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In this paper, we describe the strain-dependent behavior of an electric-LC �ELC� resonator unit cell,
commonly used in metamaterial designs. We leverage analytic expression to understand the way
strain manifests itself in a change in electromagnetic �EM� response. We verify the simplified
physical models using full-wave simulations and generalize the trends to accommodate the strain
profile for any arbitrary plane-stress loading scenario. © 2010 American Institute of Physics.
�doi:10.1063/1.3507892�

Metamaterials can greatly expand man’s ability to con-
trol interactions with electromagnetic radiation and enable
such phenomena as cloaking,1,2 beyond diffraction-limited
imaging,3 gradient negative-index lenses,4 and perfect
absorbers.5 They are a powerful concept by allowing design-
ers to utilize geometry, and not just material properties, to
engineer a structure’s electromagnetic response; often pro-
viding properties not found in nature.

However, transitioning metamaterials into real, opera-
tional systems requires knowledge of their behavior in rel-
evant environments. Of significance is the role mechanical
loading/strain plays in the electromagnetic response of a
metamaterial. Mechanical strain is by definition, a deforma-
tion of the geometry of a structure. Since metamaterials rely
so heavily on geometry for the desired response, it implies a
direct causal relationship between applied strain and electro-
magnetic performance.

Previous efforts investigated the strain6 and temperature7

dependent response of magnetic resonant elements; Melik
et al.6 even proposes using metamaterials as wireless strain
gauges. Our efforts focused on a critical missing piece, the
electric-LC resonator, depicted in Fig. 1. This structure op-
erates at x-band, utilizing two parallel capacitors for en-
hanced resonant response. Figure 1 depicts the S-parameter
curves for the cell.

The mechanical model assumes the metamaterial unit
cell is part of a large ��10��, load-bearing structure. Me-
chanical loading on the cell is homogeneous, and the copper
contributes insignificantly to the overall stiffness of the com-
posite; therefore, the in-plane strain profile is approximately
uniform across the unit cell �no local stiffening effects from
the adhered copper�. Due to the uniformity of the strain pro-
file and the resultant absence of higher order differential
terms, the linear system of Eq. �1� can be utilized to describe
the deformed geometry of the unit cell as follows:8
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The superscript 0 and 1 refer to the undeformed and
deformed geometries, respectively, and the 3�3 matrix is
the mechanical strain tensor. The model accommodates dif-
ferent values of EZZ in the substrate and copper, due to the
differing mechanical properties in the materials. Addition-
ally, the analysis was restricted to plane stress because1,2

demonstrated that changes in EM performance due to curva-
ture in the unit cell can be neglected. Therefore, terms EXZ
and EYZ are equal to zero.

The unit cell was modeled in ANSYS-HFSS,9 utilizing
equation surfaces that integrate the strain tensor transforma-
tion Eq. �1� into the surface descriptions. Thus the model
accommodates geometry changes resulting from any arbi-
trary plane-stress loading scenario. Analysis was accom-
plished by running parametric sweeps of EXX, EXY, EYY, EZZS,
and EZZC; where S and C in the subscript refer to the sub-
strate and copper, respectively. Each strain component was
evaluated between �5% and +5%, with the influence of each
strain component evaluated separately.

The model demonstrated that out-of-plane normal strains
�affecting the thickness of the copper and substrate� had a
negligible effect. However, the in-plane strains �EXX, EXY,
and EYY� do produce an effect, as depicted in the Fig. 2.

a�Electronic mail: brandon.arritt@kirtland.af.mil. FIG. 1. �Color online� Unit cell and baseline/unloaded S-Parameter data.
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Analytic expressions were leveraged to better understand
the mechanisms for the strain-dependence. Equation �2�
�Ref. 10� describe the capacitance �C� for a co-planar capaci-
tor and Eq. �3� �Ref. 11� describes the self-inductance �L� of
a thin, conducting strip. The total effective inductance and
capacitance for the unit cell �accounting for addition of par-
allel and/or series capacitors and inductors, as well as inter-
and intracell capacitances� were computed, and then applied
to Eq. �4� �Ref. 12� to determine the cell’s resonant fre-
quency as a function of strain.
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W, s, and H are depicted in Fig. 1. �2 is dielectric constant of
the substrate, hC is thickness of the copper, hS is thickness of
the substrate, and �=2 �Ref. 13�,
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l is length and b is width of the conducting strip.
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where the primes correspond to the strained unit cell and
unprimed corresponds to the baseline/unstrained cell. Equa-
tions �2�–�4� produce a reasonable approximation of the
resonant frequency of the baseline design �predicted value of
9.63 GHz, versus the modeled value of 9.33 GHz; error of

3.2%�. Additionally, these expressions allow accurate predic-
tions of the shift in resonance, when compared to full-wave
simulations in HFSS. Figure 3 depicts the resonant frequency
as a function of applied normal strain, comparing the ana-
lytic predictions to the solutions of the full-wave simulation.
As Fig. 3 shows, the analytic predictions and the simulation
results for EXX and EYY are in strong agreement.

Referring back Fig. 1, one can qualitatively observe that
a tensile strain �extension� in the X-direction causes an in-
crease in both the cell’s self-inductance �increases l in Eq.
�3�� and capacitance �increases W in Eq. �2��, resulting in a
decrease in the resonant frequency. A compressive strain
causes the opposite affects. Conversely, a tensile strain in the
Y-direction causes an increase in the cell’s inductance �again
by increasing l in Eq. �3�� while decreasing the cell’s capaci-
tance �increasing s in Eq. �2��. A shear strain �irrespective of
sign� causes a small increase in the cell’s inductance �in-
creases l� as well as a slight increase in the cell’s capacitance
�decreases s�; resulting in a slight drop in the resonant fre-
quency.

While the trends in Fig. 3 are not strictly linear �accord-
ing to Eqs. �2�–�4��, they can be approximated by linear
trends for the range of deformations pertinent to most me-
chanical systems. The linearity of the trends allows the re-
sultant resonant frequency, for a metamaterial surface sub-
jected to any complex plane-stress loading scenario
�components of EXX, EXY, and EYY�, to be accurately pre-
dicted via superposition of the influence from all of the con-
stituent strain values. Thus, the strain-dependent resonant
frequency for this particular unit cell is described by the
following equation:

f0�GHz� = 9.33 − 5.35EXX − 4.06EYY − 0.4�EXY�

In summary, we report efforts to understand the strain-
dependent behavior of metamaterial structures. Existing ana-
lytic expressions were leveraged to predict and understand
the change in resonant frequency, and validated those predic-
tions against full-wave simulations. The trends are linear
over large ranges of strain, allowing the resonant frequency
of a sample subjected to complex combined loads to be eas-
ily described through a linear superposition of the influence
of each of the independent strain components.

FIG. 2. �Color online� Transmission �S21� of unit cell at differing strain
values.

FIG. 3. �Color online� Resonant frequency as a function of the in-plane
normal strains.
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