generalized Euclidean metric is closely related

with the notion of the affine space transformation, which keeps all the metric



180 Yury Pichugin, Gennadiy Alferov and Oleg Malafeyev

ratios (like the inverse transformation). Here, the linear transformation with

the matrix operator Λ−1/2Q
T

is associated with such an affine transformation.
Remark 2. It is obvious that γ∗ = s2∗1 + s2∗2 + ... + s2∗m, where all the

elements of the sum s∗i, (i = 1, 2, ...,m) are pairwise independent and are

the components of vector S∗ = Λ−1/2Q
T

(Θe −Θ∗) (see above.). As the sam-
ple volume is increasing Student distribution asymptotically approaches the
standard normal distribution N(0, 1). The distribution γ∗, as noted above,
asymptotically approaches to χ2 distribution with m degrees of freedom.

Remark 3. The case of indirect parameters estimation through some indi-
rect measurements vector Y with a linear regression connection Y = XΘ + ε
is also possible.

It tends to assume that the normally distributed vector of measurement
errors ε has zero mathematical expectation and independent components with
equal deviations: ε ∼ N(O, σ2I), where O is a zero vector, I is an identity
matrix. In this case the estimate of the parameter vector Θ by the least
squares method is equal to Θe = (XTX)−1XTY. The mutual covariance
matrix of this estimation has the form VΘ = σ2

e(XTX)−1, where σ2
e = (n −

m)−1
∑

j=1,...,n(yj − XjΘe)2 is unbiased estimator σ2 (here Xj is j-th row of
X). Then the value [12]

η∗ = γ∗m
−1 = σ−2

e m−1(Θe −Θ∗)
T(XTX)(Θe −Θ∗)

will have exactly F-distribution if the hypothesis H∗ : EΘe = Θ∗ is true. In
other words, η∗ ∼ Fm,n−m and it can be used to test this hypothesis.

Obviously, a divisor of the quadratic form m defining d2 does not disturb
the metric ratios, or rather, converts the generalized Euclidean metric d2 into
the equivalent metric d′2 = m−1/2d2. Therefore, rejecting the hypothesis H∗ in
accordance with the F-criteria implies rejecting any other hypothesis Hτ , that
is the hypothesis Hcω. In this case components si (i = 1, 2, ...,m) of the vector
S∗ = Λ−1/2QT(Θe −Θ∗) have Student distribution with degree of freedom
n−m.

4 Illustration of Indirect Parameter Estima-

tion

Consider a linear regression model as a mathematical model of the tested
robotic mechanism

yi = Θ0 + Θ1xi1 + Θ2xi2 + ε1, i = 1, 2, ..., n.

Here the values of covariates xi1 and xi2 are interpreted as set modes (or
load), and the response yi is interpreted as a measured external parameter



Parameters estimation in mechanism design 181

characterizing the overall mechanism state. Parameters Θ0, Θ1 and Θ2 are in-
terpreted as internal parameters of the mechanism to be an indirect estimation
by a series of tests.

Model of indirect parameters estimation for the constructed mechanism is
of great interest as it is a more general case of estimation. Recall that averaging
direct measurements is the OLS-estimate, as well. Suppose the parameters
characterizing response of a tested mechanism to a load are constrained by
0 < Θ1 < 1 and 0 < Θ2 < 1. Table 1 presents the model data (n = 33)
providing the points (Θ1,Θ2) estimated by OLS to be in a specified domain.
Note that the transition to the centered values from Table 1 leads to the
elimination of uninterested to us (by assumption) parameter Θ0, which is not
correlated with the load fluctuations.

Table 1: Input data

Response Intensity Response Intensity
N variable y x1 x2

N variable y x1 x2

1 2,870 2,570 3,090 18 3,799 3,735 3,543
2 2,927 2,642 3,116 19 3,841 3,790 3,557
3 3,001 2,729 3,168 20 3,879 3,840 3,573
4 3,062 2,795 3,213 21 3,919 3,891 3,588
5 3,110 2,853 3,240 22 3,951 3,940 3,602
6 3,160 2,929 3,264 23 3,987 3,986 3,615
7 3,220 2,995 3,293 24 4,022 4,032 3,625
8 3,282 3,071 3,329 25 4,062 4,078 3,632
9 3,350 3,164 3,356 26 4,095 4,124 3,638
10 3,421 3,266 3,380 27 4,125 4,169 3,643
11 3,484 3,345 3,405 28 4,149 4,209 3,649
12 3,526 3,398 3,430 29 4,172 4,248 3,654
13 3,577 3,453 3,449 30 4,192 4,285 3,654
14 3,623 3,509 3,470 31 4,214 4,321 3,645
15 3,664 3,568 3,489 32 4,231 4,357 3,637
16 3,716 3,626 3,507 33 4,229 4,391 3,617
17 3,758 3,679 3,525 Average 3,685 3,606 3,473

The OLS-estimates of the parameters are calculated in accordance with
Table 1. Solving Lagrange Problems for each of the four constraints gives only
two points of maximum likelihood (= 3, 41E − 05) at the lower boundary and
(= 3, 99E − 06) on the upper boundary ( Table 2 and Figure 1). The solution
at the boundary Θ1 = 0 gives the value Θ2 = 2, 42, and at the boundary
Θ1 = 1 it is Θ2 = −0, 72. These values do not satisfy conditions 0 < Θ2 < 1
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and are not considered further. Point at the lower boundary gives the greatest
value of the likelihood (3, 41E − 05).

On the following figure:

1. OLS-estimate;

2. point of maximum likelihood at the lower boundary;

3. point of maximum likelihood at the upper boundary;

4. nearest boundary point.

Figure 1: The geometrical arrangement of the parameter estimates

Table 2: Statistical reliability test

Type of Parameter Parameters Statistics
Estimation χ2 F t

Θ1 Θ2 (γ) (η) |s1| |s2|
OLS-Estimate 0,63 0,44 - - - -
MLP at the

Lower Boundary 0, 77 0, 00 6, 93 3, 46 2, 63 0, 05

MLP at the
Upper Boundary 0, 46 1, 00 11, 22 5, 61 3, 35 0, 06

Nearest Boundary
Point 1, 00 0, 44 1294, 54 647, 27 0, 62 35, 97

Critical Values (α = 0, 05): χ2
2(α) = 5, 99; F2,30(α) = 3, 32; t

α/2
30 = 2, 36

Table 2 illustrates the results of the statistical test. For comparison the ta-
ble includes the point with maximum likelihood at the upper boundary and
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geometrically closest boundary point, which is at the right boundary (Figure
1).

Here MLP is maximum likelihood point.
As shown in Table 2, the point of maximum likelihood provides test values

that is in excess of the critical parameters values (as the data was modeled
initially). The other two boundary points provide test values that are more in
excess of critical ones. This fact illustrates the given example. For points being
beyond the domain of parameters acceptable region, the result is analogical.

5 Conclusion

In the paper we propose the procedure estimating the parameters of the ex-
perimental robots sample in a series of tests. The procedure allows rejecting
the samples with the parameters unsuitable for the constructed sample. The
algorithm may be used effectively in the processes of designing manipulator
robots [4, 11, 12, 13].

It is illustrated that when the constructed robotic mechanism with a large
number of parameters is tested, it may be necessary to test a complex hypoth-
esis, which arises from the restrictions imposed on the parameters. It is also
shown that the test process of this complex hypothesis is reduced to testing
a simple hypothesis about the boundary point providing maximum likelihood.
This fact and the proposed algorithm significantly expands opportunities of
the adequate testing of complex robotic mechanisms and multivariable sys-
tems, increasing their reliability.
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