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The intention of the paper is to move a step towards a classification of network topologies
that exhibit periodic quantum dynamics. We show that the evolution of a quantum
system whose hamiltonian is identical to the adjacency matrix of a circulant graph
is periodic if and only if all eigenvalues of the graph are integers (that is, the graph
is integral). Motivated by this observation, we focus on relevant properties of integral
circulant graphs. Specifically, we bound the number of vertices of integral circulant
graphs in terms of their degree, characterize bipartiteness and give exact bounds for
their diameter. Additionally, we prove that circulant graphs with odd order do not allow
perfect state transfer.
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1. Introduction

Circulant graphs have a vast number of uses and applications to telecommunication
network, VLSI design, parallel and distributed computing (see Ref. 6 and references
therein).

A graph is integral if all the eigenvalues of its adjacency matrix are integers
(see Ref. 2 for a survey on integral graphs).

Here, we first show that the evolution of a quantum system, whose hamiltonian
is identical to the adjacency matrix of a circulant graph, is periodic if and only if
the graph is integral. Then, motivated by this observation, we focus on relevant
properties of integral circulant graphs.
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The intention of the paper is to move a step towards a classification of network
topologies which exhibit periodic quantum dynamics. For certain quantum spin
systems with fixed nearest-neighbour couplings, periodicity is a necessary condition
for perfect state transfer, that is, for transferring a quantum state between sites of
the system, with the use of a free evolution and without dissipating the information
content of the state (see Ref. 3, for more information on this topic).

It is useful to study certain parameters of graphs that allow periodic dynamics,
having in mind applications like perfect state transfer. Specifically, it is interesting
to know how far information can be potentially transferred between sites of the
system modeled by the graph. So, it is interesting to know the length of the longest
geodesic in the graph, or, in other words, the diameter of the graph. Since many
vertices means many particles and harder control, for the purpose of information
transfer, a good network will have large diameter and a small number of vertices.
Although path graphs would be the best candidates, it can be easily shown that
these do not allow periodic dynamics and that one needs to add more and more
vertices for constructing graphs with the desired dynamical properties. This is why
we focus on order and diameter of integral circulant graphs.

The main mathematical results of the paper are the following:

• we bound the order of connected integral circulant graphs as a function of the
degree (Sec. 4, Theorem 2);

• we characterize bipartite integral circulant graphs (Sec. 5, Theorem 3);
• we prove tight lower and upper bounds on the diameter of integral circulant

graphs (Sec. 6, Theorems 4 and 5).

Given the properties of circulant graphs, the proofs are based on elementary
number theory. In the last section, we show that circulant graphs with odd order do
not allow perfect state transfer. However, we do not have a characterization of inte-
gral circulant graphs allowing perfect state transfer. This is left as an open problem.

2. Background on Circulant Graphs

A graph G = (V (G), E(G)) is a pair whose elements are two sets, V (G) =
{1, 2, . . . , n} and E(G) ⊂ V (G) × V (G). The elements of V (G) and E(G) are called
vertices and edges, respectively. We assume that {i, i} /∈ E(G) for all i ∈ V (G). Two
vertices i, j of a graph are said to be adjacent if {i, j} is an edge; the edge {i, j} is
then incident with the vertices i, j.

The adjacency matrix of a graph G is the matrix A(G) such that A(G)i,j = 1 if
{i, j} ∈ E(G) and A(G)i,j = 0 if {i, j} /∈ E(G). The spectrum of a graph G is the col-
lection of eigenvalues of A(G), or equivalently, the collection of zeros of the charac-
teristic polynomial of A(G); see Ref. 4. We denote by sp(G) = (λ0(G), . . . , λn−1(G))
the spectrum of a graph G in the non-increasing (with respect to modulus) ordering.
We simply write λ0, . . . , λn−1 when G is clear from the context.
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Let S = {s1, s2, . . . , sk} be a set of k integers in the range

1 ≤ s1, s2, . . . , sk < n.

Since we consider only undirected graphs, we assume that s ∈ S if and only if
n − s ∈ S.

A circulant graph G = G(n; S) is a graph on the set of n vertices V (G) =
{v1, . . . , vn} with an edge incident with vi and vj whenever |i − j| ∈ S; see Ref. 6.
The set S is said to be the symbol of G. In particular, k = #S is the degree of a
circulant graph G(n; S).

Let Zn denote the residue ring modulo n and let Z∗
n be the multiplicative group

of Zn.
Notice that a circulant graph G(n; S) is a Cayley graph of the additive group of

Zn with respect to the Cayley set S.
We recall that a Cayley graph with respect to a finite group G and a set S ⊆ G,

such that it contains −w for every w ∈ S, is a graph on n = #G vertices, labeled
by elements of G, where the vertices u and v are connected if and only if u− v ∈ S

(or equivalently, v − u ∈ S).
A path in a graph is a finite sequence of vertices which are connected by an edge.

A connected graph is a graph such that there is a path between all pairs of vertices.
It is easy to show that a circulant graph G(n; S) with symbol S = {s1, s2, . . . , sk}
is connected if and only if gcd(n, s1, s2, . . . , sk) = 1.

The adjacency matrix of a circulant graph is diagonalized by the Fourier trans-
form at the irreducible representations over the group Z∗

n (which is a Vandermonde
matrix). Lemma 1 is based on this observation.

Let ωn = exp (2πι/n), where ι =
√−1.

Lemma 1. The spectrum of a circulant graph G = G(n; S) on n vertices with
symbol S is

λj =
∑
s∈S

ωjs
n , (1)

where 0 ≤ j ≤ n − 1.

By Lemma 1, the eigenvalues of a circulant graph are just the sum over S of
the irreducible characters of Z∗

n. The eigenvectors are also easily available. In fact,
it is straightforward to see that the eigenvector corresponding to the eigenvalue λj

has the form vj = [1, ωj, . . . , ωj(n−1)]T .

3. Integral Circulant Graphs and Periodic Quantum Dynamics

A quantum spin system associated to a graph G can be defined by attaching a spin-
1
2 particle to each of the n vertices of G. The Hilbert space assigned to the system
is then H ∼= (C2)⊗n.

This system can be interpreted as a noiseless quantum channel, whose Hamilto-
nian is identical to the adjacency matrix of G itself. From another perspective, its
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evolution can be seen as a continuous-time quantum walk on G. Some properties of
such dynamics on circulant graphs have been studied in Ref. 1.

As observed in Ref. 3, the dynamics of the system is periodic if for every state
|ψ〉 ∈ H, there exists p ∈ R, 0 < p < ∞, for which |〈ψ|e−ιA(G)p|ψ〉| = 1. The
number p is the period of the system.

In general, assuming that the initial state was |ψ(0)〉 =
∑

j αj |λj〉, we can
express as follows the state of the system at generic time t:

|ψ(t)〉 = e−ιHGt|ψ(0)〉 =
∑

j

αje
−ιtλj |λj〉,

where |λj〉 is an eigenvector of A(G) with eigenvalue λj and αj ∈ C. Thus, the
periodicity condition |ψ(t)〉 = e−ιφ|ψ(0)〉 (φ is a phase) gives us that for every
λj ∈ sp(G) we have:

λjt − φ = 2πrj , for some rj ∈ Z.

Therefore, for every quadruple λi, λj , λr, λs ∈ sp(G) (with λr 
= λs), it follows that

λi − λj

λr − λs
∈ Q. (2)

We now show that Eq. (1) implies the integrality of the underlying graph.

Theorem 1. Let G = G(n; S) be a circulant graph on n ≥ 4 vertices with symbol S.
If G has at least four distinct eigenvalues and all of them satisfy the condition (2)
then G is integral.

Proof. Let k = #S be the degree of G. By Lemma 1, λ0 = k. It is clear then
that λ1, . . . , λn−1 are all different from λ0. If sp(G) satisfies (2), then for all i ∈
{1, . . . , n − 1}, we have

λi − k

λ1 − k
∈ Q.

Therefore, λi = aiλ1 + bi for some ai, bi ∈ Q.
We now show that λ1 ∈ Q. For this we consider three cases:

Case 1. Suppose n = p, a prime.

Then the minimal polynomial of ωn over Q is 1 + X + · · · + Xn−1. Since G has at
least four distinct eigenvalues we can find 2 ≤ j < h ≤ (n− 1) such that λ0, λ1, λj

and λh are all distinct.
Suppose that λ1 
∈ Q. From Eq. (1), we have that λj = ajλ1 + bj for some

aj , bj ∈ Q. Applying (1), we get∑
s∈S

ωjs
n = aj

∑
s∈S

ωs
n + bj .
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In the last identity we can replace each exponent js with its smallest positive residue
rj,s modulo n, which in turn means the following divisibility of polynomials

1 + X + · · · + Xn−1
∣∣∣ ∑

s∈S

Xrj,s − aj

∑
s∈S

Xs − bj.

Since the nonzero polynomial on the right-hand side is of degree at most n− 1 and
since λ1 
= λj , we obtain

1 + X + · · · + Xn−1 =
∑
s∈S

Xrj,s − aj

∑
s∈S

Xs − bj ,

which implies −aj = −bj = 1. Thus, λj = −λ1 − 1. Applying the same argument
on λh we get, λh = −λ1 − 1, thus implying λh = λj . This contradiction shows that
λ1 ∈ Q in this case.

Case 2. Suppose n = pr, a power of a prime p, where r ≥ 2.

Now focus on the set of eigenvalues:{
λpr−1 , λ2pr−1 , . . . , λ(p−1)pr−1

}
.

Suppose that λ1 
∈ Q. Clearly, λpr−1 cannot be rational (otherwise λ1 ∈ Q). The
above eigenvalues can be described as:

λipr−1 =
∑
s∈S

ωipr−1s
n =

∑
s∈S

ωis
p .

Thus, this case now reduces to the prime case above and shows that λ1 is rational.

Case 3. Suppose n has two distinct prime factors p, q.

We have that for all i ∈ {1, . . . , n − 1}, λi = aiλ1 + bi, for some ai, bi ∈ Q. Thus,

Q(λ1) = · · · = Q(λn−1). (3)

Observe that λn/p ∈ Q(ωp) and λn/q ∈ Q(ωq). But Eq. (3) implies that λn/p ∈
Q(λn/q). Thus, λn/p ∈ Q(ωp) ∩ Q(ωq). It can be shown that Q(ωp) ∩ Q(ωq) = Q

since p, q are coprime. Thus, λn/p ∈ Q and then Eq. (3) forces λ1 ∈ Q.
Thus, in all the cases λ1 ∈ Q and hence all the n eigenvalues are rational. Since

they are also algebraic integers, this further implies the desired result.

It is plausible that the method of proof of Theorem 1 can be extended to other
classes of Cayley graphs.

In the light of Theorem 1, in the next sections we consider parameters of cir-
culant integral graphs. Before doing that, we now give a characterization of these
graphs, which is due to So (Ref. 9), (and which is naturally based on Lemma 1).
This is our main technical tool.

Let

Gn(d) = {k |1 ≤ k ≤ n − 1, gcd(k, n) = d}
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be the set of all integers less than n having the same greatest common divisor d

with n. In particular, #Gn(d) = ϕ(n/d), where, as usual,

ϕ(m) = #{1 ≤ s ≤ m |gcd(s, m) = 1}
denotes the Euler totient function of a positive integer m (see, for example, Ref. 5).

Notice that the collection {Gn(d) | d divides n} is a partition of the set
{1, 2, . . . , n − 1}. Notice that k ∈ Gn(d) if and only if n − k ∈ Gn(d), since
gcd(k, n) = gcd(n − k, n).

Let Dn be the set of all (τ(n) − 1) divisors d | n with d ≤ n/2, where, as usual,
τ(n) is the number of positive integer divisors of n.

Lemma 2. A circulant graph G = G(n; S) on n vertices with symbol S is integral
if and only if

S =
⋃

d∈D

Gn(d) (4)

for some set of divisors D ⊆ Dn.

Throughout the paper, the implied constants in the symbols “O”, “” and “�”
are absolute. We recall that A  B and B � A is equivalent to the statement that
A = O(B) for positive functions A and B.

4. Degree and Order

In this section, we prove an upper bound on the number of vertices of an integral
circulant graph in terms of its degree.

Theorem 2. There is an absolute constant c > 0 such that for any k ≥ 2, the
largest number N(k) of vertices of an integral connected circulant graph G = G(n; S)
having degree k is bounded by

N(k) ≤ exp(c
√

k log log(k + 2) log k).

Proof. By Lemma 2, we see that S =
⋃

d∈D Gn(d), for some set of divisors D ⊆ Dn.
Therefore,

k = #S =
∑
f∈F

ϕ(f), (5)

where F = [n|d|d ∈ D].
Given that G is connected, we have gcd({d |d ∈ D}, n) = 1.
Noting that for any two divisors f, F | n we have

gcd(n/f, F ) ≥ gcd(F/f, F ) ≥ F/f,

it is easy to prove by induction on m that for any sequence f1, . . . , fm of divisors
of n, we have

gcd(n/f1, . . . , n/fm, n) ≥ n

f1 · · · fm
.



May 30, 2007 2:8 WSPC/187-IJQI 00291

Parameters of Integral Circulant Graphs and Periodic Quantum Dynamics 423

Therefore

1 = gcd({d |d ∈ D}, n) = gcd ({n/f |f ∈ F}, n) ≥ n
∏
f∈F

f−1,

which leads us to the bound

n ≤
∏
f∈F

f. (6)

We now recall the well-known bound that for some absolute constant C > 0,

ϕ(f) � f

log log(f + 2)
(7)

(see Ref. 5, Theorem 328). Thus, we see from (5) that

f

log log(f + 2)
 k

for every f ∈ F , which obviously implies that

f  k log log(k + 2).

Now, using this bound together with (7) and (5) again, we derive

k =
∑
f∈F

ϕ(f) �
∑
f∈F

f

log log(f + 2)
�

∑
f∈F

f

log log(k + 2)
.

Thus, if we denote

σ =
∑
f∈F

f,

then we have

σ  k log log(k + 2). (8)

Let s = #F . Then, we deduce from (6) that

n ≤ (σ/s)s
. (9)

Since

σ =
∑
f∈F

f ≥
s∑

j=1

j =
s(s + 1)

2
,

we see that

s  √
σ. (10)

Since the function (σ/x)x monotonically increases for 1 ≤ x ≤ σ/e, we obtain
from (8) and (9) that

n ≤ exp(O(
√

σ log σ)),

and recalling (8), we conclude the proof.
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On the basis of the arguments used in the proof of Theorem 2, we can construct
the following table, in which we list the maximum order of an integral circulant
graph of fixed degree k = 2, . . . , 11 (this is the sequence A126857 in Ref. 8):

Degree k Maximum Order N(k)
2, 3 6
4, 5 12
6, 7 30
8, 9 42

10, 11 120

Notice that the cycle with six vertices is the largest cycle with integral
eigenvalues.

5. Bipartiteness

In this section, we characterize bipartite integral circulant graphs.
Let us denote by µ(m) the Möbius function of a positive integer m:

µ(m) =




0, if m has repeated prime factors;
1, if m = 1;
(−1)k, if m is a product of k distinct primes.

For a fixed k, there exists a set F ⊂ N such that we have (5). Writing

n = lcm{f |f ∈ F}
and

S =
⋃

f∈F

Gn

(
n

f

)
, (11)

it is not hard to see that that the above defines an integral circulant graph
G = G (n; S). As discussed in Ref. 9, the eigenvalues of G = G (n; S) are then:
for 0 ≤ j ≤ n − 1,

λj =
∑
f∈F

ϕ(f) · µ (f/ gcd(f, j))
ϕ (f/ gcd (f, j))

. (12)

By (12), we can determine which integral circulant graphs are bipartite.

Theorem 3. An integral circulant graph G = G(n; S) on n vertices with symbol S

is bipartite if and only if n is even and S = ∪f∈F Gn(n
f ), where for some number �0,

the set {2�0/f |f ∈ F} contains only odd integers.

Proof. Having degree k, the graph G is bipartite if and only if it has an eigenvalue
λ� = −k; see Ref. 4.
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Suppose G is bipartite. On the basis of (11) and (12),

λ� = −k =
∑
f∈F

ϕ (f) · µ (f/ gcd(f, �))
ϕ (f/ gcd (f, �))

.

Given (5), the above equation can hold only if for every f ∈ F :

µ (f/ gcd(f, �))
ϕ (f/ gcd (f, �))

= −1.

This implies that

µ

(
f

gcd(f, �)

)
= −1 and ϕ

(
f

gcd (f, �)

)
= 1, (13)

whence
f

gcd(f, �)
∈ {1, 2}. (14)

So, (13) together with (14) gives:
f

gcd (f, �)
= 2,

implying that for every f ∈ F the ratio 2�/f is an odd integer.
Also, it follows that n is even as n = lcm{f |f ∈ F}. Thus, the theorem is true

in one direction.
Conversely, suppose that n is even and 2�0/f is odd for every f ∈ F . Conse-

quently, the �0th eigenvalue is:

λ�0 =
∑
f∈F

ϕ(f) · µ(f/ gcd(f, �0))
ϕ(f/ gcd(f, �0))

=
∑
f∈F

ϕ(f) · µ(2)
ϕ(2)

=
∑
f∈F

ϕ(f) · (−1) = −k.

Thus, G is bipartite and the theorem is proved.

6. Diameter

In this section, we prove tight lower and upper bounds on the diameter of integral
circulant graphs.

The diameter of a graph G, denoted by diamG, is the longest among the shortest
paths between any two vertices. If G is a circulant graph on n vertices, then it is
clear that 1 ≤ diamG ≤ n/2.

For a given degree k, the number of vertices of an integral circulant graph G is
n = lcm{f |f ∈ F}, where F is as given in Eq. (5).

Assuming that the columns (and rows) of the adjacency matrix AG of G are
labeled from 0, . . . , (n − 1) then the first row of AG is:

S =
⋃

f∈F

Gn

(
n

f

)
=

⋃
f∈F

{
i | 1 ≤ i ≤ n, gcd(i, n) =

n

f

}
.
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A right shift of row S gives the subsequent rows of AG .
Let X ⊆ Zn then, for a positive integer, we define

iX = X + · · · + X︸ ︷︷ ︸
i times

= {x1 + · · · + xi | x1, . . . , xi ∈ X}

(where the elements are added modulo n). Note that the vertices in G reachable
from the vertex 0 in 1 step are exactly the vertices of S; the vertices reachable from
the vertex 0 in 2 steps are those of 2S, and so on. Similarly, if we define T = S∪{0}
then the vertices reachable from the vertex 0 in i or smaller steps are iT . Thus, we
have:

Lemma 3. The diameter of the circulant graph G = G(n; S) is the least index i

such that iT = Zn.

Theorem 4. Let D be a set of divisors of n such that gcd(D, n) = 1 and let t be
the size of the smallest set of additive generators of Zn contained in D. Then, for
the circulant graph G = G(n; S), where S = ∪d∈DGn(d), we have

t ≤ diamG ≤ 2t + 1.

Proof. It is very simple to show the lower bound. By the hypothesis, it is easy to
see that t is the size of the smallest set of generators of Zn contained in T . Thus,
by Lemma 3, we deduce that diamG ≥ t.

We now turn to the upper bound. Let d1, . . . , dt ∈ D be the additive gener-
ators of Zn. Without loss of generality, we can assume that d1 is odd. Clearly,
gcd(d1, . . . , dt, n) = 1. We intend to show that, given any � ∈ Zn, there exist
x0, x1, . . . , x2t ∈ (Zn)∗ such that either

d1x0 + d1(x1 + xt+1) + · · · + dt(xt + x2t) ≡ � (mod n)

or

d1(x1 + xt+1) + · · · + dt(xt + x2t) ≡ � (mod n). (15)

Note that this would mean that (2t + 1)T = Zn. We now solve one of the above
congruences modulo prime factors of n and then “lift” that solution modulo n.

If 2|n, then we can put

x0 ≡ x1 ≡ · · · ≡ x2t ≡ 1 (mod 2)

and then, depending on the parity of �, one of the above equations, say (15), holds
modulo 2. Suppose α2 is the largest index of 2 dividing n. Then this solution can
be Hensel lifted7 to a solution (x0, . . . , x2t) modulo 2α2.

Next, let p be an odd prime dividing n. Since gcd(d1, . . . , dt, n) = 1, without
loss of generality, we can assume that p � d1. Now, we substitute

x2 ≡ · · · ≡ xt ≡ 1 ≡ −x2+t ≡ · · · ≡ −x2t (mod p)
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and then (15) simply becomes

d1(x1 + xt+1) ≡ � (mod p)

or

x1 + xt+1 ≡ � · d−1
1 (mod p)

and we can easily find nonzero values of x1 and xt+1 modulo p. So we have a solution
of Eq. (15) modulo p and it can be Hensel lifted to a solution modulo pαp , where
αp is the largest index of p dividing n.

Finally, the solutions of (15) modulo qαq for every prime q|n can be combined
using Chinese Remaindering to get a solution modulo n.

It is natural to try to obtain bounds on the diameter of G = G(n; S) in terms
of #D. By the above, we have bounds

2 ≤ diamG ≤ 2#D + 1.

The following result shows that in general no better bounds are possible.

Theorem 5. The following statements are true for integral circulant graphs:

(i) For r ≥ 3, let n be the product of distinct odd primes p1, . . . , pr and let
D = {p1, . . . , pr}. The graph corresponding to these parameters has diameter
2.

(ii) Let m be the product of distinct odd primes p1, . . . , pr. Let n = 2m2 and

D =
{
(m/p1)2, . . . , (m/pr)2

}
.

The graph corresponding to these parameters has diameter (2r + 1).

Proof. (i) By the hypothesis n = p1 · · · pr, D = {p1, . . . , pr}. Recall that
T = {0} ∪d∈D Gn(d). Let G be the corresponding graph. We show that given
any � ∈ Zn, we have � ∈ T + T .

Suppose � is coprime to n. Then, using the methods of Theorem 4, we can find
a solution x1, x2 ∈ Z∗

n, such that p1x1 + p2x2 ≡ � (mod n). Thus, � ∈ T + T .
If � is not coprime to n, then without loss of generality, we can assume that p1|�.
Again, using the methods of Theorem 4, we can find a solution x1, x2 ∈ Z∗

n such
that p1x1 + p1x2 ≡ � (mod n). Thus, � ∈ T + T .

Therefore, T + T = Zn. As the smallest additive generator set contained in D

is of size 2, we deduce from Lemma 3 that diamG = 2.
(ii) We recall that T = {0} ∪d∈D Gn(d). Let G be the corresponding graph. We

show that m 
∈ 2rT .
Suppose that m ∈ 2rT . This means that there are
d1, . . . , d2r ∈ D such that m ∈ Gn(d1) + · · ·+ Gn(d2r). Since p2

j 
 |m, we deduce
that (m/pj)2 ∈ {d1, . . . , d2r}, j = 1, . . . , r.
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Without loss of generality, we can assume that d1 = (m/p1)2, . . . , dr = (m/pr)2.
In other words, there are x1, . . . , x2r ∈ Z∗

n such that

m2

p2
1

x1 + · · · + m2

p2
r

xr + dr+1xr+1 + · · · + d2rx2r ≡ m (mod n). (16)

Taking the above congruence modulo p1, we deduce that

m2

p2
1

x1 + dr+1xr+1 + · · · + d2rx2r ≡ 0 (mod p1).

As gcd(x1, p1) = 1, the above congruence implies (m/p1)2 ∈ {dr+1, . . . , d2r}. Simi-
larly, taking (16) modulo primes p2, . . . , pr and repeating the argument we deduce

(m/p1)2, . . . , (m/pr)2 ∈ {dr+1, . . . , d2r}.
Without loss of generality, we can assume that

dr+1 =
m2

p2
1

, . . . , d2r =
m2

p2
r

.

Thus, the congruence (16) becomes

m2

p2
1

(x1 + xr+1) + · · · + m2

p2
r

(xr + x2r) ≡ m (mod n).

Recall that x1, . . . , x2r are coprime to n. So, looking at the above equation modulo 2,
we deduce m ≡ 0 (mod 2), which is a contradiction as m is odd.

This shows that m 
∈ 2rT and hence diamG > 2r. Since the smallest additive
generator set of Zn in D is of size r, by Theorem 4, we have that diamG = 2r + 1.

7. Conclusion

We have proved that a quantum system whose hamiltonian is identical to the adja-
cency matrix of a circulant graph is periodic if and only if the graph is integral.

We have bounded the number of vertices of integral circulant graph in terms of
their degree, characterized bipartiteness and given exact bounds for the diameter.

It is a natural problem to extend Theorems 1, 3 and 4 to other classes of Cayley
graphs, for example, Cayley graphs of Abelian groups.

We conclude with a partial result about perfect state transfer. We say that there
is perfect state transfer (see Ref. 3) in a graph G between the vertices a and vertices
b if there is 0 < t < ∞, such that

|〈a|e−ιA(G)t|b〉| = 1.

For an integral circulant graph G = G(n; S), we have the following setting: for all
0 ≤ j ≤ n− 1, vj = [1, ωj, . . . , ωj(n−1)]T is an eigenvector of A(G) corresponding to
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the eigenvalue λj given by (1). Thus,

A(G) =
1
n

n−1∑
j=0

λjvjv
†
j .

We have then the next question: are there 0 ≤ a, b ≤ (n − 1) and t ∈ R such
that |〈a|e−iA(G)t|b〉| = 1?

Proposition 1. If n is odd then there do not exist 0 ≤ a < b ≤ (n−1) and t ∈ R>0

such that | 〈a|eιAt|b〉 | = 1. In other words, an integral circulant graph having odd
number of vertices cannot have perfect state transfer.

Proof. Recall

eιAt =
1
n

n−1∑
�=0

eιλ�tv�v
†
� .

Therefore,

〈a|eιAt|b〉 =
1
n

n−1∑
�=0

eιλ�tω�aω−�b

=
1
n

n−1∑
�=0

eιλ�tω�(a−b).

Now, the magnitude of the above expression is clearly ≤ 1. The equality holds if
and only if each term is 1 implying that eιλ�t = ±1 and ω�(a−b) = ±1 for all �. Now
if n is odd then ω�(a−b) = ±1 happens only when a ≡ b (mod n). Thus, there is
no perfect state transfer when n is odd.

When n is even there is perfect state transfer (between vertices a and a + n
2 )

if there exists a t ∈ R>0 such that eιλ�t = (−1)� for all � ∈ {0, . . . , n − 1}. For
example, this happens in the case of n = 4 and S = {1, 3}. However, we do not
know whether there are other such instances.
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