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e nonlinear vibration of a travelling beam subjected to principal parametric resonance in presence of internal resonance is
investigated.
e beam velocity is assumed to be comprised of a constantmean value alongwith a harmonically varying component.

e stretching of neutral axis introduces geometric cubic nonlinearity in the equation ofmotion of the beam.
e natural frequency
of secondmode is approximately three times that of �rstmode; a three-to-one internal resonance is possible.
emethod ofmultiple
scales (MMS) is directly applied to the governing nonlinear equations and the associated boundary conditions.
enonlinear steady
state response along with the stability and bifurcation of the beam is investigated. 
e system exhibits pitchfork, Hopf, and saddle
node bifurcations under di�erent control parameters. 
e dynamic solutions in the periodic, quasiperiodic, and chaotic forms are
captured with the help of time history, phase portraits, and Poincare maps showing the inuence of internal resonance.

1. Introduction

Band saws, �bre textiles, magnetic tapes, paper sheets, aerial
tramways, pipes transporting uids, thread lines, and belts
are some technological examples classi�ed as axially moving
continua. Analytical models for axially moving systems have
been extensively used in the last few decades. 
e vast
literature on axially moving continua vibration has been
reviewed by Wickert and Mote Jr. [1] up to 1988. While a
linear analysis provides natural frequencies, mode shapes,
and critical speeds, its validity regarding the response of
the system diminishes as the vibration amplitude becomes
su�ciently large or as the critical speed is approached [2].
In these cases one must resort to a nonlinear analysis.
Wickert and Mote Jr. [3, 4] studied the transverse vibration
of axially moving strings and beams using an eigenfunction
method.
ey also studied the dynamic response of an axially
moving string loaded suspendedmass.Wickert [5] presented
a detailed study of the nonlinear vibrations and bifurcations
of moving beams using the Krylov-Bogoliubov-Mitropolsky
asymptotic method. Chakraborty et al. [6, 7] investigated

both free and forced vibration of the nonlinear traveling beam
using complex normal modes.


ere are papers devoted to the analysis of the dynamic
behavior of traveling systems with time-dependent axial
velocity or with time-dependent axial tension force. Öz and
Pakdemirli [8] investigated principal parametric resonances
and combination resonances of sum and di�erence types for
any two modes for an axially accelerating beam using the
method of multiple scales. 
ey found that for combination
resonances, instabilities occurred only for additive type but
not for di�erence type. Öz et al. [9] extended the work to
nonlinear transverse vibration and stability analysis. Com-
prehensive review of nonlinear modal interactions is there
in [10–12]. Using method of multiple scales Riedel and Tan
[13] studied the coupled and forced behavior of an axially
moving strip with internal resonance. Özkaya et al. [14]
investigated nonlinear transverse vibrations and 3 : 1 internal
resonances of a beam with multiple supports and plotted
frequency response curves for di�erent support numbers.
Bagdatli et al. [15] extended this work to �nd existence of
internal resonance cases between di�erent modes. Chin and
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Nayfeh [16] investigated three-to-one internal resonances in
parametrically excited hinged-clamped beams. 
ey studied
principal parametric resonance of the �rst or the second
mode and a combination parametric resonance of additive
type of these modes. Panda and Kar [17, 18] investigated
the principal parametric resonance of �rst mode, second
mode and combination parametric resonance in presence
of 3 : 1 internal resonance of a pipe conveying pulsating
uid with pinned-pinned end conditions. 
ey studied the
equilibria of these modulated equations and determined
their stability, and then they did extensive dynamic study
at typical initial conditions. Sze et al. [19] used incremen-
tal harmonic balance method for nonlinear vibration of
axially moving beams. 
ey investigated the fundamental,
superharmonic, and subharmonic resonance in presence
of internal resonance. Huang et al. [20] used the same
method to analyse the stability and bifurcation analysis of a
traveling beam tuned to 3 : 1 internal resonancewith attention
to fundamental and subharmonic resonances. Chen et al.
[21] investigated dynamic stability of an axially accelerating
viscoelastic beam undergoing parametric resonance. Ding
et al. [22, 23] used Galerkin methods for �nding natural
frequencies of high-speed axially moving beams with hybrid
boundary conditions. Marynowski and Kapitaniak [24–26]
introduced several internal dissipation mechanisms like
Kelvin-voigt and Zener in the modeling traveling continua.
Pakdemirli and Öz [27] studied the transverse vibration of
simply supported axially moving Euler-Bernoulli beam for
in�nite mode analysis and truncation to resonant modes.
Ponomareva and van Horssen [28] investigated transversal
vibrations of axially travelling continua based on a string
model at the low frequencies and a tensioned beam model
at the higher frequencies. Recently, a systematic research
on travelling beam was pursued by Ghayesh et al. [29–33]
involving nonlinear dynamic phenomenon of a variety of
system models. 
e forced dynamics of an axially moving
viscoelastic beam was investigated in [29]. 
e nonlinear
vibrations and stability of an axially moving beam subjected
to a distributed harmonic excitation load were investigated
in [30]. In addition, the response of the system tuned
to a three-to-one internal resonance was also examined.
Subcritical dynamics of the system was examined [31] via
the pseudoarclength continuation technique, while the global
dynamics was investigated using direct time integration.


e present work aims to investigate the problem of a
simply supported traveling beamunder parametric excitation
due to the harmonic pulsation in the travelling velocity. For
a certain range of mean velocity, the natural frequency of
the second mode is approximately three times that of the
�rst mode. 
is relationship between natural frequencies of
�rst two modes of a system having cubic nonlinearity results
in a condition of three-to-one autoparametric or internal
resonance leading to energy exchange between the two
involved modes through nonlinear modal interaction. In the
present work, the principal parametric resonance of the �rst
mode is considered. 
e system behavior shows pitchfork,
Hopf, and saddle node bifurcations in steady state analysis.
Decreasing internal frequency detuning parameter a�ects the
amplitude of directly excited �rst mode and the number of

�(t)w
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Figure 1: Schematic diagram of an axially traveling simply sup-
ported beam with variable velocity.

Hopf bifurcation points and shi�s the occurrence of jump
phenomena. Due to the inuence of internal resonance, the
dynamic behavior of the system exhibits periodic, quasiperi-
odic, and chaotic responses. 
e results are presented in the
form of time histories, phase plane portraits, fast Fourier
transforms (FFTs), and Poincare maps.

2. Formulation of the Problem

For the present work, a uniform horizontal beam simply
supported at both ends and travelling with a harmonically
variable velocity (Figure 1) is considered. 
e assumptions
taken here are (1) the motion of the beam is planar, (2) the
uniform cross sections remain plane during the motion and
the beam behaves like an Euler-Bernoulli beam in transverse
vibration, and (3) the type of nonlinearity is geometric
due to the midplane stretching e�ect of the beam. 
e
nondimensional equation of transverse motion of the beam
including the nonlinearity due to midplane stretching [5, 9]
and viscous damping [34], along with viscoelastic damping
[35], is given by

�̈ + 2V�̇� + V̇�� + (V2 − 1)��� + V
2
������

+ 2���̇���� + 2�	�̇ = 12V2���� ∫
1

0
��2��. (1)


e nondimensional scheme used here is

� = �∗ , � = �∗√ ���2 , � = �∗ ,

V = V
∗

√�/��, 2�� = �∗2 ( ���)1/2,

2�	 = �2√��� , V� = √��� , V� = √ ���2 ,

(2)

where the variables with asterisk denote dimensional ones.
In the EOM, dot denotes derivatives with respect to time
(�) and the prime denotes derivatives with respect to spatial
derivative (�). � is mass per unit length, � is density, �
is cross-sectional area,  is length, V� is nondimensional
exural sti�ness, and V� is nondimensional longitudinal
sti�ness of beam. �∗ is the coe�cient of internal dissipation
of the beam material, which is assumed to be Kelvin-Voigt
type viscoelastic, and � is the external damping factor. � is
nondimensional material damping, and 	 is nondimensional
viscous damping. Reordering the transverse displacement
with the relation, � = √��#, where � < 1, and putting it
in the equation of motion (1), the system is converted into a
weakly nonlinear one [9].
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Figure 2: Trivial state boundary for di�erent damping parameters.
Values of the nondimensional damping parameters (	, �), indicated
on the curves.

For convenience, the superscript “#” is removed, and the
weakly nonlinear equation of motion becomes

�̈ + 2V�̇� + V̇�� + (V2 − 1)��� + V
2
������

+ 2���̇���� + 2�	�̇ = 12�V2���� ∫10 ��2��,
(3)


e variable velocity of the beam is

V = V0 + �V1 sinΩ�, (4)

where V0 is mean velocity, �V1 is the amplitude, and Ω is
the frequency of the harmonically varying component. 
is
harmonic component of velocity, which is the parametric
excitation term in the equation of motion, gives various
parametric responses of the system. Putting (4) in (3), we get
the equation of transverse motion

2���̇���� + V
2
������ + [V20 + 2�V0V1 sinΩ� − 1]���

+ �V1Ω�� cosΩ� + 2 (V0 + �V1 sinΩ�) �̇�
+ 2�	�̇ + �̈ = 12�V2���� ∫10 ��2��

(5)

with boundary conditions

� (0, �) = � (1, �) = ��� (0, �) = ��� (1, �) = 0, (6)


e linear natural frequencies for various modes vary with
variation in the mean velocity of beam. For a consider-
able range of mean velocity, the �rst two natural frequen-
cies become commensurable, leading to modal interactions
through internal resonance. 
e combination of internal
resonancewith di�erent kinds of parametric resonances gives
the system response in the form of directly excited mode
and indirectly excited one because of the energy exchange
between them [16–18].

3. Method of Analysis

An approximate solution to this weakly nonlinear distributed
parameter system in the form of a �rst order uniform
expansion by using the direct perturbation technique of
method of multiple scales (MMS) [14–18] is aimed. 
e time
scale used here is !� = ���, " = 0, 1, 2, 3 . . ., and the time
derivatives are

��� = #0 + �#1 + ⋅ ⋅ ⋅ , �2��2 = #20 + 2�#0#1 + ⋅ ⋅ ⋅ ,
#� = %%!� , " = 0, 1, 2, 3 . . . . (7)

Assuming an expansion of the form

� (�, �, �) = �0 (�, !0, !1) + ��1 (�, !0, !1) + ⋅ ⋅ ⋅ . (8)

Substituting (7) and (8) into (5) and (6) and equating
coe�cients of like powers of � on both sides, we get

&(�0) : #20�0 + 2V0#0��0 + (V20 − 1)���0 + V
2
������0 = 0,

�0 (0, �) = �0 (1, �) = ���0 (0, �) = ���0 (1, �) = 0, (9)

&(�1) : #20�1 + 2V0#0��1 + V
2
������1 + (V20 − 1)���1

= −2V0#1��0 − 2V1 sinΩ�#0��0 − 2#0#1�0
− 2�#0�����0 − 2	#0�0 − 2V0V1 sinΩ����0
− V1Ω cosΩ���0 + 12V2����0 ∫

1

0
��20 �� = 0,

�1 (0, �) = �1 (1, �) = ���1 (0, �) = ���1 (1, �) = 0.

(10)


e solution of (9) may be written as

�0 (!0, !1, �) = ∞∑
�=1

*� (�) �� (!1) -�	�
0 + 44, (11)

where *� is the mode shapes, 5� is the natural frequencies,
and 44 is complex conjugate. 
e mode shapes are calculated
previously [8] as

*� (�) = �1� {-��1�� − (724� − 721�) (-��3� − -��1�)
(724� − 722�) (-��3� − -��2�) -��2��

− (724� − 721�) (-��2� − -��1�)
(724� − 723�) (-��2� − -��3�) -��3��

+ [−1 + (724� − 721�) (-��3� − -��1�)
(724� − 722�) (-��3� − -��2�)

+(724� − 721�) (-��2� − -��1�)
(724� − 723�) (-��2� − -��3�) -��4��]} ,

(12)
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Figure 3: Frequency response curves as obtained by continuation algorithm for the �rst and second modes when the �rst mode is
parametrically excited for the system parameters, Chin and Nayfeh [16].
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Figure 4: Frequency response curves for the (a) �rst mode and (b) second mode when the �rst mode is parametrically excited for the system
parameters 	 = 0.1, � = 0, V1 = 10, V� = 40, and ?1 = 92.39.

where 7in are eigenvalues which satisfy the dispersive relation
(13) and support condition (14) [8]:

V
2
�74in − (V20 − 1) 72in − 2V05�7in − 52� = 0,

A = 1, 2, 3, 4, (13)

(-�(�1�+�2�) + -�(�3�+�4�)) (721� − 722�) (723� − 724�)
+ (-�(�1�+�3�) + -�(�2�+�4�)) (722� − 724�)

× (723� − 721�) + (-�(�2�+�3�) + -�(�1�+�4�))
× (721� − 724�) (722� − 723�) = 0.

(14)

For a �xed velocity, the linear natural frequencies of the
travelling beam vary with exural sti�ness (V�). For speci�c
values of exural sti�ness, the lower natural frequencies can
be commensurable for a range of mean travelling velocity of
the beam. 
ese phenomena result in internal resonance in
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Figure 5: Frequency response curves for the (a) �rst mode and (b) second mode when the �rst mode is parametrically excited for the system
parameters 	 = 0.1, � = 0, V1 = 15, V� = 40, and ?1 = 92.39.
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Figure 6: Frequency response curves for the (a) �rst mode and (b) second mode when the �rst mode is parametrically excited for the system
parameters � = 0.001, 	 = 0, V1 = 10, V� = 40, and?1 = 92.39.

the system and nonlinear interaction between the involved
lower modes. In the present investigation, a three-to-one
internal resonance (52 ≈ 351) is considered for a range of
mean velocity of the beam. Also it is assumed that there is
no other commensurable frequency relationship with higher
modes. 
e case of principal parametric resonance of the
�rst mode (Ω ≈ 251) for subcritical ow velocities in
presence of 3 : 1 internal resonance is analyzed in the present
investigation. 
ese �rst two modes are not in internal
resonancewith any highermodes, so the highermodes except
the �rst two will decay with time due to the presence of
damping and Coriolis terms present in the equation. Hence,

the �rst two modes will contribute to the long term system
response [10, 11]. Consequently, we replace (11) with

�0 (!0, !1, �) = �1 (!1) *1 (�) -�	1
0
+ �2 (!1) *2 (�) -�	2
0 + 44. (15)

Now, we write the frequency relations for the internal reso-
nance and principal parametric resonance as

52 = 351 + �?1, Ω = 251 + �?2, (16)

where ?1 and ?2 are detuning parameters. It is worthy to
note that Ω = 52 − 51 + �(?2 − ?1), a combination
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Figure 7: E�ect of internal detuning parameter on the frequency response of (a) �rst mode and (b) second mode for system parameters	 = 0.1, � = 0, V1 = 10, V� = 40, (a, b) ?1 = 20.320, and (c, d) ?1 = −27.680.

parametric resonance of the di�erence type, is also activated
simultaneously. Substituting (15) and (16) into (10), we get

#20�1 + 2V0#0��1 + (V20 − 1)���1 + V
2
������1

= Γ1-�	1
0 + Γ2-�(	1
0+1
1) + Γ3-�	1
0
+ Γ4-�(	1
0+1
1−2
1) + Γ5-�	2
0
+ Γ6-�(	2
0−1
1) + Γ7-�(	2
0+2
1−1
1) + 44 + NST,

(17)

where the terms Γ� are de�ned in the Appendix section.
NST stands for terms that do not produce secular or small
divisor terms. As the homogeneous part of (17) with its
associated boundary conditions has a nontrivial solution, the
corresponding nonhomogeneous problemhas a solution only
if a solvability condition is satis�ed [36, 37]. 
is requires the
right-hand side of (17) to be orthogonal to every solution
of the adjoint homogeneous problem, which leads to the

complex variable modulation equations for amplitude and
phase:

2��1 + 8H1�21�1 + 8H2�1�2�2 + 8I1�21�2-�1
1
+ 2	 �1�1 + 2�-1�1 + 2J1�1-�2
1
+ 2J2�2-�(1−2)
1 = 0,

2��2 + 8H4�22�2 + 8H3�1�2�1 + 8I2�31-−�1
1
+ 2	�2�2 + 2�-2�2 + 2J3�1-�(2−1)
1 = 0,

(18)

where the prime denotes the di�erentiation with respect
to slow time !1 and H�, I�, J�, ��, and -� are de�ned in
the Appendix section. Overbar indicates complex conjugate.

e terms in the previous equations involving the internal
frequency detuning parameter ?1 are the contributions of the
internal resonance in the system.
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Figure 8: E�ect of external damping parameter on the frequency response of �rst mode (a) and secondmode (b) for 	 = 0.05, � = 0, V1 = 10,
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4. Stability and Bifurcations


e evolutions of the equilibrium solutions and their stability
and bifurcation analysis for principal parametric resonance
of �rst mode are carried out from the modulation equation
(18). 
e Cartesian transformation is used for the complex
amplitude as

�� = 12 [L� (!1) − AM� (!1)] -���(
1), " = 1, 2. (19)

Putting this in (18), simplifying by trigonometric manipula-
tions, and separating the real and imaginary parts, we get
the normalized reduced equations or the Cartesian form of
modulation equations:

L�1 = − O1M1 − H1� (L31 + L1M21) − H1� (L21M1 + M31)
− H2� (L1L22 + L1M22) − H2� (M1L22 + M1M22)
− I1� (L21L2 − L2M21 + 2L1M1M2)

+ I1� (2L1M1L2 − L21M2 + M21M2) − 	�1�L1
− 	�1�M1 − �-1�L1 − �-1�M1 − J1�L1
+ J1�M1 − J2�L2 − J2�M2,

M�1 = O1L1 + H1� (L31 + L1M21) − H1� (L21M1 + M31)
− H2� (M1L22 + M1M22) + H2� (L1L22 + L1M22)
+ I1� (2L1M1L2 − L21M2 + M21M2)
+ I1� (2L1M1M2 + L21L2 − L2M21) + J1�M1 + J1�L1
− J2�M2 + J2�L2 − 	�1�M1 + 	�1�L1
− �-1�M1 + �-1�L1,

L�2 = − O2M2 − H4� (L32 + L2M22) − H4� (M32 + L22M2)
− H3� (L21L2 + L2M21) − H3� (L21M2 + M21M2)
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Figure 11: Phase portrait (a), FFT power spectra (b), and Poincare maps (c, d) for ?2 = 76.2799, 	 = 0.05, V1 = 10, and � = 0, ?1 = 92.39.

− I2� (L31 − 3L1M21) + I2� (M31 − 3L21M1)
− J3�L1 − J3�M1 − 	�2�L2 − 	�2�M2
− �-2�L2 − �-2�M2,

M�2 = − O2L2 − H4� (M32 + L22M2) + H4� (L32 + L2M22)
− H3� (L21M2 + M21M2) + H3� (L21L2 + L2M21)
+ I2� (M31 − 3L21M1) + I2� (L31 − 3L1M21)
− J3�M1 + J3�L1 − 	�2�M2 + 	�2�L2
− �-2�M2 + �-2�L2,

(20)

where

O1 = 0.5?2, O2 = 1.5?2 − ?1. (21)


e previous equations are perturbed to evaluate the stability.

e perturbed equation is

{ΔL�1ΔM�1ΔL�2ΔM�2}
 = [S�] {ΔL1ΔM1ΔL2ΔM2}
, (22)

where ! denotes transpose and [S�] is the Jacobian matrix
whose eigenvalues determine the stability and bifurcation of
the system.
e stability boundary for trivial state is obtained
by setting L1 = M1 = L2 = M2 = 0. 
e nonlinear steady
state response behavior of the system is obtained from the
normalized reduced equation (20) by setting L�1 = M�1 =L�2 = M�2 = 0 and then solving the resulting set of nonlinear
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Figure 12: Phase portraits (a, b) and Poincare maps (c, d) for ?2 = 78.2799, 	 = 0.05, V1 = 10, � = 0, and ?1 = 92.39.

algebraic equations. 
e same set of equations is also used
for the analysis of stability and bifurcation of trivial as well
as nontrivial solutions. 
e analysis for dynamic solutions
is carried out by numerically integrating (20) with di�erent
combinations of system parameters.

5. Results and Discussions


e natural frequencies of the beam are numerically evalu-
ated at di�erent mean velocities (V0) with exural sti�ness
V� = 0.2 by simultaneous solution of dispersive relation
(13) and support condition (14). 
e results are presented in
Table 1. It is noticed that, at nondimensional mean velocity
V0 = 0.513, the natural frequency of second mode is approx-
imately equal to three times that of the �rst mode implying
the existence of 3 : 1 internal resonance. It is also noticed that
there are no other commensurable frequency relationships
involving higher modes. 
erefore, nonlinear interaction
among higher modes is ruled out.
e investigation is limited

to the case of principal parametric resonance of �rst mode,
that is, Ω ≈ 251, in presence of internal resonance in the
subcritical mean velocity regime of a travelling beam.


e trivial state stability boundary shown in Figure 2 is
plotted in terms of principal parametric frequency detuning
(?2) and amplitude of uctuating velocity component (V1)
for system parameters V� = 0.2, V� = 40, V0 = 0.7,51 = 2.7388, and 52 = 9.1403 and for di�erent damping
values. 
e book keeping parameter is taken as � = 0.01, and
the corresponding internal frequency detuning parameter is
assumed to be ?1 = 92.39. 
e region inside the boundary
denotes instability. Higher values of damping have the e�ect
of raising and narrowing the instability zones. It is revealed
that the e�ect of material damping (�) raises and narrows the
instability zone more compared to that of viscous damping
(	) on the trivial state stability boundary. However, this
trivial state stability plot may not reveal completely the
real system behavior, because in the unstable zone of the
trivial stability plot, the system may have stable nontrivial
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Figure 13: Phase portraits (a, b) and time histories (c, d) for ?2 = 115.7201, 	 = 0.05, V1 = 10, � = 0, and ?1 = 92.39.

equilibrium solution or stable dynamic solution like periodic
or quasiperiodic solution. In addition, there is a possibility of
chaotic solutions or multiple stable solutions. For this reason,
it is required to carry out the dynamic analysis as well as the
stability and bifurcation study of equilibrium solutions of the
system.

5.1. Stability and Bifurcations of Equilibrium Solutions. Con-
tinuation algorithm is used to determine the nonlinear steady
state response by solving the set of algebraic equations
generated a�er setting L�� = M�� = 0 in the normalized reduced
equation (20).
e stability and bifurcation of the equilibrium
solutions are obtained from the eigenvalues of the Jacobean
matrix at each point of the solution. In order to validate
the results obtained by the present analysis, the frequency
response and amplitude response curves of Chin et al. [16]
are generated once again using continuation algorithm.
ey
are shown in Figure 3, and the results are found to be in
good agreement. Since the frequency and amplitude response

curves are symmetrical about ?2 and V1 axes, respectively,
only positive sides of the response curves are shown.

Frequency response curves are obtained against variation
in frequency detuning parameter?2 for �rst and secondmode
for 	 = 0.1, � = 0, V1 = 10, V� = 40, and ?1 = 92.39
and are shown in Figure 4. 
e normal continuous lines in
the �gure represent stable equilibrium solutions, the bold
lines represent unstable foci, and the dotted lines denote
saddles. Di�erent parameter values for characteristic points
on di�erent branches of the plot are indicated in Table 2. 
e
response curves exhibit a hardening-spring type of nonlinear-
ity. With increase in ?2 from a small value, the trivial stable
solution loses stability at ?2 = −22.071, through supercritical
pitchfork bifurcation, and results in a two-mode nontrivial
stable equilibrium solution. It is observed that the amplitude
of the �rst mode increases initially then decreases, but the
amplitude of second mode increases monotonically. When
the value of ?2 increases, the equilibrium solution becomes
unstable at V1 (?2 = 206.588) through Hopf bifurcation, and
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Figure 14: Phase portraits (a, b), time trace (c), and Poincare map (d) for ?2 = 116.4201, 	 = 0.05, V1 = 10, and � = 0, ?1 = 92.39.

out of two pairs of complex conjugate eigenvalues, one pair
crosses the imaginary axis from the le� half of the complex
plane to the right half. With further increase of ?2, the same
state continues until a saddle node bifurcation occurs at
SN (?2 = 301.873), where the system response jumps to
one of the two stable equilibrium branches, one trivial and
the other nontrivial, depending on the initial conditions as
the solution converges to the closer equilibrium state as per
the concept of region of attraction. With further increase in
frequency detuning parameter, amplitude of the �rst mode
increasesmonotonically along the nontrivial branch, whereas
the amplitude of second mode decreases continuously. 
us
the amplitude of the indirectly excited secondmode is limited
to a �xed higher magnitude, and for high values of ?2, it
becomes stagnant at �xed low amplitude while there is no
such limitation for the directly excited �rst mode.

When the detuning parameter decreases from a high
value, the system follows either trivial or nontrivial stable
equilibrium path, depending on the initial conditions. If the

solution is nontrivial, with decrease of ?2 value, the nontrivial
stable branch loses stability via Hopf bifurcation at V2 (?2 =190.033) and regains stability via a reverse Hopf bifurcation
at V3 (?2 = 144.502). When the detuning parameter is
further decreased, again the system loses stability via Hopf
bifurcation at V4 (?2 = 127.98) and regains stability via a
reverse Hopf bifurcation at V5 (?2 = 80.408) on the same
path.With further decrease in frequency detuning parameter,
the nontrivial stable equilibrium branch merges with stable
trivial equilibrium solution, the system losing and regaining
the stability at V6 (?2 = 49.474) and V7 (?2 = 44.608),
respectively. At ?2 = 14.190, the trivial equilibrium solution
loses stability via subcritical/reverse pitchfork bifurcation and
results in a jump of the response to the stable nontrivial
branch of the solution. Again with further decrease of
frequency detuning, the nontrivial stable solution branch
loses stability through pitchfork bifurcation at ?2 = −22.071,
giving the way to trivial solution. 
e directly excited �rst
mode dominates the indirectly excited second mode.
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Figure 15: Phase portrait (a), FFT power spectra (b), and Poincare maps (c, d) for ?2 = 117.4201, 	 = 0.05, V1 = 10, � = 0, and ?1 = 92.39.

Figure 5 shows the frequency response curves for �rst
and second mode of the system for higher amplitude of the
uctuating velocity component (V1). 
e system parameters
considered are 	 = 0.1, � = 0, V1 = 15, V� = 40, and?1 = 92.39. Even though the solution curves are similar
in shape to the curves obtained in case of lower amplitude
of excitation (V1 = 10) as shown in Figure 4, the jump
phenomena at the saddle node bifurcation (SN) occur at
higher value of the detuning parameter (?2 = 457.7476)
compared to the previous case (?2 = 301.8730 (Figure 4)).
In addition, unstable zone in trivial solution gets broadened
which is commensurate with the trivial state stability plot.

Figure 6 shows typical frequency response curves for two
modes considering the e�ect of the internal damping for
system parameters 	 = 0, � = 0.001, V1 = 10, V� =40, and ?1 = 92.39. 
e strength of nonlinear interaction
due to internal resonance gets weakened due to internal
damping (Figure 6) compared to the case of external damping
(Figure 4). 
e inuence of internal detuning parameter(?1) on the frequency response is shown in Figure 7. It is

evident that the decrease in internal detuning parameter (?1)
to 20.320 (Figures 7(a) and 7(b)) and −27.680 (Figures 7(c)
and 7(d)) from 92.390 (Figure 4) weakens the strength of
nonlinear interaction due to three-to-one internal resonance.

e amplitude of the directly excited �rst mode decreases
more pronouncedly than the indirectly excited secondmode.
Beside this, the number of Hopf bifurcation points on the
upper nontrivial curve decreases from four for ?1 = 92.39
to two for ?1 = 20.320 and totally vanishes for ?1 = −27.680,
and also there is decreasing trend in ?2 value at which saddle
node bifurcation occurs. Figure 8 shows the e�ect of decrease
of external damping (	 = 0.05) on the frequency response of
the system.
e nature of the shape of the curves is similar to
that of Figure 4, but the jump phenomena occur at a higher
value of parametric excitation frequency detuning parameter(?2 = 382.9953), and the amplitudes of both directly and
indirectly excited modes are ampli�ed.

5.2. Dynamic Solutions. Frequency response and amplitude
response plots reveal di�erent stability and bifurcations of the
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Figure 16: Phase portraits (a, b), time trace (c), and FFT power spectra (d) in the lower nontrivial stable branch of the frequency response
plot of Figure 8 for ?2 = 280.5201, 	 = 0.05, V1 = 10, � = 0, and ?1 = 92.39.

equilibrium solutions with variation of control parameters.
Dynamic analysis of the system which is dependent on initial
conditions is studied in the form of periodic, quasiperiodic,
and chaotic responses, and some selected results are pre-
sented.

Figures 9(a)–9(d) show typical system response in terms
of phase portraits (a, b) and time traces (c, d) at ?2 = 68.2799
corresponding to the upper nontrivial stable branch of the
frequency response curve (Figure 8) for 	 = 0.05, � = 0,
V1 = 10, and ?1 = 92.39. 
e response is periodic about
the nontrivial equilibrium solutionwhen the time integration
is started with the initial values L1 = 0.002, M1 = 0.0007,L2 = 0.0067, and M2 = 0.0001. Further along the same branch
at ?2 = 75.2799, the response is quasiperiodic in both modes
being more prominent in the second mode as shown in the
two-dimensional projections of the phase portraits onto theL − M planes in Figures 12(a) and 12(b) and the time traces in
Figures 10(c) and 10(d). 
e response remains quasiperiodic
in both modes for higher frequency detuning parameter

values, typically at ?2 = 76.2799 as shown in the closed loop
Poincare maps and FFT power spectra in Figures 11(c), 11(d),
and 11(b), respectively. With further increase in the value of
detuning parameter, typically at ?2 = 78.2799, we �nd the
closed loops of Poincare map get merged and give a way to
chaotic response in second mode in Figure 12(d). However,
in �rst mode the system response is still quasiperiodic as
seen from phase portrait (Figure 12(a)) and Poincare map
(Figure 12(c)), respectively.

Figures 13(a)–13(d) show the typical system behavior at?2 = 115.7201, 	 = 0.05, � = 0, V1 = 10, and ?1 = 92.39
in terms of phase portraits and time traces in Figures 13(a),
13(b), 13(c), and 13(d), respectively. 
e response is initially
chaotic and jumps to the nearby stable trivial attractor. With
further increase in detuning parameter, the system behavior
changes drastically as shown in Figures 14(a)–14(d), at ?2 =116.4201 illustrating quasiperiodic motion in the �rst mode
and chaotic motion in second mode. 
e dynamic response
in both modes becomes chaotic at detuning parameter
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Table 1: Variation of natural frequencies for the �rst twomodeswith
mean travelling velocity V0 showing 3 : 1 internal resonance for V� =0.2.
V0 51 52 351 �?1 = 52 − 351 (�?1/51)%
0.4500 3.3149 9.7032 9.9447 −0.2415 −7.2853
0.4600 3.2969 9.6857 9.8907 −0.2050 −6.2180
0.4700 3.2786 9.6677 9.8358 −0.1681 −5.1272
0.4800 3.2599 9.6493 9.7797 −0.1304 −4.0001
0.4900 3.2407 9.6305 9.7221 −0.0916 −2.8265
0.5000 3.2211 9.6113 9.6633 −0.0520 −1.6144
0.5100 3.2011 9.5917 9.6033 −0.0116 −0.3624
0.5110 3.1991 9.5897 9.5973 −0.0076 −0.2376
0.5120 3.1970 9.5878 9.5910 −0.0032 −0.1001
0.5130 3.1950 9.5858 9.5850 0.0008 0.0250

0.5140 3.1930 9.5838 9.5790 0.0048 0.1503

0.5600 3.0948 9.4876 9.2844 0.2032 6.5659

0.5800 3.0493 9.4431 9.1479 0.2952 9.6809

0.6000 3.0020 9.3968 9.0060 0.3908 13.0180

?2 = 117.0201 as shown in phase portrait, FFT power spectra,
and Poincare maps in Figures 15(a), 15(b), 15(c), and 15(d),
respectively. 
e changes in system response from periodic
in both modes to mixed mode, that is, quasiperiodic in �rst
and chaotic in second mode to chaotic in both modes, as
explained above, happen in the zone of frequency response
plot where all three kinds of curves stable, saddle, and
unstable are in very close proximity and crossing each other.
Existence of multiple branches is possible due to the presence
of internal resonance in the system. 
e nonlinear modal
interaction inuences simultaneously both the stable and
unstable attractors, which �nally results in such varied system
responses.

Similar investigation is carried in the lower nontrivial
stable branch of the frequency response plot of Figure 8 as
well. For a point on the same branch at ?2 = 280.5201, the
system response exhibits one periodic and one quasiperiodic
system behavior as shown in Figure 16 in terms of phase
portraits, time trace, and FFT power spectra. 
e same
behavior is noticed for another point on the same branch at?2 = 310.5201 though the �gures are not presented to avoid
repetition. 
us, due to the presence of internal resonance,
a wide range of dynamic behavior can be observed with
variation of control parameters.

6. Conclusions

In the present investigation, principal parametric resonance
of �rst mode in presence of 3 : 1 internal resonance of a
beam moving with variable velocity is considered. Stability
boundaries of trivial state are obtained for di�erent values
of internal and external dissipations. It has been observed
that higher values of damping have the e�ect of raising and
narrowing the instability zones. Bifurcations of equilibrium
solutions are analyzed in the form response plots. It has

been shown in frequency response plot that the nontrivial
steady state solutions bifurcate from trivial solutions through
supercritical pitchfork bifurcations.

Besides the pitchfork bifurcations, the system also expe-
riences Hopf bifurcation and saddle node bifurcation due to
variation of di�erent system parameters. Damping decreases
the strength of nonlinear interaction due to internal res-
onance. Increasing amplitude of uctuating velocity com-
ponent broadens the range of trivial state instability and
increases the value of parametric frequency detuning at
which jump phenomena occur. Decreasing internal fre-
quency detuning parameter a�ects the amplitude of directly
excited �rst mode and number of Hopf bifurcation points. It
also shi�s the occurrence of jump phenomena.

A detailed study is carried out to determine the inuence
of di�erent control parameters on dynamic behavior of the
system.
e dynamic solutions in the periodic, quasiperiodic,
and chaotic forms, are captured with the help of time
history, phase portraits, and Poincare maps. A wide array
of dynamic behavior is noticed when nontrivial stable and
saddle branches are formed due to internal resonance and
also in the zone where the three branches are very close and
crossing each other.

In case of conventional nontravelling beams with simply
supported boundary conditions, occurrence of internal reso-
nance is not possible due to vanishing of the nonlinear inter-
action coe�cients [10]. However, a varied system response is
possible in case of travelling beams due to nonlinear modal
interaction leading to simultaneous inuence of both stable
and unstable attractors.

Appendix

We have the following:

Γ1 = − 2A51��1*1 − 2V0��1*�1 − 2A	51�1*1
− 2A�51�1*����1 + 12V2�
× {2�21�1*��1 ∫10 *�1 *

�
1�� + �21�1 *��1

× ∫1
0
*�21 �� + 2�1�2�2*��2

× ∫1
0
*�1*�2�� + 2�1�2�2*��1

×∫1
0
*�2*�2�� + 2�1�2�2*��2 ∫10 *�1*

�
2��} ,

Γ2 = 12V2� {2�21�2*��1 ∫10 *�2*
�
1��

+�21�2*��2 ∫10 *
�2
1 ��} ,

Γ3 = �1 {V151*�1 − V1Ω2 *�1 + AV0V1*��1 } ,
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Table 2: Typical points on the di�erent branches of the frequency response for 	 = 0.1, � = 0, V1 = 10, V1 = 40, and ?1 = 92.39.
L1 M1 L2 M2 ?2 Bifurcation point

0.00500579 −0.01569813 0.00004925 0.01964672 100−0.02181265 −0.00742674 0.01533298 0.00020989 100

0.010164208 0.00356793 0.01833426 0.00011845 100−0.004819409 0.01479703 0.00009386 0.01071881 100−0.007939 −0.003674 0.042869 0.006271 206.588482 V1−0.002453 −0. 004177 0. 039646 0. 039917 301.873000 SN

0.032196 0.010862 0.005854 0.000026 190.033742 V2
0.026628 0.008991 0.010665 0.000036 144.502843 V3
0.022130 0.007495 0.015112 0.000039 127.980336 V4
0.004908 0.001822 0.013291 0.000245 80.408029 V5
0.000000 0.000000 0.000000 0.000000 49.474028 V6
0.000000 0.000000 0.000000 0.000000 44.608834 V7

Γ4 = �2 {V152*�2 − V1Ω2 *�2 − A V0V1 *��2 } ,
Γ5 = − 2 A52��2*2 − 2V0��2*�2 − 2	A52�2*2

− 2�A52�2*����2 + 12V2�
× {�22�2*��2 ∫10 *�22 ��

+ 2�1�1�2*��2 ∫10 *�1*
�
1�� + 2�1�1�2*��1

× ∫1
0
*�1*�2�� + 2�22�2*��2

×∫1
0
*�2*�2�� + 2�1�1�2*��1 ∫10 *�2 *

�
1��} ,

Γ6 = 12V2� {�31*��1 ∫10 *�21 ��} ,
Γ7 = �1 {− V151*�1 − V1Ω2 *�1 + A V0V1*��1 } ,

H1 = ( 116V2� {2∫1
0
*��1 *1��∫1

0
*�1*�1��

+∫1
0
*��1 *1��∫1

0
*�21 ��})

× (−{A51 ∫1
0
*1*1�� + V0 ∫1

0
*�1*1��})−1,

H2 = (18V2� {∫1
0
*��2 *1��∫1

0
*�1*�2�� + ∫1

0
*��1 *1��

×∫1
0
*�2*�2�� + ∫1

0
*��2 *1��∫1

0
*�1*�2��})

× (−{A51 ∫1
0
*1*1�� + V0 ∫1

0
*�1*1��})−1,

H3 = (18V2� {∫1
0
*��2 *2��∫1

0
*�1*�1�� + ∫1

0
*��1 *2��

×∫1
0
*�1*�2�� + ∫1

0
*��1 *2��∫1

0
*�2*�2��})

× (−{A52 ∫1
0
*2*2�� + V0 ∫1

0
*�2*2��})−1,

H4 = ( 116V2� {2∫1
0
*��2 *2��∫1

0
*�2*�2��

+∫1
0
*��2 *2��∫1

0
*�22 ��})

× (−{A52 ∫1
0
*2*2�� + V0 ∫1

0
*�2*2��})−1,

�1 = −A51 ∫10 *1*1��
− {A51 ∫10 *1*1�� + V0 ∫10 *�1*1��}

,

�2 = −A52 ∫10 *2*2��
−{A52 ∫10 *2*2�� + V0

1∫
0
*�2*2��}

,

-1 = −A51 ∫10 *����1 *1��
− {A51 ∫10 *1*1�� + V0 ∫10 *�1*1��}

,

-2 = −A52 ∫10 *����2 *2��
− {A52 ∫10 *2*2�� + V0 ∫10 *�2*2��}

,

I1 = ( 116V2� {2∫1
0
*��1 *1��∫1

0
*�2*�1��

+∫1
0
*��2 *1��∫1

0
*�21 ��})

× (−{A51 ∫1
0
*1*1�� + V0 ∫1

0
*�1*1��})−1,
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I2 = (1/16) V�2 {∫10 *��1 *2��∫10 *�21 ��}
− {A52 ∫10 *2*2�� + V0 ∫10 *�2*2��}

,

J1 = (12 {V151 ∫1
0
*�1*1�� − V1Ω2 ∫1

0
*�1*1��

+AV0V1 ∫1
0
*��1 *1 ��})

× (−{A51 ∫1
0
*1*1�� + V0 ∫1

0
*�1*1��})−1,

J2 = (12 {V152 ∫1
0
*�2*1�� − V1Ω2 ∫1

0
*�2*1��

−AV0V1 ∫1
0
*��2 *1��})

× (−{A51 ∫1
0
*1*1�� + V0 ∫1

0
*�1*1��})−1,

J3 = (12 {−V152 ∫1
0
*�1*2�� − V1Ω2 ∫1

0
*�1*��

+AV0V1 ∫1
0
*��1 *2��})

× (−{A52 ∫1
0
*2*2�� + V0 ∫1

0
*�2*2��})−1.

(A.1)
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