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SUMMARY

Accelerated failure time models with a shared random component are de-
scribed, and are used to evaluate the effect of explanatory factors and different
transplant centres on survival times following kidney transplantation. Different
combinations of the distribution of the random effects and baseline hazard func-
tion are considered and the fit of such models to the transplant data is critically
assessed. A mixture model that combines short-term and long-term components
of a hazard function is then developed, which provides a more flexible model for

the hazard function. The model can incorporate different explanatory variables
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and random effects in each component. The model is straightforward to fit us-
ing standard statistical software, and is shown to be a good fit to the transplant

data.
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1. INTRODUCTION

Accelerated failure time models for time to event data allow a wide range of para-
metric forms for the hazard function. Random effects, generally known as frailty
components, can be introduced into the models, and they can easily be fitted using
standard computer software. However, there are situations where certain aspects of
the data mean that a hazard function based on a particular probability distribution
for the event times is not adequate. In this paper, we propose a mixture model for
the hazard function, which allows for different forms of hazard over different periods
of time. The model allows for explanatory variables having different effects in each
period, and different realisations of random effects can be introduced into the two
components of the model.

This work was motivated in part by the analysis of data from UK Transplant on the
survival times of a kidney graft following transplantation. This application is therefore
used to illustrate the methodology in this paper, but our approach is applicable to
other areas of study. The illustration in this paper concerns the outcome of kidney
transplants in adults carried out between 1994 and 1996. The response variable of
interest is the time from transplant to failure of the graft, this being the earlier of a
return to regular dialysis or patient death. Patients were observed for up to 6 years
after the transplant.

Because of the large number of centres, 31 in all, and the need to avoid extreme
results that might arise from centres which carry out relatively few transplants, centre

effects will be regarded as random. A realisation of the random component is shared
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by all those who received a transplant in a given centre. This introduces a correla-
tion between the event times for individuals within a centre, and so allows for the
transplants being carried out by the same surgical team, for example.

The paper is organised as follows. A description of accelerated failure time models
with a shared random component is given in Section 2. The models are then applied to
the kidney transplant data and their adequacy critically assessed in Section 3. Section
4 introduces a mixture model, and its use in modelling kidney graft survival times is

illustrated in Section 5. Some concluding remarks are presented in Section 6.

2. ACCELERATED FAILURE TIME MODELS WITH FRAILTY

Although parametric proportional hazards models are widely used in medical research,
accelerated failure time (AFT) models offer a number of advantages. In particular,
they provide for a wider variety of shapes of hazard function than parametric propor-
tional hazards models that assume a particular distribution for survival times, since
the family includes distributions with unimodal hazard functions, such as the lognor-
mal distribution. Moreover, the log-linear formulation of such models emphasises that
the roles of the regression parameters and dispersion parameters are clearly separated
[1]. The regression parameters in an AFT model are also robust towards neglected
covariates [2], which is not the case for proportional hazards models [3]. In addition,
regression parameters in the proportional hazards model are more sensitive to the
distribution of the random component.

Proportional hazards models with frailty effects have been considered by many
authors; see, for example, [2, 4]. Some use parametric models for the frailty effect
[5], while others describe models with arbitrary distributions [6, 7, 8, 9, 10]. AFT
models with frailty effects have received rather less attention. Anderson and Louis
[7] use the model in the analysis of bivariate survival data with a parametric or non-
parametric frailty distribution, Klein et al. [5] consider a survival model based on the
lognormal distribution and Pan [11] considers AFT models with gamma frailty effects.

Diagnostics for frailty models have received limited attention, but include the work



of Glidden and Self [12] on models with gamma frailty and Kimber and Zhu [13]. A

comprehensive review of frailty models is included in Hougaard [14].

2.1. The shared frailty AFT model

The shared frailty AFT model is appropriate in situations where survival times are
recorded for groups of individuals who have something in common.

Covariate information may be available at both the subject level and the group
level. The vector of values of covariates measured on the jth individual, j = 1,2,...,n,,
in the ith group, ¢ = 1,2,...,¢, will be denoted x;;, while the vector of values of
group-specific covariates will be denoted z;.

In an AFT model, the survivor function at time ¢, S(t|x;;, z;), is assumed to be

of the form
S(tlasj, z:) = So(t/vij),
where Sy(t) is the baseline survivor function associated with reference values of the

covariates, and where
Vij = Vi (Tij, 24) (1)

is some function of the covariates. A classical choice for the regression model in

equation (1) is
Vij(Tig, 2i) = exp(B'zy; + 7' 2:). (2)
The corresponding hazard function is

1
h(t|xi;, z:) = Eho(t/%j)-

v

This model can equivalently be expressed as a log linear model for the random

variable T;;, that is associated with the survival time of the jth individual in the ith

¥Rl
group, by writing

logTij = p+ B'zij +v'zi + oeyy,
where p, o are unknown location and scale parameters, and ¢;; has a distribution

that determines that of 7;;. However, anticipating an extension to the model to
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Table 1: The parametric forms of the five survival time distributions and the constraint

adopted for the three distributions used for the fortitude, «;.

Distribution Density function Constraint
Gamma {ef9T(0)} 19 T exp{—t/ef} e f=0=r
Inv. Gaussian {/(27m0#3)} ! exp{—(t — e%)2/(2t0e?¢)} ef=1;0=1""1
Lognormal {0t/(2m)} L exp{—(logt — £)?/(26?)} E=—6%/2; 62 =log(t 1 +1)
Log-logistic 0! exp{(¢ —logt)/0}[1 + exp{(¢ — logt)/6}] 72
-1
Weibull fe—¢ (te_f) exp{—(te=¢)’}

be described in Section 4, the formulation based on the hazard function is more
convenient.

In the modelling process, it often happens that important influential covariates
are missing. We shall assume that these covariates are group-specific and modify the

regression equation in (2) to
Vij(@ij, zi, i) = exp(ni;) = exp(w; + B'zij +v'2;) (3)

where «; = exp(w;) is distributed across clusters according to some distribution with
distribution function G(c;), and 7;; is the linear component of the model. Thus,
conditionally on «;, the AFT model is assumed to hold. The term ¢;, which mirrors
the role played by a frailty term in the proportional hazards framework, might be
termed a fortitude since large (small) values of « tend to lead to long (short) lifetimes.
We shall refer to our augmented AFT model as a FAFT model for short, where the
initial F may stand for frailty or fortitude.

Specific choices can be made for the baseline hazard function and the distribution
of the random component, «;. Constraints may need to be placed on the distribution
of a; to permit identifiability of the parameters; see [15] for details. Specifically,
we shall constrain the mean of the distribution of «; to take the value unity. The
parameterisation of the five density functions corresponding to the baseline hazard
distributions under consideration are listed in Table 1, together with the constraint

used for the three distributions for the o; to ensure unit mean and variance 77'.



The model is fitted using the method of maximum likelihood. Let %;; be the
observed failure or censoring time for the jth of n; individuals, j = 1,2,...,n,, in
the ith group, ¢ = 1,2,...,9. Also, let d;; be the corresponding event indicator,
so that d;; = 1 if a failure is observed and 0 otherwise. Throughout this paper,
censoring is assumed to be uninformative. Specifically, conditional on the frailty
component, o;, censoring is assumed to be independent of, and non-informative about,
a;. This ensures that the order of taking account of the censoring, and integrating
out the frailty, does not matter [16]. Integrating out the unobserved c«; component,

the relevant likelihood function is
<l 0 o dis
L= H/O H h(tij|wij,zi) K S(tij|mij,zi) dG(az) (4)
i=1 j=1

Once the maximum likelihood estimates of the parameters have been found, likelihood
ratio tests can be used to assess the need for inclusion of a non-degenerate fortitude
component, «;, as well as the other covariates.

The model fitting process can be carried out using packages that include optimisa-
tion and numerical integration routines, such as SAS and S-PLUS. The FAFT model
can also be fitted using the SAS procedure proc nlmixed. To use this procedure,
it is only necessary to specify the contribution to the log likelihood function of the
jth individual in the 7th centre, conditional on «;. This is assigned to a variable 11
and a model statement is then specified using the option general(11) to describe the
distribution of the response variable. A random statement is used to define normal
random effects, with centres specified using the keyword subject in this statement.
This will result in a lognormal fortitude component, but other distributions can be
fitted using the probability integral transformation. For example, a gamma fortitude
component, with unit mean and variance 7!, is obtained from the SAS statement
g=(1/tau) *gaminv (probnorm(z) ,tau) ;, where z is the variable that is declared to
have a standard normal distribution in the random statement. The integration and
optimisation is then carried out by the procedure. SAS code to fit the FAFT model

is available from DC.



2.2. Model checking

There are a number of techniques for evaluating the fit of parametric survival models,
including analogues of residuals and influence diagnostics [17]. A more informative
approach is to stratify the values of the prognostic index, and compare the average
survivor functions across the observations in each group with the Kaplan-Meier es-
timate of the survival times in the groups, as in [18]. This procedure is illustrated
later. Another useful method is based on using the values of the linear predictor, or
prognostic index, as a covariate in the model as in [19], for example.

In models that include a fortitude component, we first estimate the fortitude as-
sociated with each group, so as to be able to use this method for checking model
adequacy. We propose to estimate «; using an empirical Bayes procedure [20], so that
the estimate is the mode, &;, of the distribution of «;, conditional on the data. The

linear predictor for the jth individual in the ¢th group is then
~ ~ ~! ~/
Mij = Wi + B ®ij + 7 zi, (5)

where @; = loga;, and ,[:},’Y are the maximum likelihood estimates obtained from
equation (4). Since this procedure is a natural extension of standard methods, it
seems reasonable to use it in an informal assessment of model adequacy. However,
this might be supplemented by a detailed study of the sensitivity of the diagnostic
to departures from the assumed model, so as to explore the effect of introducing the
fortitude component. This is beyond the scope of the present paper, and a topic for

further work.

3. MODELLING THE SURVIVAL TIMES OF KIDNEY GRAFTS

The principal aims of this analysis are to determine prognostic factors for the trans-
plant survival times (in days) of the first kidney graft in 3511 patients from 31 trans-
plant centres in the UK, and to examine the extent to which the survival times differ
between centres. The patients were those aged 18 years or over who received an organ

from a cadaveric heartbeating donor.



The data base includes many explanatory variables at the individual level. There
are also some at the centre level, but these will not be used in this illustration. Co-
variates available for each observation include basic demographic information, such
as the age and sex of donor and recipient, and variables concerned with the match of
donor organ to recipient, such as tissue match. Certain physiological characteristics
of donor and recipient were recorded, such as donor cause of death, blood group and
recipient diabetes, in addition to the time spent on the waiting list and whether or
not the transplant took place at a local centre, in which case the donor organ does
not have far to be transported.

The one-year transplant survival rate for this cohort is around 85%, and the event
times for 78% of the patients are censored. Patients were observed for at most 2193
days, with censoring generally occurring after 2 (31%), 3 (28%) or 4 (17%) years after
surgery. Of the graft failures, 61% failed in the first month, 10% in the second, and
7%, 8%, 6% and 4%, respectively, in each of the four subsequent months.

Parametric models are adopted in the analysis of these data for two reasons. First,
an initial analysis of the data showed that the life table estimate of the hazard function
is smooth and relatively well behaved, and so a parametric model can be expected to
capture this. Second, model checking is so much easier in the context of parametric

models, and more reliable [17].

3.1. Fitting FAFT models to the transplant data

Initially, a model selection process was used to identify relevant covariates in an AFT
model excluding centres, assuming a Weibull baseline hazard function. The covariates
that were found to be relevant were donor age group ( < 29, 30-39, 40-49, 50-59,
> 60), recipient age group (18-29, 30-39, 40-49, 50-59, > 60), recipient diabetes
(no, yes), whether the transplant was carried out at a local centre (no, yes), time
on waiting list (< 2 years, > 2 years), donor-recipient sex combination (M-M, F-F,
F-M, M-F) and tissue match (non-favourable, favourable, highly favourable). Also

included on clinical grounds was donor death from a road traffic accident (no, yes),



Table 2: Values of —2log L for the FAFT models considered with relevant covariates.

Survival time Distribution of random effect

None Gamma Inv. Gaussian Lognormal
Weibull 13052.68 13049.73 13049.86 13049.87
Gamma 13059.78  13057.79 13057.85 13057.86
Lognormal 13021.73 13015.44 13015.69 13015.67
Log-logistic 13049.12  13044.82 13045.07 13045.07

although this was not statistically significant. In the modelling process, the first level
of each covariate is taken to be the reference category.

Models containing these covariates together with centre effects were then fitted, as
were models having different baseline hazards. The FAFT models used in the analysis
of the data assume that the exponent of the centre effects in the linear component of
the model has either a gamma, inverse Gaussian or lognormal distribution. The values
of the statistic —2 log L, where L is the maximised likelihood function for models with
the chosen covariates, for a range of survival time distributions, are summarised in
Table 2. Of the distributions considered for the survival times, the lognormal appears
to be the best choice. We also observe that the value of —2log L differs from that
of the Weibull model by more than 30, so that the AFT models are superior to the
Weibull model, the only proportional hazards model under consideration. There is a
significant random (centre) effect, although there is no great difference in the values
of —2 logﬁ obtained for the different distributions used to model this effect. This is
in line with observations made by various authors; see for example [1]. We therefore
propose to use the gamma distribution for the fortitude component, as this leads to
the smallest value of —2log L.

The set of covariates that were originally identified for the Weibull model were also
found to be relevant in this model, although the variable that concerns whether or
not the donor was killed in a traffic accident remained non-significant. The parameter
estimates and their standard errors for the model with a lognormal baseline survivor

function and a gamma fortitude component are given in Table 3.



Table 3: Parameter estimates and standard errors for the selected FAFT model.

Parameter Estimate  s.e. p-value
0 (lognormal baseline) 4.583 0.136 -
¢ (lognormal baseline) 11.058 0.463 -
7 (gamma fortitude) 4.046 2.249 -
Donor Age: 30-39 —0.379 0.355 0.284
Donor Age: 40-49 —1.115 0.335 0.001
Donor Age: 50-59 —1.293 0.346 < 0.001
Donor Age: > 60 —-1.999 0.386 < 0.001
Recipient Age: 30-39 0.298 0.369 0.418
Recipient Age: 40-49 0.559 0.364 0.126
Recipient Age: 50-59 —0.180 0.349 0.603
Recipient Age: > 60 —1.166 0.368 0.002
Diabetic: Yes —1.750 0.389 < 0.001
Local: Yes 0.963 0.233 < 0.001
Waiting time: > 2 years —0.566 0.264 0.032
Road accident: Yes —-0.223 0.334 0.503
Sex combination: F-F —0.659 0.310 0.034
Sex combination: F-M —0.488 0.269 0.070
Sex combination: M-F —0.240 0.304 0.430
Match: highly favourable 1.077 0.251 < 0.001
Match: favourable 0.955 0.510 0.062
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In this table, the baseline lognormal hazard function contains the parameters 6, &
(see Table 1), while the gamma fortitude component has variance 7—!. The remaining
estimates should be self-explanatory, but note that the labelling of a sex combination
is in the order donor-recipient.

The parameter estimates in Table 3 are actually very similar to those obtained in
an AFT model with lognormal baseline hazard but no random centre effect, differing
by 0.05 at the most. The standard errors are also practically identical. However,
because centre heterogeneity is significant, with a p-value of 0.012 on the basis of a
likelihood ratio test, the model that includes centre effects will be used for inference.

If this model passes the checks described in Section 2.2, we would conclude that
the risk of failure at a given time increases with the age of donor and that there is a
greater risk if the recipient is over 60 years of age. A patient suffering from diabetes or
who is on the waiting list for more than two years has a poorer prognosis, but receiving
a transplant from a local donor offers a small but significant advantage. There is a

greater risk if there is a non-favourable tissue match and if the donor is female.

3.2. Estimation of centre effects and model checking

We first obtain an estimate of the logarithm of the fortitude component for each
transplant centre, @; in equation (5). The standard error of @; is then used to obtain
a symmetric interval estimate for w; in the linear component of the model, and these
are used to compare the transplant centres. These estimates, together with their 95%
confidence limits, are shown in Figure 1, in which the effects have been arranged in
increasing order. Confidentiality restrictions mean that individual centres cannot be
identified. Centres with low estimates are those which perform less well, so that the
higher the estimate, the greater the fortitude shown by patients in the centre. This
figure shows that most of the intervals overlap, and that there are no centres that
are performing less well than the others. The heterogeneity between centres therefore
arises from the aggregation of small differences between them. Incidentally, although

the distribution used for the random centre effects is assumed to be smooth, the
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Rank of centre effect

Figure 1: Estimates of centre effects, &;, and 95% confidence limits for the 31 trans-

plant centres.

gamma distribution is outlier prone [21, 22]. For this reason, outlying centres would
be expected to be shown up in this analysis. The plot also shows some evidence of
shrinkage, in that centres with smallest numbers of transplants are the ones with the
widest confidence limits.

Using estimates of the fortitude components w;, we can obtain values of the linear
predictor in equation (5) for each patient. We then stratify these values to give seven
categories corresponding to a range of prognoses. The estimated survivor function for
the individuals in each stratum are calculated, for times ranging from 0 to 2000 days.
Within each stratum, the estimates at each day are averaged to give a fitted survivor
function. For clarity, these fitted survivor functions, and the corresponding Kaplan-
Meier estimates, for just the first, fourth and seventh strata are shown in Figure 2.
Because 71% of the failures took place during the first year, there is more variability
in the Kaplan-Meier estimates at times beyond this. Moreover, the form of the fitted

survivor functions are largely determined by the failures in the first year.
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Figure 2: Kaplan-Meier estimates (—) and fitted lognormal survivor functions (——-)
for patients with low, average and good prognosis, respectively. Those with a good

prognosis have the highest survival rates.

The FAFT model with a Weibull baseline hazard function and gamma fortitude
fails to track the fast declining survivor function in the first 4 months. This explains
why the lognormal distribution, with its ability to have a large and quickly decreasing

hazard at an early stage, was selected.

4. A MIXTURE MODEL FOR THE HAZARD FUNCTION

Although reasonably satisfactory in its description of the hazard rate for the transplant
data during the first few months following transplant, the lognormal distribution is
much less convincing at later times. A model that allows the hazard function to
decline sharply over the short term, but to then decline more gradually, is likely to be
more suitable. Possible ways of modifying the model include adopting a spline model

for the baseline hazard function [23], or a semi parametric model [24]. However, since
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the covariates that influence the hazard function may not be the same at different
times of follow up, a model that incorporates this feature is desirable. Indeed, in the
particular context of kidney transplantation, analyses are normally carried out for
distinct epochs of follow up in order to account for this [25, 26]. This feature could be
modelled through the use of time-varying coefficients in the FAFT model. Although
we foresee difficulties in model fitting, and in the selection of an appropriate function
of time to use in the modelling process, this is an interesting topic for further research.
For these reasons, we propose a mixture model for the hazard function, and a

possible parametric form for such a hazard is
hltley, 2) = Gjle ™ + —holt /) ©

(2

for the jth individual in the sth group. The first term in this mixture model is a
Gompertz hazard function which models the initial fast decline in the hazard rate.
The parameter A in this short-term hazard determines the rate of decline, while (;;
is a scale parameter. The second term in (6) models the hazard over a much longer
period, and it is convenient to refer to it as the long-term hazard. This component is
simply an AFT model discussed in previous sections, and parameterised as in Table 1.
The parameter (;; may also depend on covariates measured at the centre and group
levels. Moreover, the covariates that affect the short term hazard may not be the same

as those which are important in the long-term hazard. We may therefore take
Gij = Gij(@ij, 2i) = € exp(B1ij + 7124), (7)

where €¢ is the baseline scale parameter in the Gompertz hazard function, and we

now write
Vij(xij, 2i) = exp(Byij + Vo2i)-
In many applications, the random effect might be anticipated to differ in the short
and long term. An extension of the model in equation (6) to incorporate random

effects in both components allows this to be studied. In the context of the transplant

study, these random effects will relate to centre differences, which may not necessarily
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be the same in the two components. For example, a centre that deals with more
difficult cases, not adequately reflected in the covariates adopted in the model, might
appear to be performing less well in the short term, but this may be compensated by
an above average performance in the longer term.

Random effects a;; and a2 with respective marginal distributions G (1) and
G2(a;e) can be introduced into the two components of the model. This leads to the

model in equation (6) with
Gij = Gij (@i, zi, ain) = el exp (B + v'12i) (8)
and
Vi = Yij(Tij, 24, in) = o exp(ByTij + Yo2i)- 9)
Alternatively, the linear components of the model can be expressed as
wik + Brpij + Yz, k=12,

where w;; = log vy

Adopting a bivariate distribution Gi2(y1, aso) for the two random components will
enable the extent of any correlation between these two components to be investigated.
However, the two components of the mixture model are not orthogonal, and so a
correlation between «;; and «;s may well be a result of the structure of the model,
rather than the data. Care is therefore needed in interpreting such a correlation.

The corresponding survivor function is

S(t|wij, i) = exp {(AGy) ™ [ = 1]} So(t/w3y),
and the model can be fitted by maximising the likelihood function, integrated out

over both a;; and «y9, given by

9 oo poo | M
L=11 /0 /o {H h(tij|eig, 2:)™ S(ti| @i, Zi)} dG (i )dG (ai)-
i=1 j=1
As for the FAFT model, this mixture model can be fitted using software that in-
cludes facilities for optimisation and numerical integration. The SAS procedure proc

nlmixed can again be used to fit the mixture model, with the random component

declared to have a bivariate normal distribution and then transformed as appropriate.
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5. MODELLING THE TRANSPLANT DATA USING THE MIXTURE MODEL

The mixture model proposed in Section 4 is now used in the analysis of the data
on kidney graft survival times. A variable selection procedure is adopted in models
without centre effects, in order to ascertain which covariates are needed in the two
components of the model. For this purpose a lognormal baseline hazard function is
used for the long-term hazard component. The variables associated with tissue match
are fundamental to organ allocation, and are included in both the short and long
term components of the model. Mixture models with the chosen sets of covariates,
but with Weibull, Gamma and log-logistic baseline survivor functions for the long-
term component are then compared with the lognormal model. Again, it turns out
that the lognormal model is superior, with a value of —2 logl: of 12932.9. Note that
the —210gi statistic has a value that is substantially lower than that for the basic
FAFT model fitted in Section 3.1 and given in Table 2, even after allowing for the
additional parameters that are being fitted through the introduction of the short-term
hazard component.

Random effects are then added to both components of the model, with gamma
fortitude components used at the outset. A correlation between the two fortitude
components is then introduced, so that (log a1, log a;2) are modelled using a bivariate
normal distribution. The estimated correlation is negative, but not significantly so
(p = 0.51). There is therefore no evidence that centres who perform less well in the
short term make up for it in the longer term, and as mentioned earlier, any correlation
could simply be due to the model structure. In further modelling, the short- and long-
term fortitude components will be taken to be independent.

Different choices for the distribution of the short-term fortitude component are
then considered, in the absence of a long-term fortitude. The gamma distribution is
again found to lead to the smallest value of —2log L, but there is very little difference
between gamma and lognormal fortitudes. When a short-term gamma fortitude is
added to the model, the —2logﬁ statistic is reduced from 12932.9 to 12917.2, a

change that is highly significant (p < 0.001). The significance of this effect is due to
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there being many small differences between individual centres, rather than one or two
centres being out of line; see the comments in Section 3.2.

Next, a long-term gamma fortitude component is added to the model. This leads to
a further reduction in the value of the —2log L statistic of 0.8, which is not significant.
There is therefore no evidence of centre heterogeneity in the longer term.

Parameter estimates and their standard errors for the fitted mixture model with
a lognormal model for the baseline survivor function in the long-term hazard, and
gamma fortitude in the short-term component only, are given in Table 4.

The p-values in this table, which are confirmed by likelihood ratio tests, indicate
that donor age, whether the transplant uses a locally retrieved organ, recipient di-
abetes and time on waiting list all affect the short term hazard component. In the
short term, the condition of the donated organ at transplantation will have a strong
influence on transplant survival. Since this tends to be correlated with donor age and
the distance that the organ has had to be transported, it is not surprising that donor
age and the variable indicating whether or not the transplant uses a locally retreived
organ, are particularly significant. The results also show that the effect of the vari-
able ‘Local’ is not persistent, that the prognosis also depends on the demographic
characteristics of the recipient at transplantation, and that degree of tissue match is
important. All these variables act in much the same way as in the basic FAFT model
described in Section 3.2. While the estimates in Table 4 are interpreted in terms of
the effect of the covariates on each component of the hazard, we observe that clinical
explanations for these effects are frequently debated in the transplantation literature.

For many, though not all, of the variables in Table 4, the sum of the short and long
term parameter estimates are approximately equal to the estimates given in Table 3.
From a Taylor expansion of the model in equation (6), it can be seen that this occurs
when hg(t) has an exponential behaviour, which it does in this example; see Figure 3.
But in general, there is no reason why the estimates from the two components should
sum to the overall value.

To illustrate the hazard functions in the mixture model, Figure 3 shows the overall
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Table 4: Parameter estimates and their standard errors for the mixture model with

lognormal long-term baseline survivor function, and short-term gamma fortitude.

Short term hazard Long term hazard
Parameter Estimate s.e. p-value Estimate s.e. p-value
A (Gompertz baseline) 0.208 0.032
¢ (Gompertz baseline) 4.713 0.307
0 (lognormal baseline) 3.443 0.183
¢ (lognormal baseline) 10.701 0.373
7 (gamma fortitude) 3.817 1.641 0.027
Donor Age: 30-39 —0.154 0.316  0.630 —0.143 0.309 0.648
Donor Age: 40-49 —0.452 0.278 0.114 —0.564 0.289  0.060
Donor Age: 50-59 —0.313 0.304 0.311 —0.865 0.297  0.007
Donor Age: > 60 —0.772  0.300 0.015 —1.183 0.347  0.002
Recipient Age: 30-39 - - - 0.568 0.331  0.096
Recipient Age: 40-49 - - - 0.552 0.321  0.096
Recipient Age: 50-59 - - - —0.064 0.306 0.837
Recipient Age: > 60 - - - —1.196 0.316 0.001
Diabetic: Yes —0.731 0.291 0.018 —1.183 0.378  0.004
Local: Yes 0.795 0.203  0.001 - - -
Waiting time: > 2 years —0.563 0.199  0.008 - - -
Sex combination: F-F - - - —0.562 0.284  0.057
Sex combination: F-M - - - —0.602 0.235 0.016
Sex combination: M-F - - - —0.217 0.272 0.431
Match: highly favourable 0.483 0.232 0.046 0.615 0.216  0.008
Match: favourable —0.069 0.336 0.840 1.003 0.487 0.048
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Figure 3: The overall (—), short-term (---) and long-term (——-) hazard functions for
a patient in Centre 1 in the reference category of each covariate for the fitted mixture

model.

fitted hazard function, together with the short-term and long-term components for an
individual in Centre 1 with covariates set to the reference categories. Note that the
time axis in this figure only extends to 100 days, so as to show more clearly the different
shapes of the hazard functions over this period. For this particular set of covariate
values, the short-term hazard dominates for approximately two weeks, during which
time close to 30% of the failures occur. The long term hazard has a persistent effect,
and so the covariates in this component have some effect on the hazard function over
the whole time period. However, the covariates in the short term component will
have a greater impact on the hazard of failure in the period immediately following the
transplant.

As before, the adequacy of the fitted model can be examined using the method
described in Section 3.2. The resulting graph, shown in Figure 4, confirms that the

mixture model is a much better fit over the entire range of the survival times, although
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Figure 4: Kaplan-Meier curves and fitted survivor functions for the fitted mixture

model.

the fit is not so good between 100 and 250 days. The fit over the first few months is
better than that shown in Figure 2, and in the remaining period the fitted survivor
functions are considerably closer to the Kaplan-Meier estimates.

Again, an estimate of the fortitude component for each transplant centre can be
obtained by computing the posterior mode of the distribution of the random effects in
the short-term component of the mixture model, as in Section 2.2. Estimates of the
random effects in the linear predictor, @;;, are plotted together with their associated
95% confidence limits in Figures 5. The centre effects have again been arranged in
ascending order of magnitude. This figure shows that there is no one centre that
is substantially better or worse than the others. Note that this plot is not directly
comparable with that in Figure 1, since Figure 1 is based on an AFT model, while
Figure 5 is derived from the Gompertz component of the mixture model. However, it

is the differences between centres displayed in a particular figure that are important.
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Figure 5: Short-term estimates of centre effects (@;;) and their 95% confidence limits

for the 31 transplant centres.
6. DISCUSSION

In this paper, we have described the role of accelerated failure time models with
random effects in the analysis of data on kidney graft survival times. These models
provide a flexible approach to the parametric analysis of survival data with frailty.
Very often, the choice of distribution for the random component will not be critical,
as was seen in our analysis of the transplant data. Models with normally distributed
random effects in the linear component may then be adopted, and have the advantage
of being straightforward to fit using SAS.

The model checking procedure described in Section 2.2 provides a simple but
effective approach to assessing the fit of the models. This procedure may also highlight
any weaknesses in the parametric specification of the model, as in our illustration.
This approach may be supplemented by plots of Cox-Snell, martingale or deviance

residuals [17], but in our experience these are not very sensitive to departures from
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an assumed model.

The mixture model proposed in Section 4 allows a much wider variety of shapes
of hazard function to be fitted, while maintaining the advantages of fully parametric
models. Such models may allow non-standard features of the hazard function to
be captured. Moreover, allowing the effects of covariates to differ between the two
components can provide new insights into the data. Use of the mixture model has
been illustrated in the context of a multi-centre study, and allowing for different centre
effects in the two components of the model reveals some interesting features.

A worthwhile extension of the FAFT model would be the development of a non-
parametric form for the baseline survivor. Lawless [24] provides an excellent descrip-
tion of a semi-parametric version of the AFT model, but this is not straightforward
to fit using existing software packages. However, a parametric choice for the baseline
forces the statistician to spend more time on model checking which often yields a

better understanding of the data generating process.
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