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Abstract- Recently the authors proposed a direct discrete-time frequency
transformation technique whereby a normalized lowpass prototype refer-
ence transfer function can be transformed into a denormalized lowpass,
highpass, bandpass, or bandstop transfer function with specified passband
as well as stopband frequency edges. This resulted in the development of 2
general constraint relationship between the passband and stopband edge
frequencies of the lowpass prototype reference transfer function. In this
paper, the constraint relationship thus obtained is exploited and applied to
the determination of the discrete-time prototype reference transfer function
in the special cases where the final denormalized discrete-time transfer
functions are required to exhibit Butterworth, Tschebyscheff, or elliptic
loss-frequency characteristics.

1. INTRODUCTION

There exist three distinct steps involved in the hitherto approach to
the derivation of denormalized lowpass (LP), highpass (HP), bandpass
(BP), and bandstop (BS) discrete-time transfer functions. These steps are
[1):

Step 1: By employing the classical analog transfer function approxima-
tion techniques, a suitable normalized lowpass continuous-time prototype
reference transfer function Hyc(s) is derived, where s represents the nor-
malized complex frequency variable in the continuous domain.

Step 2: Through the application of the conventional analog frequency
transformation techniques, the continuous-time prototype reference
transfer function Hyc(s) is transformed into a denormalized LP, HP, BP,
or BS continuous-time transfer function Hyc(5), where 5 represents the
denommalized complex frequency variable in the continuous domain.

Step 3: The transfer function Hyc (7) is transformed into a corresponding
denormalized discrete-time transfer function Hyp () through the applica-
tion of the bilinear ¥-t0-Z frequency transformation in accordance with

Hxn(3-)=ch(5)|f= 7-1. 1

Z+1
where z represents the denormalized complex frequency variable in the
discrete domain.

An altemative approach to the derivation of denormalized discrete-
time transfer functions Hyp(z) is presented in this paper. The proposed
approach is based on performing the necessary LP-to-LP, LP-to-HP,
LP-t0-BP, and LP-to-BS frequency transformations in the discrete
domain. Specifically, this approach proceeds in the following three
steps:

Step 1: A suitable nommalized lowpass continuous-time prototype refer-
ence transfer function Hyc (s) is derived as in the above approach.

Step 2: The continuous-time prototype reference transfer function Hyc (s)
is transformed into a corresponding discrete-time prototype reference
transfer function Hy,(z) through the application of the bilinear s-to-z
frequency transformation in accordance with

Hyp(z) =”NC(S)‘: _z-1., )

z+1

where z represents the normalized complex frequency variable in the
discrete domain.

Skp‘ 3: Through the application of the discrete-time frequency transfor-
mation technique in [2], the prototype reference transfer function Hyp (z)
is transformed into a denormalized LP, HP, BP, or BS discrete-time
transfer function Hy ().
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In Section I a review is given of the general constraint relationship
that exists between the passband and stopband frequency edges associ-
ated with the discrete-time prototype reference transfer function Hyp(z).
In Section III, it is shown that a similar constraint relationship exists
between the passband and stopband frequency edges of the correspond-
ing continuous-time prototype reference transfer function Hyc(s). The
latter constraint relationship is exploited in Section IV to arrive at denor-
malized LP, HP, BP, and BS discrete-time transfer functions Hy, (%)
having Butterworth, Tschebyscheff, and elliptic loss-frequency charac-
teristics. The parameters of particular interest include the required order
for the transfer function Hyp(z) as well as the required passband and
stopband frequency edges for its loss-frequency characteristic.

I1. CONSTRAINTS ON THE PASSBAND AND STOPBAND FREQUENCY
EDGES OF DISCRETE-TIME
PROTOTYPE REFERENCE TRANSFER FUNCTION

Let Hyp(z) represent a normalized lowpass discrete-time prototype
reference transfer function characterized by means of a logarithmic loss-
frequency

1
Anp (Q) = 10 log g @) P ° 3)
satisfying general specifications of the form
0sAwm(Q)sA, for 0s1Q1sQ,,
Ap( Q) 24, for Q, <IQl<mT. )

where Q represents the z-domain real frequency variable, and T
represents the sampling period. In these relationships, Q, represents the
passband frequency edge and A, the maximum passband ripple, while
Q, represents the stopband frequency edge and A, the minimum
passband loss associated with Hyp (z).

The discrete-time prototype reference transfer function Hyp(z) can
be transformed into a denormalized LP, HP, BP, or BS transfer function
Hxp (z) by using a transformation of the form {2]

on(l—)=H~o(1)z=fm(;)~ ®

In the case of a LP-to-LP frequency transformation, the loss-frequency
characteristic

= 1
Axp (Q) = 10log—————%——,
w0 ) 2 | Hxn(e/ﬁf) 2 (6)
is required to satisfy general frequency specifications of the form
0sAp@) <A, for 0<IDI<D,,
Ap@)2A, for Q,<1Ql<wr, (O

while in the case of a LP-to-HP frequency transformation it is required
to satisfy frequency specifications of the form

Ap@) 24, for 0<IiQl<Q,,

0<Ap@) <A, for Q,<IQl<nT, (8)



where Q, represents the specified passband edge frequency and {2,
represents the specified stopband edge frequency associated with Ayp (Q).
In the case of a LP-to-BP frequency transformation, on the other hand,
the frequency specifications to be satisfied by the loss-frequency charac-
teristic Axp (Q) are of the general form

0sAp@<a, for O,<101<q,.

0<1Q1<Qy

Ao @24, for D, <I1Tl<wT’

9)

while in the case of a LP-to-BS frequency transformation the
specifications to be satisfied are of the form

An@) 24, for 0, <1019, .,

0sIQ1s8y,

0<Ap@s4, for {5 _iGicur
P

(10

where 2, () represents the specified lower (upper) passband fre-
quency edge, and Q,, (Q,,) represents the specified lower (upper) stop-
band frequency edge associated with Ay, (Q). It has been shown in [3]
that if the passband and stopband edge frequencies Q, and Q, associated
with Hyp (z) satisfy the conditions given in Table 1, and if the function
fxo @) is selected as given in Table 2 (2], then the application of the
discrete-time frequency transformation in (5) to the prototype reference
transfer function Hyp(z) leads to denormalized LP, HP, BP, and BS
transfer functions Hyp (7) satisfying the specifications in (7), (8), (9), and
(10), respectively.

III. CONSTRAINTS ON THE PASSBAND AND STOPBAND FREQUENCY
EDGES OF CONTINUOUS-TIME
PROTOTYPE REFERENCE TRANSFER FUNCTION

Let Hyc(s) represent a normalized lowpass continuous-time proto-
type reference transfer function, let Hyp(z) represent a corresponding
discrete-time prototype reference transfer function, and let Hyc(s) be
related to Hyp (z) through the bilinear s-to-z frequency transformation in
(2). Then, the logarithmic loss-frequency characteristic

1
=10 log—— ,
Anc (w) g HeGo) P an
associated with Hyc(s) is related to the corresponding characteristic
Anp (Q) associated with Hyp (z) in accordance with

(12)

where o represents the normalized real frequency variable in the continu-
ous domain. Consequently, the loss-frequency characteristic Anc(w)
satisfies general specifications of the form

0< Axc(@) <4, for

Anc (0) =AND(Q),‘D — T

oslolso,,

Avc(@) 24, for o, <l@l<eo, (13)
where
0, = a2’ (14)
represents the passband edge frequency, and
QT
= 2 15
0, = tan— (15)

represents the stopband edge frequency associated with the continuous-

TABLE 1 time prototype reference transfer function Hyc (s).
X Constraint From (14) and (15),
mn—Q'T
0, 2
Q,T/2 —= . (16)
Lp 1an(Q,T12) < ﬂ;’—) @, Q.7
° 2
It is important to note that in accordance with the results in Table 1,
an(Q,T/2)
HP an(Q,T/2) 2 ————
Ko
1an(Q, 7/2) TABLE 2
K, if a2a
BP || an(Q,T/2) < (@, T/2) . X x@ a B
T— if a<a
P I-a sin[(Q, - ,)T72] _
1-af sin{(Q, + £2,)T/2]
an(Q, T/2)
K, if a2a
BS |l wn(@Q,T2)23 n,112) f-o cosi(@, - 0,)T72)
if a<a’ HP - ~ e’ By Zinint _
K, 1-of cos[(Q, + Q,)T/2)
o 2_ 208 _ p-1 L.
_ en(@,772) TR T Bl | cosl@, + QT2 1an(Q, T72)
° 0.712) BP | - i 4
sin(Q r)m( ° 1- ;" T+ LB_ ::-1 cos{(Q,, - Q,)T/2) | tanl(Q - Q)T 12]
al + +
Ky = —————— un[(Q,, ~ ,)T12]
' cos(@uT) - o (2 — 1)
K sinQaT) 1an[(Q, — Q,)T12)
2= T ou — Sy 2% - 1-
Q,.T) - 2o 1-p ) ~
cost m)s[@a + 0T ps | - B+1°"1+p cosl(€, + )T 12] an(@, T/12)
T | e’ 2 _  1- ~ ~
c0s[($g — Q)T/2) S e o cos((Qy, ~ Q)T12] | cotl@p ~ Q,0T12)
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an

where the parameter X is defined in Table 3 for the cases of denormal-
ized LP, HP, BP, and BS discrete-time transfer functions Hyjy (7). There-
fore, from (16) and (17)
W, 1
E < F N (18)
which implies that there exists a constraint relationship between ®, and
©,.

The constraint relationship in (18) is exploited in the following sec-
tion to arrive at the parameters of the discrete-time prototype reference
transfer function Hyp(z) required for denommalization into discrete-time
LP, HP, BP, and BS transfer functions Hyp(z) having Butterworth,
Tschebyscheff, and elliptic loss-frequency characteristics.

TABLE 3

1
Kiif aza’ X, f a2c

K, if a<a K, if o<’

IV. PARAMETERS OF DISCRETE-TIME PROTOTYPE
REFERENCE TRANSFER FUNCTION

A. Parameters Associated with Denormalized Discrete-Time
Butterworth Transfer Functions

The loss-frequency characteristic Anc(®) associated with a
continuous-time Butterworth prototype reference transfer function Hyc (s)
is of the form {1]:

Anc (0) = 10log[1 + €2 0™}, (19)
where n represents the order of the transfer function Hy(s), and where

€= 10_:"’_ -1. @0
In accordance with (19),

A, =10 log[l + € 0,2*], (¢3))
and

A, =10 log(l + 2 0, 2], (22)
From (21),

w =1, (23)
From (23) and (18),

0 s % 4)

which provides a means of selecting a value for «,. But, from (22) and
(20), one can obtain

0, =D™, (25)
where
A
10 _
D= 10 1 26)
10 -1
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Therefore, in accordance with (25) and (24),

n>J0ED
2log L @n
%X
Furthermore, from (23) and (14),
Qr=7, (28)
and from (25) and (15),
Q.7 = 2un D™ . @9

Finally, if the passband and stopband edge frequencies Q, and Q, have
been fixed in accordance with (28) and (29), and if the order n has been
fixed in accordance with (27), then (29) can be used to get
1-cos QT
b=t

In accordance with (30) and (26), there exist a relationship between the
maximum passband ripple 4, and the minimum stopband loss A,. There-
fore, if the maximum passband ripple A, is kept at its specified value,
then, in accordance with (30), the actual minimum stopband loss
achieved is given by

(30)

2 1~cos Q,T
i = 10 _ )y (0 2%a
A, =10 log[1 + (10 1)(1”0“”
where A, 2 A, and improves on the specified value A,. Conversely, it is
possible to fix A, at its specified value and determine the actual A,. In
this paper, it is always assumed that A, is kept fixed at its specified
value.

»1. €2))

B. Parameters Associated with Denormalized Discrete-Time
Tschebyscheff Transfer Functions

The loss-frequency characteristic Ayc(®) associated with a continuous-time
Tschebyscheff prototype reference transfer function Hyc(s) is given by [1]:

Anc (@) = 10log(1 + €2 TXw)] , 32)
where
cos[ncos(w)) for 0<w<1,
T.(w) = 33)

cosh[ncosh™(w)] for 1S@ <o,

and where n represents the order of Hyc (s). In accordance with (32) and (33),
one may write

A, = 10log[ 1 + €2 cosh®(n cosh™®,)] , (34)
and

A, = 10log{ 1 + € cosh’(n cosh™'@,)] . (35)
Then, (34) leads 10

o, =1. (36)
From (36), and (18),

o s ¥ 67

providing a means of fixing a value for ©,. But, from (35),
0. = cosh[% cosh™D ] . (38)

Therefore, in accordance with (38) and (37),

» 3 Sosi™ND
1 (39)
cosh X
Furthermore, from (36) and (14),
n
QT=2, (40)

and from (38) and (15),



Q.7 =2 an™ [cosh(% cosh VD)) . @1n

Finally, if Q, and Q, have been fixed in accordance with (40) and (41),
and if » has been fixed in accordance with (39), then (41) can be used to
get
1-3cos QT
1+cos,T
2

1+ T,(
- @2)

Therefore, from (42) and (26), if A, is kept at its specified value,

then
. 14T 1-3cos Q,T
A 2 LT @3)
A, = 10log[1 + (10'° - 1) 3 ].
C. Parameters Associated with Denormalized Discrete-Time
Elliptic Transfer Functions

The passband and stopband edge frequencies of the loss-frequency
characteristic Anc(®) associated with the continuous-time elliptic proto-
type reference transfer function Hye (s) can be selected as:

o, =k , 44)
and
0, = = “5)
a ﬁ »
where 0 < k < 1. Then, the order » can be determined as [1}:
n> log 16D i
log - (46)
q
where
g=e+2e°+15¢°+ 1503+ 17077+ - -- @7
is a rapidly convergent series in e, and where
1-V1-&2
e=% ——. 48
1+V1+42 “®
By substituting (44) and (45) into (18), one can get
k2K, 49)

which provides a means of fixing a value for k. Furthermore, from (44)
and (14),

Q,T =tan"'k , (50)
and from (45) and (15),
—an-L
Q,T =1tan T (51)

Finally, if the passband and stopband edge frequencies Q, and Q, have
been fixed in accordance with (50) and (51), and if the order n has been
fixed in accordance with (46), then (46) can be used to get
1
(G
=49
D 6
Therefore, from (52) and (26), if the maximum passband ripple 4, is
fixed at its specified value, then the actual minimum stopband loss
achieved is given by

(52)

AI
A, =101og(l + (107 - 1)

1. (53
"
q
where A, > A, and improves on the specified value A,.

The main results concerning the parameters of the discrete-time
prototype reference transfer function Hyp(z) are summarized in Table 4
for the cases of denormalized LP, HP, BP, and BS discrete-time transfer
functions Hyp(7) having Butterworth, Tschebyscheff, and elliptic loss-

-frequency characteristics.

TABLE 4
Case
Butterworth Tschebyschef f elliptic
-1
"> k_)ng 2cosh \/]5 n > log lGlD
2log — = -
log cosh X log 7
X
n T 1
QT == == = -l
3 2 QT 2 QT =2tan o
Q,T =21an™ u: Q,T =2tan! 1 Q,T =2un'o,
1 1 1
< — < — & _—
W, X 0, K @, < K
LP K=K,
1
HP = —
K X,
Kiif a2o
BP K=
Ky if a<a
1
x, faza
BS K = )
X, if a<a

V. CONCLUSIONS

Explicit relationships have been presented for the parameters of the
normalized lowpass discrete-time prototype reference transfer function
suitable for the derivation of denormalized lowpass, highpass, bandpass,
and bandstop discrete-time transfer functions having Butterworth, Tsche-
byscheff, and elliptic loss-frequency characteristics. These parameters
includé the required order of the discrete-time prototype reference
transfer function as well as the required passband and stopband edge fre-
quencies for its loss-frequency characteristic.
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