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SUMMARY

Following a brief introduction to the concept of parametric acoustic inter-
actions, the basic properties of Parametric Transmitting and Receiving Arrays
are considered in the light of conceptual advances resulting from experimental
and theoretical investigations that have taken place since Westervelt's (ref. 1)
landmark paper in 1963.

INTRODUCTION

It is interesting to observe that the concept of a Parametric Acoustic
Array which was first introduced by Westervelt (ref. 1) in 1963 can be viewed
retrospectively as the inevitable consequence of his earlier investigations
(ref. 2) of the scattering of sound by sound. Adopting this perspective as a
framework for discussion, we begin by considering the propagation of isentropic
finite-amplitude acoustical disturbances (i.e., waves of maximum Mach Number
€y < 0.1) in an unbounded dispersionless, thermo-viscous fluid at rest. Such
disturbances, as shown by Westervelt (ref. 3) are governed by a second-order
nonlinear wave equation which can be derived from Lighthill's (ref. 4) 'acoustic
analog equation' [i.e., a cleverly rearranged form of the Navier-Stokes (ref. 5)
equations}. The excess pressure p' induced in the fluid by a finite-amplitude
disturbance of initial peak pressure P, is thus described by the equation,

2, __1 2 = p' = :
D P = —EBEO(P )tt P(_I'_,t) = D /po 80 = PO/DOCO (l)

where the coefficient of nonlinearity of the fluid (ref. 6) B has a value of
~3.5 in water at 20°C and atmospheric pressure. Taking the Fourier transform
of eq. (1) gives,

2 2,5 _1 2 2 5 _ -
(V" + k7)p = 5Be k Fw{P } P,@ = Fm{P(_;,t)} k = w/co (2)

where the effect of viscous absorption can be included by treating k as a
complex wavenumber.

If two finite-amplitude plane waves of initial peak amplitudes p .,p
. vool’ 02,
and angular frequency-wavenumber pairs (ml,gl) . (MZ‘EZ) , termed 'primary
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waves interact weakly (i.e., without incurring significant distortion) their
combined field is obtained to a first-approximation via linear superposition
giving,

P(r,t) = Re{Pol exp(let - ik

1 "o+ Po

. . 2
) exp(szt - ik, )+ 0(80 )

(3)

The right-hand-side of eq. (2) thus consists of forcing functions at the second
harmonic and combination frequencies so that as in the case of a linear
harmonic oscillator its response to any one of these applied forces remains
small unless their frequencies coincide with characteristic frequencies of the
homogeneous equation. For weakly interacting primary waves this occurs at the
combination frequencies whenever the following 'resonance' conditions are
satisfied (ref. 7):

1 R0 7o ktk = ky (4)

Since the second of these conditions can be reexpressed for interaction in a
dispersionless fluid (i.e., wl/kl = mzlkz = w_l_/k+ = co) as,

2 2 2
w, "+, j_Zwlmz cos 8 = w,

where 0 1is the angle of intersection between the wave normals, it follows
from the first condition that 6 = 0 is the only angle of intersection for
which eq. (4) can be satisfied. As Westervelt (ref. 2) concluded therefore,
two perfectly collimated overlapping finite-amplitude plane waves can only
interact 'resonantly' when their wave vectors El and ko are aligned in

the same direction. On the other hand, it should be noted as Rudenko, et. al.
(ref. 8) have shown that 'resonance' occurs at non-zerc intersection angles in
dispersive fluids.

In the case of 'non resonant' or 'asynchronous' interactions the combina-
tion tones are subject to spatial oscillations which inhibit their effective
amplification. Alternatively, 'resonant' or 'synchronous' interactions result
in continuous energy transfer from the primary waves to the nonlinearly generated
'secondary' waves (i.e., combination tones, etc.). If the initial amplitudes
of the 'secondary' waves are zero they will thus grow linearly with range at the
expense of the primary waves until the latter, and hence the amplitudes of the
'forcing functions' on the right-hand-side of eq. (2), are sufficiently
diminished by this type of "finite-amplitude absorption" and by conventional
'linear' losses such as viscous absorption and spherical spreading. At distances
from the source of the disturbance where the primary waves are no longer of
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finite—-amplitude, nonlinear interaction ceases, and the secondary waves formed
in the "interaction zone" eventually decay at rates determined by their viscous
attenuation coefficients and by spherical spreading losses. The range at which
this occurs defines the 'far-field' of the secondary waves which is generally
much greater than that of the primary waves. The interaction zone can thus be
viewed as an extension of the source itself, the generation of secondary waves
within it resulting from the establishment of volume distributed "wvirtual
sources' created by the primary fields which formed as envisaged by Westervelt
(ref. 1), a "virtual acoustic array'". Moreover, the term 'parametric' which
Westervelt (ref. 1) used to describe such arrays was chosen, by analogy with
the concept of electrical parametric amplification, to convey the idea that
their performance is dependent on parameters of the medium (i.e., B, P, c ,
attenuation characteristics, etc.) and of the source distribution (i.e.? °
primary wave amplitudes, frequencies, and aperture dimensions). Since the
spatial directivity of the secondary waves is in most instances equivalent to
that of the primary waves, highly directive low frequency 'parametric trans-
mitting arrays' can thus be formed by bifrequency projectors simultaneously
radiating highly directive primary whves of nearly equal frequencies to generate
" a low difference-frequency signal via nonlinear interaction in the medium. The
converse task of directive low frequency reception, can likewise be accomplished
by means of :parametric receiving arrays".

PARAMETRIC TRANSMITTING ARRAYS

When the primary waves are radiated by a plane piston projector of area
A , they propagate as essentially collimated plane waves within their mean
‘Rayleigh distance ry, = A /KO » A, being the mean primary wavelength, and as
directive spherical waves beyond this range. If a, 1is the mean primary wave
attenuation coefficient, then 20,r, represents the total 'linear' loss
incurred by the primary waves within r_ . Consequently, when 2a,r, is such
that the primary wave amplitudes are reduced to small-signal levels within
r, (i.e., 20,ry >> 1), a plane wave primary interaction of the type considered
by Westervelt (ref. 1) occurs in the fluid. This type of parametric interactionm,
which is described as 'absorption-limited', results in the virtual sources being
phased in such a manner that they form a "virtual-end-fire array whose 'far-field'
spectrum contains only the difference-frequency (and possibly some of its
harmonics). In most instances the latter signal overrides the primary waves
and upper sideband components to survive in the far-field (i) because it has
been amplified throughout the interaction zone and (ii) because of its
significantly lower rate of viscous absorption. The 'far-field' pressure of an
axially symmetric 'absorption-limited' parametric array obtained from eg. (2)

thus becomes (refs. 1 and 9),

2
~ w " Bp P, A . -0 r - jk r
p, (r,0) = D_(® oloz ol jL| ®
- 4T p c T

o O

>>
Zaor 1 (5)
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where O_ =0, + O_ - o :_ZQO is the effective length of the virtual-end-
fire—arrgy an% its“directivity-function D (0) is given by,

IDB (e)]
D (&) = 200 r > 1 (6)
- 2 .4 °0
1+ Qog/k )" sin”(6/2)

D_ (6) being the far-field directivity function of the radiator at the
difference-frequency - a necessary modification of Westervelt's (ref. 1)
solution for k a > 1 , introduced by Naze and Tjotta (ref. 9), where 2a is
the characteristic dimension of the aperture. If k a < 1 then D ®) ~ 1
over the angular domain of interest, so that in this instance the B_ -
directivity function defined by eq. (6) assumes the form originally derived by
Westervelt (ref. 1). This directivity function has no sidelobes, a most
attractive feature of 'absorption-limited' parametric arrays, which has been
confirmed experimentally by Bellin and Beyer (ref. 10), Berktay (ref. 11),
Zverev and Kalachev (ref. 12), and by Muir and Blue (ref. 13). Using a 25 cm
square projector simultaneously radiating primary waves of frequencies 1.124 MHz
and 0.981 MHz at finite-amplitudes in fresh water, the latter (ref. 13) showed
that the far-field directivity function of the 143 kHz difference-frequency
signal was in very good agreement with that predicted by eq. (6), thus
demonstrating that in this instance the parametric array was capable of achiev~
ing the same directivity as a conventional source operating at 143 kHz, but

with an aperture of characteristic dimension approximately eight times smaller.

If the near~field primary wave absorption loss 20c0rO is very small
(i.e., 20a,r, << 1), significant nonlinear interaction occurs beyond r, where
the primary fields propagate as directive spherical waves. A parametric array
formed by this type of interaction is termed 'diffraction-limited' because the
virtual-end~-fire array which now extends beyond «r is effectively truncated

o
by spherical spreading losses at a distance rj = r (W,/w_) where the half-
power beamwidth of the virtual-end-fire-array begins to asymptotically approach
that of the mean primary wave directivity function.. Lauvstad and Tjotta (ref.
14), Cary (ref. 15), Fenlon (refs. 15 and 16), and Muir and Willette (ref. 17)
have investigated the properties of 'diffraction-limited' parametric arrays,
whose 'far-field' difference-frequency pressure for axially symmetric primary

waves is given by eq. (2) as,

2 .
- w" " Bp.P.,A -0 r - jkr
p, (r:8) = =i D_(0) oLPE ol lxl gy | S -
®w - 4 o o, T T
- 4T p c T o
oo
<<
20, r 1 (7
the effective array length ré In 54%7. in this instance being considerably
less than the 'absorption-limited' 1 © length ]_/ocT . Moreover, as shown by
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Fenlon (ref. 18) and Lockwood (ref. 19) the 'far-field' difference-frequency
directivity function .D_(8) for an axially symmetric diffraction-limited array
is given by,

D (B) = Dl(G) DZ(G) 200r << 1 (8)

o 0

where Di(G) , (i =1,2) are the far-field primary wave directivity functions.

Combining the asymptotic solutions defined by egs. (5)-(8), Fenlon (ref.

' 20), Berktay and Leahy (ref. 21), and (although not explicit in their analysis)
Mellen and Moffett (ref. 22) have shown that the difference~frequency pressure
in the 'far—~field' of an axially symmetric parametric array can be expressed
for all values of 2a,r, as,

~ w_ B ko polp02 ro2 e—a—r
[p, (0] = _® |- : R S 9
- o 20 ¢
oo
where
m_/mo
T .
RL M a,.r OLTro > 1 (9a)
T o
+ In L.  ar' <1 (9b)
o r' T o
T o

= r_/ry being the effective length of the parametric array ry , normalized
with réspect to r) = r,(w,/w_) . The dependence of Ry on agpr) obtained

from refs. 19 and 20 is shown in figure 1. Again, the general form of the
difference-frequency directivity function D (8) 1is obtained by convolving

eqs. (6) and (8), as shown implicitly by Lauvstad and Tjotta (ref. 13) and
explicitly by Blue (unpublished report). It should be noted that Berktay and
Leahy (ref. 21) have evaluated the convolution integral numerically to obtain
D_(8,¢) for both axially symmetric and asymmetric 'diffraction-limited' arrays,
the computed directivity functions being in excellent agreement with experimental
results.

Returning to eq. (9) it is convenient to reexpress it in terms of the
equivalent peak primary wave and difference-frequency source levels at lm giving

SL_ = SLl + SL2 + 20 loglo(m_/ZW x 1 kHz) + 20 log10 RL — 290 dB re 1 pyPa at

im in water (10)

Since the dependence of RL on aTré depicted in fig. 1 has been confirmed
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experimentally (refs. 23 and 24) over the range 10—5 < ogry € 10 , it follows
that eq. (10) can be applied over the entire range of sonar frequencies pro-
vided that the combined peak primary wave pressure does not excede the shock
threshold (i.e. the amplitude at which the primary waves become so distorted
due to repeated self interaction that shock formation occurs within the inter-
action zone). Denoting the critical peak source level corresponding to the
shock threshold as SLoe it can be shown (ref. 20) that,

SLOC = 20 loglO Goc - 20 loglo(w0/2ﬂ x 1 kHz) + 287 dB re 1 u?a at 1m

in water (1)

where the parameter O0,. 1is given as a function of a r, in fig. 2 for a
plane piston projector. It can also be shown that the half-power beamwidth

26 of the difference-frequency directivity function obtained from the
convolution integral (refs. 13 and 21) is given to a good approximation by the
expressions,

260 0.88 AO
206 ~ —— { 1+ Jo, r' } 20 = —— for a square piston of
- T /2 o 0 d side length d (12a)
20 4 A
:_-jf% {1.+-E- aTré} 26 = 7? for a circular piston of
V2 © diameter d . (12b)

Several examples illustrating the application of egs. (10)-(12) to experiments
reported in the literature are included in Tables la and 1lb, the "frequency
response index" T which appears in Table 1b being defined as,

\
. ln{RL(aTro)/RL(aTro)} <o 13
1n (wo/w_) =0
where R%(a r') and (o ro) are both defined by the characteristic in fig. 1.
It should be noted that from eq. (13), @+ 2 for 'absorption-limited' arrays

(i.e., 20 r >> 1) and likewise n + 1 for 'diffraction-limited' arrays
(i.e., 20 r << 1), as required. The difference-frequency pressure distribu-
tion in the Tnear-field' of 'absorption-limited' parametric transmitting arrays
has been analyzed by Berktay (ref. 25), Hobaek and Vestrheim (ref. 26) and by
Novikov et. al. (ref. 27). A "near-field' solution for 'diffraction-limited’
arrays has also been. obtained by Rolleigh (ref., 28) although it can be shown
that this approximation is only valid for 1002 < o,.r' <1 . A more comprehen-
sive 'near-field' which include both 'absorption—limiged' and 'diffraction
limited' interactions has recently been derived by Mellen (ref. 29). However,
this approximation has not as yet been sufficiently tested to confirm its
applicability over a wide range of the parameter aTré .
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More complex parametric interactions between spatially separated primary
sources have been treated analytically by Lauvstad (ref. 30) and by Cary and
Fenlon (ref. 31).

An 'absorption-limited' parametric transmitting array was first formed in
air by Bellin and Beyer (ref. 10) but the formation of 'diffraction-limited'
arrays in air was only recently accomplished by Bennett and Blackstock (ref. 32)
and independently by Muir (ref. 33).. The latter, who made use of a small
bifrequency transducer (i.e., operating simultanecusly at 15.5 kHz and 16.5 kHz)
located at the Newtonian focus of a 55.9 cm diameter parabolic reflector to form
the primary waves, concluded from the success of his experiment that the advent
of directional parametric megaphones is virtually assured.

Muir (ref. 33) also formed and successfully steered over a 36° sector a
21 kHz difference-frequency signal resulting from the interaction of primary
waves (i.e., 185 kHz and 206 kHz) simultaneously radiated by small bifrequency
transducers located on the focal surface of a 43 cm diameter solid polystyrene
plastic refracting lens in water. Widener and Rolleigh (ref. 34) have sub-
sequently shown that the difference-frequency pressure and directivity are not
adversely affected by mechanically steered primary waves if the frequency of
rotation is small compared to the difference-frequency.

In another recent experiment Ryder, Rogers, and Jarzynski (ref. 35)
generated difference-frequencies of 10 kHz - 20 kHz via an 'absorption-limited'
parametric transmitting array formed by primary waves of mean frequency 1.4 MHz
propagating in a 16.5 cm diameter, 23 cm long silicone rubber cylinder immersed
in water, the primary waves being radiated by 2 cm diameter circular piston
centered at the back end of the cylinder. Although the axial field dependence
of the difference-frequency signals was found to be in good agreement with
eq. (5) when 1/0,, was replaced by a 'slow-waveguide-antenna-absorption-
distance-parametetr', the 'far-field' difference-frequency directivity functions
were much more directive than those predicted by eq. (6). However, despite the
fact that the coefficient of nonlinearity in silicone rubber exceeds that of
water by a factor of ~1.4 whilst its sound velocity is ~1.5 less than that of
water, parametric arrays are formed less efficiently in this material because
of its significantly greater rate of absorption per wavelength.

Attempts to address the problem of defining the maximum realizable conver-
sion efficiency of parametric transmitting arrays have been made by Mellen and
Moffett (ref. 22) and by Fenlon (ref. 36) via saturated parametric array models.
Differences between these models at very high primary wave amplitudes however,
have not yet been resolved experimentally.

Following Muir and Blue's (ref. 37) demonstration of the broadband (low Q)
nature of parametric transmitting arrays, resulting from the transfer of primary
wave bandwidths to the difference-frequency signal, it was evident that pulse
compression techniques could be used, as in the case of peak-power-limited
radars, to offset the poor conversion efficiency of these arrays.
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Furthermore, when it was realized that the process of simultaneously
radiating finite-amplitude tones of angular frequencies w, and w, each of
initial amplitude P is equivalent to radiating a sinusoidal fini%e—amplitude
carrier wave of angu?ar frequency w_= (wl + w,)/2 and peak amplitude 2P _ ,
modulated by a cosine envelope function of angu%ar frequency 0 = (W, - w )?2 ,
it became obvious that parametric amplification is simply the converse of
'pulse demodulation' - a concept introduced by Berktay (ref. 11) and confirmed
experimentally by Moffett, Westervelt, and Beyer (ref. 38) to explain the
enhanced demodulation of a narrow-band-modulated finite-amplitude carrier
resulting from propagation in a fluid (i.e., in addition to demodulation caused
by viscous absorption) in terms of energy transferred by the carrier to its
squared envelope frequency components. These components, being of lower
frequency than the carrier survive the latter in the 'far-field' having been
endowed with spatial directivities and bandwidths closely related to those of
the carrier via angular and frequency convolution of the time waveform squared
in the interaction zone. Eller (refs. 39 and 40) who investigated biased cosine
modulation (i.e., a.m. with carrier) and narrow-band N-spectral line modulation
showed, independently of Merklinger's (ref. 41) analysis of rectangular envelope
modulation, that in principle, a maximum gain of 6 dB in conversion efficiency
relative to that afforded by cosine modulation of angular frequency /2 could
be realized for the same average carrier power by a periodic impulse function of
repetition frequency £ . In practice, however, since this form of modulation
cannot be implemented by conventional band-limited, peak-power—limited acoustic
sources, Merklinger (ref. 41) suggested the alternative of using a periodic
rectangular envelope with a 25% 'mark-space-ratio' which results in a 5.1 dB
gain in conversion efficiency for the same average power as a cosine modulated
wave, provided that the source has sufficient bandwidth to form the rectangular
envelope, and can at the same time sustain a 50% increase in peak pressure. On
the other hand, if the source is peak-power-limited but not band-limited, a gain
in conversion efficiency of 2.1 dB can still be realized for the same average
power as a cosine modulated carrier, via periodic square wave modulation (i.e,
rectangular modulation with a 507% mark-space-ratio) without incurring any increase
in peak power. 1In general therefore, rectangular modulation is a very
advantageous means of launching a parametric array, particularly as it can
readily be implemented via switching amplifiers.

More recently, a procedure for optimizing the performance of parametric
transmitting arrays by spectral design of the modulating envelope has been
outlined in a preliminary study by Clynch (ref. 42).

PARAMETRIC RECEIVING ARRAYS

Parametric Receiving Arrays are formed in a fluid by projecting a finite~
amplitude 'pump wave' of angular frequency w_ into the medium to serve as a
'carrier' wave for a weak incoming signal of gngular frequency ®_, where in
general w /w_>> 1 . Since the pump wave is sufficiently intensé to make the
compressibili%y of the fluid amplitude dependent, the presence of any other wave,
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such as the spatial component of a weak signal traveling along the pump axis,
will result in a combined pressure field which is effectively squared by the
inherent nonlinearity of the medium. The nonlinear interaction thus gives rise
to sinusoidal modulation of the pump wave by the spatial component of the signal
along its axis which in turn produces an intermodulation spectrum, the "sum"

and "difference" components of angular frequencies w_+ w_ being of greatest
interest. For an efficient nonlinear interaction the’'resbnance conditions'
require that the spatial component of the signal along the pump axis be
propagating in the same direction as the pump wave. On account of the fact that
w /w_>> 1 these sidebands are in close spectral proximity to the pump frequency,
but Unlike the latter, their directivity is equivalent to that of a virtual-end-
fire line array of length L/A (in wavelengths of the signal frequency), where
L is the distance from the pump projector along its axis at which a receiving
hydrophone resonant at @ + ®_  or W - ® is located. Upon reception the
"up-converted" signal is fed t8 a low 8ass filter to remove the pump frequency
and recover the signal of frequency ws .

Although implicit in Westervelt's (ref. 2) work, the process of Parametric
Reception was identified and made explicit by the extensive theoretical and
experimental investigations of Berktay (ref. 43) who in cooperation with Al~-
Temimi (refs. 44, 45) and Shooter (ref. 46) considered the practical implications
of the up-conversion process. Subsequent experimental work by Barnard et. al.
(ref. 47) and by Berktay and Muir (ref. 48) has been directed to long wavelength
up-conversion in fresh water lakes and to the consideration of arrays of
parametric receivers, respectively, thus involving significant practical
extensions of the original scaled laboratory experiments. Further theoretical
extensions by Rogers et. al. (ref. 49) and by Truchard (ref. 50) have also been
made to provide a more precise description of the pump fields radiated by
practical sources and the resulting effect of such refinements upon the
analytical form of solutions for the up-converted fields. More recently
Goldsberry (ref. 51) and McDonough (ref. 52) have derived optimum operating
conditions for parametric receiving arrays from systems analyses based on
Berktay and Al-Temimi's analytical model (ref. 45) for a spherically spreading
pump wave. It should be noted however, that Goldsberry's (ref. 51) analysis
which attempts to include the effect of noise is much more realistic than that
of McDonough (ref. 52) who neglected to include this vital effect. With the
exception of a preliminary study by Bartram (ref. 53), no systematic analysis
had been made prior to Fenlon and Kesner's analysis (ref. 54) of the effect of
finite-amplitude absorption on the performance of parametric receivers, which
although insignificant at low pump amplitudes, ultimately determines the maximum
achievable efficiency of these arrays when the pump wave becomes saturated.
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Figure 2.~ Shock threshold characteristic.
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