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ABSTRACT: This paper presents a comparative numerical analysis of shear and extension actua-
tion mechanisms for the bending vibrations control of sandwich beams. The extension actuation
mechanism denotes the use of through-thickness poled piezoelectric actuators bonded on the surfaces
of the structure such that, when submitted to a through-thickness applied electric potential, these ac-
tuators produce axial stresses or strains. The shear actuation mechanism, in the contrary, is obtained
through an embedded longitudinally poled piezoelectric actuator that, subjected to the same electric
potential, produces shear stresses or strains. Theoretical and finite element models of a sandwich
beam, capable of dealing with both mechanisms, are presented. The models are based on
Bernoulli-Euler assumptions for the surface layers and Timoshenko ones for the core. An optimal
state feedback control law is used to maximize the damping of the first four natural modes of the sand-
wich beam. The influence of important parameters variation, such as actuator thickness and struc-
ture/actuator modulus ratio, on the performance of the control system is analyzed under limited input
voltage and induced beam tip transverse deflection. Results suggest that shear actuators can be more
effective than extension ones for the control of bending vibrations.

INTRODUCTION

P
IEZOELECTRIC materials are widely used for structural
vibration control. Commonly, they are bonded on the

surface of the structure and, when activated by an applied
electric field, their induced membrane deformation controls
the vibrations of the structure. In this case, constant
through-thickness electric fields are imposed to a trans-
versely poled piezoelectric actuator, using the so-called e31

piezoelectric constant. This defines the extension actuation
mechanism which has been widely used on either active con-
trol applications (Chandra and Chopra, 1993; Crawley and
Anderson, 1990) or hybrid active-passive damping treat-
ments (Baz, 1997; Huang, Inman and Austin, 1996;
Tomlinson, 1996; Varadan, Lim and Varadan, 1996).

Recently, developments in composites design have
brought attention to the use of embedded actuators. Although
extension actuators can be embedded to produce torsional
deformation (Bent, Hagood and Rodgers, 1995) using Piezo-
electric Fiber Composites with or without Interdigitated
Electrodes (Hagood et al. 1993), for the control of bending
vibrations, they are not optimal on embedded configurations.
Some recent works presented shear actuators, that are longi-
tudinally poled and, when subjected to transverse electric
field, present shear deformations through the so-called e15

piezoelectric constant. This leads to the less known shear ac-
tuation mechanism. In fact, the shear mode may also be ob-
tained by applying axial electric fields on standard trans-
versely poled piezoelectric actuators. However, putting

conductors on side surfaces is a difficult task and leads to
small axial electric fields for plate-type actuators. So that one
should prefer to apply transverse electric fields on axially
poled actuators. Figure 1 illustrates both actuation mecha-
nisms. Hence, a comparative numerical static analysis using
a commercial finite element code has been performed by Sun
and Zhang (1995), who proposed also a theoretical model for
shear-based actuators (Zhang and Sun, 1996). It was shown
that embedded shear actuators are subjected to lower stresses
than surface-mounted extension actuators, under actuation.

Shear actuation mechanisms were also studied by the pres-
ent authors. A sandwich beam finite element, using the mean
and relative axial displacements of the core skins as main pa-
rameters, was developed and validated (Benjeddou,
Trindade and Ohayon, 1997). A comparison of extension and
shear actuation mechanisms in static and free-vibration anal-
ysis was then carried out using this element discretization
(Benjeddou, Trindade and Ohayon, 2000). It showed that for
bending, shear actuators induce distributed actuation mo-
ments in the structure [Figure 1(b)] unlike extension actua-
tors which induce boundary point forces [Figure 1(a)].
Therefore, it is proposed that the shear actuation mechanism
may lead to less problems of debonding in actuators bound-
aries and to minor dependence of the control performance on
actuators position and length. To provide a better understand-
ing of the energy dissipation characteristics of both mecha-
nisms, another sandwich beam finite element was developed,
using the surface layers mean and relative axial displace-
ments as independent variables (Benjeddou, Trindade and
Ohayon, 1999b). Comparisons between the two finite ele-
ments showed that the second one presents better and faster
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convergence (Benjeddou, Trindade and Ohayon, 1999a).
That is why it was retained for current and future researches.

Using the strain-induced piezoelectric coupling constant
d15, Kim et al. (1997) have recently proposed composite pi-
ezoelectric assemblies for shear-based torsional actuators for
the production of large angular displacement and torque.
They discussed actuator designs and assembly methods, ma-
terial preparation, poling procedures, test results for joint
strengths, and actuator output capabilities. It was pointed out
that commercially available PZT piezoelectrics are opti-
mized for their extension response but not for their shear be-
havior.

This paper aims to present a comparative study of shear
and extension actuation mechanisms for structural bending
vibration control. Theoretical and finite element models to-
gether with an LQR optimal control strategy are presented.
Then, under limited input voltage and induced beam tip
transverse deflection, these are used to study control perfor-
mances of both mechanisms through parameters variations,
such as actuator thickness, structure/actuator modulus ratio
and core filling material properties.

THEORETICAL FORMULATION

Two configurations of a symmetric three-layer sandwich
beam are considered. In the first one, an elastic central core is
sandwiched between two transversely poled piezoelectric
layers [Figure 1(a)], whereas, in the second one, two elastic
layers sandwich a longitudinally poled piezoelectric core
[Figure 1(b)]. For both cases, a transverse electric field is ap-
plied to piezoelectric layers, which have electrodes on top
and bottom skins. However, elastic layers are assumed insu-
lated. All layers are assumed perfectly bonded and in plane
stress state. Top and bottom layers are assumed to behave as
Bernoulli-Euler beams, whereas Timoshenko theory is re-
tained for the central core to allow shear deformation. This is
necessary for the shear actuation mechanism. Local axes are
attached to surface layers at their left end centers, and a
global one is attached to the left end center of the beam, so
that beam centroidal and elastic axes coincide with the
x-axis. The length, width and thickness of the beam are de-
noted by L, b and h, respectively. a, b, c indices indicate top,
bottom and core layers quantities and f index is used for sur-
face layer parameters. The geometrical and kinematics de-
scriptions of the sandwich beam are given in Figure 2.

Mechanical Displacements and Strains

Starting with linear axial displacements for each layer and
enforcing the interface displacement continuities, the fol-
lowing expressions for the surface layers and core axial dis-
placements are obtained

(1)

Where za = (ha + hc)/2, zb = -(hb + hc)/2 and is the first de-
rivative of the transverse deflection w, supposed constant
through-thickness. and are the mean and relative axial
displacements of the surface layers, defined by,

(2)

here, ua and ub are mid-plane displacements of the top and
bottom layers (Figure 2).
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Figure 1. Piezoelectric extension and shear actuation mechanisms.

Figure 2. Geometrical and kinematics descriptions of the sandwich
beam.
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From the above displacements and usual strain-displace-
ment relations, layers strains can be written as

(3)

where

(4)

The mechanical parameter l couples the bending behavior
of the surface layers to that of the core. It is an important vari-
able for parameter studies.

Piezoelectric Plane-Stress Reduced Constitutive
Equations and Electric Potentials

The piezoelectric layers are considered to be linear
orthotropic piezoelectric materials with material symmetry
axes parallel to the beam axes. cjl, eml and �mm (j,l = 1, . . . , 6; m
= 1, 2, 3) denote their elastic, piezoelectric and dielectric
constants.

For extension actuation mechanism, supposing a
plane-stress state (s3 = 0), the three-dimensional linear con-
stitutive equations of an orthotropic piezoelectric layer can
be reduced to (for reduction details, see Benjeddou, Trindade
and Ohayon, 1997)

(5)

where

s1, e1, D3 and E3 are axial stress and strain, and transverse
electric displacement and field. Notations of the IEEE Stan-
dard on Piezoelectricity (1987) are retained here. Notice that
the piezoelectric effect couples only axial strain and trans-
verse electric field, characterizing an extension actuation
mechanism.

For the shear actuation mechanism, it can be shown (for
details see Benjeddou, Trindade and Ohayon, 1997) that, af-
ter coordinate transformations (Bent, Hagood and Rodgers,
1995; Hagood et al., 1993) so that axial and transverse indi-
ces interchange, the three-dimensional linear constitutive
equations of the orthotropic piezoelectric core reduce to,

(6)

where

s5 and e5 are transverse shear stress and strain. Here, the pi-
ezoelectric effect couples shear strain and transverse electric
field, characterizing a shear actuation mechanism.

The combination of the strain-displacement relations ob-
tained from Equations (1)–(4), and the reduced constitutive
Equations (5) or (6), then integration of the electrostatic
equilibrium equation, free of volumic charge density, allow
us to write the following electric potential forms for piezo-
electric surface layers jk (extension actuation mechanism),
and for a piezoelectric core jc (shear actuation mechanism),
respectively

(7)

(8)

where

are the mean and the difference of the prescribed electric po-
tentials on top and bottom skins of the i-th layer.
The last term in Equation (7) represents the quadratic in-
duced potential, often neglected in the literature (Rahmoune
et al., 1998).

Variational Formulation

In order to study the effects of the electromechanical cou-
pling on the dynamics of the sandwich beam, let us start from
the following variational formulation of the problem in terms
of the unknown fields w and

(9)

where dT, dH and dW are the virtual variations of kinetic en-
ergy electromechanical energy and
work done by applied mechanical loads respec-
tively. Here only the actuation problem is considered, that is,

are given. Thus, only and w must be retained as in-
dependent and unknown fields. Note that these fields are
time and space-dependent, whereas their variations
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are only space-dependent. Therefore, the vir-
tual variations in Equation (9) are now detailed in terms of
these three main variables, only. It is important to notice that
the Equation (9) must be complemented by initial conditions.

To provide a better understanding of the extension and
shear actuation mechanisms, surface layers and core contri-
butions to the electromechanical energy
variation are studied separately

(10)

Decomposing these two variations into mechanical and elec-
tromechanical contributions, the surface layers contribution
dHf is written as

(11)

where,

and the core contribution dHc as

(12)

where,

In Equations (11) and (12), Ii, Ai are moment area and area
of the i-th layer. Notice that the induced potential leads to an
augmentation of the surface layers bending stiffness through

From Equation (12), dHcme can be interpreted as a distrib-
uted moment induced by the applied electric dif-
ference of potential to the core layer [Figure 1(b)]. A
transverse shear strain is then produced.

Since, only the bending actuation will be considered here,
surface imposed potentials are of opposite signs

Hence, dHfme, given in Equation (11), re-
duces to,

(13)

Therefore, is interpreted as the virtual work of
boundary point actuation tractions induced by
the applied opposite difference of potentials on the sur-
face layers [Figure 1(a)]. Only relative axial displacement or
strain of the surface layers is produced.

Comparing dHcme in Equation (12) to in Equation
(13), one can notice that the extension actuation mechanism
produces boundary point forces (tractions/compressions),
whereas the shear actuation mechanism induces distributed
moments (Figure 1). Hence, one can expect that the latter
avoids the common singularity problems at the boundaries of
conventional extension actuators.

Variations of the kinetic energy and work due to applied
mechanical loads of the sandwich beam for both mecha-
nisms, written in terms of the main variables, are

(14)

and

(15)

where ri is the mass density of the i-th layer. ni, mi, qi and Ni,
Mi, Qi are distributed and point normal, moment and shear
stress resultants.

For the extension actuation mechanism, dHcme vanishes
since the core is not piezoelectric. Thus, the variational
Equation (9) reduces to

(16)

Similarly, for the shear actuation mechanism, dHfme van-
ishes since the surface layers are elastic. The variational
Equation (9) is then

(17)
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where dHfm is similar to but with

FINITE ELEMENT DISCRETIZATION

The standard finite element method is followed to
discretize the variational problems Equations (16) and (17).
The variables and are interpolated by Lagrange linear
shape functions and w by Hermite cubic ones. For the shear
actuation mechanism, the discretized equations of motion
can be written as,

(18)

where is the vector of de-
grees of freedom and the corresponding velocity and ac-
celeration. M is the mass matrix obtained from the
discretization of dT. Cv is a global viscous damping matrix
accounting for materials damping. Kf and Kc are the surface
layers and core stiffness matrices obtained from the
discretization of (with and dHcm given in
Equations (11) and (12), respectively. and Fm are the
induced electric and mechanical load vectors deduced from
discretization of dHcme in Equation (12) and dW, respec-
tively.

For the extension actuation mechanism, the discretization
of Equation (17) leads to the following discretized equations
of motion

(19)

where is the stiffness matrix of the piezoelectric surface
layers and is the induced electric force vector obtained
from the discretization of Equation (13). All matrices and
vectors of Equations (18) and (19) were integrated analyti-
cally and implemented in MATLAB software. A comprehen-
sive review synthesis on the piezoelectric finite element liter-
ature was given by Benjeddou (2000).

CONTROL STRATEGY

Prior to the presentation of the vibration control strategy,
linear second order matricial Equations (18) and (19), are
written in state-space form, with state vector x, input vector u
and output vector y,

(20)

Aj and Bj (j = f,c) represent system and control matrices of
the extension (f) and shear (c) actuation mechanisms, respec-
tively. Bp represents the perturbations vector and C, the state
output matrix. These have the following expressions,

(21)

(22)

For both configurations (surface-mounted or sandwich), it is
supposed that the control actuation is done by the piezoelec-
tric actuators only. Therefore, Bj and Bp are column vectors
and u is a scalar, representing the imposed voltage
for the extension actuation mechanism and for the
shear one.

The design of the controller is based on LQR full state
feedback, i.e., the control voltage u is proportional to the
state vector x,

(23)

where Kg is a row vector representing the control gain. Sub-
stituting Equation (23) in the uncontrolled state Equations
(20), the resulting controlled ones can be written as

(24)

The system is then controlled by a modification of the ma-
trix Aj, which becomes Aj - Bj Kg. Therefore, the control ac-
tion may stabilize the system by changing its vibration char-
acteristics, such as the damping of some chosen poles, as
explained in the following section.

In order to interpret these results in a structural mechanics
approach, Equations (18) and (19) can be rewritten, taking
into account Equations (21), (22) and (24), as

(25)

for the shear actuation mechanism, and

(26)

for the extension one. The row vectors Kd and Kp are ob-
tained from decomposition of the gain row vector into pro-
portional and derivative components, i.e., Kg = [Kp Kd].
One can notice that the control law supplies a stiffness
matrix and a damping matrix in addi-
tion to the actual structural stiffness matrices and eventual
initial viscous damping matrix Cv. The unified resulting sys-
tem may be represented by the general form

(27)

where for the extension actuation mechanism
and for the shear one. It is worthwhile to com-
pare the original uncontrolled systems (18) and (19) with the
corresponding controlled systems (25) and (26). The LQR
control strategy is implemented using MATLAB Control
Toolbox.
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NUMERICAL RESULTS

This section aims to present a comparative numerical anal-
ysis of shear and extension actuation mechanisms. To this
end, the present finite element model is used to evaluate
bending vibration characteristics of both mechanisms (Fig-
ure 3), under variations of several parameters such as, actua-
tor thickness, structure/actuator modulus ratio, foam stiff-
ness and number of actuators.

The geometrical data of the beam, according to Figure 3,
are L = 200 mm, h = 4 mm, t = 0.05 mm, dc = 30 mm, a = 30
mm. The shear actuator thickness is 2t leading to equivalent
surface-mounted and sandwich configurations. Aluminum
properties are: Young’s modulus Eb = 70.3 GPa, Poisson’s ra-
tio n = 0.35, density rb = 2710 kg m-3. Those of the foam are:
Young’s modulus Ef = 35.3 MPa, shear modulus Gf = 12.7
MPa, density rf = 32 kg m-3; and, for the PZT-5H:

c55 = 23 GPa, density rp = 7500
kg m-3, piezoelectric coupling constants
e15 = 17 C m-2, and dielectric constant

An initial viscous damping of 0.1% was
assumed. The control gain vector Kg is evaluated using LQR
optimal control algorithm. The ponderation matrices Q and
R are considered to be Q = gI and R = I, giving the same con-
trol weight g for all states. One to three actuators are consid-
ered, each of them having same length a and being at position
dck = 15(3k-1) mm (k = 1,2,3). By default, three actuators are
considered.

The numerical analysis, presented here, consists in evalua-
tion of the active damping, for each parameter variation, sup-
plied by both mechanisms for the first four natural bending

modes of the sandwich beam. Therefore, to compare differ-
ent configurations with different parameters, two basic pa-
rameters are fixed: the excitation Fm and the maximum con-
trol voltage The free end of the beam is excited by a
transverse impulse excitation, which produces a maximum
open-loop deflection of w(L) = 5 mm. An iterative algorithm,
shown in Figure 4, was developed to evaluate the control
gain, such that the maximum supplied voltage is

Since the same electric field must be imposed
to both actuation mechanisms, the maximum voltage for the
shear actuators is the double of that of extension ones, i.e.,

Limited to these voltages, the damping of the
two configurations is evaluated.

In the first case, the actuator thickness t is varied in the
range [0.01, 0.5] mm (note that the shear actuator thickness is
2t). As it can be seen in Figure 5, the shear actuation mecha-
nism (SAM) provides much larger damping factors for very
thin actuators. Moreover, one can see that the effectiveness of
the extension actuation mechanism (EAM) is almost inde-
pendent of the thickness of the actuator, whereas, the shear
one is better for a thickness 2t < 0.2 mm.
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Figure 3. Cantilever beam, shear and extension actuation configu-
rations.
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Figure 5. Variation of first four natural bending modes damping with
actuator thickness.



Next, the effect of the structure stiffness on the active
damping is analyzed. To this end, the damping factor is eval-
uated for several structure/actuator Young’s modulus ratios
(Eb/Ep). The results, presented in Figure 6, suggest a superi-
ority of the shear actuation mechanism over the extension
one for softer structures (Eb/Ep < 1). Moreover, shear actua-
tors performance is highly dependent on structure stiffness,
whereas, that of extension ones is not, even if the results sug-
gest an optimal medium stiffness ratio (Eb/Ep = 0.2). It is im-
portant to note that these results are subjected to a variation in
the maximum open-loop deflection amplitude since, as the
stiffness of the beam decreases, this amplitude increases for a
fixed impulse magnitude.

Since the shear actuation mechanism requires the use of an
extra-material (here, a foam) to cover the rest of the core

layer, it is important to investigate the influence of its mate-
rial properties. Figure 7 presents the variation of the damping
factor with the foam modulus multiplying factor fc (Ef = 35.3
fc MPa, Gf = 12.7 fc MPa). It indicates that, generally, the in-
crease of the foam stiffness decreases damping. However, al-
though the output weight g is the same for all modes, each
mode damping presents a different optimal foam stiffness,
e.g., the third mode damping is optimal for a relatively rigid
foam (fc = 3). This means that soft foams may improve the
control of some modes, but not of all of them.

The control performance is also dependent on the number
of actuators. Generally, several actuators will outperform a
single one. Moreover, as the position of actuator defines
which modes can be well controlled, several actuators may
provide damping over larger frequency range. Figure 8 pres-
ents the damping of the first four natural bending modes us-
ing one, two and three actuators. It shows that, as expected,
the increase in the number of actuators increases the damping
factor of all modes. For the extension actuation mechanism,
the variation of modal damping with the number of actuators
is almost linear. However, for the shear actuation mecha-
nism, although the variation of first and fourth modal damp-
ing are also almost linear (approximately +0.2% per actua-
tor), for the second and third modes, the inclusion of a second
actuator does not increase much the damping (+0.1%) com-
pared to that of a third one (+0.8%).

CONCLUSIONS

Theoretical and finite element models of an adaptive sand-
wich beam, capable of dealing with both shear and extension
actuation mechanisms, were presented and used to compare
active damping performances of such mechanisms for the
control of structural bending vibrations of smart beams. It
was shown that, for bending actuation, shear actuators in-
duce distributed moments, unlike extension ones which pro-
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Figure 6. Variation of first four natural bending modes damping with
structure/actuator modulus ratio.

Figure 7. Variation of first four natural bending modes damping with
foam modulus factor fc.

Figure 8. Variation of the first four natural bending modes damping
with number of actuators.



duce boundary point forces, predicting less problems of
debonding and singularities, and better controllability.
Using a LQR optimal control law, the influence of important
geometrical and material properties on the active damping of
the beam was analyzed under maximum applied voltage of

and induced tip transverse deflection of 5
mm. Finite element results show that shear actuators may be
better in producing active damping than the generally used
extension ones. The shear actuation mechanism was shown
to be optimal for a range of thin actuators (2t < 0.2 mm) and
relatively soft structures. It was observed that the choice of
the core filling material is important for the shear actuation
mechanism performance, with advantages for softer materi-
als. The increase of the number of actuators enhances the av-
erage damping over a broader frequency range. Finally, due
to lower stresses in the actuator and better controllability
properties, shear actuators are suitable for the vibration con-
trol of structures with embedded actuators.

The present study has been extended to the inclusion of
embedded shear and/or extension sensors and hybrid piezo-
electric-viscoelastic damping treatments (Trindade,
Benjeddou and Ohayon, 2000).

NOMENCLATURE

Ai = cross-section area of the layer i
A = state-space system matrix
a = piezoelectric actuators length
B = state-space control input matrix

Bp = state-space perturbation vector
b,L = beam width and length, respectively

C = state-space output matrix
Cv = viscous damping matrix

= control supplied damping matrix
cjl,ekl,�kk = elastic, piezoelectric and dielectric con-

stants, respectively
dH = virtual variation of electromechanical en-

ergy
dT = virtual variation of kinetic energy

dW = virtual variation of external loads work
dc = piezoelectric actuators center position

E3,D3 = transverse electrical field and displacement,
respectively

= bending strain of layer i
= axial strain at centerline of layer i (membrane

strain)
ec5 = shear strain of layer c
ei1 = axial strain of layer i
Fm = mechanical loads vector
Fe = induced electrical loads vector

= mean of applied electric potentials on the
layer i

= difference of applied electri c potentials on
the layer i

ji = electric potential in the layer i

= electric potential at the top and bottom skins of the
layer i, respectively

g = LQR state ponderation factor
hi = thickness of layer i
Ii = cross-section moment area of the layer i
K = stiffness matrix

Kd = derivative control gain matrix
Kg = control gain matrix
Kp = proportional control gain matrix

= control supplied stiffness matrix
M = mass matrix

Ni,Mi,Qi = point normal, moment and shear resultants
on layer i, respectively

ni,mi,qi = distributed normal, moment and shear resul-
tants on layer i, respectively

Q = LQR state ponderation matrix
q = degrees of freedom vector
R = LQR input ponderation matrix
ri = mass density of the layer i

s1,s5 = axial and shear stresses, respectively
t = piezoelectric actuators thickness
= mean of the axial displacements of surface

layers centerlines
= displacements and rotation of element node 1
= displacements and rotation of element node 2

ui = axial displacement of the centerline of the
layer i

= difference between the axial displacements of
surface layers centerlines

= axial displacement of the layer i
w = transverse displacement of beam centerline
x = state vector

x,z = axial and transverse coordinates
y = state-space output vector
zk = distance to centerline of surface layer k (k =

a,b)

Subscripts

e,me = state for electrical or mechanical-electrical coupling
contributions (piezoelectric)

f = states for quantities related to sandwich surface lay-
ers

i = states for beam layers a, b or c
j = states for quantities related to extension (f) and shear

(c) actuation mechanisms
k = states for surface layers a or b

m = states for mechanical contributions

Superscripts

* = states for modified material constants
b = states for bending contributions
c = states for core material constants
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f = states for surface layers material constants
m = states for membrane contributions
s = states for shear contributions
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