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Abstract:    In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables 

and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta-

tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene 

selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to 

select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common 

practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast 

implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre-

sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per-

forms well in selecting genes and achieves high classification accuracies with these genes. 
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INTRODUCTION 
 

Recent techniques based on oligonucleotide or 

cDNA microarrays allow the expression level of 

thousands of genes to be monitored in parallel (Golub 

et al., 1999). A critically important factor for cancer 

diagnosis and treatment is the reliable prediction of 

tumor progression. A remarkable advance for mo-

lecular biology and for cancer research is cDNA mi-

croarray technology. cDNA microarray datasets have 

a high dimensionality corresponding to the large 

number of genes monitored, and there are often 

comparatively few samples. In this paper, we address 

the problem in predicting cancer by using a small 

subset of important genes from a wide collection of 

gene expression data. 

Since Golub et al.(1999) proposed a weighted 

voting scheme for molecular classification of acute 

leukemia, many existing machine learning methods 

have been applied to gene classification problems 

(Kim et al., 2000; Tabus and Astola, 2001; Zhou et al., 

2003a; Alizadeh et al., 2000; Mao et al., 2004). Given 

the thousands of genes but the small amount of data 

samples, ranking genes according to their importance 

in contributing to classifiers’ predictive accuracy is 
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crucial (Zhou et al., 2003b; 2003c; 2004a). 

Support vector machines (SVMs) are considered 

a good classification method for gene-expression data 

and are embedded with feature selection procedures 

(Cristianini and Shawe-Taylor, 2000; Guyon et al., 

2002; Weston et al., 2001; Zhang and Wong, 2001; 

Furlanello et al., 2003). Recursive feature elimination 

based on SVM (SVM RFE) discussed in (Guyon et al., 

2002; Zhang and Wong, 2001; Furlanello et al., 2003) 

is considered a good method in this field. As men-

tioned in Shashua and Wolf (2004), if feature selec-

tion is embedded into a higher dimensional space 

using a right kernel function, it may be possible to 

emphasize certain aspects of the data while 

de-emphasizing the others so that a more reasonable 

feature selection may be done. We attempt to use 

recursive feature elimination based on SVM with 

Gaussian kernel to select more important genes. In the 

implementation of the aforementioned algorithm, the 

selection of the model parameters, namely, the width 

of SVM kernel and penalty parameter, are not always 

mentioned: empirical parameters are used frequently 

as in Guyon et al.(2002). 

This paper proposes a strategy of using a genetic 

algorithm to search for a couple of parameters which 

could optimize the results of Gaussian kernel SVM 

RFE. Since this method has high computational 

complexity, we also discuss some numerical tech-

niques to speed up the computation for pragmatic 

implementation. Furthermore, a gene pre-selection 

procedure is adopted to reduce the huge number of 

genes being considered for selection. We demonstrate 

the method on two realistic public domain gene ex-

pression datasets, i.e., AML/ALL (Acute Myeloblas-

tic Leukemia/Acute Lymphocytic Leukemia) dataset 

(Guyon et al., 2002) and hereditary breast cancer 

dataset (Hedenfalk et al., 2001). The experimental 

results showed that the proposed methods can effec-

tively find important genes consistent with the bio-

logical considerations, while achieving high classifi-

cation accuracy.  

 

 

PROBLEM FORMULATION 

 

Assume there exist two classes of cancers. Let 

Y=[y1, …, ym]
T
 denote the class labels of m samples, 

where yi=k indicates the sample i being cancer k, 

where k=1, 2 denotes two different kinds of cancer (in 

our experiments, we use yi=−1 to indicate the sample i 

being cancer 1, and yi=1 to indicate the sample i being 

cancer 2). Let xij be the measurement of the expres-

sion level of the jth gene for the ith sample, where j=1, 

2, …, n, X=(xij)m,n denotes the expression levels of all 

genes, i.e., 
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Here we assume x1, …, xm are the m samples, where 

xi=[xi1, xi2, …, xin]. 

In our method, every sample is partitioned by an 

optimal hyper-plane, with training data being maxi-

mally distant from the hyper-plane itself. The lowest 

classification error rate will be achieved when this 

hyper-plane is used to classify the current training set. 

This hyper-plane can be modelled as 
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where αi is the weight of the xi; b is a bias term and 
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x x
x x  is Gaussian radius basis 

function, σ is positive Gaussian kernel width. SVM, a 

machine learning algorithm originally introduced by 

Vapnik (2000) was used to determine these optimal 

hyper-planes. It solves a convex quadratic program-

ming problem to get the optimal values of αi and b for 

details of the SVM learning algorithm (Vapnik, 

2000). 

In Eq.(1), since n is too large, it induces many 

estimation error problems (Zhou et al., 2003a; Guyon 

et al., 2002). So the dimensionality reduction will be 

done on input data, X, from the strongest genes se-

lected. Using function T T= ( )I
i i
x xβ  to represent this 

procedure, where β is a n×n matrix, in which only 

diagonal elements may be equal to 1 or 0, and all 

other elements are equal to zero, genes corresponding 

to the non-zero diagonal elements are important. The 

matrix β is obtained by specific gene selection 
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methods given in the next two sections. The function 

I(⋅) means to select all non-zero elements in the input 

vector to construct a new vector, e.g., I([1 0 2]
T
)=[1 

2]
T
. So Eq.(2) is rewritten as 

 

1
T T T T

( )= ( , )+ ;  

= ( ),  = ( ).

m

i i i

i

f y K b

I I

α
=
∑

i i

x x x

x x x xβ β
                 (3) 

 

SVM can be embedded with feature selection 

procedures. To describe our method freely, it is nec-

essary to briefly describe the method in (Guyon et al., 

2002). When a Gaussian kernel SVM is trained, the 

two parameters C and σ2
 should be pre-fixed: C is the 

penalty parameter used in the SVM algorithm. In 

training the SVM with the pre-fixed parameters C and 

σ2
, the cost function is defined as 

 

J(α)=(1/2) αT
Hα−αT

1                          (4) 
            

where H=(Hij)i,j=1,…m; Hij=yiyjK(xi,xj), α=(αi)i=1,…m, 

0≤αi≤C. The importance of a gene for the SVM can be 

defined in terms of its contribution to this cost function, 

which is computed as ∆J(i)=(1/2)(αT
Hα−αT

H(−i)α), 

H(−i) is H with ith gene removed. After the puny gene 

with smallest ∆J is eliminated, the new SVM will be 

retrained using X  which is defined as X with the puny 

gene removed. This process is then repeated until the 

most important gene is obtained. This procedure is 

called recursive feature elimination by SVM (SVM 

RFE). Using a gene subset on the top of the ranked list, 

a Gaussian kernel SVM classifier with proper model 

parameters (C, σ2
) will be constructed. 

The model parameters (C, σ2
) are used in each 

elimination of SVM RFE. The results of gene selec-

tion as well as the construction of classifiers are a 

direct sequence of the model selected. In what follows, 

a strategy of selecting model parameters by genetic 

algorithm is proposed. 

 

 

MODEL SELECTION USING GENETIC 

ALGORITHM IN GAUSSIAN KERNEL SVM RFE 

 

Empirical parameters are used frequently in 

SVM RFE, because of two aspects. First, computing 

complexity is too high to optimize the model pa-

rameters (Guyon et al., 2002), and second, selecting a 

practically optimal target is difficult. As to the com-

puting complexity, the entropy-based SVM RFE is 

discussed in (Zhang and Wong, 2001; Furlanello et al., 

2003), a chunk of features can be eliminated this time 

according to an entropy-based criterion, and this 

greatly improves the calculating rate of the original 

method in (Guyon et al., 2002). As to the optimal goal, 

Furlanello et al.(2003) said that a classifier’s predic-

tive accuracy is achieved by either double 

cross-validation or the bootstrap re-sampling process 

can be used as evaluation criteria in selecting the 

model used in SVM RFE. But few published litera-

ture on this subject exists. Our method is also partly 

motivated by the report of the discovery of very few 

genes (2~25 genes) with classifier performance of 

negligible or zero error rates (Li and Yang, 2002). 

In order to use genetic algorithm to optimize the 

model used in SVM RFE, certain problems must be 

solved first. Note that the SVM must be retrained after 

every elimination operation, because the importance 

of a feature with medium or low importance may be 

promoted by removing a correlated feature. Thus, the 

computational cost of RFE is a function of the number 

of variables. Golub et al.(1999) used a Matlab im-

plementation of the linear kernel SVM RFE on a 

Pentium processor which returns a gene ranking in 

about 15 min for the entire Colon dataset (2000 genes, 

62 patients) and 3 h on the Leukemia dataset (7129 

genes, 72 patients) after performing a preprocessing 

step to reach a fixed number of genes. This means that 

if this process repeats hundreds of times, it would 

require more than half a month of processing time. 

The computational cost thus is the first problem we 

should address. The second problem in SVM RFE is 

that there may be some features whose ∆J are very 

close. If only ∆J is used to eliminate features, the 

result of gene ranking will not be unique (Guyon et al., 

2002; Zhang and Wong, 2001; Furlanello et al., 2003), 

and some important genes will be lost. 

To accelerate the gene selection process and 

solve the first problem mentioned above, we use 

F-test as an assistant method. The ratio defined by 

Eq.(5) is used to pre-select genes.  
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Here 
j
x  denotes the average expression level of gene 

j across all samples;
kjx denotes the average expres-

sion level of gene j across the samples belonging to 

class k; and the indicator function 1Ω is equal to one if 

the event Ω is true and zero otherwise. Genes with 

bigger R(j) are selected. A number of genes (below 

200) are pre-selected. Beyond this step, removal of a 

trunk of λ genes is repeated until the number of re-

maining genes goes below a fixed number ς. Then 

genes will be eliminated one by one. If genes are 

eliminated one by one after gene pre-selection, by a 

proper selection of λ and ς, there will be no remark-

able distinction between these two ranked lists, but 

the ranking time will decrease greatly. Aiming at the 

second problem, if some genes that may be eliminated 

have similar ∆J, the gene whose F-test value is 

smaller will be eliminated, which means this par-

ticular gene expressed remarkably less by F-test es-

timation. By these measures, a ranking process on 

Leukemia dataset will take only several minutes to 

yield a unique ranked list. In our experiments, λ was 

set at 2 and ς at 80. 

When C and σ2
 are used for Gaussian kernel 

SVM RFE, a ranked list of genes will be obtained. To 

acquire a set of more meaningful genes, we use a 

Gaussian kernel classifier to evaluate the ranked list.  

For the dataset with the remaining genes, the kernel 

width of the SVM classifier is reconstructed for better 

evaluation this low-dimensional dataset. We can 

evaluate the capability of the ranked genes from two 

different perspectives. First, if this group of genes is 

ranked appropriately, the most important genes 

should be in the first several positions. Li and Yang 

(2002) concluded that it is enough to construct a good 

classifier with several genes. Similar results were also 

achieved in (Weston et al., 2001; Chapelle et al., 

2002), in which only five genes were used, and 1~2 

errors occurred on the test datasets. If the pre-defined 

number of genes is used, the evaluating classifier 

should have good classification performance on the 

training datasets. To guarantee adequate generaliza-

tion performance, the evaluating classifier should 

have a relatively small estimation of the upper bound 

of the leave-one-out error rate. However a drawback 

of this evaluation method is that there is no direct re-

lationship among model parameters (C, σ2
), selected 

genes and performance of the evaluating classifier. To 

solve this problem, a genetic algorithm is deployed. 

Genetic algorithm (GA) is a global stochastic 

optimization algorithm based on the mechanism of 

natural selection and natural genetics (Miettinen et al., 

1999) designed to efficiently search large, non-linear, 

discrete and poorly understood search space where 

expert knowledge is scarce or difficult to model while 

traditional optimization techniques fail. In the re-

mainder of this section, we will discuss in detail how 

to combine them to select genes in an optimal way. 

Note that here the optimal solution means that the 

selection of C and σ2
 is an optimization problem with 

constraint, and real-coded scheme of variables is used 

for higher numerical accuracy than the binary-coded 

scheme. 
 

Initialize population 

To accelerate the convergence rate of GA and 

keep the final solution in a proper sphere, a certain 

technique should be used here. C is a positive constant 

(penalty parameter) that can be close to infinity, al-

though C=1000 is enough for many operations. An 

evenly distributed initialization is appropriate for this 

parameter. Only the magnitude level of σ2
 is impor-

tant. If even initialization is used for this parameter, 

many generations will have to pass before an opti-

mized solution is reached. To initialize it better, a 

rough estimation of σ2
 is necessary. We define 
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where xi means sample i in current training dataset. 
2

meand is considered as a benchmark for initializing σ2
. 

In our experiments, 2

mean
d is always near the precise 

estimation of σ2
. If population size M is an even 

number, / 2 2

mean2 ,M d− ( 2) / 2 2

mean2 ,M d− +  …, ( 4) / 2 2

mean2 ,M d−  

( 2) / 2 2

mean2 M d−  are used as candidates for σ2
; if M is an 

odd number, ( 1) / 2 2

mean2 ,M d− + ( 3) / 2 2

mean2 ,M d− +  …, 

( 3) / 2 2

mean2 ,M d−  ( 1) / 2 2

mean2 M d−  are used as candidates for 

σ2
. 

 

Fitness function 

A ranked list of genes can be obtained by Gaus-
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sian kernel SVM RFE from a model (C, σ2
) is chosen 

from the chromosome space. The selected top  

genes can be used to construct a Gaussian kernel 

SVM classifier with new kernel width parameter. The 

new kernel width parameter is also estimated by 

Eq.(6). We will select the model which yields a better 

result based on the performance evaluation of these 

classifiers, and genes ranked with this model are best 

ordered. 

Denote the estimation of the upper bound of 

generalization error rate of SVM classifier to be u, the 

number of support vectors in the classifier to be κ and 

the rejection rate of the leave-one-out test to be ν. We 

next use these three parameters to evaluate the trained 

SVM. u and κ are used to guarantee that the classifier 

has good generalization performance on test datasets.  

ν is used to guarantee the decision made by this clas-

sifier is important enough and believable, especially 

when the whole training dataset is in an un-separable 

status. A SVM classifier with smaller u, κ and ν under 

a given rejection threshold η is considered better. u is 

defined in (Vapnik, 2000) as follows 
 

2

2

1
=

R
u

l γ
                           (7) 

 

where R is the radius of the smallest sphere enclosing 

the training points in a high dimensional feature space, 

l is the size of the training set and γ2 is the square of 

the classifier’s margin, which is calculated as 

2 T

1

1/(2 ),
l

i

i

γ α
=

= −∑ α αH where H=(Hij)i,j=1,…m; 

Hij=yiyjK(xi, xj), α=(αi)i=1,…m, 0≤αi≤C. And R is found 

by solving another quadratic optimization problem 

(Vapnik, 2000):  
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under constraints 
1

=1
l

i

i

β
=
∑  and ∀iβi≥0.  

ν is a direct result from the leave-one-out test. 

Given a fixed threshold η, the total number of samples 

with a wrong decision or a decision whose absolute 

value is below η is assigned to ν, which is used as a 

substitute for extreme margin and medium margin 

methods mentioned in (Guyon et al., 2002). By means 

of ν, u and κ from the reconstructed SVM classifier, 

the fitness function of GA can be defined as 

fit=(κ·(u+ε))−1
·e
−ν

, where ε was set at 0.01 in our ex-

periments. 

 

Genetic operator 

The three basic operators of GA are: selection, 

crossover and mutation. Ranking method is used here 

as the selection operator. The probability of the ith 

individual being selected is defined by 

pi=q(1−q)
r−1

/(1−(1−q)
τ
) (Houck et al., 1995), where q 

is the parameter to control the proportion of the indi-

viduals selected; r is the rank of the individuals (the 

rank is sorted by individual fitness values, where 1 

corresponds to the individual with the best fitness), 

and τ is the population size. A transformation of 

arithmetic crossover is used in succession, which is 

described as 1 2= +(1 )S rP r P− , where r is a uniform 

number between (0,1), and 1P and 2P are two parents. S 

and the parent whose fitness is better are the indi-

viduals come out in this operator. Using this method, 

more individuals with better fitness value will be 

generated than using single arithmetic crossover and 

more new individuals will be generated than using the 

heuristic crossover in (Houck et al., 1995). For the 

mutation operator, we use multi-non-uniform muta-

tion to maintain the status of best individuals and the 

diversity of the whole population, which is also used 

in (Srinivas and Patnaik, 1994). The non-uniform 

operator of any of the dimensional variables P in the 

parent vector can be defined as B= 

1

1

+( ) ( )  0.5
,

( + ) ( )  0.5

i

i

P b P g G if r

P P a g G if r

− <
 − ≥

 where g(G)=(r2(1− 

G/Gmax))
b
, r1, r2 are uniform numbers between (0, 1), 

ai, bi are the upper and lower bounds of this variable, 

G is the current generation, and Gmax is the maximum 

number of generations. b was 5 in our experiments. 

To avoid prematurity of GA (Srinivas and Pat-

naik, 1994), an adaptive search probability strategy 

was adopted to improve the quality of genetic opti-

mization for the model selection. Probability for 

crossover is defined as in (Lee et al., 2003),  
 

1 max

max

2
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=c

k l l
l l

l lp

k l l

′− ′ ≥ −
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where lmax is the maximal fitness value in the current 

generation, l′ is the bigger fitness value of the two 

parents. l is the mean of the fitness value for the 

current generation. k1, k2 were 0.8 in our experiments. 

Probability for mutation is:  

 

3 max 1

1

max

4 1

( )

=
m

k l l
l l

l lp

k l l

− ≥ −
 <

 

 

where l1 is the fitness value of the parent, k3, k4 were 

0.2 in our experiments. Fig.1 summarizes the flow 

chart of the whole process. 

 

 

EXPERIMENTAL RESULTS 

 

Two datasets from hereditary breast cancer and 

acute leukemia are considered in this work to evaluate 

the two proposed algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Breast cancer dataset 

In our first experiment, we focused on hereditary 

breast cancer data, which can be downloaded from the 

web page for the original paper (Hedenfalk et al., 

2001). In (Hedenfalk et al., 2001), cDNA microarrays 

were used in conjunction with classification algo-

rithms to show the feasibility of using differences in 

global gene expression profiles to separate BRCA1 

and BRCA2 mutation-positive breast cancers. 

Twenty-two breast tumor samples from 21 patients 

were examined: 7 BRCA1, 8 BRCA2, and 7 sporadic. 

There were 3226 genes for each tumor sample. We 

used our methods to classify BRCA1 versus the oth-

ers (BRCA2 and sporadic). The ratio data was trun-

cated from below at 0.1 and above at 20. A logarithm 

operation was performed on the ratio data. 

First, 200 important genes were pre-selected by 

F-test. The population size was initialized at 144, in 

which C was between 0.001 and 1000. About the 

parameters used in GA,  was set at 2, η at 0.2, q at 

0.05, k1, k2 were 0.8, and, k3, k4 were 0.2. If the fitness 
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Gaussian kernel SVM RFE 
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with reconstructed kernel width 
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Gene pre-selection 

Data separation 

Yes 

Fig.1  Flow chart of model selection for gene selection using Gaussian kernel SVM by GA 
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value of the best population did not increase in four 

consecutive generations or the maximal time of gen-

erations 20 was reached, GA was terminated. The 

optimized process is shown in Fig.2 showing that the 

GA converged after seven iterations, and that the 

average fitness value was close to the best fitness 

value. Penalty parameter C fluctuated in a big region 

between 200 and 900 in the first several generations, 

but in the final four generations, C changed from 800 

to 900, and the kernel width changed slightly. 

The top 20 genes selected using the best model 

produced are listed in Table 1. Gene 336 (TOB1) is 

also considered an important gene in (Lee et al., 2003; 

Kim et al., 2002; Zhou et al., 2005; Mao et al., 2004).   

In order to evaluate the selected genes compre-

hensively, linear SVM and Gaussian kernel SVM 

were used as classifiers based on the top 1 to the top 

32 genes; these results are listed in Tables 2~3. The 

parameters used in Tables 2~7 are defined as in 

(Guyon et al., 2002): Vsuc is the number of samples 

classified correctly in leave-one-out test at zero re-

jection, which is used for the common leave-one-out 

error rate test as well as for the leave-one-out error 

rate test mentioned in our paper; Vacc is maximum 

number of samples accepted in leave-one-out test to 

obtain zero error, the rejection threshold lies on the 

biggest one of the absolute value of false soft-decision; 

Vext is the difference between the smallest output of 

the positive class samples and the largest output of the 

negative class samples (rescaled by the largest dif-

ference between outputs); Vmed is the difference be- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tween the median output of the positive class samples 

and the median output of the negative class samples 

(rescaled by the largest difference between outputs); 

Vsuc, Vacc, Vext and Vmed were used on training dataset; 

Tsuc, Tacc, Text and Tmed were evaluating parameters 

with similar meaning as that used in the test dataset. 

In Table 2, linear SVM combined with the top 4 

genes, top 8 genes and top 16 genes achieved 0 

leave-one-out errors; when the top 2 genes were used, 

and 1 leave-one-out error was found. Gaussian kernel 

SVM is used in Table 3. Fig.3 describes training 

dataset samples obtained by using the top 2 genes, 

when 0 leave-one-out errors were found. The soft 

decision results of the leave-one-out test are depicted 

in Fig.4. It is noteworthy that the soft values of all 

samples except samples 2 and 4 were very close to the 

true decision values (−1 and 1). In addition, byusing 

the top 4 genes, top 8 genes and top 16 genes respec-

tively, 0 leave-one-out error was found. 

In (Zhou et al., 2004b; 2005), the authors pro-

posed a Bayesian approach combined with several 

information criteria. Those methods also achieved 

zero error on this dataset using the top 5 and top 10 

genes.  

 

Acute leukemia dataset 

We have also applied the proposed methods on 

the leukemia data of (Guyon et al., 2002), which are 

available at (http://www-genome.wi.mit.edu/cgi-bin/ 

cancer/publications/pub). The microarray data con-

tains  7129  human  genes,  sampled  from  72  cases  of 
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cancer. Following the experimental setup in (Guyon 

et al., 2002), the data was split into a training set 

consisting of 38 samples of which 27 were ALL and 

11 were AML, and a test set of 34 samples, i.e., 20 

ALL and 14 AML. The data were preprocessed as 

recommended in (Dudoit et al., 2002): gene values 

were truncated from below at 100 and from above at 

16 000; genes maximum to minimum ratio of less than 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 or difference between the maximum and the mini-

mum was less than 500 were excluded. Finally 

base-10 logarithm was applied to the 3571 remaining 

genes. Guyon et al.(2002) reported their data analysis 

revealed significant differences between the distribu-

tion of samples in the training set and in the test set, 

there are some important genes which are just as 

important to both training dataset and testing dataset. 

Table 1  Top 20 genes ranked with optimized Gaussian kernel SVM RFE by GA on breast cancer dataset 

No. Index No. Clone ID. Gene description 

1 2423 026082 Very low lipoprotein receptor 

2 0336 823940 Transducer of ERBB2, 1 (TOB1) 

3 1999 247818 ESTs 

4 1620 137638 ESTs 

5 1277 073531 Nitrogen fixation cluster-like 

6 1065 843076 Signal transducing adaptor molecule (SH3 domain and ITAM motif) 1 

7 0498 667598 PC4 and SFRS1 interacting protein 1 

8 1008 897781 Keratin 8 

9 1288 564803 Forkhead (drosophila)-like 16 

10 0585 293104 Phytanoyl-CoA hydroxylase (refsum disease) 

11 2734 046019 Minichromosome maintenance deficient (S. cerevisiae) 7 

12 1859 307843 ESTs 

13 0809 810899 CDC28 protein kinase 1 

14 0556 212198 Tumor protein p53-binding protein, 2 

15 3009 366647 Butyrate response factor 1 (EGF-response factor 1) 

16 1443 566887 Chromobox homolog 3 (drosophila HP1 gamma) 

17 1446 081331 Fatty acid binding protein 5 (psoriasis-associated) 

18 1068 840702 SELENOPHOSPHATE SYNTHETASE; Human selenium donor protein 

19 2893 032790 MutS (E. coli) homolog 2 (colon cancer, nonpolyposis type 1) 

20 2699 044180 Alpha-2-macroglobulin 
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Table 2  Performance comparison of two gene ranking methods using linear SVM classifier on breast cancer dataset (22 

samples) 

Linear SVM RFE with C=100 Gaussian kernel SVM RFE with model selected by GA Number of the 

top genes used Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed 

32 1.00 1.00 0.52 0.85 1.00 1.00 0.20 0.84 

16 0.91 0.73 −0.20 0.61 1.00 1.00 0.36 0.81 

8 0.55 0.00 −1.00 0.10 1.00 1.00 0.50 0.92 

4 0.36 0.00 −1.00 −0.44 1.00 1.00 0.59 0.95 

2 0.50 0.00 −1.00 −0.45 0.95 0.91 0.31 0.91 

1 0.68 0.00 −1.00 −0.42 0.64 0.00 −0.35 0.41 

 

 

Table 3  Performance comparison of two gene ranking methods using Gaussian kernel SVM classifier on breast cancer 

dataset (22 samples) 

Linear SVM RFE with C=100 Gaussian kernel SVM RFE with model selected by GA Number of the 

top genes used Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed 

32 1.00 1.00 0.58 0.88 1.00 1 0.48 0.88 

16 0.95 0.95 0.26 0.85 1.00 1 0.60 0.90 

8 0.95 0.95 0.29 0.81 1.00 1 0.29 0.84 

4 0.77 0.00 −1.00 0.42 1.00 1 0.57 0.88 

2 0.82 0.00 −1.00 0.55 1.00 1 0.51 0.86 

1 0.82 0.00 −1.00 0.47 0.91 0 −0.17 0.70 

 

Table 4  Performance comparison of two gene ranking methods using linear SVM classifier on AML/ALL training 

dataset (38 samples) 

Linear SVM RFE with C=100 Gaussian kernel SVM RFE with model selected by GA Number of the 

top genes used Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed 

32 1.00 1.00 0.52 0.85 1.00 1 0.62 0.94 

16 0.91 0.73 −0.20 0.61 1.00 1 0.65 0.95 

8 0.55 0.00 −1.00 0.10 1.00 1 0.67 0.95 

4 0.36 0.00 −1.00 −0.44 1.00 1 0.90 0.99 

2 0.50 0.00 −1.00 −0.45 1.00 1 0.75 0.98 

1 0.68 0.00 −1.00 −0.42 0.71 0 −1.00 −0.38 

 

Table 5  Performance comparison of two gene ranking methods using Gaussian kernel SVM classifier on AML/ALL 

training dataset (38 samples) 

Linear SVM RFE with C=100 Gaussian kernel SVM RFE with model selected by GA Number of the 

top genes used Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed 

32 1.00 1.00 0.46 0.92 1.00 1.00 0.70 0.92 

16 0.97 0.97 0.20 0.91 1.00 1.00 0.70 0.94 

8 0.97 0.95 −0.01 0.88 1.00 1.00 0.58 0.94 

4 0.89 0.00 −0.60 0.80 1.00 1.00 0.34 0.92 

2 0.95 0.00 −0.55 0.85 1.00 1.00 0.08 0.90 

1 0.82 0.00 −1.00 0.58 0.97 0.97 0.10 0.91 
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If these genes are selected in the training dataset, a 

low error rate should be achieved on the testing 

dataset with these genes.  

Two hundred important genes were pre-selected 

by F-test. One-hundred and forty-four populations 

were initialized, in which C is 0.001 to 1000. For the 

parameters used in GA, was set at 3, η at 0, q at 0.05, 

k1, k2 at 0.8, and k3, k4 at 0.2. Similar to the treatment 

of breast cancer dataset, if the fitness value of the best 

population does not increase in four consecutive gen-

erations or the maximal time of 20 generations is 

reached, GA will be terminated. The optimized process 

is shown in Fig.5 showing that the GA converged after 

nine iterations, which the average fitness value is close 

to the best fitness value and that penalty parameter C 

fluctuates in a big region between 100 and 400 in the 

first several generations, but in the final five genera-

tions, C changes from 170 to 320. Note that the kernel 

width does not change much, and that the best fitness 

value is achieved with the smallest kernel width.  

The top 20 genes are selected using the best 

model generated are listed in Table 8. The top gene, 

4847 (Zyxin) is also considered the most important 

gene  in  (Guyon  et  al.,  2002).  And  the  gene  2354 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CCND3 CyclinD3), 6855 (TCF3 Transcription fac-

tor 3 (E2A immunoglobulin enhancer binding factors 

E12/E47)), 1834 (CD33 CD33 antigen (differentia-

tion antigen)) and 5072 (Cytokeratin 17) are listed as 

important genes in (Lee et al., 2003). Samples in the 

training dataset and testing dataset are described in 

Fig.6 using the top 3 genes. No leave-one-out errors 

were found while only 1 test error was found in the 

testing dataset when Gaussian kernel SVM was used 

as classifier. The decision results of these two tests are 

illustrated in Fig.7. More detailed results are shown in 

Tables 4~7. In Table 4, linear SVM shows no 

leave-one-out errors occurred when the top 2 genes, 

top 4 genes, top 8 genes, top 16 genes and top 32 

genes were used respectively; and in Table 6, linear 

SVM shows 1 test error occurred when the top 4 

genes and top 8 genes were used respectively. In 

Table 5, Gaussian kernel SVM shows no 

leave-one-out errors occurred when the top 2 genes, 

top 4 genes, top 8 genes, top 16 genes and top 32 

genes were used, and in Table 7, Gaussian kernel 

SVM shows that 1 test error occurred when the top 4 

genes and top 8 genes were used. 

Note that 1 leave-one-out error and 3 test errors 

Table 6  Performance comparison of two gene ranking methods using linear SVM classifier on AML/ALL test dataset 

(34 samples) 

Linear SVM RFE with C=100 Gaussian kernel SVM RFE with model selected by GA Number of the 

top genes used Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed 

32 0.94 0.91 −0.11 0.85 0.97 0.91 −0.12 0.90 

16 0.82 0.00 −1.00 0.61 0.94 0.88 −0.18 0.82 

8 0.74 0.00 −1.00 0.41 0.97 0.94 −0.08 0.86 

4 0.71 0.00 −1.00 0.20 0.97 0.94 −0.13 0.93 

2 0.59 0.00 −1.00 −0.29 0.94 0.94 −0.48 0.91 

1 0.59 0.00 −1.00 −0.39 0.59 0.00 −1.00 −0.39 

 

Table 7  Performance comparison of two gene ranking methods using Gaussian kernel SVM classifier on AML/ALL 

test dataset (34 samples) 

Linear SVM RFE with C=100 Gaussian kernel SVM RFE with model selected by GA Number of the 

top genes used Vsuc Vacc Vext Vmed Vsuc Vacc Vext Vmed 

32 0.94 0.91 −0.11 0.86 0.97 0.91 −0.14 0.89 

16 0.97 0.79 −0.17 0.87 0.94 0.91 −0.16 0.82 

8 0.97 0.82 −0.42 0.87 0.97 0.94 −0.07 0.07 

4 0.97 0.00 −0.33 0.90 0.97 0.94 −0.08 0.94 

2 0.79 0.00 −0.63 0.62 0.94 0.94 −0.42 0.92 

1 0.76 0.00 −0.87 0.42 0.91 0.00 −1.00 0.83 
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were found using top 4 genes ranked based on the 

whole dataset in (Guyon et al., 2002). In (Golub et al., 

1999), 32 of 34 cases were correctly classified by 

using their top five genes.  

 

Discussion 

These algorithms were implemented with Mat-

lab codes on an AMD 1800+ (1533 MHz) processor 

with 512 M memory (DDR 266 MHz). Using the RFE 

based on SVM with model selected by GA, the im-

plementation yields a ranked list in about 5.5 h for the 

small round blue-cell tumors dataset (200 pre-se-

lected genes and 22 samples) and 13.5 h for the acute 

leukemia dataset (200 pre-selected genes and 38 

samples) in the experiments in this paper. Our ex-

periments have revealed that C has less effect on the 

ranked list, and that the fitness value depends largely 

on σ2
, which could be partly reflected in Fig.5. When 

C is large enough (e.g. greater than 100), although it 

always fluctuates in a large area, the best fitness value 

nearly does not change. These phenomena occur 

frequently in our optimizing process. So, the selection 

of σ2
 is a key problem to gene ranking with Gaussian 

kernel SVM. Although the computational complexity 

of using Gaussian kernel SVM is so high, its perform- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ance is very satisfactory. 

Tables 2~7 show that good classification per-

formance will be achieved by the top 16 or top 32 

genes selected by linear SVM RFE; and that using 

fewer genes (almost 4~8 genes) selected by our 

method, similar or better results will be achieved. 

When these two gene selection methods combined 

with a Gaussian kernel SVM classifier, the classifier 

performance is better than them combined with linear 

kernel SVM classifier. 

 

 

CONCLUSION 

 

In this work, we studied the problem of gene 

selection in Gaussian kernel sphere with SVM. A 

machine learning method is proposed, which is RFE 

based on Gaussian kernel SVM with a model selected 

by GA. This method is a better alternative to the 

currently used common practice of selecting the ap-

parently best parameters of Gaussian kernel SVM 

RFE. Based on certain fast implementation tech-

niques, this method achieved satisfying results on the 

two hereditary breast cancer and acute leukemia 

datasets. The experimental results indicate that the 

Table 8  Top 20 genes ranked with optimized Gaussian kernel SVM RFE by GA on acute leukemia dataset 

No. Index No. Accession number Gene description 

1 4847 X95735_at Zyxin 

2 2354 M92287_at CCND3 Cyclin D3 

3 6855 M31523_at 
TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding fac-

tors E12/E47) 

4 5039 Y12670_at LEPR Leptin receptor 

5 2015 M54995_at PPBP Connective tissue activation peptide III 

6 1834 M23197_at CD33 CD33 antigen (differentiation antigen) 

7 1926 M31166_at “PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta” 

8 5538 D00097_s_at “APCS Amyloid P component, serum” 

9 5358 M85289_at HSPG2 Heparan sulfate proteoglycan 

10 5072 Z19574_rna1_at Cytokeratin 17 

11 5069 Z18951_at “CAV Caveolin, caveolae protein, 22000” 

12 3139 U38864_at Zinc-finger protein C2H2-150 mRNA 

13 1386 L20591_at ANX3 Annexin III (lipocortin III) 

14 1023 HG544-HT544_at Endothelial cell growth factor 1 

15 0387 D38128_at PTGIR Prostaglandin I2 (prostacyclin) receptor (IP) 

16 0312 D26308_at NADPH-flavin reductase 

17 3877 U85767_at Myeloid progenitor inhibitory factor-1 MPIF-1 mRNA 

18 6128 U43185_s_at STAT5A Signal transducer and activator of transcription 5A 

19 3320 U50136_rna1_at Leukotriene C4 synthase (LTC4S) gene 

20 6218 M27783_s_at “ELA2 Elastatse 2, neutrophil” 
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proposed methods perform well in selecting genes 

and achieve high classification accuracies with very 

few genes. Future work includes experimenting with 

application of this method to multi-classification 

problems and to other kernel methods. We envision 

that the non-linear classifiers are going to play an 

increasing important role in the analysis of cDNA 

microarray because of their superior performance in 

gene selection and cancer classification compared to 

existing methods. 
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