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1. Introduction

Among the various quantum field theories that have been used to describe our physical
world, quantum electrodynamics is perhaps the best understood, and the Standard Model
of Glashow, Weinberg and Salam [1] the one that has been verified most extensively by
high-energy experiments [2]. It is therefore instructive to study the qualitative differences
between them.

Two differences are especially striking besides the appearance of the spin-zero Higgs
(3] and the Yang-Mills [4] non-Abelian coupling in the Standard Model. First, because of
gauge invariance, there is no quadratic divergence in quantum electrodynamics. For the
Standard Model, in spite of gauge invariance, there are nevertheless quadratic divergences.
Secondly, in quantum electrodynamics, there is only the gauge coupling, without any other
interaction. In the Standard Model, there are, besides the gauge couplings, in addition
numerous fermion-fermion-Higgs Yukawa couplings that give rise to the masses of the
various particles. These two differences are of course closely related to each other.

It is the purpose of this paper to study the quadratic divergences, while the problem
of the fermion-fermion-Higgs Yukawa coupling will be addressed in the following paper.
All the quadratic divergences appear in connection with the self-energy diagrams, typi-
cally those of the electron and the Higgs. Following the preceding paper, Paper I [5], we
shall use the method of point-splitting regularization to study the one-loop diagrams. As
compared with dimensional regularization [6], point splitting is technically less developed,
but without any difficulty with vs.

We shall see that the quadratic divergences associated with the electron self energy all
stem from the Higgs tadpole diagrams. These will be discussed in section 2. The quadratic
divergences vanish if the following mass relation is satisfied,

3 2

3 3
Em%‘, + Zm"’z + 1MH (1.1)

m§+mi+mf_+3(mi+m§+mg+mf+mf+m§)

This relation was first given by Veltman [7] over 10 years ago. Our derivation is very
different from his. Since the point-splitting regularization makes no reference to dimen-
sions of space-time other than four, there is in our derivation no ambiguity related to the
dimension of the Dirac matrices or that of Lorentz vectors.

Next, the Higgs self-energy diagrams are discussed in section 3. In this case, the
tadpole diagrams enter as a subset of all relevant diagrams, but they are not the only
ones. There are also quadratically divergent “bubble” diagrams. It turns out that the

quadratically divergent parts of those are simply proportional to the tadpole diagrams.
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2. Electron self energy

The various Feynman diagrams contributing to the electron self energy are given in
fig. 1. Here, ¢ and ¢ denote the Higgs ghosts, while n*, 7~ and 1% denote Faddeev-
Popov ghosts [8]. Most of these contributions to the electron self energy are divergent, but
it is easily seen that only the Higgs tadpole diagrams are actually quadratically divergent.
(It should be remembered that no vertex involving the electron field has any momentum
factor.) Since we focus on quadratic divergences in the present paper, we consider the
Higgs tadpole diagrams in more detail.

The contributions of the various tadpole diagrams are given by
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where the prefactor — sign is for fermion and Faddeev-Popov ghost loops, 3 is for color, and
1/2 is a symmetry factor for self-conjugate fields. Furthermore, £ is a parameter specifying

the gauge [9].



The contribution to the electron self energy from these tadpole diagrams is thus pro-

portional to
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(2.12)

We note that this is not independent of ¢. However, the quadratically divergent part is

gauge independent.

All these integrals can be expressed in terms of the I{!)(§) defined and evaluated in

appendix A of Paper I. We have [5]

I(l)(5) — /d4leil-6 1

12 — M? + e
-1 M
:—47\'21:M2{W+%[1n—2é+7—%} +i§+0(52)}, (2.13)

for § time-like (and no i7/4 otherwise). Obviously, the quadratically divergent part of the
expression (2.12) is the one corresponding to the 1/62 part of I{1)(§), which is independent
of M?. Hence, the quadratically divergent part of the electron self energy vanishes when

the over-all coefficient of 1/62 vanishes. Thus the condition is

3 3 3
m2+m?2 +m?2+3(mi+miimiim?+md+m?)= §m"év + Zmzz + zmif, (2.14)

which is our first mass relation, quoted in the Introduction. We note that this is determined

entirely by the tadpole diagrams through the coupling of the Higgs field to the various other
fields.

3. Self energy of H

The diagrams that contribute are given in fig. 2. We give below the amplitudes for
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the diagrams that contain quadratic divergences. From the first set, they are

»
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There is no quadratically divergent contribution from the fourth set, namely the diagrams

involving Faddeev-Popov ghosts.

If we here only extract the leading, quadratically divergent terms, we find
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In writing down these expressions, we have kept all denominators exact, but retained only

the relevant parts of the numerators, i. e., those terms that contribute to the quadratic

divergences.



All of these integrals can immediately be reduced to integrals of the form I(})(§)
discussed in the previous section, whose leading behavior for small § is proportional to
1/6%. This is true also for Iz4,, Iw- ¢+ and Iw+4-, since

(1 - Ok

_k2+ ~ —_ kz.
(3p + k)2 — €m% + i€ k200 ¢

Thus, the quadratic divergences are proportional to

2
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where we have introduced also the contributions from the fermions of the second and third
generations. We note that the gauge-dependent terms cancel, and that we are left with
an expression proportional to that of the Higgs tadpole encountered for the electron self

energy in the preceding section.

4. Self energies in dimensional regularization
The mass relation (1.1) cannot be obtained within the framework of dimensional
regularization. This will be illustrated in some detail in the present section.
4.1 Electron self energy

In d dimensions, the tadpole diagrams of fig. 1 contribute
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Note the factors of d in the square brackets of (4.4) and (4.6). They arise from the sum

over vector indices,
guvg"’ = d. (4.12)

The contribution to the electron self energy from these tadpole diagrams is thus pro-

portional to
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where f(d) = Tr[1] arises from the trace over 7 matrices as represented in d dimensions.
In dimensional regularization, the quadratic divergences manifest themselves as pole
singularities at d = 2. Thus, in order to make them vanish, one has to impose the condition
$(d)[m? +mi +ml 4 3(m], +m +m +m] 4 m +my)]
d—-1 d-1 3
Tt (4.14)

evaluated at d = 2. This condition is different from (1.1) for any choice of f(2).




4.2 Self energy of H

We next turn to the Higgs self energy, using the same notation as was used in Sec. 3.

From the first set of diagrams in fig. 2, the contributions are
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from the second set they are
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Again we collect all integrands, and demand that the over-all integrand vanish. It is

proportional to

2

I= TZ—z{—%f(d)[mi +mz +m?2 4+ 3(m2 +m3 +m2 +m?+ml+m?)
w
- §m%E - gmivé+ imyy + H(d - 1+ Omy + {(d - 1+ Emipé + fmy + gmi},

(4.35)

which must vanish if the Higgs self energy is to be free of quadratic divergences. This

condition is seen to be the same as (4.14).

5. Comparison with the Derivation of Veltman

It is perhaps instructive to compare the present derivation of the mass relation (1.1)
with the one given by Veltman over ten years ago [7].
(1) So far as we know, Ferrara, Girardello and Palumbo {10] are the first ones to derive a
quadratic mass formula. They consider the soft breaking of a supersymmetric theory,

and find that, under very general conditions, the masses satisfy the relation

> (=172 + 1)mk =o. | (5.1)
J

Dimensional regularization plays no role in this work. Suppose this mass formula is

applied to the Standard Model, then one gets

3 3 1
m?2 +m? +m2 +3(m2 + mi +mZ +m? +mj +ml) = -2-m%V+Zm2z+ Zmif-

Note that this mass formula differs from that of (1.1) only by a factor of 3 in the last

term.
(2) Veltman’s paper appeared a year later. In this work, he used dimensional regulariza-
tion and chose throughout the dimension of the Dirac matrices to be 4, independent

of the space-time dimension, i.e.,
f(d) =4 (5.2)

Thus the result (4.14) with dimensional regularization becomes

m§+mi+mi+3(mi+m§+m§—+—mf+m§+mf)

d-1 d-1 3
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Since this is obtained by setting the residue of the pole at d = 2 to zero, there is
no choice, within dimensional regularization, but to let d be 2 on the right-hand side
of (5.3). However, Veltman argued, using supersymmetry [11], that the d in (5.3)
should be 4. This is based on the work of Siegel [12] and Capper, Jones and Van
Nieuwenhuizen [13]. However, it is not clear what supersymmetry has to do with
the non-supersymmetric Standard Model. Indeed, it is the power of point-splitting
regularization that the mass relation (1.1) is obtained directly without reference to
any theory outside of the Standard Model.

There is another major difference between dimensional regularization and point-split-
ting regularization. Consider the case of the electron self-mass. In QED, the electron
self-mass has only a logarithmic divergence: a pole at d = 4 with dimensional regular-
ization and a Iné term with point-splitting regularization. For the Standard Model,
as we have seen, there are quadratic divergences: a pole at d = 2 with dimensional
regularization and a §72 term with point-splitting regularization. With dimensional
regularization, the pole at d = 2 and the pole at d = 4 have nothing to do with each
other, and hence one cannot be used to cancel the other. This is quite difference with
point-splitting regularization: in the Standard Model, it is possible to go further to
make the electron self-mass finite. The point here is that, when the point splitting §
is introduced, the various coupling constants must also be allowed to depend on §; it
is only necessary for the deviations in the coupling constants to approach zero as é
approaches zero.

In view of the above points, it is now possible to proceed further. The point (3)
implies that it does not make any sense to try to get another relation by setting the
coefficient of the In § term to zero in the electron self-mass, since this is automatically
accomplished. The point (2) implies that, although there is only one mass relation,
the one expressed by (1.1), that can be gleaned from supersymmetry, there may well
be other relations that are present within the Standard Model. Indeed there is, and

this second mass relation is to be derived in Paper III.

6. Concluding remarks

Quadratic mass relations apparently first appeared in the context of supersymmetric

theories that are softly broken [10]. When the mass relation from supersymmetry is applied
to the Standard Model, the result is very similar to (1.1), the difference being a factor of 3
in one of the terms. As the Standard Model [1] became generally accepted around 1980, a

number of groups independently revived the original idea of Stiickelberg [14] to determine
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conditions so that the self energies are finite. Some of the early work can be found in ref.
[15]. Shortly thereafter, the quadratic mass relation (1.1) for the Standard Model was first
given by Veltman [7] who made use of supersymmetry. We note that it cannot be obtained
from dimensional regularization. In that approach quadratic divergences appear as poles in
the extrapolation of the amplitudes to two dimensions. However, in two dimensions Lorentz
indices can only take two values, and therefore expressions like k*k" effectively become
replaced by %kzg‘“’ instead of %kzg‘“’ in four dimensions. Similarly, the trace over Dirac
matrices is ambiguous. When point-splitting regularization is used in the way discussed
here, these problems do not appear and (1.1) is obtained directly. It is impressive that
Veltman, who is one of the originators of dimensional regularization, and has consistently
advocated for its use, has abandoned dimensional regularization in this particular case
because of its failure to give the correct answer. This problem is also addressed by Capdequi
Peyranere, Montero and Moultaka [16].

We are also aware of some more recent work along these lines by Decker and Pestieau

[17], and by Lee and Drell [18].

Acknowledgments

For helpful discussions, it is a pleasure to thank Professors Carlo Becchi, John Ellis, Raoul
Gatto, Howard Georgi, Maurice Jacob, Kenneth Johnson, and especially Professors Harry
Lehmann and Chen Ning Yang. One of us (TTW) wishes to thank the Theory Division of
CERN for its kind hospitality.

12



References

S. L. Glashow, Nucl. Phys. 22 (1961) 579;

S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;

A. Salam, in Elementary Particle Theory: Relativistic Groups and Analyticity (Nobel
Symposium No. 8), edited by N. Svartholm (Almqvist and Wiksell, Stockholm, 1968),
p. 367;

S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970)

The LEP Collaborations - ALEPH, DELPHI, L3 and OPAL, CERN-PPE/91-232
(1991)

F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321;

P. W. Higgs, Phys. Lett. 12 (1964) 132; Phys. Rev. Lett. 13 (1964) 508;

G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13 (1964) 585;
P. W. Higgs, Phys. Rev. 145 (1966) 1156;

T. W. B. Kibble, Phys. Rev. 155 (1967) 1554

C. N. Yang and R. L. Mills, Phys. Rev. 96 (1954) 191

P. Osland and T. T. Wu, “Paper [”, CERN-TH.6385, to be published

C. G. Bollini and J. J. Giambiagi, Phys. Lett. B40 (1972) 566;

G.’t Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189;

J. F. Ashmore, Nuovo Cim. Lett. 4 (1972) 289;

G. M. Cicuta and E. Montaldi, Nuovo Cim. Lett. 4 (1972) 329

M. Veltman, Acta Physica Polonica B12 (1981) 437

L. D. Faddeev and V. N. Popov, Phys. Lett. 25B (1967) 29

K. Fujikawa, B. W. Lee and A. I. Sanda, Phys. Rev. D6 (1972) 2923

S. Ferrara, L. Girardello and F. Palumbo, Phys. Rev. D20 (1979) 403

Yu. A. Gol’fand and E. P. Likhtman, JETP Lett. 13 (1971) 323;

D. V. Volkov and V. P. Akulov, JETP Lett. 16 (1972) 438;

J. Wess and B. Zumino, Nucl. Phys. B70 (1974) 39

W. Siegel, Phys. Lett. 84B (1979) 193

D. M. Capper, D. R. T. Jones and P. van Nieuwenhuizen, Nucl. Phys. B167 (1980)
479

E. C. G. Stiickelberg, Nature 144 (1939) 118

T. H. Bergstrom and K. Olaussen, Arkiv for Det Fysiske Seminar i Trondheim, No 4
- 1980;

R. Decker and J. Pestieau, Lett. Nuovo Cim. 29 (1980) 560;

D. Atkinson, A. Khare and W. J. Schoenmaker, Groningen preprint 1980

M. Capdequi Peyranere, J. C. Montero and G. Moultaka, Phys. Lett. B260 (1991) 138
R. Decker and J. Pestieau, Modern Phys. Lett. A4 (1989) 2733

I-H. Lee and S. D. Drell, SLAC-PUB-5423 (1991), to appear in Bég Memorial Volume

13



Figure captions
Fig. 1. One-loop contributions to the electron self-energy.

Fig. 2. One-loop contributions to the Higgs self-energy. The tadpole diagrams are not

shown.
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