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Abstract: In the present work, the general and well-known model reduction technique, PGD (Proper
Generalized Decomposition), is used for parametric analysis of thermo-elasticity of FGMs (Func-
tionally Graded Materials). The FGMs have important applications in space technologies, especially
when a part undergoes an extreme thermal environment. In the present work, material gradation is
considered in one, two and three directions, and 3D heat transfer and theory of elasticity equations are
solved to have an accurate temperature field and be able to consider all shear deformations. A para-
metric analysis of FGM materials is especially useful in material design and optimization. In the PGD
technique, the field variables are separated to a set of univariate functions, and the high-dimensional
governing equations reduce to a set of one-dimensional problems. Due to the curse of dimensionality,
solving a high-dimensional parametric problem is considerably more computationally intensive
than solving a set of one-dimensional problems. Therefore, the PGD makes it possible to handle
high-dimensional problems efficiently. In the present work, some sample examples in 4D and 5D
computational spaces are solved, and the results are presented.

Keywords: proper generalized decomposition; thermo-elasticity; a priori model order reduction;
functionally graded material; thick plates

1. Introduction

The new class of composite materials in which the mechanical properties evolve
continuously in space is known as Functionally Graded Materials (FGM). In traditional
composite materials, the mechanical properties evolve sharply at the interface of different
phases, and this leads to high interfacial stresses and in many times the origin of failure. In
contrast, the gradual variation of material properties in FGM materials prevents from such
behaviors [1]. This feature makes the FGM the ideal choice in severe thermal environments
and makes it possible to have a part with the pure metallic phase at one point to satisfy
strength and the pure ceramic phase at another point to resist again high temperature [2].
The design of FGM materials consists of an accurate determination of spatial distribution
of concentration (or volume fraction) of constituents. Here, different models are used to
describe the materials distributions over the plate volume. These models are based on one
or more controlling parameters that determine the materials distributions. After that, a
parametric analysis is needed to assess the effect of these material distribution parameters
on the mechanical performance of the whole component. Therefore, parametric study
is one important step in the optimum design of FGM parts [3]. Recent technologies use
additive manufacturing to produce FGM materials [4], and consequently, the FGM parts
with multi-directional material variations are realistic today.

The bending behavior of thick or moderately thick plates is considerably affected by
shear deformations, especially when complex materials such as laminated composites or
FGM materials are considered. All plate bending theories such as Kirchhoff–Love plate
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theory or high-order plate theories assume a prespecified displacement distribution along
the plate thickness. Such assumptions are good enough in thin plates or in the case of
homogeneous or isotropic materials. However, when thick plates are considered or when
complex materials with non-homogeneous or anisotropic characteristics are considered,
the plate theories (classical and higher order) suffer from low accuracy. Therefore, the most
general approach to consider all strains is using the continuum theory of elasticity [5,6].
The traditional computational techniques such as the finite element method are costly in
3D elasticity analysis of plate structures. It would be the worst in parametric analysis in
which a full 3D analysis should be performed for any values or combinations of material
parameters [3].

In the present work, to overcome the computational cost of a full parametric analysis,
the PGD (Proper Generalized Decomposition) is used. The PGD makes it possible to
overcome the curse of dimensionality and among other things allows solving a high-
dimensional parametric problem and avoiding computational explosion. The basic idea
behind of the PGD is to represent a multivariate function as a tensor product of a set of
functions in lower dimensions. In addition, the PGD proposes a systematic and versatile
procedure to obtain these low-dimensional functions.

The PGD was proposed for the first time to solve transient problems by space–time
decomposition and avoiding the traditional step-by-step time marching. This space–time
decomposition was originally suggested by Ladeveze and his coworkers within the frame-
work of the LATIN strategy to develop a non-incremental transient solver [7,8]. Then, the
first version of the PGD has been proposed in [9,10]. It was only this new version that
makes it possible to deal with multidimensional problems in high-dimensional spaces. The
method has been successfully applied in the first phase of its development for the kinetic
theory modeling of complex fluids considering the high number of configuration space
dimensions [9,10]. This situation particularly appears in the kinetic theory modeling of
molten polymers or in bead–spring–chain modeling of polymer suspension. After that, the
PGD technique was successfully applied in many different fields of science and engineering.
Here, a few applications of PGD are mentioned just for a quick review. For instance, the
PGD strategy was applied in the transient degradation of plastic materials [11]. It also
was used to solve the so-called chemical master equation [12] and the problems involving
Brownian configuration fields [13]. Heat transfer, thermal stress and residual stress prob-
lems in the forming of composite materials are other applications of this technique [14]. It
was also used to study stochastic problems [15,16]. However, one of its most appealing
uses concerns the fast and efficient solution of problems involving plate or shell structures.
In such cases, the 3D field functions are decomposed into a tensor product of functions
defined in the plane directions (say f (x, y)) and functions defined in the normal direction
(say g(z)). Therefore, it make it possible to solve a full 3D problem with a computational
complexity equivalent to a 2D problem [17]. The successful application of such a strategy
was reported in [18] considering composite shell structures. Other applications consider-
ing a high order of interpolation in the thickness direction were reported in [19,20]. The
in-plane and out-of-plane separation strategy were used recently in [21] considering a high-
resolution discretization to capture the effects of ply thicknesses on the laminate composite
stiffness. The application of PGD in thick plate elasticity analysis and the optimum material
distribution design of FGM materials considering multi-directional material gradation was
considered recently in [22]. The PGD was also used in non-regular or complex domains
using NURBS geometry description and multipatch strategy [23,24].

In the current research, the parametric analysis of thermo-elastic thick plates consisting
of FGMs is made based on the continuum theory of thermo-elasticity. Material gradation
is considered in one, two and three directions of physical space. A model with some
controlling parameters is considered to define the material distribution (volume fraction)
of constituents over the physical space. A micromechanical model is used to obtain local
mechanical properties based on the volume fractions. The PGD technique is used for
solving the parametric problem in a high-dimensional computational space by representing
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the field variables as a tensor product of single variate functions in any direction of the
computational space. In fact, this approach avoids repeated simulations to evaluate the
effect of the material parameters. In other words, the material parameters are treated as
extra dimensions of a high-dimensional computational domain.

The domain of application of the present technique is all the engineering and tech-
nology domains taking advantage of metamaterials, in particular in the domain of space
structures, energy, insulation, barrier properties, etc. Our technology is not a new procedure
for making that but rather a procedure that allows exploring the parametric domain in a
very efficient way to find the optimal parameters determining the spatial distribution of
the functionalities.

In the rest of this paper, the problem description as well as strong and weak forms of
governing partial differential equations are presented in the next section. Then, the basic
idea of separated representation is explained. It is followed with a concise description of
PGD in thermo-elastic analysis. Four numerical examples are solved to show the potentials
of PGD in the parametric analysis of FGM materials. An appendix is added to explain how
a separated representation of a known field function in a high-dimensional space can be
obtained. Finally, the paper is summarized in the conclusions.

2. Problem Description and Governing Equations

Consider the steady state and static thermo-elastic deformation occurring in a thick or
moderately thick plate made of FGM material under thermal and mechanical loading. In
such cases, the plate bending theories suffer from a lack of accuracy due to the importance
of shear deformations and the complex behavior of FGM materials. The direct use of
continuum theories is inevitable in such cases to obtain accurate solutions. The governing
equations regarding heat transfer and thermo-elastic deformations and their weak forms
are described in this section.

Figure 1a shows a schematic representation of the physical space, Ωx, coordinate
system and its dimensions. The physical space is a three-dimensional space, Ωx ∈ R3. In
addition to physical space, there is another space that is called here a parametric space, Ωp.
It defines the space of extra parameters that describe the way the constitutive materials are
distributed over the physical space. The number of dimensions of the parametric space,
Ωp, depends on the number of extra parameters that define the parametric study. For
instance, Figure 1b shows a schematic representation of the parametric space considering
two material distribution parameters p1 and p2.

Figure 1. (a) Schematic representation of physical space Ωx, its coordinate system and dimensions;
(b) Schematic representation of parametric space Ωp considering two material parameters p1 and p2.

The union of physical space, Ωx, and parametric space, Ωp, is called computational
space, Ω = Ωx ∪ Ωp, where Ω ∈ RND . The number of dimensions of computational
space, ND, is 3 plus the number of material distribution parameters. Any point of the
computational space, x ∈ Ω, is defined as follows:
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x = (x1, x2, x3, x4, . . . , xND ) ≡ (x, y, z, p1, p2, . . . ) , (1)

where the first three coordinates x1 to x3 correspond to physical coordinates x to z, and
extra coordinates x4 and beyond correspond to material parameters p1 and beyond.

The governing equation regarding conductive heat transfer in a non-homogeneous
and isotropic media considering distributed body heat generation s(x) is as follows:

∂

∂x1
(k

∂T
∂x1

) +
∂

∂x2
(k

∂T
∂x2

) +
∂

∂x3
(k

∂T
∂x3

) + s = 0 , (2)

where T(x) is the temperature field and k(x) is the thermal conductivity field. In fact, these
functions are defined in the computational space, Ω, and x ∈ Ω.

A micromechanical model is needed to make an approximation for the thermal con-
ductivity, k(x), at each point based on the concentration of constitutive materials (volume
fractions) and also the thermal behavior of constituents. More explanations regarding the
micromechanical model are given later.

The static deformations of a 3D continuum media under the body forces b1, b2 and b3
are governed by the static equilibrium equations as follows:

∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3
+ b1 = 0 ,

∂σ21

∂x1
+

∂σ22

∂x2
+

∂σ23

∂x3
+ b2 = 0 ,

∂σ31

∂x1
+

∂σ32

∂x2
+

∂σ33

∂x3
+ b3 = 0 ,

(3)

where symbols σ with different indices refer to stress components. Considering non-
homogeneous and isotropic deformations, the linear elastic stress–strain relation with the
thermal effects is given by:

[σ11, σ22, σ33, σ12, σ23, σ31]
T = C[ε11, ε22, ε33, ε12, ε23, ε31]

T − Bτ , (4)

where symbols ε show strain components and τ = T − T0 is the temperature rise with
respect to stress-free temperature T0. The coefficient matrix, C, and vector, B, are the
elasticity matrix and thermo-elasticity vector, respectively.

Generally, the elasticity matrix, C, and thermo-elasticity vector, B, are functions of
space coordinates and also material distribution parameters x = x1, x2, . . . , xND . The details
regarding basic concepts and derivations of C and B are available in many references such
as [25]. Here, just for completeness, the relations for nonzero components of C and B in
terms of engineering constants are given as follows for isotropic materials:

C11 = C22 = C33 =
(1− ν)E

(1 + ν)(1− 2ν)
,

C44 = C55 = C66 =
E

(1 + ν)
,

C12 = C13 = C23 =
νE

(1 + ν)(1− 2ν)
,

B1 = B2 = B3 =
αE

(1− 2ν)
,

(5)

where the engineering constants of Young modulus, E(x), Poisson ratio, ν(x), and coef-
ficient of thermal expansion, α(x), are functions of x. Proper micromechanical models
are also needed to approximate these values as functions of the volume fraction of the
constituents and also their mechanical properties.



Materials 2023, 16, 1753 5 of 23

The strain–displacement relations for small deformations are as follows:

ε11 =
∂u1

∂x1
, ε22 =

∂u2

∂x2
, ε33 =

∂u3

∂x3
,

ε12 =
1
2
(

∂u2

∂x1
+

∂u1

∂x2
) , ε23 =

1
2
(

∂u3

∂x2
+

∂u2

∂x3
) , ε31 =

1
2
(

∂u1

∂x3
+

∂u3

∂x1
) ,

(6)

where u1, u2 and u3 are displacement components and symbols ε show different strain
components.

Now, the weak forms of governing partial differential equations are needed to develop
the numerical solution. Consider the heat equation given at Equation (2) and apply the
weighted residual method to obtain the integral form and then apply the integration by
parts formula to derive the weak form and the natural (or Neumann) boundary conditions
as follows [25]: ∫

Ωx

(
k

∂T∗

∂x1

∂T
∂x1

+ k
∂T∗

∂x2

∂T
∂x2

+ k
∂T∗

∂x3

∂T
∂x3

)
dΩx =∫

Ωx
T∗sdΩx +

∫
Γt

N

T∗qdΓ ,
(7)

where Ωx is the physical space and q denotes the prespecified external thermal flux acting
on the natural boundary (or Neumann boundary), Γt

N . In this equation, T∗ is the first
variation of the temperature field.

Use the weighted residual method and then perform the integration by parts to derive
the weak forms of elasticity equations, Equation (3). After that, substitute Equations (4) and (6)
to obtain the weak form and natural (or traction) boundary conditions as follows [25]:∫

Ωx

(
∂u∗1
∂x1

(C11
∂u1

∂x1
+ C12

∂u2

∂x2
+ C13

∂u3

∂x3
− B1τ) + C44

∂u∗1
∂x2

(
∂u2

∂x1
+

∂u1

∂x2
)+

C66
∂u∗1
∂x3

(
∂u1

∂x3
+

∂u3

∂x1
)

)
dΩx =

∫
Γe

N

u∗1t1dΓ +
∫

Ωx
u∗1b1dΩx ,

(8)

∫
Ωx

(
C44

∂u∗2
∂x1

(
∂u2

∂x1
+

∂u1

∂x2
) +

∂u∗2
∂x2

(C12
∂u1

∂x1
+ C22

∂u2

∂x2
+ C23

∂u3

∂x3
− B2τ)+

C55
∂u∗2
∂x3

(
∂u3

∂x2
+

∂u2

∂x3
)

)
dΩx =

∫
Γe

N

u∗2t2dΓ +
∫

Ωx
u∗2b2dΩx ,

(9)

∫
Ωx

(
C66

∂u∗3
∂x1

(
∂u1

∂x3
+

∂u3

∂x1
) + C55

∂u∗3
∂x2

(
∂u3

∂x2
+

∂u2

∂x3
)

∂u∗3
∂x3

(C13
∂u1

∂x1
+ C23

∂u2

∂x2
+ C33

∂u3

∂x3
− B3τ)

)
dΩx =

∫
Γe

N

u∗3t3dΓ +
∫

Ωx
u∗3b3dΩx ,

(10)

where u∗ in Equations (8)–(10) is the variation of the displacement fields in different
directions. The surface tractions are shown by t1, t2 and t3 on the natural (or traction)
boundary Γe

N . The symbols C and B with different indices show nonzero components of
matrix C and vector B. Three equations in Equations (8)–(10) have the same structure, and
it is possible to rewrite them in a generic form as follows:

term 7

∑
term 1

∫
Ωx

∂u∗a
∂xb

∂uc

∂xd
Ce f dΩ =

∫
Γe

N

u∗a tadΓ +
∫

Ωx
u∗a badΩx +

∫
Ωx

u∗a BaτdΩx, (11)

where indices a to f are given in Table 1 for each term of the weak form in Equations (8)–(10).
The main advantage of such a compressed form is that it facilitates the computer imple-
mentation and programming of the PGD technique.

In summary, the basic steps of thermo-elasticity analysis are: first, solving the weak
form of heat equation given in Equation (7) and obtaining the temperature field T, and
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second, solving the weak form of elasticity equation given in Equation (11) and obtaining
the displacement fields u1, u2 and u3.

Table 1. The indices to be used in the generic form of elasticity equations given in Equation (11).

Equation Term a b c d e f

Equation (4)

1 1 1 1 2 1 1

2 1 1 2 2 1 2

3 1 1 3 3 1 3

4 1 2 2 1 4 4

5 1 2 1 2 4 4

6 1 3 1 3 6 6

7 1 3 3 1 6 6

Equation (5)

1 2 1 2 1 4 4

2 2 1 1 2 4 4

3 2 2 1 1 1 2

4 2 2 2 2 2 2

5 2 2 3 3 2 3

6 2 3 3 2 5 5

7 2 3 2 3 5 5

Equation (6)

1 3 1 1 3 6 6

2 3 1 3 1 6 6

3 3 2 3 2 5 5

4 3 2 2 3 5 5

5 3 3 1 1 1 3

6 3 3 2 2 2 3

7 3 3 3 3 3 3

3. Field Function Separation

Consider the scalar field function g(x), x ∈ Ω, is defined in the computational space,
RND → R. As explained before, the number of dimensions of the computational space, Ω,
is shown by ND. The function g(x) may be an unknown function such as temperature or
displacements fields. On the other hand, the field g(x) may be a given (or known) function
such as the thermal conductivity k(x) or the elasticity coefficients Ce f (x). Nevertheless,
in general, it is possible to separate (or decompose) the g(x) into a superposition of ten-
sor product of low-dimensional functions. The result is called Separated Approximate
Representation (SAR) of g(x) as follows:

g(x) ≈ gh(x) =
Ng

∑
i=1

g1i(x1)g2i(x2)g3i(x3)g4i(x4) . . . , (12)

where the superscript h in gh(x) indicates that this is an approximated representation
because the number of terms in the summation, Ng, are finite. In Equation (12), the
functions g1i(x1), g2i(x2), . . . are univariate functions in directions x1, x2, . . . , respectively.
Remember that the first three dimensions x1 to x3 refer to physical space x to z and the
dimensions x4 and beyond refer to parametric space p1 and beyond.
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Equation (12) states that the approximated field gh(x) is built up by the superposition
of a set of functions; each of them is constructed by the product of 1D functions in each
direction of computational space. In the PGD literature, these univariate functions are
called modes.

We are seeking to solve the problem numerically. Therefore, the discrete form of
the univariate functions g1i(x1), g2i(x2), . . . is searched. One way is to express them by
some predefined approximation functions (shape functions) and corresponding unknown
coefficients (nodal values) as used in standard 1D finite element approximation as follows:

g(x) =
Ng

∑
i=1

MT
1 (x1)g1i M

T
2 (x2)g2i · · · =

Ng

∑
i=1

ND

∏
j=1

MT
j (xj)g ji, (13)

where superscript h is dropped for simplicity. The vector M j(xj) in Equation (13) contains
the shape functions (or approximation functions) in terms of the j-th coordinate direction
of computational space. The vector g ji contains the nodal values (or coefficients) associated
with the j-th direction. In this equation, the index i shows the summation index and Ng is
the number of terms in the SAR of g(x).

The discretization of the univariate functions as given in Equation (13) is similar to
finite element discretization of one-dimensional functions. The vector M j(xj) is called the
shape functions vector and the vector g ji is the nodal values vector. The simplest way to
construct the shape functions M j(xj) is to use the Lagrange interpolation functions of order
one, which are piece-wise linear one-dimensional shape functions. However, in general,
there are no restrictions, and any order of approximation can be used. Another possibility
is to use a different order of approximations (or even special functions) in each direction to
capture specific characteristics based on the physical behavior of the system.

In general, the generic function g(x) may be an available (or known) function or it
may be an unknown function. If g(x) is a given (or known) function, the vectors g ji can be
calculated via defining a minimization problem and trying to minimize an error function
iteratively. The details of this process are explained in detail in Appendix A.

If the field function g(x) is unknown, e.g., displacement or temperature distributions,
the governing equations must be used to obtain the vectors g ji. The PGD technique
proposes an approach for solving governing equations and obtaining unknown coefficients.
The technique is described in detail in Section 4.

4. Proper Generalized Decomposition

The main steps of thermo-elastic analysis consist of solving heat equation at first to
obtain the temperature field and then solving elasticity equations to obtain displacement
fields. The PGD technique is utilized here to resolve these equations. A more detailed
procedure for the whole process is presented below:

1. Input the material properties of the base materials and the volume fraction distribution
as a function defined on the computational space Ω.

2. Apply a suitable micromechanical model to evaluate thermal conductivity distribu-
tion, k(x), over Ω (will be described later in Equation (30)).

3. Create an SAR for the thermal conductivity (using Appendix A).
4. Create an SAR for body heat generation and surface heat fluxes (using Appendix A).
5. Use the PGD technique to solve the heat equation, Equation (7), and obtain an SAR

for the temperature field (using Section 4.1).
6. Use suitable micromecanical models to calculate the distribution of E, ν and α over Ω

(will be described later in Equations (26), (27) and (31)).
7. Calculate the distribution of all nonzero elements of matrix C and vector B over Ω

(using Equation (5)).
8. Create an SAR for each nonzero element of matrix C and vector B (using Appendix A).
9. Create an SAR for all body forces and surface tractions (using Appendix A).
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10. Use the PGD technique to solve the elasticity equations, Equation (11), and obtain an
SAR for each displacement component (using Section 4.2).

Regarding steps 3, 4, 8 and 9, it must be mentioned that the thermal conductivity,
k, surface heat flux q, elasticity matrix C and thermo-elasticity vector B are obtainable
functions on the computational spaces. Therefore, the construction of SAR for all of these
field functions can be made by using the procedure given in Section 3 and Appendix A.
The following relations express these separated representations:

k(x) =
Nk

∑
i=1

ND

∏
j=1

MT
j (xj)kji, (14)

Ce f (x) =

NCe f

∑
i=1

ND

∏
j=1

MT
j (xj)Ce f ji, (15)

Be(x) =
NBe

∑
i=1

ND

∏
j=1

MT
j (xj)Beji, (16)

q(x) =
Nq

∑
i=1

ND−1

∏
j=1

MT
j (xj)qji, (17)

ta(x) =
Nt

∑
i=1

ND−1

∏
j=1

MT
j (xj)taji, (18)

where N with different indices shows the number of terms in SAR of different fields and
the vectors kji, Ce f ji, . . . are coefficient vectors corresponding to the i-th term in the j-th
coordinate (see Section 3 and Appendix A).

Note that the surface heat flux q(x) and surface traction ta(x) are defined on the
boundary surfaces of the physical space (RND−1). These functions also appeared in surface
integrals on natural boundaries.

Steps 5 and 10 of the foregoing procedure are talking about the PGD solution of
governing equations. The following two subsections explain the PGD technique for solving
both heat and elasticity equations separately.

4.1. PGD Solution of Heat Equation

Here, the PGD technique is used for constructing an SAR for temperature distribution
by solving the weak form given in Equation (7). Consider the temperature field T(x) is
depicted as the successive separated form:

T(x) =
n

∑
i=1

ND

∏
j=1

MT
j (xj)T ji . (19)

Suppose that the first (n− 1) terms in Equation (19) are known, and finding the next
term, n, is seeking. The above equation is rearranged as follows:

T(x) =
n−1

∑
i=1

ND

∏
j=1

MT
j (xj)T ji +

ND

∏
j=1

MT
j (xj)T jn . (20)

To explain it more, assume that the vectors T ji regarding terms i ∈ {1, 2, . . . , n− 1} are
already known and the coefficient vector T jn regarding the last term, n, should be obtained
in such a way that the temperature field in Equation (20) satisfies the weak form. The first
variation of the temperature, T∗, taking into account that the first n− 1 terms are known
and consequently their variations vanish, reads:
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T∗ =
ND

∑
d=1

MT
d (xd)T

∗
dn

ND

∏
j = 1
j 6= d

MT
j (xj)T jn . (21)

Using the chain rule to differentiate from T and T∗ (Equations (20) and (21)) with
respect to xa, we have:

∂T
∂xa

=
n−1

∑
i=1

∂MT
a

∂xa
Tai

ND

∏
j = 1
j 6= a

MT
j T ji +

∂MT
a

∂xa
Tan

ND

∏
j = 1
j 6= a

MT
j T jn , (22)

∂T∗

∂xa
=

∂MT
a

∂xa
T∗an

ND

∏
j = 1
j 6= a

MT
j T jn +

ND

∑
d=1

MT
d T∗dn

∂MT
a

∂xa
Tan

ND

∏
j = 1
j 6= d
j 6= a

MT
j T jn . (23)

By substituting Equations (22) and (23) in Equation (7), a system of equations in
terms of unknown coefficients T jn is obtained. When this system is solved and the modes
regarding each univariate function are obtained, the n-th term of Equation (20) will be
available. The same process could be repeated in the same way to obtain subsequent terms.

The foregoing system of algebraic equations is nonlinear, and an iterative technique
can be utilized to solve it. The simplest and the most widely used approach is the method
of fixed point iterations [26]. In each iteration of this iterative approach, it is assumed that
only one univariate function is unknown, and the rest of them are known. This assumption
linearizes the algebraic system of equations and makes it possible to solve them directly.
After that, in the next iteration, another univariate function is considered unknown and
the process repeats. This process operates iteratively and makes it possible to resolve the
nonlinear system of algebraic equations easily. A stopping criterion is needed in general to
stop the fixed point iterations.

It should be mentioned that after obtaining the n-th term, as explained above, the
process repeats to obtain subsequent terms. In the PGD literature, this process is called
the enriching process. A stopping criterion is also needed in this level to terminate the
enriching process when an accuracy level is achieved.

To develop a computer code for implementing the PGD technique, two nested loops
are needed. The first loop (outer one) is called the enrichment loop, and its goal is to add
more terms to Equation (19) to enrich the solution. In the second loop (inner loop), the
fixed point technique is applied to solve the nonlinear algebraic equations [26].

4.2. PGD Solution of Elasticity Equations

The PGD technique for solving a heat equation was described in Section 4.1. The same
procedure should be followed to obtain the displacement components ua(x) using the weak
form of elasticity equations given in Equation (11). It must be noted that the temperature
rise, τ, in Equation (11) is available in this step because the heat equation is already solved.

Consider a separated form of the displacement ua (see Equation (12)). Without loss of
generality, suppose the terms from i = 1 to i = (n− 1) of the separated form are known
and finding the next term, i = n, is desirable. In fact, this is a step-by-step process, and at
each step, a new term is added to the previously computed ones. The separated form of ua
is as follows:

ua(x) =
n−1

∑
i=1

ND

∏
j=1

MT
j (xj)uaji +

ND

∏
j=1

MT
j (xj)uajn . (24)

To explain this more, suppose that the vectors uaji, i ∈ {1, 2, . . . n − 1} are known
(they were computed before) and the vectors uajn are unknown and must be found using
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governing equations. Perform the first variation on Equation (24) while keeping in mind
that the first summation is known; the result is as follows:

u∗a(x) =
ND

∑
d=1

MT
d (xd)u

∗
adn

ND

∏
j = 1
j 6= d

MT
j (xj)uajn . (25)

Differentiate from Equations (24) and (25) and substitute the results in Equation (11)
to have a system of equations in terms of unknown vectors uajn. The fixed point iterative
method is again used here to solve these equations. As explained before in Section 4.1,
in each iteration of the fixed-point algorithm, one mode is considered as unknown, and
the other ones are considered known. This assumption linearizes the equations, and
a direct system solver can be used. In the next fixed-point iteration, another mode is
considered unknown, and the process repeats. This algorithm continues until satisfying a
stopping criterion.

As explained before, after the n-th term is obtained, the same procedure repeats to
obtain the next term n + 1. Therefore, this step-by-step enrichment process improves the
solution by adding more terms to the summation in Equation (24). A termination criterion
is needed to terminate the enrichment process as soon as a level of accuracy is achieved.

The procedure which is explained above is the standard PGD algorithm. More details
regarding its theoretical background and practical implementation (or developing a computer
code) are available in the literature. For instance, interested readers are referred to [26–28].

5. Numerical Examples

Four sample examples are presented here to show the potentials and applicability of
the PGD method for the parametric analysis of FGM materials. To represent the material
distribution over the physical domain Ωx, a model is needed. For instance, power law,
sigmoid, exponential and polynomial distributions are some well-known examples that
describe how the constitutive materials are distributed over the physical space. Generally,
the material distribution models contain some controlling parameters that describe the
materials distribution. These parameters affect directly the mechanical performance of the
FGM part. In the present section, it is shown by solving some numerical examples that the
PGD technique can overcome the curse of dimensionality and efficiently handle parametric
studies in high-dimensional spaces.

In all of the following examples, an FGM plate consists of a metallic matrix (Monel,
70Ni-30Cu) reinforced by spherical ceramic particles (Zirconia, ZrO2) distributed ran-
domly over the volume. The mechanical/thermal characteristics of each base material are
presented in Table 2 [29].

A micro-mechanical model is needed to evaluate the effective local material properties.
Here, the bulk modulus of elasticity, κ, and shear modulus, µ, are estimated by utilizing
the Mori–Tanaka material model [30,31] as given in the Equations (26) and (27). In all four
numerical examples in the present work, the subscripts m and c are referring to the metallic
phase and ceramic phase, respectively.

κ − κm

κc − κm
=

Vc

1 + (1 + Vc)
κc−κm
κm+ fκ

, (26)

µ− µm

µc − µm
=

Vc

1 + (1 + Vc)
µc−µm
µm+ fµ

, (27)

where Vc is the volume fraction of ceramic phases. The volume fraction of the metallic
phase is Vm = 1−Vc. The functions fκ and fµ are defined as follows:

fκ =
4
3

µm, (28)
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fµ =
µm(9κm + 8µm)

6(κm + 2µm)
. (29)

The local effective thermal conductivity, k, is estimated using the Hatta–Taya model [32]
as follows:

k− km

kc − km
=

Vc

1 + (1 + Vc)
kc−km

3km

. (30)

The effective thermal expansion coefficient α is approximated as follows [33–36]:

α− αm

αc − αm
=

1
κ −

1
κm

1
κc
− 1

κm

. (31)

Table 2. Material properties of metallic (Monel) and ceramic (Zirconia) phases [29].

Monel Zirconia

Bulk modulus (κ) 227.24 125.83 GPa
Shear modulus (µ) 65.55 58.077 GPa

Thermal expansion (α) 15× 10−6 10× 10−6 1/K
Thermal conductivity (k) 25.0 2.09 W/mK

5.1. Example 1

As the first numerical example, a problem with an available analytic solution is selected
to be able to compare the PGD results with the exact solution. The power law is used here
to describe the material distribution over the plate thickness in the x3 direction. The power
law consists of one material distribution parameter and the parametric space, Ωp ∈ R,
is one-dimensional space. Therefore, in this example, the computational space, Ω ∈ R4,
is 4D space, and the PGD technique converts the original 4D problem to a sequence of
low-dimensional (1D) problems.

In the present example, the bottom surface of the plate (x3 = 0) is considered as a
pure metallic phase (Vc = 0) and the upper surface (x3 = Lz) is considered as a pure
ceramic phase (Vc = 1). The material gradation is considered uni-directional through plate
thickness based on the power law as follows:

Vc(x) = x̄3
p = (x̄3)

x4 , (32)

where the parameter p is the material distribution parameter that describes the distribution
of the ceramic phase through the thickness in the x3 direction. In Equation (32), x̄3 is the
non-dimensional coordinate in the x3 direction as defined below:

x̄1 =
x1

Lx
, x̄2 =

x2

Ly
, x̄3 =

x3

Lz
. (33)

Thermal boundary conditions consist of the following prespecified temperature distri-
bution on the upper face of the plate at x̄3 = 1 and zero value at all other faces:

T(x) = T̂ sin(πx̄1) sin(πx̄2), on face x̄3 = 1, (34)

where T̂ is the temperature amplitude. Regarding the boundary conditions of the elasticity
problem, consider that the four sides of the plate are restrained by simple supports. In
detail, we have:

u2 = u3 = 0, on faces x̄1 = 0 and x̄1 = 1,

u1 = u3 = 0, on faces x̄2 = 0 and x̄2 = 1.
(35)
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To solve the reduced 1D problems, the standard finite element technique using linear
two-node elements is utilized. The number of nodes in each direction are selected here as
61, 61, 41, and 16, respectively, in directions x1, x2, x3, and x4. Both thermal and elasticity
problems are solved considering 20 enrichment steps.

The first seven modes regarding the temperature field, T, and the vertical displacement,
u3, are shown in Figures 2 and 3, respectively. The horizontal axes in these figures represent
the coordinates in the computational space, while the vertical axes show the modes. In
other words, vertical axes do not have a clear physical meaning, while their product would
produce the physical quantities such as temperature or displacements.

To present the results and to compare them with the reference solution given in [29], the
non-dimensional temperature, T̄, displacement, ū3, and stress, σ̄11 are defined as follows [29]:

T̄ =
T
T̂

, ū3 =
u3

10−6T̂Lx
, σ̄11 =

σ11

103T̂
. (36)

Figure 2. First 7 modes of temperature field T in directions x1 to x4 for Example 1 for thickness ratio
Lx/Lz = 4.
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Figure 3. First 7 modes of u1, u2 and u3 in directions x1 to x4 for Example 1 for thickness ratio
Lx/Lz = 4.

Considering square plates, Lx = Ly, with two width-to-thickness ratios of Lx/Lz = 4
(thick plate) and Lx/Lz = 10 (moderately thick plate), the non-dimensional quantities T̄,
ū3 and σ̄11 are given in Table 3 for the present PGD solution and also for the reference
analytic solution given in [29]. In this table, the results are given at certain points at the
center of the plate at x̄1 = x̄2 = 0.5 and different x̄3, as indicated in Table 3. The values
in the parentheses show the relative percentage error of the present PGD solution with
respect to the reference closed-form solution. Table 3 shows that the PGD solutions are in
high agreement with the analytical solutions.

Consider the case Lx/Lz = 4. Figure 4 shows the contour plots of non-dimensional
displacement, ū3, and stress, σ̄11, for a point at location x̄1 = x̄2 = 0.5 in terms of the
coordinate x̄3 and material parameter p. Figure 5 shows the graph format of the same data
in Figure 4 to make it possible for the readers to extract the results accurately.
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Table 3. Non-dimensional quantities T̄, ū3 and σ̄11 for Example 1 at location x̄1 = x̄2 = 0.5 and different
x̄3 for present and reference solutions; the values in parentheses show relative percentage error.

x̄3 Lx/Lz = 4 Lx/Lz = 10

Reference [29] Present * Reference [29] Present *

T̄ 0.5 0.2101 0.2105 (0.2) 0.2432 0.2436 (0.2)

ū3

1 3.043 3.049 (0.2) 6.021 6.010 (0.2)
0.5 2.143 2.147 (0.2) 5.635 5.623 (0.2)
0 1.901 1.904 (0.2) 5.522 5.510 (0.2)

σ̄11

1 −1018 −1024 (0.6) −1006 −1014 (0.8)
0.5 −204.8 −205.0 (0.1) 243.0 −243.6 (0.2)
0 −73.53 −73.76 (0.3) −75.78 −75.09 (0.9)

* The values in parentheses show the relative percentage error with respect to the reference solution.

Figure 4. Contour plots of (a) non-dimensional displacement, ū3, and (b) non-dimensional stress,
σ̄11, at location x̄1 = x̄2 = 0.5 and in terms of x̄3 and x4 for Example 1 for thickness ratio Lx/Lz = 4.

Figure 5. Graphs of non-dimensional quantities ū3 and σ̄11, at location, x̄1 = x̄2 = 0.5, for different
x̄3 in terms of material parameter x4 for Example 1 for thickness ratio Lx/Lz = 4.

5.2. Example 2

In the this sample problem, an extension of the first example in Section 5.1 is considered.
Here, the thermal boundary condition of the upper face is changed to the heat flux boundary
condition as described in the following equation:

q = 1000, on face x̄3 = 1 . (37)

All other boundary conditions regarding the structural and thermal problems are
identical with the previous example in Section 5.1. The same material distribution model is
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also used. The problem is solved using PGD with all conditions similar to Example 1. For
instance, the number of nodes for each univariate function and the number of enrichment
steps are exactly the same as explained in Section 5.1.

Figure 6 shows the contour plots of non-dimensional displacement, ū3, and stress σ̄11
for the points x̄1 = x̄2 = 0.5 and x̄3 ∈ [0, 1] in terms of material parameter, p. The color
legend of this figure shows the numeric values, but to make it easier for readers to extract
accurate numerical values, some graphs are also added in Figure 7. The graphs of T̄, ū3
and σ̄11 in terms of p are given in Figure 7 at some specific x̄3 values while x̄1 = x̄2 = 0.5.

Figure 6. Contour plots of (a) non-dimensional displacement, ū3, and (b) non-dimensional stress,
σ̄11, at location, x̄1 = x̄2 = 0.5, in terms of x̄3 and x4 for Example 2 for thickness ratio Lx/Lz = 4.

Figure 7. Graphs of non-dimensional quantities T̄, ū3 and σ̄11, at location, x̄1 = x̄2 = 0.5, for different
x̄3 in terms of material parameter x4 for Example 2 for thickness ratio Lx/Lz = 4.

5.3. Example 3

In the present example, more complex boundary conditions and also material distribu-
tions are considered. The aim of this example is to show the potential of the PGD technique
when dealing with such complexities. The boundary conditions regarding the elasticity
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problem on the four peripheral surfaces of the domain are clamp-free-symmetric-free,
which are defined in detail as follows:

u1 = u2 = u3 = 0, on face x̄1 = 0 ,

u1 = 0, on face x̄1 = 1 .
(38)

Note that Equation (38) shows the essential (or Dirichlet) boundary conditions related to
the elasticity equations. Zero traction is considered on the natural (or traction) boundaries.

Regarding the thermal boundary conditions, zero temperature is enforced on the two
faces x̄1 = 0 and x̄1 = 1 as Dirichlet boundaries. A constant heat flux of q = 1000 is applied
on upper face of the domain where x̄3 = 0. All the other faces are considered insulated.

Three different material distribution models are considered in the present example. In
these models, the material gradation is considered in one, two and three directions. In each
distribution model, a material parameter, p, controls the materials distribution. To do this,
the following common formula is used to define the ceramic volume fraction, Vc:

Vc(x) =
−2p + 2

√
p2 + r(1− 2p)

1− 2p
+ r, (39)

where parameters p and r are two controlling parameters that manage the spatial distribu-
tion of the ceramic volume fraction, Vc, over the physical space. Figure 8 shows the volume
fraction, Vc, as a function of two parameters p and r. In the present example, the parameter
p = x4 ∈ [0, 1] is considered as the material distribution parameter that takes part in the
parametric study. Meanwhile, the parameter r is considered as a known function of the
physical space. In other words, the parameter r controls the trend of gradation of material
in the physical space. In the present example, three different trends for material distri-
bution are considered. For the first case, the material gradation is considered only in the
thickness direction (one-directional variation). In the second case, the material gradation is
considered plane wise (two-directional variation). Finally, the third case consists of material
gradation in all directions (three-directional variation). A schematic presentation of the
material distribution for one, two and three-directional material variations are shown in
Figure 9.

In the one-directional material variation, the ceramic volume fraction evolves just in
the thickness direction. Therefore, the parameter r is a function of x̄3. Consider the pure
metallic phase at the lower face (Vc = 0 at x̄3 = 0) and the pure ceramic phase at the top
face (Vc = 1 at x̄3 = 1); then, the parameter r(x) is defined as follows:

r(x) = x̄3. (40)

For the case of two-directional material variation, assume that the material distribution
is completed in two directions x1 and x2. In this case, assume four lateral faces are made of
pure metal, and the center line of the plate is pure ceramic. In such a case, the parameter
r(x) is as follows:

r(x) = 16x̄1 x̄2(1− x̄1)(1− x̄2). (41)

In the third case, assume the material evolves in all three directions x1, x2 and x3.
Consider all four lateral sides of the plate and also the bottom face consist of pure metal.
However, the center point at the upper face consists of pure ceramic. The parameter r(x) is
as follows:

r(x) = 16x̄1 x̄2 x̄3(1− x̄1)(1− x̄2). (42)

All three cases are solved using the proposed PGD technique in 4D computational
space (x1, x2, x3, x4), where x4 = p. The number nodes in each direction is selected here as
61, 61, 41 and 21, respectively, in directions x1 to x4. Both thermal and elasticity problems
are solved considering 30 enrichment steps.
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Figure 8. Ceramic volume fraction as function of controlling parameters p and r related to Equation (39).

Figure 9. Schematic representation of ceramic volume fraction distribution: (a) one-directional
variation; (b) two-directional variation; (c) three-directional variation.

Figure 10 provides the graphs of non-dimensional temperature, T̄, displacement, ū3,
and stress, σ̄11, as functions of material parameter, p, at some specific points on the center
line of the plate for the first case of material variation. Figures 11 and 12 provide the same
graphs considering the second and third case of material variation, respectively.

Figure 10. Graphs of T̄, ū3 and σ̄11 as functions of material parameter x4 at location, x̄1 = x̄2 = 0.5,
and different x̄3 for Example 3 for one-directional material variation.
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Figure 11. Graphs of T̄, ū3 and σ̄11 as functions of material parameter x4 at location, x̄1 = x̄2 = 0.5,
and different x̄3 for Example 3 for two-directional material variation.

Figure 12. Graphs of T̄, ū3 and σ̄11 as functions of material parameter x4 at location x̄1 = x̄2 = 0.5,
and different x̄3 for Example 3 for three-directional material variation.

5.4. Example 4

In the last example, a layered FGM composite plate with three layers is considered.
A schematic of the composite layup is shown in Figure 13. As shown in this figure, the
lower layer is pure metallic, the top layer is pure ceramic and the middle layer is the
transition zone or FGM layer. The thicknesses of the metallic, ceramic and FGM layers are
Lm, Lc and LFGM, respectively.

Figure 13. Schematic representation of a layered composite FGM plate considered for Example 4.

A parametric analysis is conducted here consisting two material parameters. The first
material parameter, p1 = x4, describes the thickness of the bottom and top layers. The
thicknesses of these two layers are considered the same and are given as Lm = Lc = p1Lz.
While the total plate thickness, Lz, does not change, the thickness of the FGM layer is
LFGM = (1− 2p1)Lz.

The second material parameter, p2 = x5, represents the distribution of constituents in
the FGM layer. Here, the distribution of ceramic volume fraction, Vc, through the middle
layer is considered as given in Equation (39). The controlling parameter, p, in Equation (39)
is selected as p = p2 and the function r is defined as follows:

r(x) =
x̄3 − p1

1− 2p1
, p1 ≤ x̄3 ≤ (1− p1) . (43)
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The physical domain is selected as a square plate, Lx = Ly, with a thickness ratio of
Lx/Lz = 4. The range of material parameters is selected as 0.04 ≤ p1 ≤ 0.3 and 0 ≤ p2 ≤ 1.
To have a better understanding of the above-mentioned material distribution, see Figure 14.
In this figure, the isovalue surfaces of ceramic volume fraction, Vc, are shown in terms of
p1, p2 and x̄3.

In the present example, the parametric space, Ωp ∈ R2, is a two-dimensional space.
Therefore, the computational space, Ω ∈ R5, is a five-dimensional space. Solving such a
problem using classical mesh based methods is computationally intensive because a full
3D thermo-elastic analysis must be repeated for any combinations of material parameters
p1 and p2. Whereas, using the PGD technique, the original 5D problem reduces to a set of
1D problems. This reduction of the problem complexity implies significant computational
cost reduction.

All boundary conditions are the same as Example 2 in Section 5.2. Four peripheral
faces are simply supported as described in Equation (38). The top face is under a uniform
heat flux as given in Equation (37), while all other faces are maintained at zero temperature.

The number of nodes in each direction is selected here as 61, 61, 51, 14 and 16, re-
spectively, in the directions x1, x2, x3, p1 and p2. Both thermal and elasticity problems are
solved considering 60 enrichment steps.

To represent the results, the contours of non-dimensional field variables at location
(x̄1, x̄2, x̄3) = (0.5, 0.5, 1) are plotted in Figure 15 in terms of material parameters p1 and p2.
The temperature, displacement and stress fields are normalized using Equation (36).

Figure 14. Isovalue surfaces of ceramic volume fraction, Vc, through the thickness, x̄3, as function of
material parameters x4 and x5 for Example 4.

Figure 15. Contours of non-dimensional quantities (a) T̄, (b) ū3 and (c) σ̄11 as function of material
parameters x4 and x5 at the location (x̄1, x̄2, x̄3) = (0.5, 0.5, 1) for Example 4.



Materials 2023, 16, 1753 20 of 23

6. Conclusions

In the present work, the PGD was used as an a priori model order reduction technique
to solve a high-dimensional parametric problem by reducing it to a set of one-dimensional
problems. This approach avoids repeated simulations to perform parametric analysis.
Therefore, this technique overcomes the curse of dimensionality and makes it possible to
deal with problems consisting of many parameters, whereas traditional grid-based tech-
niques fail due to computational costs. The thermo-elastic analysis of FGM thick plates was
considered here because of the high importance of such smart materials in industrial appli-
cations and also the high importance of parametric analysis in the accurate (or optimum)
design of such materials. In addition, multi-directional material properties variation was
considered here to address very recent technologies regarding the additive manufacturing
of FGM materials. Accuracy and potential applications of the PGD technique were shown
via solving some sample examples and comparing with analytical solutions when available.
One proposal for extending the present work is to consider the curved FGM panels and to
use the geometry mapping technique to transfer the governing equations into a regular
computational domain and try to solve the problem in the computational domain.
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Appendix A. Separated Representation of a Known Function

Assume g(x) is a known multivariate function on the space Ω ∈ RND . The objective is
to decompose (or to separate) the function g(x) to a set of univariate functions as follows:

g(x) =
Ng

∑
i=1

ND

∏
j=1

gji(xj) (A1)

Each function gji(xj) can be approximated using a set of approximation functions,
M j(xj), and corresponding coefficients, g ji, as follows:

g(x) =
Ng

∑
i=1

ND

∏
j=1

MT
j (xj)g ji (A2)

Without loss of generality, consider that the terms i = 1 to i = (n− 1) were calculated
before and we are searching for the next term i = n. In this case, the residual (or error) of
the terms i = 1, 2, . . . , (n− 1) is:

rn−1(x) = g(x)−
n−1

∑
i=1

ND

∏
j=1

MT
j (xj)g ji (A3)

Now, the next term, n, should to be added to the existing n− 1 terms to eliminate (or
reduce) this error. In other words, the term i = n must be found in such a way that we
approximate the error function rn−1(x). Therefore, we have:
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ND

∏
j=1

MT
j (xj)g jn ≈ rn−1(x) (A4)

A least square sense can be followed to calculate the coefficients vector g jn by mini-
mizing the following error norm:

‖e‖ =
∫

Ω

(
ND

∏
j=1

MT
j (xj)g jn − rn−1(x)

)2

dΩ (A5)

The first derivatives of the error norm ‖e‖ with respect to g jn must be vanished to
minimize ‖e‖. In other words:

∂‖e‖
∂gα

dn
= 0, d = 1, 2, ..., ND, α = 1, 2, ..., m (A6)

where gα
dn is the α-th element of the unknown vector gdn. m is the number of approximation

functions in Md(xd). Expand Equation (A6) as follows:

∂‖e‖
∂gα

jn
= 0⇒

∫
Ω

Mα
d(MT

d Gdn)
ND

∏
j = 1
j 6= d

(MT
j g jn)

2dΩ =

∫
Ω

Mα
d

ND

∏
j = 1
j 6= d

(MT
j g jn)r

n−1(x)dΩ

(A7)

where Mα
d is the α-th member of the vector Md or α-th approximation function in terms of

xd. Separate the integrals in Equation (A7) and rearrange it as follows:

(∫
Mα

d Mddxd

)T
gdn =

∫
Mα

d dxd ∏ND

j = 1
j 6= d

∫
MT

j g jndxj

∏ND

j = 1
j 6= d

∫
(MT

j g jn)
2dxj

(A8)

Remember that d = 1, 2, ..., ND and α = 1, 2, ..., m. Therefore, Equation (A8) consists
of a set of nonlinear algebraic equations for the unknown coefficients gα

dn. This system of
equations can be solved using the fixed-point iterative approach. To do this, assume that
the coefficients are unknown in one direction, while they are known in other directions.
This linearizes the system of equations and makes it possible to use a direct solver to find
the unknown coefficients. Next, assume another direction as the unknown and repeat the
process until satisfying a convergence criterion.

The above algorithm gives the n-th term of the separated representation in
Equation (A2). The algorithm can be repeated, obtaining subsequent terms one by one.
This process is known as the enrichment process. A stopping criterion is necessary to stop
the enrichment process and limit the number of terms.

Detailed explanations and other algorithms for obtaining the separated representation
of a known multivariate function are proposed in the literature, e.g., [23,26].
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