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Abstract 

 
The forest products industry is undergoing unprecedented change from international 

competition, increasing fiber costs, rising energy prices and falling product prices.  

Competitive businesses have the key ability to adapt quickly to change through improved 

knowledge.  Among adaptations to change are better product development, improved 

process efficiency and superior product quality.  This dissertation is directly related to 

improving the knowledge of forest products manufacturers by investigating data mining 

(DM) methods that improve the ability to quantify causality of sources of variation.  A 

contemporary DM method related to decision theory is decision trees (DTs).  DTs are 

designed for heterogeneous data and are highly resistant to irrelevant regressors.  The tree 

structures of DTs are also easy to interpret. 

The research hypothesis of this dissertation is that there is no significant difference 

in the explanatory or predictive capabilities of multiple linear regression (MLR) models, 

parametric regression trees (RTs) and non-parametric quantile RTs.  To test this hypothesis 

1,335 statistical models are developed.  Box Cox transforms of Y are considered.  Models are 

developed for the internal bond (IB) of medium density fiberboard (MDF) and the IB (and 

Parallel EI) of oriented strand board (OSB) from automatically fused data of destructive test 

data and real-time production line sensor data. 

Models with good predictability of the validation data set are possible for MDF IB 

when using traditional MLR methods with short record lengths without Box Cox 

transforms.  Significant regressors (α < 0.01) for MDF MLR models are related to overall 

pressing time and press pre-position time settings. 
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Parametric and non-parametric RT models without Box Cox transforms outperform 

the predictability of MLR models.  For MDF IB, process variables related to overall pressing 

time, press position times and core fiber moisture are significant (α < 0.01).  RT models 

with Box Cox transforms of OSB IB improve predictability for record lengths less than 100.  

Significant regressors (α < 0.01) of OSB IB are related to pressing times and core layer 

moisture.  Significant regressors (α < 0.01) of OSB Parallel EI are related to forming speed 

and pressing times.  There is evidence from the extensive investigation of 1,335 models to 

support the alternative research hypothesis.   
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CHAPTER I.  INTRODUCTION 
 

 
An underlying basis of statistical methods is the study of variance 2( )σ .  Variance 

in the context of manufacturing is defined as estimated process variance 2ˆ( )σ .  In forest 

products manufacturing, process variance results in inferior product quality, poor product 

safety and noncompetitive costs.  Process variance is masked by higher than necessary 

operational targets (e.g., weight, thickness, density, resin, etc.) which require higher than 

necessary energy use which in combination are not competitive or sustainable in a highly 

competitive market place. 

A common goal for statistical research is to investigate and quantify causality 

between independent variables (X) and response variables (Y) with a high level of scientific 

inference.  As Friedman (2001) notes, given a set of measured values of attributes, 

characteristics or properties on a object (observation) X = (X1,  X2, …. Xn), which are 

often called “variables,” the goal is to predict (estimate) the unknown value of another 

attribute Y.  In quantifying causality, de Mast and Trip (2007) note the important 

distinction between exploratory and confirmatory data analysis which they attribute to 

Tukey’s (1977) work.  As Tukey (1977) pointed out, confirmatory data analysis is 

concerned with testing a pre-specified hypothesis. The purpose of exploratory data analysis 

is hypothesis generation (de Mast and Trip 2007).  This dissertation is undertaken in the 

spirit of exploratory data analysis and hypothesis generation.  The dissertation is aligned 

with Gleser’s (1996) “First Law of Applied Statistics,” i.e., two individuals using the same 

statistical method on the same data should arrive at the same conclusion. 
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The goal of the dissertation is to improve the understanding of causality for the 

strength properties of MDF and OSB from industrial derived data.  The dissertation is 

focused on exploratory analysis in the context of data mining, i.e., quantifying unknown 

causality from large volumes of electronically collected data which are fused with 

destructive data of strength properties. 

Data mining (DM), also called Knowledge-Discovery in Databases (KDD) or 

Knowledge-Discovery and Data Mining, is the process of automatically searching large 

volumes of data for patterns (http://en.wikipedia.org/wiki/Data_mining. referenced 

10/4/07).  DM is the contemporary edge of the sciences of Artificial Intelligence, Machine 

Learning, Pattern Recognition and Data Visualization.  DM evolved from advancements in 

database management systems (DBMS) and on-line (real-time) transaction processing 

(OLTP).  From a statistical perspective it can be viewed as computer automated 

exploratory data analysis of large complex data sets (Friedman and Wall 2005).   

Exponential growth of data mining applications has occurred globally for many 

industries (Harding et al. 2006).  Rapid growth in data mining applications in the forest 

products industry is imminent and is desperately needed for the industry’s economic 

survival. 

 
The New Millennium for the Forest Products Industry 
 

Forests sustain an important forest products economy in the U.S. and state of 

Tennessee.  The forest products industry contributed more than $240 billion to the U.S. 

economy and employed more than 1,000,000 Americans in 2002 (U.S. Census Bureau 

2004).  Over 180,000 Tennesseans were employed by the forest products industry in 2000 

accounting for 6.6 percent of Tennessee’s economy by generating $21.7 billion in value in 
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that same year (Young et al. 2007).  Threats to this economic sector have arisen in the 

form of unprecedented levels of international competition, constrained credit markets, 

increasing fiber costs, increasing energy costs and substitution from renewable wood 

products to non-renewable oil- and cement-derived products.1   

Wood costs represent the largest single component of total manufacturing costs 

for most forest products manufacturers.  Some U.S. manufacturers must contend with 

wood costs as high as 60% of total manufacturing costs.2  Demand/capacity ratios for the 

engineered wood panel sector are falling below the critical threshold of 85 percent, a level 

that results in declining real prices.  A renewed emphasis on reducing costs is desperately 

needed by this important economic sector.   

 
Rationale and Justification 
 
 Poor production efficiencies in the engineered wood panel sector occur from 

unacceptably high levels of wood waste due to low strength and high wood-density targets.  

Poor production efficiencies lead to high wood use, high energy usage, and an overall lack 

of business competitiveness.  Wood waste is a significant contributor to costs.  In 2003, 

the engineered wood panel sector produced 64.3 billion square feet of panels and wood 

waste ranged from three percent to nine percent (Composite Panel Association 2004, 

TECO 2004).  Reducing wood waste by one percent could translate into annual savings of 

as much as $700,000 per producer and promote wiser use of the forest resource.3  

                                                 
1U.S. structural wood panel mills lost 5.8 percent of the North American market in 2004, primarily 
from Europe and South America.  Imports over the long term are forecast to increase (Engineered 
Wood Association 2004).   
2Personal communications 2005 and 2006: Georgia-Pacific, J.M. Huber Corporation, Louisiana-
Pacific Corporation, Norbord Corporation and Weyerhaeuser Corporations. 
3Personal communications 2005 and 2006: Georgia-Pacific, J.M. Huber Corporation, Louisiana-
Pacific Corporation, Norbord Corporation and Weyerhaeuser Corporations. 
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Improved production efficiencies, reduced wood waste, and lower costs are possible from 

data mining by improving the knowledge of causality of sources of unknown process 

variation.   

Many organizations can be labeled as “data-rich” and “knowledge-poor” (Chen 

2005).  Modeling of wood composite manufacturing processes enables complex processes 

to be better understood by examining the patterns in data related to the previous behavior 

of a manufacturing process (Young and Guess 2002).  The benefits of first-order models 

in engineered wood panel production are well documented (Young 1997, Gruebel 1999, 

Bernardy and Scherff 1998, 1999, Erilsson et al. 2000, Young and Guess 2002, Guess et al. 

2003, and Kim et al. 2007).  Erilsson et al. (2000) discussed the potential of stochastic 

models for engineered wood manufacture, while Gruebel (1999) documented medium 

density fiberboard (MDF) manufacturing cost savings of five percent to ten percent from 

the use of “off-line” first-order statistical models.  Dawson et al. (2006) developed a 

genetic algorithm/neural network (GANN) real-time predictive model of MDF and 

oriented strand board (OSB) manufacturing processes that resulted in cost annual savings 

at two test sites ranging from $700,000 to $1.2 million. 

This dissertation investigates the use of Regression Tree (RT) models to identify 

unknown causality between process variables and strength properties of wood composites.  

RT models are known for their high explanatory value and RT models are at least as 

predictive as black box deterministic methods (Loh 2002).     

 
Problem Statement and Scope 
 
 The problem statement of this dissertation is to explore the explanatory and 

predictive capabilities of parametric and non-parametric (quantile) regression tree models 
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of the strength properties of MDF and OSB using real-time sensor data amassed in 

manufacturers’ data warehouses.  Specifically, this research will investigate the explanatory 

and predictive capabilities of three modeling methods: first-, second- and third-order 

statistical multiple linear regression models with interaction terms, parametric regression 

trees, and non-parametric (quantile) regression trees.  The models are developed for one 

MDF and one OSB mill both located in the southeastern United States. 

 

Dissertation Hypothesis 
 
 The null research hypothesis of this dissertation is that there is no significant 

difference in the explanatory or predictive capabilities of three modeling methods: first-, 

second- and third-order statistical multiple linear regression models with interaction terms; 

parametric regression trees; and non-parametric (quantile) regression trees.  The test of this 

research hypothesis hopefully will incrementally advance the statistical and industrial 

engineering sciences as applied to wood composites manufacture. 

 

Dissertation Objectives 
 
1.  Investigate first-, second- and third-order MLR models  

 First-, second- and third-order MLR models with interaction terms are investigated 

for MDF and OSB wood composite strength properties.  The database to support this 

work is the real-time relation database developed by Young and Guess (2002), enhanced 

by Dawson et al. (2006).  MLR models are developed for three predominately 

manufactured products (0.500”, 0.625” and 0.750” industrial grades) for MDF and one 

OSB product (7/16” roof sheathing) for each test site. 
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2.  Investigate regression tree (RT) models 

Parametric and non-parametric (quantile) regression trees (RT) are investigated for 

each MDF and OSB manufacturing test site.  The same database of the first objective is 

used.  RT models are developed for the same nominally produced MDF and OSB 

products defined in the first objective. 

3.  Compare the explanatory and predictive capabilities of the MLR and RT models 
developed in the first and second objectives. 
 

The explanatory and predictive capabilities of the MLR and RT models developed 

in the first and second objectives are compared.  Model prediction capabilities are analyzed 

for appropriate validation data sets from each MDF and OSB mill.  

There is no documentation in the literature of the investigation and application of 

decision tree theory to manufactured wood composites strength properties.  It is hoped 

that this research will at least incrementally expand the sciences of wood composites 

manufacture and decision tree theory.   

The dissertation is organized in seven chapters.  In Chapter II the relevant 

literature for the dissertation is reviewed.  The methods used in the research are presented 

in Chapter III, with a description of the data and an assessment of the data quality 

(descriptive statistics and distribution fits) for the important response variables.  The 

results of the first objective are given in Chapter IV.  Chapter V is the core chapter of the 

dissertation where results are presented on regression trees.  Chapter VI compares the 

results of the first two objectives.  Chapter VII summarizes the dissertation with 

conclusions and a discussion of future research.  The Bibliography and General 

Appendices follow Chapter VII. 



 7

CHAPTER II.  LITERATURE REVIEW 
 
 

Information technology is the largest single capital investment for many enterprises 

(Thorpe 1998).  However, many companies struggle with making use of the vast amount 

of data that is acquired at increasingly faster rates.  Thorpe (1998) called this phenomenon 

the “Information Paradox” where companies invest increasing amounts of money on 

information acquisition but cannot demonstrate a connection between the money spent 

and business results.  This paradox is caused from the lack of useful “real-time relational 

databases” that are of sufficient design and organization where parametric and non-

parametric statistical methods can be used to investigate unknown causality and develop 

scientific knowledge.  The data warehouse in many ways is the nucleus for process 

knowledge of a manufacturing enterprise.  As Harding et al. (2006) noted, “Knowledge is 

the most valuable asset of a manufacturing enterprise, as it enables a business to 

differentiate itself from competitors and to compete efficiently and effectively to the best 

of its ability.”  The Harding et al. (2006) statement is very appropriate for the wood 

composites industry in the present era of unprecedented competition, increasing raw 

material costs, increasing energy costs and declining product prices.   

 
Data Warehouse 
 

As Inmom and Hackathorn (1994) noted, a data warehouse is the main repository 

of the organization's historical data, its corporate memory.4  The central concept of a data 

                                                 
4 The origin of the data warehouse can be traced to studies at MIT in the 1970s which were 
targeted at developing an optimal technical architecture.  At the time, the craft of data processing 
was evolving into the profession of information management. The MIT work led to the modern 
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warehouse is that it is a collection of records.  Data warehouses usually consist of one or 

more databases of volumes of records.  The structure of a database is known as a schema.  

The schema describes the objects that are represented in the database and the table 

relationships among them.  Multiple related tables each consisting of rows and columns is 

the most common form of schema (White 2002).  Schema design is a critical factor in 

ensuring optimal storage and data compression, and also ensures the overall usefulness of 

the data during retrieval for analysis.   

Real-time Data Warehouse 

Real-time data warehousing originated and evolved with the computer industry.  

Real-time data captures manufacturing activity as it occurs.  Real-time data usually are 

stored in a data warehouse either at the occurrence of an event or as a function of time.  

Most real-time data warehouse platforms can efficiently store multiple gigabytes of process 

data.  Real-time data warehousing has become affordable in the last decade and it is hard 

to find a modern forest products manufacturer that does not have some type of real-time 

data warehousing platform.  However, most forest products manufacturers use real-time 

data for simple trending analysis and rudimentary process knowledge.  They struggle with 

using real-time databases for advanced analytics and scientific knowledge of the process.  

This dissertation directly addresses improved scientific knowledge of processes from the 

use of parametric and non-parametric regression tree methods using real-time process 

data.  

 Real-time databases have inherent data storage characteristics that need to be 

understood before advanced analytics can occur.  Data quality is a key obstacle in the use 

                                                                                                                                              
concept of the Information Center 
(http://www.damanconsulting.com/company/articles/dwrealtime.htm referenced 10/5/07).   
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of real-time data storage.  Real-time data quality problems such as null fields, repeated 

records, correct time stamps, bi-modality/multi-modality and data leverage are significant 

issues which confound advanced analytics and data mining efforts.  Some research has 

addressed data quality issues during real-time data retrieval using first-order statistical 

models and deterministic algorithms (e.g., genetic algorithms and neural networks) to 

model the wood composite process (Gruebel 1999; Bernardy and Scherff 1998, 1999; 

Young et al. 2004 and Dawson et al. 2006).  The key first step in the use of real-time data 

is the development of the real-time relational database.   

Real-time Relational Database 

A real-time relational database is defined as the alignment of real-time process 

sensor data from the production line with product quality data, e.g., destructive test data of 

strength quality developed from the mill testing laboratory.  The real-time relational 

database used in this dissertation is considered to be distributed data fusion (also called 

track-to-track fusion) where data from multiple diverse sensors are combined in order to 

make inferences about a physical event, activity or situation, e.g., internal bond tensile 

strength, modulus of elasticity flexure strength, etc. (Hall 1992).5  Intellectual latency is the 

most significant issue in real-time relational databases.  Some intellectual latency results 

from improper time alignment of process sensor data with product quality data.  Young 

and Guess (2002) developed an automated relational database that addressed some of the 

issues of intellectual latency.  Clapp et al. (2007) use the Eigenvalues from principal 

                                                 
5 Data fusion or information fusion are names that have been given to a variety of interrelated 
expert system problems which have arisen primarily in military applications (Goodman et al. 1997).  
Other applications of data fusion include remote sensing, medical diagnostics and robotics 
(Blackman and Broida 1990, Hovanessian 1980). 
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component analysis to identify improper time alignment of real-time process sensors with 

destructive test data for MDF. 

 A data warehouse or real-time data warehouse contains just data.  The key to 

scientific inference and improvement is the conversion of information or data into 

knowledge.  This dissertation attempts to advance the scientific understanding of MDF 

and OSB manufacture.  Many forest products manufacturers are unsuccessful in the 

information-to-knowledge transformation because they lack the key foundation of an 

automated real-time relational database.   

 
Data Mining 
 

Data mining (DM) is used to discover patterns and relationships in data, with an 

emphasis on large observational databases (Friedman and Wall 2005).  DM is a large 

discipline and a plethora of literature exists on the subject.  The literature review of DM in 

this chapter is not intended to be comprehensive, but instead a helpful precursor for the 

analytical methods used in this dissertation. 

DM is the contemporary edge of the sciences of Artificial Intelligence, Machine 

Learning, Pattern Recognition and Data Visualization.  DM evolved from advances in 

database management systems (DBMS) and on-line (real-time) transaction processing 

(OLTP).  From a statistical perspective it can be viewed as computer automated 

exploratory data analysis of large complex data sets (Friedman 2001).  DM is directly 

related to the field of Decision Theory.  As Friedman (2001) notes, “It also affords 

enormous research opportunities for new methodological developments… ….Statistics 

can potentially have a major influence on Data Mining.”     
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DM is closely related to machine learning and prediction.  The predictive or 

machine learning problem is easy to state if difficult to solve in general (Friedman 2001).  

Given a set of measured values of attributes, characteristics or properties, on a object 

(observation) X = (X1,  X2, …. Xn), which are often called “variables,” the goal is to 

predict (estimate) the unknown value of another attribute Y (Friedman 2001).   The 

quantity Y is called the “output,” “dependent” or “response” variable, and X = (X1,  X2, 

…. Xn) are referred to as the “input,” “independent,” “predictor” or "regressor” variables 

(Friedman 2001).  The prediction takes the form of a function 1 2
ˆ ( , ,..... ) ( )

n
Y F x x x F x= =  

that maps a point X in the space of all joint values of the predictor variables, to a point 

Ŷ in the space of response values (Friedman 2001).  Most scientists agree that the goal is to 

produce a “good” predictive F(x). 

Decision trees are one of the most popular predictive learning methods used in 

data mining.  Decision trees were developed largely in response to the limitations of kernel 

methods (Friedman 2001).6  No matter how high the dimensionality of the predictor 

variable space, or how many variables are actually used for prediction (splits), the entire 

model can be represented by a two-dimensional graphic, which can be plotted and easily 

interpreted (Friedman 2001).  Decision trees have an advantage of being very resistant to 

irrelevant predictor or regressor variables, i.e., since the recursive tree building algorithm 

estimates the optimal variable on which to split at each step, regressors unrelated to the 

response tend not to be chosen for splitting (Breiman et al. 1984).  Friedman (2001) also 

                                                 
6 Kernel Methods (KMs) are a class of algorithms for pattern analysis, whose best known element 
is the Support Vector Machine (SVM). Support vector machines (SVMs) are a set of related 
supervised learning methods used for classification and regression. They belong to a family of 
generalized linear classifiers. The general task of pattern analysis is to find and study general types 
of relations (for example clusters, rankings, principal components, correlations, classifications) in 
general types of data (http://en.wikipedia.org/wiki/Kernel_methods referenced 10/5/07). 
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notes a strength of decision trees is that regressors do not have to be tuned (standardized) 

which makes the method an “off-the-shelf” procedure.  Fore example, NIR spectral data 

have been used with decision trees to enhance automated classifications of fruit and 

organic matter in soil (Ware et al.  2001, Shepherd and Walsh 2002, Shepherd et al. 2003). 

This ease of interpretation from two-dimensional plots makes decision trees a 

powerful tool for the practitioner and an appropriate methodology for this dissertation for 

ease of use by practitioner.  Fitting quotes supportive of this dissertation are by C. Dickens 

and J.H. Friedman (Friedman 1994), “Every time computing power increases by a factor 

of ten we should totally rethink how we compute.”  Friedman’s (2001) corollary, “Every 

time the amount of data increases by a factor of ten, we should totally rethink how and 

what we compute.”  A more detailed literature review of decision trees is presented later in 

this chapter. 

 

Multiple Linear Regression 

The method of least squares and the precursor to regression analysis can be dated 

to 1805 by the publication of Legendre’s work on the subject (Stigler 1986).  Sir Francis 

Galton discovered regression around 1885 in studies of heredity (Stigler 1986).  Galton’s 

regression (as finally developed by Yule) was not simply an adaptation of least squares to a 

different set of problems; it was a new way of thinking about multivariate data (Stigler 

1986). 

Today regression analysis remains one of the most popular and globally used tools.  

Practitioners like regression analysis because of ease of interpretation in the coefficients 

that do not require standardization of the data of either the dependent and independent 

variables.  Practitioners also like the visual interpretation of regression.  Simple linear (SL) 
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and multiple linear regression (MLR) methods are widely available on business and 

statistical software, and MLR is a prerequisite for most undergraduate business and science 

degrees. 

For situations where the data are drawn from reasonably homogeneous 

populations, traditional methods such as MLR can yield insightful analyses.  The 

usefulness of MLR in data mining can breakdown quickly if the stringent assumptions 

associated with MLR are not met, e.g., normality assumption of the response (Y). 

There is a plethora of literature on regression analysis and many tomes are available 

on the method.  An extensive literature review of the heavily referenced MLR method is 

not presented in this dissertation given that it is not the primary method used for analysis. 

 
Quantile Regression  
 

As noted by Koenker (2005), Edgeworth’s (1888) work on median methods is the 

genesis of the idea of quantile regression.  Edgeworth emphasize that the assumed 

optimality of the sample mean as an estimator of location was crucially dependent on the 

assumption that the observations came from a common normal distribution.  If the 

observations departed from normals with different variances, the median, Edgeworth 

argued, could easily be superior to the mean.  Koenker (2005) notes that Edgeworth (1888) 

discards the Boscovich-Laplace constraint related to least squares that the residuals sum to 

zero and proposes to minimize the sum of the absolute residuals in both slope and 

intercept parameters.  Unfortunately, the computational rigors associated with 

Edgeworth’s (1888) work limited the application of the method until the development of 

linear programming which provides an efficient conceptual approach.  Mosteller (1946) 
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discovered that quantile estimators are almost as efficient as the maximum likelihood 

estimators for most conventional parametric models.   

Quantile regression as introduced by Koenker and Bassett (1978) seeks to extend 

these ideas to the estimation of conditional quantile function, i.e., models in which 

quantiles of the conditional distribution of the response variable are expressed as functions 

of observed covariates.  The quantile regression literature in economics makes a persuasive 

case for the value of going beyond models for the conditional mean (Chamberlain 1994).  

Koenker and Billias (2001) explore quantile regression models for unemployment duration 

data and offer an introduction to quantile regression for demand analysis.  There is also a 

growing literature database in empirical finance employing quantile regression methods.  

Bassett and Chen (2001) consider quantile regression index models to characterize mutual 

fund investment styles.  Shaffer (2007) and Young et al. (2007c) explore the first uses of 

quantile regression in modeling the internal bond strength property of MDF.  The method 

of quantile regression is described in more detail in the next chapter. 

 
Decision Trees 

The machine learning technique for inducing a decision tree from data is called 

decision tree learning, or (colloquially) “decision trees”.7  Decision tree (DT) models have 

grown into a powerful class of methods for examining complex relationships with many 

types of data (Kim et al. 2007).  Researchers and practitioners find great explanatory value 

in DT models.  DT models are more useful than MLR models when data are not 

homogeneous (Figure 2.1). 

                                                 
7 http://en.wikipedia.org/wiki/Regression_Tree referenced 10/5/07. 
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A “regression tree” is a decision tree for numerical data.  A “classification” tree is a 

decision tree for categorical data.  Since this dissertation uses numerical data from 

industrial processes, the primary focus of the following literature review is for the 

regression tree (RT).   

A regression tree is a piecewise constant or piecewise linear estimate of a 

regression function, constructed by recursively partitioning the data and sample space.  Its 

name derives from the practice of displaying the partitions as a decision tree, from which 

the roles of the regressors are inferred (Figure 2.2). 

Construction of a regression tree consists of the following general steps performed 

iteratively, ending with step four:  

 Partition the data, 
 Fit a model to the data in each partition, 
 Stop when the residuals of the model are near zero or a small 

fraction of observations are left, 
 Prune the tree if it over fits. 

 
Most of the contemporary regression tree algorithms differ on steps one and two.  Many 

popular graphical-user interface software packages that have DT algorithms do not have 

step four (e.g., JMP - http://www.jmp.com/, Statistica - http://www.statsoft.com/, etc., 

referenced 10/5/07).   

The AID (“Automatic Interaction Detection”) algorithm by Morgan and Sunquist 

(1963), Kass (1975) and Fielding (1977) is the first implementations of the DT idea.  AID 

searches over all axis-orthogonal partitions and yields a piecewise constant estimate (Loh 

2002).  At each stage, the partition that minimizes the total sums of squared errors (SSE) is 

selected.  Splitting stops if the fractional decrease in total SSE is less than a pre-specified γ 

or if the sample size is too small.  As noted by Loh (2002), a weakness of AID is that it is 
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hard to specify γ, i.e., too small or too large a γ leads to over- or under-fitting.  Another 

weakness of AID (Doyle 1973) is that the “greedy search” approach induces a bias in 

variable selection, e.g., if X1 and X2 are ordered regressors with n1 > n2, X1 will have a 

higher chance of being selected which leads to erroneous inferences from the final tree 

structure.  “Greedy search” methods find the regressor that minimizes the total SSE in the 

regression models fitted to the data subsets defined by the split (e.g., JMP and Statistica).  

“Greedy search” methods are also computationally expensive (Loh 2002). 

The CART© (“Classification and Regression Trees”, http://www.salford-systems.com/ 

referenced 9/20/07) algorithm followed AID and is a popular DT method (Breiman et al. 

1984).  Unlike AID, it avoids choosing a γ by employing a backward-elimination strategy 

to determine the tree (Loh 2002).  It grows an overly large tree and then prunes away some 

branches, using a test sample or v-fold cross-validation (CV) to estimate the total SSE.  In 

step two of the four general steps of decision trees, the CART regression tree fits a mean 

function in each partition (also called a piecewise constant regression tree).   

The MARS© (“Multivariate Adaptive Regression Splines”) by Friedman (1991, 

http://www.salford-systems.com/ referenced 9/20/07) method combines spline fitting 

with recursive partitioning to produce a continuous regression function estimate 

(Chaudhuri et al. 1995).  Chaudhuri at al. (1995) note that the complexity of the estimate 

from MARS© makes interpretation difficult and theoretical analysis of the spline statistical 

properties extremely challenging. 

Quinlan's (1992) M5 method constructs an ordinary regression tree with a stepwise 

linear regression model fitted to each node at every stage.  As noted in Kim et al. (2007b), 

Chaudhuri et al. (1994) chose a residual-based approach from MLR models.  This 
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approach selects the variable with the signs of the residuals which appear most non-

random, as determined by the significance probabilities of two-sample t-tests.    

The FIRM algorithm (“Formal Inference-based Recursive Modeling”) by Hawkins (1997) 

addresses the bias problem of AID by using Bonferroni-adjusted significance tests to select 

predictors for splitting.  Unlike AID and CART, FIRM splits each node into as many as 

ten subnodes for an ordered regressor.  As Loh (2002) noted from Hawkins (1997) work, 

the Bonferroni adjustment can over-correct, resulting in a bias toward regressors that have 

fewer splits. 

As cited by Loh (2002), other methods have been proposed for determining the 

final tree: Ciampi et al. (1988, 1991) combine non-adjacent partitions; Chaudhuri et al. 

(1994) use a CV-based, look-ahead procedure; Marshall (1995) finds non-hierarchical 

partitions; Chipman et al. (1998) and Denison et al. (1998) employ Bayesian methods to 

search among trees; and Li et al. (2000) use a stopping rule based on statistical significance 

tests.   

The GUIDE, ver. 5.2 (“Generalized, Unbiased, Interaction Detection and Estimation”) DT 

algorithm is used in this research.  GUIDE (Loh 2002, Chaudhuri and Loh 2002) extend 

the idea of Chaudhuri et al. (1994) by means of “curvature tests”  

(www.stat.wisc.edu/~loh/ referenced 10/5/07).  A curvature test is a chi-square test of 

association for a two-way contingency table where the rows are determined by the signs of 

the residuals (positive versus non-positive) from a fitted regression model.  The idea is that 

if a model fits well, its residuals should have little or no association with the values of the 

regressor variable.   
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As Kim et al. (2007) note, GUIDE has five properties that make it desirable for 

the analysis and interpretation of large datasets: (1) negligible bias in split variable selection; 

(2) sensitivity to curvature and local pairwise interactions between predictor variables; (3) 

applicability to numerical (continuous) and categorical variables; (4) choice of simple linear, 

multiple, best, Poisson, or quantile regression models (and proportional hazard analysis); 

and (5) choice of three roles for each numerical predictor variable (split selection only, 

regression modeling only, or both).  Another strength of GUIDE is the boot-strap 

adjustment of p-values, which is important consideration when dealing with small sample 

sizes often encountered with industrial data.  Preliminary versions of the GUIDE 

algorithm are described in Chaudhuri et al. (1994) and Chaudhuri (2000).  Additional 

documentation can be found in Loh (2006), Kim et al. (2007), Loh (2007a), Loh (2007b), 

Loh et al. (2007) and at the web-site www.stat.wisc.edu/~ loh/ referenced 10/5/07. 

Since the main advantage of a regression tree over other models is the ease with 

which the model can be interpreted, it is important that the construction method be free 

of selection bias (Loh 2002).  GUIDE achieves this goal by employing a lack-of-fit test 

followed by a bootstrap adjustment of the p-values which is critical because parametric p-

values are data-size dependent (Loh 2007a).8 

                                                 

8 Bootstrapping is the practice of estimating properties of an estimator (such as its variance) by 
measuring those properties when sampling from an approximating distribution. One standard 
choice for approximating a distribution is the empirical distribution of the observed data.  The 
advantage of bootstrapping over analytical method is its great simplicity - it is straightforward to 
apply the bootstrap to derive estimates of standard errors and confidence intervals for complex 
estimators of complex parameters of the distribution, such as percentile points, proportions, odds 
ratio, and correlation coefficients (http://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29 
referenced 10/5/07).  Bootstrapping is distinguished from the jackknife procedure used to detect 
outliers, and v-fold cross-validation used to make sure that results are repeatable.  Bootstrapping is 
becoming popular because it does not require the normality assumption to be met, and because it 
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Decision trees represent a contemporary scientifically-based decision-making 

method for forest products practitioners interested in improving the understanding of 

industrial process.  Decision trees represent an “off the shelf” technology and may be 

superior to MLR models (and kernel methods) when data are non-homogeneous. 

 
Predictive Modeling of Engineered Wood Panels 
 

Engineered wood panel manufacturing may have a large number of differing, but 

interdependent, process variables that may have complex functional forms which influence 

strength properties.9  Wood passes through many processing stages that may influence 

final strength properties.  Key process parameters may include mat-forming consistency, 

line speed, press temperature, press closing rates, wood chip dimensions, fiber dimension, 

fiber-resin formation, etc.  At the time of production, the quality of engineered wood is 

unknown, i.e., samples are analyzed at a later time in a lab using destructive testing.  The 

time span between destructive tests may vary from two to six hours depending on the type 

of product.  Hours of unacceptable engineered wood production may go undetected 

between these tests.  Many engineered wood panel producers create a hedge of higher than 

needed density targets to make up for the lack of product quality knowledge between 

destructive tests.  As a consequence, high density targets as a hedge require higher than 

necessary resin, wood fiber and energy inputs.  In an era of strong market competition, 

higher than necessary density targets are not sustainable or competitive in the long term. 

                                                                                                                                              
can be effectively utilized with smaller sample sizes (n < 20), 
http://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29 (referenced 10/5/07). 

9 Strength properties are usually determined from destructive testing, e.g., internal bond tensile 
strength, maximum load flexure strength, maximum deflection flexure strength, modulus of 
rupture flexure strength, modulus of elasticity flexure strength, etc.   
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Process variables may exert simple linear univariate effects on final product quality 

characteristics while others may produce non-linear multivariate effects.  These effects may 

be dynamic and be dependent on wood furnish, temperature, line speed, tool sharpness, 

etc.  Some work has been initiated in real-time data mining and predictive modeling of 

final product quality characteristics of forest products using statistical methods (Young 

1997; Bernardy and Scherff 1998, 1999; Gruebel 1999; Erilsson et al. 2000; Young and 

Guess 2002; Young and Huber 2004; Clapp et al. 2007).  Erilsson et al. (2000) discussed 

the potential of statistical models for engineered wood manufacture, while Gruebel (1999) 

documented MDF manufacturing cost savings of 5 to 10 percent from the use of “off-

line” first-order statistical models (e.g., faster line speeds, reduced raw material inputs, 

reduced energy usage, etc.).  There is no evidence from the literature of the use of decision 

tree methods for analyzing or predicting strength properties of engineered wood panels.  

Other research has investigated non-statistical heuristic models (e.g., genetic 

algorithms and neural networks) to develop real-time predictions of product quality 

characteristics of forest products (Cook and Wolfe 1991, Cook and Chiu 1997, Estévez et 

al. 2003, Toivanen et al. 2003, Young et al. 2004 and Dawson et al. 2006).  Much work is 

published on theoretical models that explain final product quality characteristics (Wu and 

Piao 1999; Xu 2000; Humphrey and Thoemen 2000; Barnes 2001; Shupe et al. 2001; 

Zombori et al. 2001).  Applications of theoretical models for wood composites 

manufacture are not evident in the literature.  

 
Medium Density Fiberboard (MDF) 

Large-scale production of MDF began in the 1980s.  MDF is an engineered wood 

product formed by breaking down softwood (Pinus spp.) into wood fibers, often in a 
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defibrator (i.e.,“refiner”), combining it with wax and resin, forming mats and applying high 

temperature and pressure to create panels.  MDF is a popular wood composite material.  

MDF advantages are that it has uniform density and that it has a surface that is smooth 

and free of grain patterns and defects.  Its smooth surface makes it an excellent base for 

laminates for counter tops and cabinets.  MDF is a non-structural panel that has extensive 

use in furniture, shelving, laminate flooring, decorative molding and doors (Figure 2.3).  

MDF’s name comes from the distinction in densities.  MDF typically greater than 

½” in thickness has a density of 600-800 kg/m³ (38-50 lbs/ft3).  High-density fiberboard 

(less than ½” thickness) has a density of 500-1,400 kg/m³ (31-90 lbs/ft3).  An illustrative 

comparison of the densities of wood composites and natural solid wood is presented in 

(Figure 2.4). 

Some people prefer using MDF over regular lumber because it has a lower impact 

on the environment.  MDF is made from cellulosic waste products, which sometime are 

dumped in landfills.  This attraction has helped MDF gain popularity among homeowners 

(www.wisegeek.com/what-is-mdf.htm referenced 10/5/07).   

One contentious issue for MDF is the use of formaldehyde (HCHO) resins and 

the associated health risks.  MDF contains a higher resin-to-wood ratio than any other 

urea-formaldehyde (UF) wood composites and is the highest formaldehyde-emitting wood 

composite.  Under U.S. Department of Housing and Urban Development (HUD) rule 24 

CFR, HCHO emissions are limited to 0.2 parts per million (ppm) for floor underlayment 

and manufactured home floor decking, and 0.3 ppm for other products (TECO 2007). 

In June of 2004, the International Agency for Research into Cancer (part of World 

Health Organization), upgraded formaldehyde from category 2A (probably carcinogenic to 
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humans) to Category 1 (carcinogenic to humans), see Sharp (2004).  Reclassification is 

based on evidence of increased incidence of the relatively rare, nasopharyngeal cancer 

among individuals exposed in the past to high levels of formaldehyde (Sharp 2004).   

The litigation potential of formaldehyde poisoning from wood composites is 

illustrated in Spake (2007).  An estimated 275,000 Americans are living in more than 

102,000 mobile homes that FEMA purchased for $2.6 billion after hurricane Katrina 

(Spake 2007).  A class-action lawsuit was filed against FEMA and some trailer 

manufacturers in Louisiana in June 2006 on behalf of residents suffering from respiratory 

and flu-like illnesses they attribute to formaldehyde inside their trailers (Spake 2007).    

 
Oriented Strand Board (OSB) 
 

Oriented strand board (OSB) is a structural engineered wood composite panel 

consisting of mats formed from resinated wood strands of approximately 0.030” (inches) 

in thickness, 2” in width and 4” in length.  The mats are pressed into panels under heat 

and pressure in multi-opening or continuous presses.  OSB is a structural product used in 

residential and non-residential construction for sheathing in walls, floors and roofs (Figure 

2.5).  OSB is the most commonly used structural engineered wood panel in new residential 

housing construction in North America (http://www.osbguide.com/faqs/faq1.html 

referenced 10/5/07). 

The OSB industry is currently experiencing unprecedented growth in North 

America in new mill startups and mill capacity expansion.  Since 1990, new startups of 

mills have increased by 85 percent to 65 mills, while production capacity has increased by 

more than 100%, to a record 28 billion square feet per year (Adair 2005).  OSB is 

aggressively replacing plywood as the primary sheathing demanded in North America.  
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Approximately 65 percent of the 43 billion square feet of construction sheathing used in 

2005 consisted of OSB, while the remaining 35 percent consisted of plywood sheathing 

(Adair 2005).  Note that 73 percent of all OSB sheathing is used in residential housing 

construction.  Residential housing construction in the U.S. is predicted to decline from a 

record of almost 2.0 million annual new housing starts in 2005 to approximately 1.8 

million housing starts by 2010 (Adair 2005).  The decline in housing starts, in conjunction 

with recent OSB capacity expansion, will put downward pressure on OSB market prices 

and producers will be forced to improve efficiency.  These market pressures will require 

OSB manufacturers to maintain a strong focus on reliability, quality and cost (Wang et al. 

2007).  The methods and results from this dissertation, if adopted, are directly beneficial to 

practitioners in the wood composites industry. 
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Appendix to Chapter II 
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Figure 2.1.  Illustration of MLR fit and DT piecewise linear fit to non homogeneous data 
(Kim et al. 2007).  

 

 

 

 

 
Figure  2.2.  Illustration of a decision tree (Kim et al. 2007). 
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Figure 2.3.  Illustration of applications of MDF 
(http://images.google.com/images?hl=en&q=mdf&gbv=2 referenced 10/5/07). 

 

 

 

 

 

 

 
Figure 2.4.  Illustration of densities for solid wood, MDF and WPC 
(http://pas.ce.wsu.edu/CE546/Lectures/Lecture1-Aug2006.pdf referenced 
10/5/07). 
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Figure 2.5. Illustration of OSB wood strands, panels and uses in construction. 
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CHAPTER III.  METHODS 
 
 
Multiple Linear Regression 
 

One of the most traditional and popular statistical methods is multiple linear 

regression (MLR).  For situations where the data are drawn from reasonably homogeneous 

populations and the response (Y) is normally distributed, traditional methods such as MLR 

can yield insightful analyses. The usefulness of MLR can breakdown quickly if these 

stringent assumptions are not met. 

Most practitioners use first-order multiple linear regression (MLR) models of the 

form: 

Y X= α + β + ε          [3.1] 

where,  Y  is an (n × 1) vector of dependent observations, X is an (n × p) matrix of 

independent variables of known form, β is an (p × 1) vector of parameters, ε is an (n × 1) 

vector of errors.  From a practical perspective second- and third-order MLR models of the 

form: 

2
Y X X= α + β + γ + ε ,   [3.2] 

and 

2 3
Y X X X= α + β + γ + δ + ε   [3.3] 

may be more helpful.  In this research, MLR models are investigated up to third-order 

models with interaction terms. 
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The least squares method is fundamental to MLR and is used to find an affine 

function that best fits a given set of data.10  The least squares method is very defendable by 

minimizing the sum of the n squared errors (SSE) of the predicted values on the fitted line. 

A key step in using MLR for data mining is to develop a model building or best 

model criteria.  A popular model building method for MLR is stepwise regression.  

Stepwise regression was introduced by Efroymson (1960) and was intended to be an 

automated procedure for selecting the most statistically significant variables from a large 

pool of explanatory variables.  The mixed selection procedure is the most defendable 

stepwise procedure and it is a combination of the forward selection and backward 

elimination procedures.11  In stepwise regression the user specifies the probabilities (α) for 

an independent variable “to stay” and also the probabilities “to leave” the model.   

Stepwise regression is typically used in conjunction with a “best model criteria.”  

Young and Guess (2002) found multicollinearity and heteroscedasticity (i.e., unequal 

variances of the residuals) to be significant problems when modeling MDF product quality 

from real-time data.  Young and Guess (2002) used the following “best model criteria” 

which is also used in this research:   

                                                 

10An affine (from the Latin, affinis, “connected with”) subspace of a vector space (sometimes called 
a linear manifold) is a coset of a linear subspace.  A linear subspace of a vector space is a subset 
that is closed under linear combinations, e.g., linear regression equation of a linear subspace 
(http://mathworld.wolfram.com/AffineFunction.html. referenced 10/4/07). 

11 The forward selection procedure attempts to insert variables until the regression is satisfactory 
(Draper and Smith 1981).  The order of insertion is determined by using the partial correlation 
coefficient as a measure of the importance of variables not yet in the equation (Neter et al. 1996).  
This starts by finding the most correlated independent variable (x) with Y, and so forth.  The 
overall regression is checked for significance, the improvements in R2 value and the partial F-values 
are noted.  The partial F-values are compared with an appropriate F percentage point and the 
corresponding independent variables are retained or rejected from the model according to 
significance. This continues until a suitable the first-order linear regression equation is developed 
(Kutner et al. 2004, Neter et. al. 1996, and Myers 1990).     
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 maximum Adjusted R2
a, 

 minimum Akaike’s Information Criterion (AIC), Akaike (1974), 
 Variance Inflation Factor (VIF) < 10, 

 significance of independent variables p-value < 0.10, 

 absence of heteroscedasticity in residuals, E(εi) = 0,12 
 examination or residual plots, 
 root mean square error of prediction (RMSEP), 
 XY scatter plot of predicted and observed values for the 

validation data set. 
 

Adjusted R2
a
 is a better measure for building models with the potential of a large 

number of independent variables than is the coefficient of determination (R2).  R2 will 

always increase as an additional independent variable is added to the model, where R2
a will 

only increase if the residual sum of squares decreases (Draper and Smith 1981).  R2
a 

minimizes the risk of “over-fitting” and penalizes for it.  AIC protects against model bias 

and VIFs less than ten protect against multicollinearity and the development of ill-founded 

models. 

 An important procedure for variable reduction is called “all possible subsets” or 

“all possible regression procedure” (Neter et al. 1996).  The purpose of all possible subsets 

is to identify a small group of regression models that are “good” according to a specified 

criterion, e.g.., criteria specified by Young and Guess (2002).  The limited number of 

regressors might consist of three to six good subsets according to specified criteria.  The 

all possible subsets approach assumes that the number of observations exceeds the 
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maximum number of parameters (n > p), and that n should be six to ten times larger than p 

(Kutner et al. 2004).  

 Plotting residuals ˆ( )e y y= − is an important diagnostic for checking model quality 

(Draper and Smith 1981).  Departures from normal errors can detect if: 

 the regression function is not linear, 
 the error terms do not have a constant variance, 
 the error terms are not independent, 
 the model fits all but one or a few outlier observations, 
 the error terms are not normally distributed, 
 one or several important predictor variables have been omitted 

from the model. 
 

A key method for assessing the quality of model predictions of the validation data 

set is cross-validation (Kutner et al. 2004).  A validation sample is simply a sample that is 

withheld from the estimation of a regression model.  The model developed is then used to 

predict the true values of the records withheld.  Statistics such as 2
validation

R  (coefficient of 

determination for the validation sample) and root mean square error of the predicted 

(RMSEP) are calculated for the validation data set to compare the performance of the 

training models.  The RMSEP statistic is:  

  

 2

1

( )
n

ii

i

Y Y

RMSEP
n

=

−
=

∑
                                  [3.4] 

where, n is the number of observations, 
i

Y is the i-th actual value and 
iY is the i-th 

predicted value. 

Box Cox Transforms of Y 

Sometimes a transformation on the response Y fits the model better than the 

original response.  A commonly used transformation raises the response Y to some power.  
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Models are investigated in this research using the Box Cox transforms of the response Y 

(Box and Cox 1964).  Box and Cox (1964) formalized a family of power transformations.  

The formula for the transformation is constructed so that it provides a continuous 

definition and the error sums of squares are comparable: 

( )

1

1
if ln( )if 0

Y
Y    0,  Y Y

Y

λ
λ

λ−

⎧ −
= λ ≠ λ =⎨λ⎩

&
&

  [3.5] 

 
whereY& is the geometric mean.13  The plot of Y λ and λ (Figure 3.1) illustrates the effect of 

this family of power transformations on Y. 

 
Quantile Regression Trees 
 

For 0 < α < 1, quantile regression analysis focuses on the conditional α-th quantile 

of the response Y given a covariate vector X = (X1,X2, ….., Xk).  Unlike usual regression 

analysis, which focuses only on the mean of Y given X, quantile regression is capable of 

providing insight into the median as well as the lower and upper tails of the conditional 

distribution of the response with varying choices of α (Chaudhuri and Loh 2002).  As a 

                                                 

13 The geometric mean of a collection of positive data is defined as the nth root of the product of 
all the members of the data set, where n is the number of members.  The geometric mean of a data 
set [a1, a2, ..., an] is given by: 
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The geometric mean of a data set is smaller than or equal to the data set's arithmetic mean (the two 
means are equal if and only if all members of the data set are equal). 

 

 



 33

result, quantile regression is quite effective as a tool for exploring and modeling the nature 

of dependence of a response on the covariates when the covariates have different effects 

on different parts of the conditional distribution of the response (Chaudhuri and Loh 

2002). 

Examining causality between process variables and product quality characteristics 

beyond the mean of the distribution is an important issue for forest products 

manufacturers.  Most forest products manufacturers (especially wood composites 

manufacturers) have a strong interest in understanding the lower percentiles (failures, 

safety risk, claims, etc.) of the distribution of manufactured product quality.   

Traditionally, MLR is used to study causality between independent variables and 

the average of a response variable, with an important goal of making useful predictions of 

the response variable.  However, there are three important assumptions of the MLR 

approach: 1) assumption of linearity; 2) the assumption of a normal or Gaussian 

distribution for the response variable; and 3) models the mean of the distribution of the 

response variable.   

Quantile regression (QR) is intended to offer a comprehensive strategy for 

completing the regression picture (Koenker 2005).  As Mosteller and Tukey (1977) note in 

their influential text, as cited by Koenker (2005): “…the regression curve gives a grand 

summary for the averages of the distributions corresponding to the set of Xs…and so 

regression often gives a rather incomplete picture.  Just as the mean gives an incomplete 

picture of a single distribution, so the regression curve gives a correspondingly incomplete 

picture for a set of distributions.”   
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Quantile Regression (QR) is an approach that allows us to examine the behavior of 

the target variable (Y) beyond its average of the Gaussian distribution (e.g., median or 50th 

percentile, 10th percentile, 80th percentile, 95th percentile, etc.).  Examining causality of the 

median and average tendencies of the distribution of a product quality characteristic may 

yield different conclusions.  Shaffer et al. (2007) and Young et al. (2007b) note that 

independent variables influencing the response variable of the IB of MDF varied 

dramatically by quantile.  In some cases the sign and strength of the coefficient of similar 

independent variables explaining IB was reversed by quantile. 

The QR model does not require the product quality characteristics to be normally 

distributed and does not have the other rigid assumptions associated with MLR.  The first-

order QR model has the form: 

  1
0 1 ( )

iy i u
Q x x Fτ β β τ−= + +             [3.6] 

where,  
iy

Q is the  conditional value of the response variable given τ in the  ith trial, 
o

β is 

the intercept, 1β  are parameters, τ denotes the quantile, xi is the value of the independent 

variable in the ith trial, 
u

F is the common distribution function (e.g., normal, Weibull, 

lognormal, other, etc.) of the error givenτ , 1( ( )) 0
u

E F τ− = , for  i = 1 ,…, n (Koenker 

2005). 

Just as we can define the sample mean as the solution to the problem of 

minimizing a sum of squared residuals, we can define the median as the solution to the 

problem of minimizing a sum of absolute residuals (Koenker and Hallock 2001).  The 

symmetry of the piecewise linear absolute value function implies that the minimization of 

the sum of absolute residuals must equate the number of positive and negative residuals, 

thus assuring that there are the same number of observations above and below the median 
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(Koenker and Hallock 2001).  Minimizing the sum of asymmetrically-weighted absolute 

residuals yields the quantiles (Koenker and Hallock 2001).  Solving  

    min ( ),
1

n
y
i

i
ρ ξτ −∑

=
    [3.7] 

where the function ρτ(⏐) is a tilted absolute value function that yields the τth sample 

quantile as its solution (Koenker and Hallock 2001), Figure 3.2.  To obtain an estimate of 

the conditional median function in quantile regression, we simply replace the scalar ξ in 

equation [3.7] by the parametric function ξ(xi, β) and set τ to ½.14   To obtain estimates of 

the other conditional quantile functions, replace absolute values by ρτ(⏐) and solve,  

    ˆ( ) min ( ( )),1

n
y xi i

i
β τ ρ ξ βτ= −∑

=
     [3.8] 

For any quantile (0,1)τ ∈ .  The quantity ˆ( )τβ is called the τth regression quantile.    

 QR is an important non-parametric statistical method for forest products 

practitioners interested in exploring causality beyond the mean of the distribution.  A 

strength of GUIDE decision trees is that it allows for quantile regression fits in the 

terminal nodes of the trees.  Use of quantile regression trees for examining causality of 

engineered wood panel strength properties is not documented in the literature.  

 
Decision Trees and the GUIDE Method 
 

As noted earlier, a regression tree is a piecewise constant or piecewise intrinsically 

linear estimate of a regression function, constructed by recursively partitioning the data 

and sample space (Loh 2002).  A decision tree partitions the data space of all joint 

                                                 
14 Variants of this idea were proposed in the mid-eighteenth century by Boscovich and 
subsequently investigated by Laplace and Edgeworth (Koenker and Hallock 2001). 
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regressor values X into J-disjoint regions 1{ }J

j
R (Friedman 2001).  For a given set of joint 

regressor values X, the tree prediction ˆ ( )
j

Y T= X assigns as the response estimate, the 

value assigned to each region containing X: 

ˆ( )
j j j

X R T y∈ ⇒ =X  .   [3.9] 

 Given a set of regions, the optimal response values associated with each region are 

easily obtained, namely the value that minimizes prediction error (risk) in that region: 

ˆ arg min [ ( , ) | ]j y j
y

Y E L y y R
′

′= ∈X .  [3.10] 

As noted by Friedman (2001), the difficult problem is to find a good set of regions 1{ }J

j
R . 

Unlike kernel methods (e.g., rudimentary kernel method such as multiple linear regression 

and assumption of homogeneity), decision trees attempt to use the data to estimate a good 

partition instead of a user defined model. 

GUIDE can recursively partition a dataset and fit a constant, best, multiple linear 

or quantile regression model to the observations in each partition.  GUIDE first 

constructs a nested sequence of tree-structured models and then uses v-fold cross-

validation to select the smallest tree-structure which has an estimated mean prediction 

deviance that lies within a minimum variance (e.g., standard error of training data set or 

standard error of both training and validation set ~ “global range”).  GUIDE employs the 

Pearson chi-square 2( )χ test to detect lack-of-fit of the residuals in choosing a regressor 

variable to partition at each stage.  As Loh (2006b) notes, GUIDE does not have the 

selection bias of CART (Breiman et al. 1984) and other tree algorithms that rely solely on 

greedy search optimization.  
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The GUIDE algorithms (Loh 2002b) for fitting piecewise constant and piecewise 

linear models are: 

Algorithm 1.  Chi-square tests for constant fit: 

1. Obtain the residuals from a constant model fitted to the Y data.  
 

2. For each numerical-valued variable, divide the data into four groups at  
 the sample quartiles; construct a 2 x 4 contingency table with the  
 signs of the residuals (positive versus non-positive) as rows and the  
 groups as columns; count the number of observations in each cell  

 and compute the 2χ statistic and its theoretical p-value from a 2
3χ   

 distribution. We refer to this as a curvature test. 
 
3. Do the same for each categorical variable, using the categories of the  
 variable to form the columns of the contingency table and omitting  
 columns with zero column totals. 

 
4. To detect interactions between a pair of numerical-valued variables (Xi,  
 Xj), divide the (Xi Xj)-space into four quadrants by splitting the  
 range of each variable into two halves at the sample median;  
 construct a 2 x  4 contingency table using the residual signs as rows  

 and the quadrants as columns; compute the 2χ  statistic and p- 

 value. Again, columns with zero column totals are omitted.  
 

5. Do the same for each pair of categorical variables, using their value pairs  
 to divide the sample space. For example, if Xi and Xj take ci and cj  

values, respectively, the 2χ statistic and p-value are computed from 

a table with two rows and number of columns equal to cicj less the 
number of columns with zero totals. 

 
6. For each pair of variables (Xi, Xj) where Xi is numerical-valued and Xj is  
 categorical, divide the Xi-space into two at the sample median and  
 the Xj space into as many sets as the number of categories in its  
 range (if Xj has c categories, this splits the (Xi, Xj) space into 2c  
 subsets);  

construct a 2 x 2c contingency table with the signs of the residuals 

as rows and the subsets as columns; compute a 2χ statistic and p-

value for the table after omitting columns with zero totals. 
 

If the smallest p-value is from a curvature test, it is natural to select the associated 
X variable to split the node.  If the smallest p-value is from an interaction test, one 
of the two interacting variables is selected.  In order to fit a constant model in each 
node, the choice of variable is based on reduction in SSE.  
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Algorithm 2.  Choose between interacting pair of X variables (Loh 2002): 
 
Suppose that a pair of variables is selected because their interaction test is the most  
significant among all the curvature and interaction tests. 
 

1. If both variables are numerical-valued, the node is split in turn along the  
 sample  mean of each variable; for each split, the SSE for a constant  
 model is obtained for each subnode; the variable yielding the split  
 with the smaller total SSE is selected. 

 
2. Otherwise if at least one variable is categorical, the one with the smaller  
 curvature p-value is selected. 

 
 If a variable from a significant interaction is selected to spilt a node, the other  
 variable is not automatically required in the pair to split in the children nodes.   
 Instead, it competes for splits at every node with all of the other variables that  
 remain. 
 
To complete the tree construction algorithm the split points are selected as well as the size 

of the tree. 

The GUIDE algorithms (Loh 2006) for fitting piecewise linear models via stepwise 

regression are: 

Algorithm 1. (Tree construction).  These steps are applied recursively to each 
node of the tree, starting with the root node that holds the whole dataset. 
 

1. Let t denote the current node.  Fit a simple linear regression to each 
predictor variable in the data in t. Choose the regressor yielding the 
smallest residual mean squared error and record its model R2. 

 
2. Stop if R2 >_0.99 or if the number of observations is less than 2n0, 

where n0 is a small user-specified constant. Otherwise, go to the next 
step. 
 

3. For each observation associated with a positive residual, define the 
class variable Z = 1; else define Z = 0. 
 

4. Use Algorithm 2 to find a variable X′ to split t into left and right 
subnodes tL and tR. 

 

a) If X′ is ordered, search for a split of the form X′ ≤ x.  For every 
x such that tL and tR contain at least n0 observations each, find 
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S, the smallest total sum of squared residuals obtainable by 
fitting a simple linear model to the data in tL and tR separately.  
Select the smallest value of x that minimizes S. 
 

b)   If X′ is categorical, search for a split of the form X′ ∈ C, where  

C is a subset of the values taken by X′.  For every C such that tL 
and tR have at least n0 observations each, calculate the sample 
variances of Z in tL and tR.  Select the set C for which the 
weighted sum of the variances is minimum, with weights 
proportional to sample sizes in tL and tR . 
 

5. Apply step 1 to tL and tR separately. 
 

Algorithm 2. (Split variable selection): 
 

1.   Use Algorithms 3 and 4 (next page) to find the smallest curvature and  
 interaction p-values p(c) and p(i) and their associated variables X(c)  

 and ( ) ( )
1 2{ , }i j

X X  

 

2.   If p(c) ≤ p(i), define X′ = X(c) to be the variable to split t. 
 
3.   Otherwise, if p(c) > p(i), then: 
 

   a)  If either ( ) ( )
1 2or i j

X X is categorical, define X′ = ( )
1

i
X if it has the 

 smaller curvature p-value; otherwise, define X′ = ( )
2

i
X  

 

b) Otherwise, if ( )
1

i
X and ( )

2
j

X  are both ordered variables, search    

over all splits of t along ( )
1

i
X  .  For each split into subnodes tL 

and tR, fit a simple linear model on ( )
1

i
X  to the data in tL and tR 

separately and record the total sum of squared residuals.  Let S1 
denote the smallest total sum of squared residuals over all 

possible splits of t on ( )
1

i
X .  Repeat the process with ( )

2
i

X and 

obtain the corresponding smallest total sum of squared residuals 

S2.  If S1 ≤ S2, define X′ = ( )
1

i
X ; otherwise, define X′ = ( )

2
i

X . 

 
Algorithm 3. (Curvature tests): 

 
1. For each predictor variable X: 
 

a)  Construct a 2 × m cross-classification table.  The rows of the 
table are formed by the values of Z.  If X is a categorical 
variable, its values define the columns, i.e., m is the number of 
distinct values of X.  If X is quantitative, its values are grouped 
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into four intervals at the sample quartiles and the groups 
constitute the columns, i.e., m = 4. 
 

b) Compute the significance probability of the chi-squared test of  
association between the rows and columns of the table. 
 

2. Let p(c) denote the smallest significance probability and let X(c) denote 
the associated X variable. 

 
Algorithm 4. (Interaction tests): 
 

1. For each pair of variables Xi and Xj , carry out the following interaction 
test: 
 

a) If Xi and Xj are both ordered variables, divide the (Xi,Xj)-space  
into four quadrants by splitting the range of each variable into 
two halves at the sample median; construct a 2 × 4 contingency 
table using the Z values as rows and the quadrants as columns. 
After dropping any columns with zero column totals, compute 
the chi-squared statistic and its p-value. 
 

b) If Xi and Xj are both categorical variables, use their value-pairs 
to divide the sample space.  For example, if Xi and Xj take ci 
and cj values, respectively, the chi-squared statistic and p-value 
are computed from a table with two rows and number of 
columns equal to cicj less the number of columns with zero 
totals. 
 

c) If Xi is ordered and Xj is categorical, divide the Xi-space into 
two at the sample median and the Xj-space into as many sets as 
the number of categories in its range—if Xj has c categories, 
this splits the (Xi, Xj)-space into 2c subsets.  Construct a 2×2c 
contingency table with the signs of the residuals as rows and 
the 2c subsets as columns.  Compute the chi-squared statistic 
and its p-value, after dropping any columns with zero totals. 
 

2. Let p(i) denote the smallest p-value and let ( )
1

i
X and ( )

2
i

X denote the pair 

of variables associated with p(i).  
 

After tree building terminates, the tree is pruned using v-fold cross-validation.  Let 

E0 be the smallest v-fold cross-validation estimate of prediction mean squared error and let 

α be a positive number. The smallest subtree is selected whose v-fold cross-validation 

estimate of mean square error is within α times the standard error of E0 (Loh 2006). 
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The split selection approach is different from that of CART, which constructs 

piecewise constant models only and which searches for the best variable to split and the 

best split point simultaneously at each node.  CART’s variable selection is inherently biased 

toward choosing variables that permit more splits (Loh 2006).  GUIDE does not have 

such bias because it uses p-values for variable selection (Loh 2006). 

v-fold cross-validation 

 
This type of v-fold cross-validation is useful when no test sample is available and 

the learning sample is too small to have the test sample taken from it. The user-specified v 

value for v-fold cross-validation (its default value is 10) determines the number of random 

subsamples, as equal in size as possible, that are formed from the training (learning) 

sample.  A tree of the specified size is computed v times, each time leaving out one of the 

subsamples from the computations, and using that subsample as a test sample for v-fold  

cross-validation, so that each subsample is used (v - 1) times in the learning sample and just 

once as the test sample.  The v-fold cross-validation costs are computed for each of the v 

test samples and then averaged to give the v-fold estimate of the v-fold cross-validation 

costs Breiman et al. (1984). 

The total number of cases is divided into v subsamples Z1, Z2, ..., Zv of almost 

equal sizes. The subsample Z - Zv is used to construct the predictor d.  Then the v-fold  

cross-validation estimate is computed from the subsample Zv in the following way: 

( ) 2

( , )

1
( ) ( ( ))

n n v

CV v

i n

v x y Zv

R d y d x
N ∈

= −∑ ∑   [3.11] 

where ( )( )vd x is computed from the sub sample Z - Zv .  
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GUIDE Importance Ranking 
 

The GUIDE importance ranking (Loh 2007) is used in this dissertation to reduce 

the number of regressors and increase the dimensionality in the data set for the use of 

quantile regression in each terminal node of the regression tree.  The GUIDE importance 

ranking is estimated by: 

1. Fit a constant model to the data in the node and obtain residuals, 
 
2. Cross-tabulate each categorical variable with the signs of the residuals, 
 
3. Discretize each numerical variable X into four groups at the quartiles and 
 cross-tabulate with the signs of the residuals, 
 

4. Compute each 2
v

χ -value and convert it to a 2
1χ -value using two applications 

 of the Wilson-Hilferty (1931) approximation: 
 

3
1/32

2
1

7 2
max 0, 1

9 9

⎛ ⎞⎡ ⎤⎧ ⎫⎛ ⎞χ⎪ ⎪⎜ ⎟⎢ ⎥χ = + − +⎨ ⎬⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎜ ⎟⎪ ⎪⎩ ⎭⎣ ⎦⎝ ⎠

vv
v v

  [3.12] 

 

6. Select the variable with largest value 2
1χ to split the node. 

 
Importance score of Xi is: 
 

   2
1( ) ( ) ( , )

t

IMP i n t t i= χ∑     [3.13] 

 
where,   summation is over all intermediate nodes t, 
  n(t) is the sample size at node t, 

  2
1 ( , )t iχ is the Wilson-Hilferty chi-squared value of Xi at t . 
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Data Set Description 
 
Medium Density Fiberboard (MDF) 

The MDF data set is from a southeastern U.S. manufacturer.  The plant has an 

annual capacity of 100 million sq. ft., 5/8 inch basis and a 12-platen multi-opening (“day-

light”) press.  The plant started production in early 1993.  The primary mechanical 

property defining strength quality for MDF producers and their customers is internal bond 

(IB).  Destructive tests of IB are taken at approximate time intervals of two hours from 

one press platen (#8) while the production line is running.   

 The real-time data fusion database of Young and Guess (2002) as refined by 

Dawson et al. (2006) is used for this dissertation research (Appendix A).  Three nominal 

products of the producer are used in this research.  The products are 0.750 inches (”), 

0.625” and 0.500”, all industrial (“IND”) grade.  The manufacturer requested that the 

densities of these “IND” products not be reported in the public domain.  The 0.500” 

product has 209 records dating from 11/25/05 to 09/30/06; 0.625” product has 517 

records dating from 11/15/05 to 10/18/06; and the 0.750” product has 245 records 

dating from 11/16/05 to 10/14/06.  Five records are eliminated from the 0.750” product 

set given an excessive level of null fields in the records (#639 - 1/4/06; #786 - 1/19/06; 

#1526 - 4/7/06; #1526 – 4/7/06; a duplicate record, and #1642 - 4/26/06).  Two records 

are eliminated from the 0.625” product set given an excessive level of null fields and 

possible incorrect product classification (#1878 - 5/17/06; #2996 – 9/13/06).  No 

records are eliminated from the 0.500” product set.   

 The MDF data set has 183 independent variables (regressors) that correspond to 

real-time sensors on the production line.  Sensor data are time-lagged in the data to reflect 
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the location of the sensor relative to the location of the press where the MDF panel is 

created (Dawson et al. 2006). 

Oriented Strand Board (OSB) 

The OSB data set is from a southeastern U.S. manufacturer.  The plant has an 

annual capacity of 500 million sq. ft., 3/8-inch roof sheathing (RS) basis and has a 16-

platen multiple opening press.  The plant started production in December 2004.  The 

primary mechanical properties defining product quality for this OSB manufacturer are IB 

tensile strength and Parallel Elasticity Index (EI) flexure strength.  Destructive tests are 

taken two or three times per 12-hour shift to determine product quality of manufactured 

product.   

The real-time data fusion database created by Young and Guess (2002) as refined 

by Dawson et al. (2006) is also used in this research (Appendix A).  The fused database 

consists of destructive test data with 234 process sensor regressor variables.  The data set 

contains 238 records from 7/27/2005 to 11/20/2006.  After communication with the 

Technical Director, four data records are removed from the data set given that the records 

are defined as experimental for either a “new product trial” or resin experiment.  The 

records are: #10106 (04/22/2006 2:58:41 PM); #9250612 (09/26/2006 8:10:44 PM); 

#92806316 (10/05/2006 12:41:53 PM); and #935 (11/04/2006 1:10:48 PM).  Similar to 

the MDF data, sensor data are time-lagged in the data to reflect the location of the sensor 

relative to the location of the press where the OSB panel is created (Dawson et al. 2006). 

In model building a general rule of thumb is to use 80 percent of the entire data set 

for the training (or learning) data set and the remaining 20 percent for the validation (or 

calibration) data set (Kutner et al. 2004).  Validation records when time-ordered, as is the 
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case of this data, are the most current 20 percent of the records (Kutner et al. 2004).  A 

challenge in this research is low dimensionality of both MDF and OSB data sets.  Many 

authors note that ideal record length should be six to ten times the number of independent 

variables (Draper and Smith 1981, Myers 1990, Neter et al. 1996, and Kutner et al, 2004).  

Unfortunately, the data fusion records developed by Dawson et al. (2006) given the long 

sampling intervals between destructive tests did not allow for this ideal to be met.  I 

envision future research with these companies that may facilitate improved data set 

dimensionality. 

 
Data Quality and Descriptive Statistics 
 
Medium Density Fiberboard (MDF) 
 
0.500” Thickness. -- Descriptive statistics of IB that characterize the location, variability 

and shape of the 0.500” thickness data are presented.  The mean (141.6 p.s.i.) and median 

(141 p.s.i.) for this product are similar (Table 3.1).  The coefficient of variation (CV) 

characterizes variability of the data and a CV of 10.4 percent (standard deviation 14.8 p.s.i.) 

for 0.500” illustrates that the standard deviation comprises almost 10 percent of the scale 

of the mean.  The shape of the data is characterized by skewness and kurtosis.  The low 

kurtosis value of 0.07 indicates a distribution that has a rounded peak with wide shoulders.  

Skewness measures the direction and degree of asymmetry.  The skewness value of 0.15 

indicates some mild positive skewness (tail to the right) of the data.  The histogram of 

0.500” IB (Figure 3.3) indicates mild asymmetry of the distribution.  The box plot, a useful 

visualization tool indicates that this product may have four IB values that are possible 

outliers, i.e., any point outside the whisker and the box are possible outliers. 
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Probability plots are a common graphical technique to demonstrate how a 

particular data set fits a specific candidate probability distribution. The data are ordered 

and plotted against the theoretical order statistics of the desired distribution.  There is 

evidence that a data set conforms to a specific distribution if the data fall along the straight 

calibration line between the two ordered data sets.  

 Simultaneous confidence bands, along with pointwise confidence intervals provide 

objective assessments of deviation from the line (Meeker and Escobar 1998).  Data points 

outside the confidence bands are shown to deviate from the candidate probability 

distribution under investigation.  S-Plus and SPLIDA (www.insightful.com/splus 

referenced 10/5/07) are used to investigate the Normal, Logistic, Log Logistic, Log 

Normal, Weibull (two parameter), Largest Extreme Value, Smallest Extreme Value, 

Frechet and Exponential probability distributions.  The log likelihood and AIC scores are 

also developed in this research to provide quantitative evidence of the distribution that 

best fits the data (Akaike 1974, Bozdogan 2000).  The AIC scores and probability plots 

indicate that the Normal or possibly the Log Logistic distributions are reasonable fits for 

the IB of 0.500” MDF (Table 3.2, Figures 3.4 and 3.5).   

0.625” Thickness. -- The mean (139.1 p.s.i.) and median (139 p.s.i.) for 0.625” MDF are 

similar and smaller than for 0.500” MDF (Table 3.3).  The CV of 10.7 percent indicates a 

standard deviation (14.9 p.s.i.) that comprises approximately 10 percent of the scale of the 

mean.  The low kurtosis value of 0.19 indicates a distribution that has a rounded peak with 

wide shoulders.  The skewness value of 0.26 indicates some mild positive (tail to the right) 

skewness of the data which is more skewed than 0.500” MDF.  The histogram of 0.625” 
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IB (Figure 3.6) illustrates asymmetry of the distribution.  The box plot indicates that this 

product may have as many as 10 outliers. 

The AIC scores and probability plots indicate that the Normal or possibly the Log 

Normal distributions are reasonable fits for the IB of 0.625” MDF (Table 3.4, Figures 3.7 

and 3.8).  This Normal distribution fit is similar to that of 0.500” MDF.  This distribution 

fit is similar to the findings of Edwards (2004) for the same product but different mill. 

0.750” Thickness. -- The mean (138.6 p.s.i.) and median (138 p.s.i.) for this product are 

very similar (Table 3.5).  The location statistics for the 0.750” MDF product relative to the 

aforementioned products suggest that IB decreases as thickness increases for this data set.  

The CV of 10.8 percent for this product indicates that that standard deviation (14.9 p.s.i.) 

comprises more than 10 percent of the scale of the mean.  The low kurtosis value of 0.15 

for this product indicates a distribution that has a rounded peak with wide shoulders.  The 

skewness value of 0.008 for this product indicates minimal skewness of the data.  The 

histogram of 0.750” IB (Figure 3.9) indicates that the distribution of IB is approximately 

symmetrical.  The box plot indicates that this product may have five IB values that are 

outliers. 

 There is statistical evidence that the Normal or Logistic distributions are 

reasonable fits for the IB of 0.750” MDF (Table 3.6).  The AIC scores and probability 

plots are used to support this conclusion (Figures 3.10 and 3.11). 

 
Oriented Strand Board 
 
Internal Bond. -- The mean (46.2 p.s.i.) and median (45.4 p.s.i.) for this product are 

dissimilar (Table 3.7).  The CV of 20.3 percent (standard deviation 9.4 p.s.i.) encompasses 

20 percent of the scale of the mean.  The low kurtosis value of 0.18 indicates a distribution 
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with positive kurtosis that is mildly leptokurtic, i.e., it has a more acute “peak” around the 

mean.  The skewness value of 0.62 indicates a positive skewness (tail to the right) of the 

data.  The histogram of IB (Figure 3.12) indicates an asymmetric distribution with a tail to 

the right.  The box plot indicates seven IB values that are possible outliers, all to the right-

side of the distribution. 

The AIC scores and probability plots indicate that the Log Normal or Largest 

Extreme Values distributions are reasonable fits for the IB of 0.500” MDF (Table 3.8, 

Figures 3.13 and 3.14).  Note the distinct difference in distribution fits relative to the 

Normal distribution fits of MDF products. 

 
Parallel EI. -- The mean (59,666 lb-in2/ft) and median (58,963 lb-in2/ft) for 7/16” RS 

OSB are dissimilar (Table 3.9).  A CV of 7.5 percent indicates a standard deviation (4480 

lb-in2/ft) that encompasses about seven percent of the scale of the mean.  The high 

kurtosis value of 0.99 indicates a leptokurtic distribution with sharp peaks and wider tails.  

A skewness value of 0.87 indicates positive skewness (tail to the right) of the data.  The 

histogram of 7/16” RS Parallel EI (Figure 3.15) is asymmetric and is a good illustration 

tool to support the kurtosis and skewness descriptive statistics.  The box plot indicates that 

this strength property may have as many as ten outliers. 

The AIC scores and probability plots indicate that the Largest Extreme Value or 

Log Logistic are reasonable fits for the Parallel EI of 7/16” RS OSB (Table 3.10, Figures 

3.16 and 3.17).  Again, note the departure in distribution fits relative to the Normal 

distribution fits for MDF products. 
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Appendix to Chapter III 
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Table 3.1.  Descriptive statistics for the IB of 0.500” MDF. 
Statistic Value 
Minimum 102 
Maximum 184 

Range 82 
Median 141 
Mean 141.63 

Standard Deviation 14.79 
Variance 218.62 

Coefficient of Variation 10.44 
Skewness 0.1462 
Kurtosis 0.0728 

N 209 
 
 
 
 
Table 3.2.  Selected model scores for the IB of 0.500” MDF. 

Model Fit Log Likelihood AIC 
Normal -859.0 1722.0 

Log Logistic -860.3 1724.6 
Logistic -860.4 1724.8 
Weibull -870.2 1744.4 

Largest Extreme Value -871.2 1746.4 
Smallest Extreme Value -880.3 1764.6 

Frechet -882.4 1768.8 
Log Normal -895.2 1794.4 
Exponential -1244.0 2492.0 

 
 
 
 
Table 3.3.  Descriptive statistics for the IB of 0.625” MDF. 

Statistic Value 
Minimum 97 
Maximum 186 

Range 89 
Median 139 
Mean 139.13 

Standard Deviation 14.93 
Variance 222.89 

Coefficient of Variation 10.73 
Skewness 0.2589 
Kurtosis 0.1909 

N 517 
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Table 3.4.  Selected model scores for the IB of 0.625” MDF. 

Model Fit Log Likelihood AIC 
Normal -2097 4198 

Log Normal -2098 4200 
Logistic -2101 4206 

Log Logistic -2102 4208 
Weibull -2126 4256 

Largest Extreme Value -2128 4260 
Smallest Extreme Value -2153 4310 

Frechet -2155 4314 
Exponential -3062 6128 

 
 
 
 
 
Table 3.5.  Descriptive statistics for the IB of 0.750” MDF. 

Statistic Value 
Minimum 100 
Maximum 177 

Range 77 
Median 138 
Mean 138.57 

Standard Deviation 14.94 
Variance 223.15 

Coefficient of Variation 10.78 
Skewness 0.0078 
Kurtosis 0.1491 

N 245 
 
 
 
 
Table 3.6.  Selected model scores for the IB of 0.750” MDF. 

Model Fit Log Likelihood AIC 
Normal -1010 2024 
Logistic -1010 2024 

Log Logistic -1011 2026 
Log Normal -1012 2028 

Weibull -1019 2042 
Largest Extreme Value -1030 2064 
Smallest Extreme Value -1030 2064 

Frechet -1045 2094 
Exponential -1453 2910 



 52

Table 3.7.  Descriptive statistics for the IB of OSB. 
Statistic Value 
Minimum 27.90 
Maximum 74.82 

Range 46.92 
Median 45.44 
Mean 46.18 

Standard Deviation 9.39 
Variance 88.21 

Coefficient of Variation 20.34 
Skewness 0.6216 
Kurtosis 0.1784 

N 234 
 
 
 
 
Table 3.8.  Selected model scores for the IB of OSB. 

Model Fit Log Likelihood AIC 
Log Normal -1423 2850 

Largest Extreme Value -1424 2852 
Log Logistic -1429 2862 

Normal -1437 2878 
Logistic -1439 2882 
Frechet -1440 2884 
Weibull -1456 2916 

Smallest Extreme Value -1501 3006 
Exponential -1899 3802 

 
 
 
 
Table 3.9.  Descriptive statistics for the Parallel EI of OSB. 

Statistic Value 
Minimum 47245.98 
Maximum 76444.00 

Range 29198.03 
Median 58962.93 
Mean 59665.90 

Standard Deviation 4479.57 
Variance 20066524.40 

Coefficient of Variation 7.51 
Skewness 0.8733 
Kurtosis 0.9999 

N 234 
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Table 3.10.  Selected model scores for the Parallel EI of OSB. 
Model Fit Log Likelihood AIC 

Largest Extreme Value -3841 7686 
Log Logistic -3848 7700 

Frechet -3848 7700 
Log Normal -3850 7704 

Logistic -3855 7714 
Normal -3861 7726 
Weibull -3918 7840 

Smallest Extreme Value -3942 7888 
Exponential -4715 9434 

 
 
 
 
 
 
 

 
Figure 3.1.  Plot of Y λ and λ illustrating the effect of this family of power 
transformations on Y (SAS Institute, Inc. 2007).    
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Figure 3.2.  Quantile regression ρ function. 
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Figure 3.3.  Box plot and histogram of the IB of 0.500” MDF. 
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Figure 3.4.  Normal probability plot of the IB of 0.500” MDF. 
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Figure 3.5.  Log Logistic probability plot of the IB of 0.500” MDF. 
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Figure 3.6.  Box plot and histogram of the IB of 0.625” MDF. 
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Figure 3.7.  Normal probability plot of the IB of 0.625” MDF. 
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Figure 3.8.  Log Normal probability plot of the IB of 0.625” MDF. 
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Figure 3.9.  Box plot and histogram of the IB of 0.750” MDF. 
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Figure  3.10.  Normal probability plot of the IB of 0.750” MDF. 
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Figure  3.11.  Logistic probability plot of the IB of 0.750” MDF. 
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Figure 3.12.  Box plot and histogram of the IB of OSB. 
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Figure 3.13.  Log Normal probability plot of the IB of OSB. 
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Figure 3.14.  Largest Extreme Value probability plot of the IB of OSB. 
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Figure 3.15.  Box plot and histogram of the Parallel EI of OSB. 
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Figure 3.16.  Largest Extreme Value probability plot of the Parallel EI of OSB. 
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Figure 3.17.  Log Logistic probability plot of the Parallel EI of OSB. 
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CHAPTER IV. 
 

FIRST-, SECOND- AND THIRD-ORDER MULTIPLE 
LINEAR REGRESSION MODELS WITH 

INTERACTIONS  
OF MDF AND OSB STRENGTH PROPERTIES 

 
 

Results are presented in this chapter for the first objective of the dissertation.  

Models of MDF and OSB strength properties using rudimentary regression methods are 

explored.  The regression methods used in this chapter, even though fundamental, 

establish the foundation for the chapters to follow.  The results of this chapter are 

presented in the spirit of notable statistical scholars as related to model building, i.e., less 

complex or rudimentary statistical model building methods should be investigated before 

proceeding with more complex statistical methods (Box and Cox 1964, Box 1979, Draper 

and Smith 1981, Deming 1986).  This first objective of the dissertation will hopefully 

advance the philosophies of “All Possible Subsets” and “Best Model Criteria” for multiple 

linear regression modeling of industrial processes (Akaike 1974, Box 1979, Draper and 

Smith 1981, Myers 1990, Neter et al. 1996, Young and Guess 2002, and Kutner et al. 

2004).    

 In the spirit of exploring less complex models initially; first-, second- and third-

order multiple linear regression models with interaction terms are developed for the IB of 

MDF for three nominal products types (0.500”, 0.625” and 0.750”).  Models are also 

explored for the IB and Parallel EI of OSB for the product 7/16” RS.  The Box Cox 

transforms of Y are further investigated for all regression models (Box and Cox 1964) 
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Forty regression models for MDF and 19 regression models for OSB are 

investigated in detail.  Mixed stepwise regression with an all possible subsets criteria 

(discussed in Chapter II Methods) is used for initial model selection.  Least squares 

methods are used for final model development (Plackett 1960).  Models are developed for 

the entire record length for each product type of MDF and OSB.  In addition, models are 

investigated for shorter record lengths.  Investigating shorter record lengths builds upon 

the ideas presented by Bernardy and Scherff (1998, 1999), Erilsson et al. (2000), Young 

and Guess (2002), Young and Huber (2004) and Shaffer (2007) when investigating 

industrial data, i.e., the literature indicates that acceptable regression models of final 

product strength properties for engineered wood panels are possible for shorter record 

lengths.  Modeling industrial processes using shorter record lengths addresses influences 

due to raw material change, product/setup change and tool/machinery-wear on final 

strength properties where these influences are transcended across longer record length 

models.  For example, in MDF manufacture the refiner or defibrator plates that convert 

wood chips into fiber wear continuously through their life cycle which varies from seven 

to ten days unless a catastrophic event occurs, e.g., metal contaminate passes through 

defibrator plates (Suchsland and Woodson 1986, Maloney 1993, Young and Huber 2004).  

In OSB manufacture, the flaker knives that convert a log into wood strands are changed 

several times per week based on the number of cycle counts of the flaker or if catastrophic 

knife failure occurs (Woestheinrich and Meier 2001, Young and Huber 2004).  Another 

significant challenge in modeling industrial processes is addressing influences on final 

strength properties from periodic setup changes that occur from changes in the customer 

order file. 
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To explore models with shorter record lengths, regression models are developed 

sequentially starting at a record length of 50 and ending at the total record length for each 

product type, e.g., 350 regression models are developed for 0.625” MDF for record lengths 

50, 51, 52,….., 398, 399, 400.  Record lengths for all models are contiguous and start at the 

most current record and progress backward in time for each record.  Initial models with 

the highest adjusted R2, lowest AIC, highest degrees of freedom and lowest RMSE are 

screened before investigating such models in more detail, e.g., plotting model residuals, 

RMSEP, plot of predicted values in the validation data set, etc. (Figures 4.1, 4.2 and 4.3).  

The analysis indicates that better MLR models result (using the best model criteria) from 

shorter record lengths of 60 to 70 records (approximately seven days) for the three MDF 

product types, and from 58 to 59 records (approximately 14 days) for OSB.  These results 

are not contrary to the findings of previous research (Bernardy and Scherff 1998, 1999, 

Erilsson et al. 2000, Young and Guess 2002, Young and Huber 2004, and Shaffer 2007).   

 
Medium Density Fiberboard 
 
0.500” Thickness 

 An acceptable model for MDF 0.500” thickness (n=60) is a second-order model 

with 13 regressors (Tables 4.1 and 4.2).  The model has an adjusted R2 of 0.72, RMSE of 

6.02 p.s.i. and homogeneous residual pattern (Figure 4.4).  An attractive feature of the 

model is relatively accurate predictions of observed IB for extreme values in the validation 

data set (Figures 4.5 and 4.6).  The regressors: “eVaprTemp” (boiler temperature) has a 

negative linear scaled estimate of -10.9 p.s.i.; “hPrAlTimeS” (press overall time set-point) 

has a positive linear scaled estimate of 12.6 p.s.i.; and “hPrCls2Tim” (press close two time) 
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has a negative polynomial scaled estimate of -14.9 p.s.i. on IB (Table 4.3).15  This second-

order model reveals a possible optimal IB of 138 p.s.i. for specific levels of the statistically 

significant (α < 0.02) regressors in the model (Figures 4.7 and 4.8).   

The best possible model for entire record length (n=175) for MDF 0.500” 

thickness is a first-order model with 17 regressors (Tables 4.1 and 4.4).  The model has an 

adjusted R2 of 0.69, RMSE of 8.33 p.s.i. and homogeneous residual pattern (Figure 4.9).  

The model did not approximate predictions of observed IB in the validation data set even 

though predicted IB follows the general time-ordered trend of IB (Figures 4.10 and 4.11).  

The regressors “hPrAlTimeS” (press overall time set-point) and “dCoreRsnS” (core resin 

set-point) have positive linear scaled estimates of 26.2 p.s.i. and 26.9 p.s.i., respectively 

(Table 4.5).  The regressor “bFaceH202W” (face fiber water to wood ratio at refiners) has 

a negative linear scaled estimate of -15.1 p.s.i. on IB.  This first-order model for all records 

reveals a possible optimal IB of 142 p.s.i for specific levels of the statistically significant (α 

<_0.02) regressors (Figure 4.12).   

0.625” Thickness 
 

An acceptable model for MDF 0.625” thickness (n=62) is a first-order model with 

11 regressors (Tables 4.1 and 4.6).  The model has an adjusted R2 of 0.78, RMSE of 7.15 

p.s.i. and homogeneous residual pattern (Figure 4.13).  Predicted IB approximated the 

time-trend and scale of observed IB in the validation data set (Figures 4.14 and 4.15).  

“gPreBBSpd” (pre-compressor bottom belt speed) has the strongest effect on IB with a 

negative linear scaled estimate of -32.6 p.s.i. (Table 4.7).  An optimal IB of approximately 

                                                 
15 Scaled estimate is the change in the dependent variable (“IB”) when the regressor is moved over 
one-half of its range.  Scaled estimate is a method of examining the relative influence of regressors 
on the dependent when the regressors have differing units of measure (scale). 
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138 p.s.i. is attainable for specific levels of the statistically significant regressors, α <_0.03 

(Figure 4.16).  The response surface for “pre-compressor bottom belt speed” greater than 

90 feet per minute and “cCO0046” (refiner steam pressure) greater than 35 results in an 

abrupt decline in IB which approaches the lower specification limit of 90 p.s.i. of the 

manufacturer (Figure 4.17). 

The best possible model for entire record length (n=400) for MDF 0.625” 

thickness is a second-order model with 34 regressors (Tables 4.1 and 4.8).  Even though 

this model has a large number of regressors it is not contrary to the literature on modeling 

industrial processes (Bernardy and Scherff 1998, 1999, Erilsson et al. 2000, Young and 

Guess 2002, Young and Huber 2004, and Shaffer 2007).  The model has an adjusted R2 of 

0.60, RMSE of 8.80 p.s.i. and homogeneous residual pattern (Figure 4.18).  Predicted IB 

does not approximate the time-trend and scale of observed IB in the validation data set 

(Figures 4.19 and 4.20).  The regressor “hPrPPMTimS” (press pre-position move time set-

point) has a negative polynomial scaled estimate of -17.7 p.s.i. on IB (Table 4.9).  The 

regressor “cSwngChpL” (swing refiner wood chip level) has a positive linear scaled 

estimate of 20.6 p.s.i. (Table 4.9).  This second-order model reveals an optimal IB of 

approximately 152 p.s.i at specific levels of the statistically significant (α <_0.10) regressors 

(Figure 4.21).  A negatively conical-shaped response surface exists for this model for 

“press pre-position move time set-point” and “core fiber humidifier temperature.”  This 

negatively conical-shaped response surface reveals a unique maximum IB of approximately 

160 p.s.i. with other significant regressors held constant (Figure 4.22). 
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0.750” Thickness 
 

An acceptable model for MDF 0.750” thickness (n=70) is a second-order model 

with 18 regressors (Tables 4.1 and 4.10).  The model has an adjusted R2 of 0.82, RMSE of 

7.05 p.s.i. and mild heteroscedasticity in the residuals (Figure 4.23).  Predicted IB does not 

approximate the time-trend and scale of observed IB in the validation data set (Figures 

4.24 and 4.25).  The regressor “dCoreDRSP” (core dust ratio set point) has a strong linear 

negative scaled estimate on IB of -29.4 p.s.i. (Table 4.11).  “Core dust ratio set point” 

reflects the quantity of internal recycled dust waste from the sander and forming line trim 

saws that is added to the clean wood fiber generated at the defibrators.  The regressor 

“dCoreScvWR” (core fiber scavenger resin content) has a negative polynomial scaled 

estimate on IB of -26.6 p.s.i. (Table 4.11).  The regressor “aChipAugSp” (chip exit auger 

speed at the refiners) also has a negative linear scaled estimate on IB of -20.6 p.s.i. (Table 

4.11).  An optimal IB of approximately 129 p.s.i. is attainable at specific levels of the 

statistically significant regressors, α <_0.05 (Figure 4.26).  A negatively conical-shaped 

response surface exists for the regressors “fFaceMstm” (face fiber mat moisture content) 

and “core fiber scavenger resin content” which reveals a unique maximum of 

approximately 130 p.s.i. when other significant regressors are constant.  The response 

surface between “hPrOpnTime” (press full open time) and “core fiber scavenger resin 

content” indicates a steep descent towards failing IB (i.e., less than the lower specification 

limit of 90 p.s.i.) for “core fiber scavenger resin content” levels greater than 5.5 percent 

and fast “press full open times” (Figure 4.27). 

An acceptable multiple linear regression model is not possible for the MDF 0.750” 

thickness for the full record length of 200 (Tables 4.1 and 4.12).  The best possible model 
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has an adjusted R2 of only 0.42, RMSE of 11.27 p.s.i. and non-homogeneous residual 

pattern (Figure 4.28).  Predicted IB did not approximate observed IB in the validation data 

set (Figures 4.29 and 4.30).  The challenges of modeling strength properties of wood 

composites from industrial data using MLR methods are exemplified for the MDF 0.750” 

thickness and full record length. 

 
Oriented Strand Board 
 
Internal Bond – 7/16” RS 
 
 The strength properties (IB and Parallel EI) of OSB are a more challenging 

engineered wood panel to model using MLR methods and the given data set.  Finding 

acceptable MLR models using the entire record length of 300 are difficult (Table 4.13).  

Figure 4.31 illustrates the poor performance for IB models (i.e., adjusted R2, RMSE and 

AIC) for record lengths greater than 60 and Figure 4.32 illustrates the overall difficulty for 

any record length when modeling the Parallel EI of OSB.  Recall from Chapter III that the 

distributions of IB and Parallel EI of OSB are non-normal (i.e., also recall the assumption 

of normality in the response variable required for multiple linear regression analysis).  Box 

Cox transforms of Y (IB) tend to produce better MLR models for the IB of OSB.  Box 

Cox transforms of Parallel EI did not improve the ability to develop acceptable MLR 

models for the Parallel EI of OSB.  Two regression models for IB are discussed. 

An acceptable model for OSB IB for a small record length (n=59) is a second-

order model with the Box Cox transform of Y, where  
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and Y& is defined as the geometric mean of IB.  The model has 16 regressors (Tables 4.13 

and 4.14).  The model has an adjusted R2 of 0.82, RMSE of 3.95 p.s.i. with some 

heteroscedasticity in the transformed residuals (Figure 4.33).  Predicted IB approximates 

the time-trend and scale of observed IB in the 12 record validation data set (Figures 4.34 

and 4.35).  The regressor “Dry2Out” (dryer #2 outlet temperature) has a strong positive 

linear scaled estimate on IB of 15.3 p.s.i. (Table 4.15).  “BnkSpdTCL” (bunker speed for 

top core layer) and “MD4OutTem” (main dryer #4 outlet temperature) have negative 

linear scaled estimates on IB of -11.2 and -10.6 p.s.i., respectively.  The regressor 

“MSBCLOFDSP” (main spreader bottom core layer density set-point) also has a negative  

polynomial scaled estimate on IB of -10.1 p.s.i.  The negative scaled estimates for bunker 

speed and spreader density set-points for the core layers may indicate that line speed is too 

fast for the machine capabilities of the wood strand forming system at the plant. 

An optimal IB of approximately 48 p.s.i. is attainable at specific levels of the 

statistically significant regressors, α <_0.03 (Figure 4.36).  The second-order model reveals 

some useful relationships between the statistically significant regressors and IB (Figure 

4.37).  The three-dimensional polynomial graphs in Figure 4.37 illustrate that fast bunker 

speeds and low moisture content result in IB less than 50 p.s.i.  The results of this 

regression model may indicate that the operational procedures at the plant for mat forming 

speed and moisture level need reevaluation.  

The model for OSB IB for the entire record length (n=300) is presented to 

illustrate the problems associated with modeling the IB of OSB for longer record lengths 

using MLR (recall Figure 4.31).  A second-order model with the Box Cox transform of Y 

yielded the best possible model.  The Box Cox transform is:  
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where Y& is defined as the geometric mean of IB.  The model has 31 regressors (Tables 4.13 

and 4.16).  The model has a low adjusted R2 of 0.45, RMSE of 6.70 p.s.i. and non-

homogeneous residual pattern (Figure 4.38).  Predicted IB has some approximation of the 

time-trend and scale of lower observed IB values in the 60 record validation data set but is 

generally unacceptable (Figures 4.39 and 4.40).  The regressor “BnkSpdTCL” (bunker 

speed for top core layer) has a strong negative polynomial scaled estimate on IB of -17.7 

p.s.i. (Table 4.17).  “MSTSLOFSpA” (main spreader speed top surface layer) has a negative 

linear scaled estimate effect on IB of -14.2 p.s.i.  The negative scaled estimates for bunker 

top core layer and top surface spreader speeds for the larger record length is in general 

agreement with the results of the shorter record length MLR model for OSB IB.  Both the 

shorter and longer record length MLR models indicate that line speeds may be too fast for 

high strength properties given the machine capabilities of the mat forming system.  Fast 

bunker speeds may result in poor mat forming which the literature also suggests has a 

negative influence on OSB strength properties (Suchsland and Woodson 1986, Maloney 

1993, Kruse et al. 2000, Nishimura and Ansell 2002). 

Any discussion of an optimal IB and three-dimensional polynomial graphs are 

inappropriate given the poor predictive capabilities of this longer record length MLR 

model.  The results of the MLR models (shorter and longer record lengths) may have some 

explanatory value to the manufacturer in that mat forming procedures may need 

reevaluation given their negative influence on strength properties using the given data set.  
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Parallel EI – 7/16” RS 
 
 Parallel EI for OSB is a more difficult strength property to model using MLR 

relative to IB.  This is illustrated by the results for shorter and longer record length MLR 

models in Table 4.13 and Figure 4.32.  Box Cox transforms of Y did not improve model 

quality.  Given the poor results of multiple linear regression models, one model is 

discussed for the Parallel EI of OSB. 

The best possible model for OSB Parallel EI for a shorter record length (n=58) is a 

first-order model with 11 regressors (Tables 4.13 and 4.18).  The model has an adjusted R2 

of 0.59, RMSE of 2,233 p.s.i. and homogeneous residual pattern (Figure 4.41).  Predicted 

Parallel EI approximates some observed Parallel EI values in the validation data set 

(Figures 4.42 and 4.43).  The regressor “MHOil2OilT” (main hot oil temperature for 

press) has a strong negative linear scaled estimate on Parallel EI of -5,891 in-lb2/ft, i.e., as 

“main hot oil temperature for press” increases Parallel EI decreases (Table 4.19).   

Discussions of an optimal IB and three-dimensional graphics are inappropriate 

given the poor predictive capabilities of this model.  The inability to model Parallel EI 

using MLR may be indicative of non-homogenous data typical of OSB processes.  

However, the results of the first-order regression model for Parallel EI for the shorter 

record length may have some explanatory value, e.g., “main hot oil temperature for press” 

requires further root-cause investigation.  Given that higher than necessary press oil 

temperatures result in lower Parallel EI strength (poor product safety and quality) and high 

oil temperatures require more energy, it may be advantageous for the manufacturer to 

investigate the effect of press hot oil temperatures and Parallel EI using a designed 
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experiment, i.e., the exploratory data analysis facilitates hypothesis generation (de Mast and 

Trip 2007). 

 
Chapter IV Summary 
 
 Forty regression models for MDF and 19 regression models for OSB are 

investigated from a possible subset of 625 regression models for MDF and 500 possible 

regression models for OSB.  First-, second- and third-order models with interaction terms 

and Box Cox transforms of Y are explored.  Mixed stepwise regression with all possible 

subsets and a best model criteria (Young and Guess 2002) is used to develop a set of final 

candidate regression models.  Candidate models are compared for the entire record length 

and smaller record lengths of the training data set. 

 Acceptable regression models are more feasible for MDF relative to OSB when 

using MLR methods for this given data set.  MDF models for IB are more acceptable as 

thickness increases.  First- and second-order models for MDF are more acceptable than 

higher-ordered models with interaction terms.  Box Cox transforms of Y (IB) for MDF 

did not improve model quality or predictive capability.  A surprising outcome of the MLR 

research is the lack of significance of interaction terms in most MLR models, i.e., MLR 

was unable to detect significant interactions for this data set. 

The most appropriate models for MDF are a second-order model for 0.500” 

thickness for a small record length (n=60) and a first-order model for 0.625” thickness for 

a small record length (n=62).  The MDF 0.500” thickness model has an adjusted R2 of 

0.72, RMSE of 6.02 p.s.i. and homogeneous residual pattern.  An attractive feature of the 

model is relatively accurate predictions of observed IB for extreme values in the validation 

data set.  Highly statistical significant (α <_0.0001) regressors for this model are 
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“eVaprTemp” (boiler temperature), “hPrAlTimeS” (press overall time set-point) and 

“hPrCls2Tim” (press close two time). 

The best possible model for entire record length (n=400) for MDF 0.625” 

thickness is a second-order model with 34 regressors.  The model has an adjusted R2 of 

0.60, RMSE of 8.80 p.s.i. and homogeneous residual pattern.  Predicted IB does not 

approximate the time-trend and scale of observed IB in the validation data set.  Highly 

statistical significant (α <_0.0001) regressors for this model are “hPrPPMTimS” (press 

pre-position move time set-point) and “cSwngChpL” (swing refiner wood chip level). 

One acceptable model is developed for the shorter record length of IB for OSB.  

The best possible model for OSB IB for a small record length (n=59) is a second-order 

model with the Box Cox transform of Y, equation [4.1].  Recall from Chapter II that the 

distribution of OSB IB is non-normal.  The model has 16 regressors with an adjusted R2 of 

0.82, RMSE of 3.95 p.s.i. with mild heteroscedasticity in the residuals.  Predicted IB 

approximates the time-trend and scale of observed IB in the time-ordered validation data 

set.  Highly statistically significant (α <_0.0001) regressors for this model are “Dry2Out” 

(dryer #2 outlet temperature), “BnkSpdTCL” (bunker speed for top core layer), 

“MD4OutTem” (main dryer #4 outlet temperature) and “MSBCLOFDSP” (main spreader 

bottom core layer density set-point).  Common among all statistically significant regressors 

for all models of OSB IB are process variables related to mat forming speed, e.g., 

regressors related to fast mat forming are negatively correlated with IB.  This may suggest 

that mat forming/line speed procedures need reevaluation by the manufacturer.  In 

general, MLR models for the IB and Parallel EI OSB may have some explanatory value to 

the manufacturer.  
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Appendix to Chapter IV 
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Table 4.1.  Comparison of optimal record length with full record length for first-, second- 
and third-order stepwise regression models with interactions for MDF IB (shaded records 
are discussed). 

*Using Box Cox transform that minimizes SSE in training model. 

**”ns” indicates that all higher-order terms or interaction are statistically insignificant, α ≤ 0.05 
 

                                                 
16 “Shorter Record Length” indicates a algorithm that is developed for this dissertation in SAS 
where starting at record length of the 50 most current records of the training dataset, one record at 
a time is added to 50 going backward in time up to 400 (entire training data set).  The record length 
that has the highest adjusted R2, lowest Akaike’s Information criteria, lowest RMSE and largest 

degrees of freedom for regressors with p-values ≤ 0.05 is defined as the “Shorter Record Length.” 

 
MLR Model 

 
R2 

 n 
training

n 
validation

 
p 

 
RMSE 

 
RMSEP 

 
RMSEP *

MDF 0.500”:  

Shorter Record Length16  

First-order 0.40 60 13 3 9.10 15.68 71.96 
Second-order 0.78 60 13 13 6.02 11.93 31.53 
Third-order 0.79 60 13 17 6.13 16.54 16.89 

Third-order interaction 0.68 60 13 11 7.12 16.48 16.26 

N=175  

First-order 0.72 175 33 17 8.33 16.90 16.85 
Second-order 0.75 175 33 26 8.01 33.05 33.14 
Third order ns** -- -- -- -- -- -- 

Second-order interaction 0.75 175 33 27 8.13 26.30 25.20 

MDF 0.625”:  
Shorter Record Length  

First-order 0.82 62 13 11 7.15 15.51 15.06 
Second-order ns** -- -- -- -- -- -- 
Third order ns** -- -- -- -- -- -- 

First-order interaction 0.86 62 13 13 6.42 14.95 35.35 

N=400  

First-order 0.56 400 80 27 9.61 14.88 74.51 
Second-order 0.60 400 80 34 8.80 17.66 11.62 
Third-order 0.57 400 80 33 9.57 20.01 30.98 

Third-order interaction 0.62 400 80 39 8.98 17.00 16.60 

MDF 0.750”:  
Shorter Record Length  

First-order 0.88 70 14 17 6.55 50.40 35.77 
Second-order 0.87 70 14 18 7.04 25.34 45.34 
Third-order ns** -- -- -- -- -- -- 

Second-order interaction 0.93 70 14 20 5.35 36.78 36.35 

N=200  

First-order 0.40 200 40 13 11.81 24.53 38.67 
Second-order 0.48 200 40 19 11.20 21.41 22.32 
Third-order 0.46 200 40 19 11.45 23.70 26.36 

Third-order interaction 0.51 200 40 30 11.27 22.22 35.95 
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Table 4.2.  Summary of fit for second-order model, MDF 0.500”, n=60. 
RSquare 0.782368
RSquare Adj 0.720863
RMSE 6.023386
Mean of Response 134.3
Observations (or Sum 
Wgts) 60
Source DF Sum of Squares Mean Square F Ratio 
Model 13 5999.6658 461.513 12.7204 
Error 46 1668.9342 36.281 Prob > F 
C. Total 59 7668.6000  <.0001 
Term Estimate Std Error t Ratio Prob>|t| VIF
eVaprTemp -0.177238 0.036078 -4.91 <.0001 1.5212056
hPrAlTimeS 1.2555327 0.308288 4.07 0.0002 3.7318
(hPrCls2Tim)2 -14.87093 3.8799 -3.83 0.0004 1.4382511
aChipSloLv -0.23975 0.067 -3.58 0.0008 1.1975309
eM2236Spd 1.8986316 0.534033 3.56 0.0009 1.5764171
(eBoilrStmP)2 -0.009198 0.002654 -3.47 0.0012 1.3268543
eBoilrH20F 1.7599991 0.531146 3.31 0.0018 2.9295179
(aChipAugSp)2 0.0928276 0.028699 3.23 0.0023 1.4450588
fFaceMstM 9.3605094 3.136594 2.98 0.0045 1.6468404
dCoreTemp 0.4680389 0.177172 2.64 0.0112 1.6400362
eBoilrStmP -0.16841 0.065804 -2.56 0.0138 1.7141641
hPrCls2Tim -2.537921 2.144555 -1.18 0.2427 2.1211698
aChipAugSp 0.2098292 0.187562 1.12 0.2691 1.6473552

 
 
 

Table 4.3.  Scaled estimates for the second-order model, MDF 0.500”, n=60. 

Term Scaled Estimate Plot Estimate Prob>|t|

Intercept 138.02053  <.0001

eVaprTemp -10.93825  <.0001

hPrAlTimeS 12.555327  0.0002

(hPrCls2Tim) 2 -14.87093  0.0004

aChipSloLv -7.900344  0.0008

eM2236Spd 11.111741  0.0009

(eBoilrStmP) 2 -10.56352  0.0012

eBoilrH20F 8.0502358  0.0018

(aChipAugSp)2 10.502659  0.0023

fFaceMstM 7.1155784  0.0045

dCoreTemp 6.6639379  0.0112

eBoilrStmP -5.707314  0.0138

hPrCls2Tim -2.537921  0.2427

aChipAugSp 2.2319116  0.2691
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Table 4.4.  Summary of fit for the first-order model, MDF 0.500”, n=175. 
RSquare 0.718264
RSquare Adj 0.687757
RMSE 8.328322
Mean of Response 142.1314
Observations (or Sum 
Wgts) 175
Source DF Sum of Squares Mean Square F Ratio
Model 17 27762.308 1633.08 23.5446
Error 157 10889.669 69.36 Prob > F
C. Total 174 38651.977  <.0001
Term Estimate Std Error t Ratio Prob>|t| VIF
hPrAlTimeS 1.3079995 0.133949 9.76 <.0001 3.7434208
bFaceH202W -4.820736 0.541971 -8.89 <.0001 3.1612959
dCoreRsnS 17.32292 2.357255 7.35 <.0001 8.1238064
Intercept -1098.295 149.7139 -7.34 <.0001 .
dCoreEFCur 9.0144848 1.265357 7.12 <.0001 3.788578
bFaceTempP 1.1762998 0.19568 6.01 <.0001 2.0295956
cSwngChpL 1.2455158 0.276299 4.51 <.0001 2.2207622
bFaceBlwPs 0.780404 0.17566 4.44 <.0001 1.591995
hPrCls3Tim -1.657122 0.397479 -4.17 <.0001 1.4072354
cCI0023PT 0.6445722 0.162684 3.96 0.0001 3.7545353
cSwgTemp -0.127347 0.032247 -3.95 0.0001 2.3223254
cSwgOutlet -0.003666 0.001105 -3.32 0.0011 3.5325045
hPrTempS -13.70927 4.202486 -3.26 0.0014 2.2348617
fShavOffT2 -11.09113 3.431005 -3.23 0.0015 1.16896
bSwgDigPrs -1.07664 0.364255 -2.96 0.0036 2.0515018
hPrTempP 0.5310372 0.206305 2.57 0.0110 1.2991691
fCoreBtmSpd -0.276621 0.109367 -2.53 0.0124 1.6958934
cSwFbrMst 2.2413875 0.915535 2.45 0.0155 2.1603165
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Table 4.5.  Scaled estimates for the first-order model, MDF 0.500”, n=175. 

Term Scaled Estimate Plot Estimate Prob>|t|

Intercept 142.13143  <.0001

hPrAlTimeS 26.159989  <.0001

bFaceH202W -15.05853  <.0001

dCoreRsnS 26.850526  <.0001

dCoreEFCur 14.545322  <.0001

bFaceTempP 12.263514  <.0001

cSwngChpL 9.5191039  <.0001

bFaceBlwPs 7.0052577  <.0001

hPrCls3Tim -10.50891  <.0001

cCI0023PT 10.115271  0.0001

cSwgTemp -8.633337  0.0001

cSwgOutlet -8.829031  0.0011

hPrTempS -5.483709  0.0014

fShavOffT2 -5.719322  0.0015

bSwgDigPrs -5.52494  0.0036

hPrTempP 5.1266327  0.0110

fCoreBtmSpd -6.638905  0.0124

cSwFbrMst 5.2163699  0.0155
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Table 4.6.  Summary of fit for the first-order model for MDF 0.625”, n=62. 

RSquare 0.820207

RSquare Adj 0.780653

RMSE 7.152845

Mean of Response 137.8387

Observations (or Sum Wgts) 62

Source DF Sum of Squares Mean Square F Ratio 

Model 11 11670.227 1060.93 20.7362 

Error 50 2558.160 51.16 Prob > F 

C. Total 61 14228.387 <.0001 

Term Estimate Std Error t Ratio Prob>|t| VIF

gPreBBSpd -2.762799 0.309655 -8.92 <.0001 1.8988451

cCO0046 -1.15042 0.170876 -6.73 <.0001 2.0540133

fShavOffT4 21.492844 3.612926 5.95 <.0001 1.3207313

fFaceBtmSd 1.8526461 0.32647 5.67 <.0001 2.5182647

eDesp2KV 5.4013529 1.010135 5.35 <.0001 2.3358217

bFaceResnW 11.888464 2.391513 4.97 <.0001 1.3685181

fFaceHTemp 0.7713985 0.183562 4.20 0.0001 1.5121018

Intercept -386.8612 95.4818 -4.05 0.0002 .

eBoilrStmP 0.2565715 0.070923 3.62 0.0007 1.2809381

aFaceBinLv 0.7548149 0.262673 2.87 0.0059 1.6346084

dCoreDgstP 2.1168635 0.886009 2.39 0.0207 2.1329888

eDesp3KV -1.818336 0.795924 -2.28 0.0266 1.8925804

 
 
 
 
 
Table 4.7.  Scaled estimates for the first-order model for MDF 0.625”, n=62. 

Term Scaled Estimate Plot Estimate Prob>|t| 

Intercept 137.83871  <.0001 

gPreBBSpd -32.56305  <.0001 

cCO0046 -15.53067  <.0001 

fShavOffT4 12.969104  <.0001 

fFaceBtmSd 16.673815  <.0001 

eDesp2KV 15.884569  <.0001 

bFaceResnW 11.067209  <.0001 

fFaceHTemp 10.015838  0.0001 

eBoilrStmP 10.037077  0.0007 

aFaceBinLv 12.389003  0.0059 

dCoreDgstP 9.6865557  0.0207 

eDesp3KV -6.068786  0.0266 
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Table 4.8.  Summary of fit for the second-order model for MDF 0.625”, n=400. 

RSquare 0.633705

RSquare Adj 0.599584

Root Mean Square Error 8.804945

Mean of Response 138.74

Observations (or Sum Wgts) 400

Source DF Sum of Squares Mean Square F Ratio 

Model 34 48955.586 1439.87 18.5725 

Error 365 28297.374 77.53 Prob > F 

C. Total 399 77252.960 <.0001 

Term Estimate Std Error t Ratio Prob>|t| VIF
(dCoreRsn2W) 2 -2.884208 0.745586 -3.87 0.0001 2.4949

(aShvRawWgt) 2 0.2360818 0.059078 4.00 <.0001 1.7308179

fFaceHTemp 0.5056718 0.110281 4.59 <.0001 2.8190149

cSwngGSF 0.005356 0.001134 4.72 <.0001 4.0698072

(dCoreRSSpd) 2 -0.007729 0.001633 -4.73 <.0001 1.47989

bFaceResnW 7.6020405 1.573282 4.83 <.0001 5.6197302

(fCoreHTmpT) 2 -0.043923 0.008833 -4.97 <.0001 1.2888891

fShaveOff1 -10.6519 2.058475 -5.17 <.0001 2.9677648

hPrPPHTimS 0.4146414 0.07813 5.31 <.0001 2.277471

fFaceHDP -22.859 4.176386 -5.47 <.0001 3.810249

fFaceMstM 7.424371 1.282882 5.79 <.0001 2.0664754

cSwngChpL 0.9172788 0.152653 6.01 <.0001 3.0535694

Intercept -192.8156 30.62812 -6.30 <.0001 .

(hPrPPMTimS) 2 -393.0008 49.07952 -8.01 <.0001 2.0281255

hPrPPMTimS -73.05629 7.460664 -9.79 <.0001 2.9471743

(dCoreGrndP) 2 0.0051658 0.001367 3.78 0.0002 1.9470552

bFaceChpLv -0.43902 0.118891 -3.69 0.0003 2.6179267

(bFacWxFlw) 2 -5.327495 1.501129 -3.55 0.0004 1.3707585

cSwOTemp 0.5184105 0.148662 3.49 0.0005 3.0764163

(dCoreTemp) 2 -0.035526 0.010608 -3.35 0.0009 1.3011849

(cCO0046) 2 -0.032509 0.009966 -3.26 0.0012 2.0437715

hPrCls3Tim 0.9748332 0.301569 3.23 0.0013 1.7977473

aShvRawWgt -0.837664 0.265102 -3.16 0.0017 2.5084494

bFaceGrdSF 0.0026394 0.000834 3.16 0.0017 2.8795972

dCoreDgstP 0.3816478 0.133967 2.85 0.0046 2.3325764

(bFaceGrdSF) 2 -1.43e-6 5.379e-7 -2.66 0.0082 1.771709

(cSwngChpL)2 -0.019772 0.008023 -2.46 0.0142 1.4707526

gBlkDensty 2.5823849 1.212478 2.13 0.0339 1.7632221

cCO0046 -0.142804 0.08415 -1.70 0.0905 2.4181741

bFacWxFlw 1.8077344 1.322547 1.37 0.1725 2.0244267

dCoreTemp -0.180852 0.135594 -1.33 0.1831 2.7771113

dCoreRsn2W 1.6574445 1.258765 1.32 0.1888 7.1452341

fCoreHTmpT -0.101971 0.111246 -0.92 0.3599 2.4620296

dCoreGrndP -0.052095 0.057937 -0.90 0.3692 4.4041632

dCoreRSSpd 0.0402315 0.04679 0.86 0.3904 2.8193236
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Table 4.9.  Scaled estimates for the second-order model for MDF 0.625”, n=400. 

Term Scaled Estimate Plot Estimate Prob>|t|

Intercept 152.0052  <.0001

hPrPPMTimS -15.52446  <.0001

(hPrPPMTimS)2 -17.74644  <.0001

cSwngChpL 20.587038  <.0001

fFaceMstM 9.8533654  <.0001

fFaceHDP -16.00591  <.0001

hPrPPHTimS 8.6158952  <.0001

fShaveOff1 -12.1144  <.0001

(fCoreHTmpT) 2 -17.41053  <.0001

bFaceResnW 11.48064  <.0001

(dCoreRSSpd) 2 -10.80214  <.0001

cSwngGSF 9.4727133  <.0001

fFaceHTemp 8.2768612  <.0001

(aShvRawWgt) 2 12.786978  <.0001

(dCoreRsn2W) 2 -11.99363  0.0001

(dCoreGrndP) 2 10.970469  0.0002

bFaceChpLv -6.591924  0.0003

(bFacWxFlw) 2 -11.60046  0.0004

cSwOTemp 9.065704  0.0005

(dCoreTemp) 2 -9.112319  0.0009

(cCO0046) 2 -6.835026  0.0012

hPrCls3Tim 6.3364159  0.0013

bFaceGrdSF 6.1360352  0.0017

aShvRawWgt -6.164849  0.0017

dCoreDgstP 4.7175293  0.0046

(bFaceGrdSF) 2 -7.726765  0.0082

(cSwngChpL) 2 -9.959648  0.0142

gBlkDensty 3.9983969  0.0339

cCO0046 -2.070655  0.0905

bFacWxFlw 2.6675381  0.1725

dCoreTemp -2.896438  0.1831

dCoreRsn2W 3.3798773  0.1888

fCoreHTmpT -2.030186  0.3599

dCoreGrndP -2.400699  0.3692

dCoreRSSpd 1.5040443  0.3904
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Table 4.10.  Summary of fit for the second-order model for MDF 0.750”, n=70. 
RSquare 0.866206
RSquare Adj 0.818985
RMSE 7.04955
Mean of Response 137.5429
Observations (or Sum 
Wgts) 70
Source DF Sum of Squares Mean Square F Ratio 
Model 18 16408.868 911.604 18.3435 
Error 51 2534.504 49.696 Prob > F 
C. Total 69 18943.371 <.0001 
Term Estimate Std Error t Ratio Prob>|t| VIF
dCoreDRSP -4.193256 0.488731 -8.58 <.0001 3.120832
aChipAugSp -1.358512 0.194398 -6.99 <.0001 1.9185558
hPrClsTimP 1.0052124 0.165454 6.08 <.0001 4.4569595
eEI1071FT 444.82459 74.08204 6.00 <.0001 6.9689426
(cSwgWxFbrW)2 0.0046517 0.000839 5.55 <.0001 1.8011744
(dCoreScvWR) 2 -331761.1 61638.22 -5.38 <.0001 2.8948707
eM2236Spd 2.1244118 0.442149 4.80 <.0001 2.4077811
eDespMamp -0.377945 0.085829 -4.40 <.0001 1.8428637
dCoreGrndS 0.279431 0.068211 4.10 0.0002 5.5394067
eDFld3Mamp 0.0957255 0.025881 3.70 0.0005 6.772589
hPrOpnTime -0.508435 0.149654 -3.40 0.0013 1.4694515
Intercept -12247.58 3848.063 -3.18 0.0025 .
(eDFld3Mamp) 2 0.0010352 0.000326 3.17 0.0026 4.1411091
dCoreScvWR 1996.0091 643.7091 3.10 0.0031 2.6738128
cSwgWxFbrW -0.106905 0.040723 -2.63 0.0114 2.2176688
eM2241Spd 0.210673 0.081191 2.59 0.0123 1.6239658
(fFaceMstM) 2 -17.40546 7.323693 -2.38 0.0213 1.5580044
bFacResnWS 8.5379183 4.081285 2.09 0.0414 4.0369594
fFaceMstM 5.2222213 3.820829 1.37 0.1777 2.0559436
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Table 4.11.  Scaled estimates for the second-order model for MDF 0.750”, n=70. 
Term Scaled Estimate Plot Estimate Prob>|t|
Intercept 128.95612  <.0001
dCoreDRSP -29.35279  <.0001
aChipAugSp -20.58037  <.0001
hPrClsTimP 22.805757  <.0001
eEI1071FT 22.381794  <.0001
(cSwgWxFbrW)2 26.990087  <.0001
(dCoreScvWR)2 -26.63432  <.0001
eM2236Spd 13.226269  <.0001
eDespMamp -12.54792  <.0001
dCoreGrndS 19.898003  0.0002
eDFld3Mamp 11.715886  0.0005
hPrOpnTime -7.781167  0.0013
(eDFld3Mamp)2 15.506291  0.0026
dCoreScvWR 17.884241  0.0031
cSwgWxFbrW -8.143196  0.0114
eM2241Spd 7.4345014  0.0123
(fFaceMstM)2 -11.70343  0.0213
bFacResnWS 7.6841264  0.0414
fFaceMstM 4.2822215  0.1777
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Table 4.12.  Summary of fit for the second-order model with interaction terms, MDF 
0.750”, n=200. 
RSquare 0.505768
RSquare Adj 0.418035
RMSE 11.27371
Mean of Response 139
Observations (or Sum Wgts) 200
Source DF Sum of 

Squares
Mean Square F Ratio

Model 30 21980.695 732.690 5.7648
Error 169 21479.305 127.096 Prob > F
C. Total 199 43460.000  <.0001
Term Estimate Std Error t Ratio Prob>|t| VIF
dCoreDRSP -2.679268 0.541799 -4.95 <.0001 3.6151547
(hPosTime)2 -0.0868 0.01899 -4.57 <.0001 2.7062869
(cSwDgstrL)*(fFaceHumid) -0.473084 0.10574 -4.47 <.0001 1.425036
eM2237Spd 1.4618715 0.34692 4.21 <.0001 2.3819806
hPosTime 1.2161295 0.290269 4.19 <.0001 4.5833167
(aChipAugSp) 3 -0.007036 0.00188 -3.74 0.0002 4.3746127
dCoreTemp 0.7787551 0.21668 3.59 0.0004 2.3038131
fFaceMstM -8.102769 2.312433 -3.50 0.0006 1.887095
cCI0023PT 0.441632 0.137226 3.22 0.0015 2.7396871
eBoilrStmF -0.000725 0.000228 -3.18 0.0018 1.6058179
(hPrAlTimeS) 2 0.0158995 0.005161 3.08 0.0024 2.4529553
(dCoreH202W) 2 -18064.02 6498.356 -2.78 0.0061 1.8294963
cSwDgstrL 0.3675405 0.1342 2.74 0.0068 2.2961775
bFaceChpLv 0.7709831 0.296203 2.60 0.0101 2.7347898
dCoreWx 6.5576589 2.633773 2.49 0.0137 1.9611066
(dCoreDRSP) 2 0.2024948 0.100035 2.02 0.0445 2.6518824
dCoreH202W -278.5607 179.3951 -1.55 0.1223 1.8647891
Intercept 12367.099 7999.038 1.55 0.1240 .
fFaceHumid 1.9617084 1.305062 1.50 0.1347 1.555024
(aCoreBinLv)*(fFaceHumid) -0.244344 0.16361 -1.49 0.1372 1.3924855
(cSwgScv2W)*(fFaceHumid) -917.4004 642.7628 -1.43 0.1553 1.6063435
bFaceGrdSF 0.0016839 0.001257 1.34 0.1821 1.4667581
eDespMamp -0.093732 0.074288 -1.26 0.2088 2.0984209
aChipAugSp 0.2359341 0.276238 0.85 0.3943 4.9187954
(aCoreBinLv)*(cSwgTemp) 0.0035755 0.005454 0.66 0.5130 1.2229218
hPrAlTimeS 0.0643628 0.117366 0.55 0.5841 3.8740363
cSwgScv2W -226.6042 439.4665 -0.52 0.6068 1.2430773
cSwgTemp -0.014433 0.041891 -0.34 0.7309 1.6033888
(aChipAugSp) 2 -0.005469 0.018031 -0.30 0.7620 1.5456402
(eDespMamp) 2 -0.000426 0.002938 -0.15 0.8848 1.4204288
aCoreBinLv 0.0102356 0.1213 0.08 0.9329 1.620821
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Table  4.13.  Comparison of optimal record length with full record length for first, second- 
and third-order stepwise regression models with interactions for OSB IB and Parallel EI 
(shaded records are discussed). 

*Using Box Cox transform that minimizes SSE in training model. 

**“ns” indicates that all higher-order or interaction terms are statistically insignificant, α ≤ 0.05 

***No regressors statistically significant (α <.10) with Box Cox transform. 
 
 

 

                                                 
17 “Shorter Record Length” indicates a algorithm that is developed for this dissertation in SAS 
where starting at record length of the 50 most current records of the training dataset, one record at 
a time is added to 50 going backward in time up to 400 (entire training data set).  The record length 
that has the highest adjusted R2, lowest Akaike’s Information criteria and largest degrees of 

freedom for regressors with p-values ≤ 0.05 is defined as the “Shorter Record Length.” 

 
MLR Model 

 
R2 

 n 
training

n 
validation

 
p

 
RMSE 

 
RMSEP 

 
RMSEP *

Internal Bond:  
Shorter Record Length17  

First-order 0.81 59 12 12 4.57 7.60 7.53 
Second-order 0.87 59 12 16 3.95 5.05 4.67 
Third-order ns** -- -- -- -- -- -- 

Second-order 
interaction 

ns** -- -- -- -- -- -- 

N=300  

First-order 0.42 300 60 23 7.14 9.64 8.95 
Second-order 0.51 300 60 31 6.70 12.74 9.67 
Third-order 0.41 300 60 25 7.26 12.67 12.26 
Third-order 
interaction 

ns** -- -- -- -- -- -- 

Parallel EI:  
Shorter Record Length  

First-order 0.67 58 16 11 2233 5901 --*** 
Second-order 0.32 58 16 6 3026 4371 --*** 
Third-order 0.77 58 16 14 1934 6724 --*** 
Third-order 
interaction 

0.83 58 16 14 1632 4446 4345 

N=300  

First-order 0.22 300 60 8 4141 4082 --*** 
Second-order 0.42 300 60 27 3708 4706 --*** 
Third-order 0.47 300 60 33 3583 5500 --*** 
Third-order 
interaction 

0.42 300 60 27 3700 5860 --*** 



 86

Table 4.14.  Summary of fit for the second-order model with Box Cox transform, OSB IB, 
n=59. 
RSquare 0.868944
RSquare Adj 0.819018
Root Mean Square Error 3.9463
Mean of Response 47.273
Observations (or Sum 
Wgts) 59
Source DF Sum of Squares Mean Square F Ratio 
Model 16 4336.7443 271.047 17.4046 
Error 42 654.0779 15.573 Prob > F 
C. Total 58 4990.8222  <.0001 
Term Estimate Std Error t Ratio Prob>|t| VIF
Dry2Out 0.2696975 0.06007 4.49 <.0001 3.8977687
PKI700QOTi -1.085833 0.230843 -4.70 <.0001 1.1644498
MTCLMoiLev 4.1187788 0.866295 4.75 <.0001 1.4902689
Dr3OutMois 10.618419 2.172934 4.89 <.0001 2.9474968
(MSBCLOFDSP)2 -7.958358 1.628046 -4.89 <.0001 1.6827701
MSBCLOFDSP 7.793946 1.465713 5.32 <.0001 2.5681587
MD4OutTem -0.136677 0.023966 -5.70 <.0001 1.5609997
BnkSpdTCL -1.11911 0.195796 -5.72 <.0001 1.9450153
Intercept -344.7253 54.49197 -6.33 <.0001 .
PZI701Ste5 0.2558758 0.032004 8.00 <.0001 1.5380048
(Dry2Out) 2 0.002579 0.000849 3.04 0.0041 2.8050309
MHOil2OilT 0.2185511 0.0744 2.94 0.0054 1.9082734
(DyBiLBoTSL) 2 -0.003644 0.001255 -2.90 0.0058 1.930353
(MD1OutTem) 2 0.0020606 0.000794 2.60 0.0130 3.012923
(MTCLMoiLev) 2 1.4676874 0.639984 2.29 0.0269 1.1929714
MD1OutTem 0.0640726 0.047577 1.35 0.1853 3.008842
DyBiLBoTSL 0.0121548 0.054203 0.22 0.8237 2.2017116
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Table 4.15.  Scaled estimates for the second-order model with Box Cox transform, OSB 
IB, n=59. 
Term Scaled Estimate Plot Estimate Prob>|t|

(MSBCLOFDSP) 2 -10.09921  <.0001
BnkSpdTCL -11.1911  <.0001
Dr3OutMois 8.683211  <.0001
Dry2Out 15.305335  <.0001
Intercept 48.277364  <.0001
MD4OutTem -10.59246  <.0001
MSBCLOFDSP 8.7798951  <.0001
MTCLMoiLev 8.3410961  <.0001
PKI700QOTi -10.31541  <.0001
PZI701Ste5 13.817295  <.0001
(Dry2Out) 2 8.3059136  0.0041
MHOil2OilT 6.7750838  0.0054
(DyBiLBoTSL) 2 -8.22131  0.0058
(MD1OutTem) 2 8.3742336  0.0130
(MTCLMoiLev) 2 6.0192566  0.0269
MD1OutTem 4.0846307  0.1853
DyBiLBoTSL 0.5773526  0.8237
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Table 4.16.  Summary of fit for the second-order model with Box Cox transform, OSB IB, 
n=300. 
RSquare 0.507502
RSquare Adj 0.450534
RMSE 6.700853
Mean of Response 46.10673
Observations (or Sum 
Wgts) 300
Source DF Sum of Squares Mean Square F Ratio 
Model 31 12400.187 400.006 8.9085 
Error 268 12033.583 44.901 Prob > F 
C. Total 300 24433.770 <.0001 
Term Estimate Std Error t Ratio Prob>|t| VIF
PZI701Ste4 0.1454053 0.023306 6.24 <.0001 1.9433827
MBCRFRFB 29.266959 5.105569 5.73 <.0001 1.9484868
(BnkSpdTCL)2 -0.026281 0.005682 -4.62 <.0001 4.4203533
MDBCLev 0.1332334 0.029632 4.50 <.0001 1.7135019
PLI795 -1.200244 0.269747 -4.45 <.0001 1.6807351
PKI700JPTi 0.1635721 0.043072 3.80 0.0002 4.6007777
DryWeBin5 0.9390069 0.24899 3.77 0.0002 7.6965839
(Dry3In) 2 -2.131e-5 6.02e-6 -3.54 0.0005 8.0090149
(PLI795) 2 -0.211566 0.061922 -3.42 0.0007 1.3924604
MSTSLOFSpA -0.372706 0.110389 -3.38 0.0008 7.9630801
Dry4Out -0.040535 0.01223 -3.31 0.0010 1.819225
(PHK71DP3Ti) 2 -0.005221 0.001607 -3.25 0.0013 9.4723208
(DryWeBin5) 2 0.0977245 0.03019 3.24 0.0014 8.6916278
PHK71DP3Ti 0.2581961 0.080939 3.19 0.0016 8.4073128
DryWeBin2 -0.75231 0.24009 -3.13 0.0019 8.5310591
Dry3In -0.009475 0.003034 -3.12 0.0020 6.1050943
MFLTerWegt -2.235229 0.72958 -3.06 0.0024 2.2760185
PTI770 -0.064417 0.021777 -2.96 0.0034 2.1184321
BnkSpdTCL -0.544102 0.184877 -2.94 0.0035 9.0886904
MDBBSLLev -0.079148 0.027698 -2.86 0.0046 2.0619137
MPTemp 0.2659322 0.104745 2.54 0.0117 2.0972742
(PrHK700C3R) 2 -0.145795 0.05817 -2.51 0.0128 1.7591526
PZI701St13 -0.067193 0.029735 -2.26 0.0246 4.2815783
WeBi5Tot24 0.0045613 0.00202 2.26 0.0247 1.8583371
MD3OutTem -0.045353 0.020082 -2.26 0.0247 2.6560252
Intercept -138.1027 61.76715 -2.24 0.0262 .
MD5OutTem 0.0464253 0.021471 2.16 0.0315 1.7696192
(DryWeBin2) 2 -0.056669 0.027626 -2.05 0.0412 9.0713671
PMI731 0.1186896 0.058277 2.04 0.0427 1.1863373
PTI796C 0.1610469 0.09236 1.74 0.0824 2.5751869
PQI700 0.0149964 0.00886 1.69 0.0917 1.147832
PrHK700C3R -0.034945 0.253752 -0.14 0.8906 2.1083909



 89

 

Table 4.17.  Scaled estimates for the second-order model with Box Cox transform, OSB 
IB, n=300. 
Term Scaled Estimate Plot Estimate Prob>|t| 

PZI701Ste4 13.449989  <.0001 
MBCRFRFB 8.7800862  <.0001 
(BnkSpdTCL)2 -17.76607  <.0001 
MDBCLev 3.3308358  <.0001 
PLI795 -8.101649  <.0001 
PKI700JPTi 13.003986  0.0002 
DryWeBin5 8.9205655  0.0002 
(Dry3In-958.23) 2 -8.176517  0.0005 
(PLI795) 2 -9.63946  0.0007 
MSTSLOFSpA -14.19673  0.0008 
Dry4Out -4.296684  0.0010 
(PHK71DP3Ti) 2 -6.395289  0.0013 
(DryWeBin5) 2 8.8196317  0.0014 
PHK71DP3Ti 9.0368637  0.0016 
DryWeBin2 -7.146946  0.0019 
Dry3In -5.869903  0.0020 
MFLTerWegt -4.482991  0.0024 
PTI770 -3.778121  0.0034 
BnkSpdTCL -14.14665  0.0035 
MDBBSLLev -2.968064  0.0046 
MPTemp 5.0527126  0.0117 
(PrHK700C3R) 2 -6.159825  0.0128 
PZI701St13 -5.946544  0.0246 
WeBi5Tot24 3.2818738  0.0247 
MD3OutTem -4.864141  0.0247 
MD5OutTem 4.503253  0.0315 
(DryWeBin2) 2 -5.114356  0.0412 
PMI731 4.3024978  0.0427 
PTI796C 3.6235546  0.0824 
PQI700 1.4546554  0.0917 
PrHK700C3R -0.227145  0.8906 
PZI701Ste4 13.449989  <.0001 
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Table 4.18.  Summary of fit for the first-order model, OSB Parallel EI, n=58. 
RSquare 0.665715
RSquare Adj 0.585778
RMSE 2232.722
Mean of Response 58932.08
Observations (or Sum 
Wgts) 58
Source DF Sum of Squares Mean Square F Ratio 
Model 11 456666304 41515119 8.3279 
Error 46 229312177 4985047.3 Prob > F 
C. Total 57 685978481 <.0001 
Term Estimate Std Error t Ratio Prob>|t| VIF
PMI733 -351.8691 57.58996 -6.11 <.0001 1.350916
MHOil2OilT -190.0351 34.63287 -5.49 <.0001 1.2914359
Dr2OutMois 2319.4085 481.655 4.82 <.0001 1.3194214
PPI740 1469.5119 375.3968 3.91 0.0003 1.9847096
WeBi5Tot24 6.5940582 1.902065 3.47 0.0012 1.1809942
MSTCLLev -219.564 67.31155 -3.26 0.0021 1.3454974
PTI700 -289.2639 94.62459 -3.06 0.0037 1.2149607
PZI701Ste2 230.67719 95.24907 2.42 0.0194 1.1874661
PMI748 0.8671941 0.366255 2.37 0.0222 1.7667314
Intercept -777567.2 336454.4 -2.31 0.0254 .
Dry4Out 24.05691 11.44027 2.10 0.0410 1.2086515
MF1HMIWatd 130.61953 62.98994 2.07 0.0437 1.2524047
 
 
 
 
 
 
 

Table 4.19.  Scaled estimates for the first-order model, OSB Parallel EI, n=58. 
Term Scaled Estimate Plot Estimate Prob>|t|
Intercept 58932.082  <.0001
MHOil2OilT -5891.087  <.0001
PMI733 -2234.369  <.0001
Dr2OutMois 3649.9787  <.0001
PPI740 3159.4506  0.0003
WeBi5Tot24 2667.2965  0.0012
MSTCLLev -3293.459  0.0021
PTI700 -2053.774  0.0037
PZI701Ste2 1499.4017  0.0194
PMI748 1682.7902  0.0222
Dry4Out 1876.439  0.0410
MF1HMIWatd 1240.8855  0.0437
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Figure 4.1.  Comparison of Adjusted R2 and AIC for first-order stepwise 
regression models for MDF 0.500” for every record length greater than 50. 
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Figure 4.2.  Comparison of Adjusted R2 and AIC for first-order stepwise regression 
models for MDF 0.625” for every record length greater than 50. 
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Figure 4.3.  Comparison of Adjusted R2 and AIC for first-order stepwise regression 
models for MDF 0.750” for every record length greater than 50. 
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Figure 4.4.  Residuals by predicted IB plot for the second-order model, MDF 
0.500”, n=60. 
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Figure 4.5.  Time series graph of validation data set for the second-order model, 
MDF 0.500”, n=15. 
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Figure 4.6.  XY scatter plot of training (top) and validation (bottom) data sets for 
the second-order model, MDF 0.500”, n=60. 
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Figure 4.7.  Prediction profiles for the second-order model, MDF 0.500”, n=60. 
 
 
 
 
 
 
 

 

 

Figure 4.8.  Response surface plots of IB for: “fFaceMstM” and “hPrCls2Tim” 
(upper left); “eBoilrStmP” and “fFaceMstM” (upper right); “dCoreTemp” and 
“fFaceMstM” (lower left); and “dCoreTemp” and “aChipAugSp” (lower right) for 
the second-order model, MDF 0.500”, n=60. 
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Figure 4.9.  Residuals by predicted IB plot for the first-order model, MDF 0.500”, 
n=175. 
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Figure 4.10.  Time series graph of validation data set for the first-order model, 
MDF 0.500”, n=33. 
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Figure 4.11.  XY scatter plot of training (top) and validation (bottom) data sets for 
the first-order model, MDF 0.500”, n=175. 
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Figure 4.12.  Prediction profiles for the first-order model, MDF 0.500”, n=175. 
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Figure 4.13.  Residuals by predicted IB plot for the first-order model for MDF 
0.625”, n=62. 
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Figure 4.14.  Time series graph of validation data set for the first-order model for 
MDF 0.625”, n=13. 
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Figure 4.15.  XY scatter plot of training (top) and validation (bottom) data sets 
for the first-order model for MDF 0.625”, n=62. 
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Figure 4.16.  Prediction profiles the first-order model for MDF 0.625”, n=62. 

 
 
 
 
 
 
 
 
 

 

 

Figure 4.17.  Response surface plot of IB for “gPreBBSpd” and “cC00046” for the 
first-order model for MDF 0.625”, n=62. (grid-line 120 p.s.i.). 
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Figure 4.18.  Residual by predicted IB plot for the second-order model for MDF 
0.625”, n=400. 
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Figure 4.19.  Time series graph of validation data set for the second-order model for 
MDF 0.625”, n=80. 
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Figure 4.20.  XY scatter plot of training (top) and validation (bottom) data sets for 
the second-order model for MDF 0.625”, n=400. 
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Figure 4.21.  Prediction profiles for the second-order model for MDF 0.625”, n=400. 
 
 
 

 
Figure 4.22.  Response surface plot of IB for “hPrPPMTimS” and “fCoreHTmpT” 
for the second-order model for MDF 0.625”, n=400. 
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Figure 4.23.  Residual by predicted IB plot for the second-order model for MDF 
0.750”, n=70. 
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Figure 4.24.  Time series graph of validation data set for the second-order model for 
MDF 0.750”, n=15. 
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Figure 4.25.  XY scatter plot of training (top) and validation (bottom) data sets 
for the second-order model for MDF 0.750”, n=70. 
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Figure 4.26.  Prediction profiles for the second-order model for MDF 0.750”, n=70. 
 
 
 
 
 
 

 
Figure 4.27.  Response surface plot of IB for “fFaceMstm” and “dCoreScvWR” (left) 
and for “hPrOpnTime” and “dCoreScvWR” (right) for the second-order model for 
MDF 0.750”, n=70. 
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Figure 4.28.  Residual by plot for the second-order model with interaction terms, 
MDF 0.750”, n=200. 
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Figure 4.29.  Time series graph of validation data set for the second-order model with 
interaction terms, MDF 0.750”, n=40. 
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Figure 4.30.  XY scatter plot of training (top) and validation (bottom) data sets for 
the second-order model with interaction terms, MDF 0.750”, n=200. 
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Figure 4.31.  Comparison of Adjusted R2 and RMSE (upper) and Adjusted R2 and 
AIC (lower) for first-order models for OSB IB for every record length greater than 
50. 
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Figure 4.32.  Comparison of Adjusted R2 and RMSE (upper) and Adjusted R2 and 
AIC (lower) for first-order models for OSB Parallel EI for every record length 
greater than 50. 
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Figure 4.33.  Residual by predicted IB plot for the second-order model with Box 
Cox transform, OSB IB, n=59. 
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Figure 4.34.  Time series graph of validation data set for the second-order model 
with Box Cox transform, OSB IB, n=12. 
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Figure 4.35.  XY scatter plot of training (top) and validation (bottom) data sets for 
the second-order model with Box Cox transform, OSB IB, n=59. 
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Figure 4.36.  Prediction profiles for the second-order model with Box Cox 
transform, OSB IB, n=59. 
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Figure 4.37.  Response surface plots of OSB Parallel EI for: “Dry2Out” and 
“BnkSpdTCL” (upper left); “MTCLMoiLev” and “Dry2Out” (upper right); 
“MTCLMoiLev” and “BunkerSpdTCL” (lower left); and “Dr3OutMois” and 
“MTCLMoiLev” (lower right) for the second-order model with Box Cox 
transform, OSB IB, n=59. 
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Figure 4.38.  Residual by plot for the second-order model with Box Cox 
transform, OSB IB, n=300. 
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Figure 4.39.  Time series graph of validation data set for the second-order 
model with Box Cox transform, OSB IB, n=60. 
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Figure 4.40.  XY scatter plot of training (top) and validation (bottom) data sets 
for the second-order model with Box Cox transform, OSB IB, n=300. 
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Figure 4.41.  Residual by predicted Parallel EI plot for the first-order model, 
OSB Parallel EI, n=58. 
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Figure 4.42.  Time series graph of validation data set for the first-order model, 
OSB Parallel EI, n=16. 
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Figure 4.43.  XY scatter plot of training (top) and validation (bottom) data sets 
for the first-order model, OSB Parallel EI, n=58. 
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CHAPTER V. 
 

PARAMETRIC AND NON-PARAMETRIC REGRESSION 
TREE MODELS OF MDF AND OSB STRENGTH 

PROPERTIES 
 
 
 Results are presented in this chapter for the second and third objectives of the 

dissertation.  Decision Tree (DT) or Regression Tree (RT) models are investigated that 

have explanatory value and predictive capability for the internal bond (IB) of medium 

density fiberboard (MDF) and oriented strand board (OSB).  The Parallel Elasticity Index 

(EI), an important flexure strength property of OSB, is also explored using RT models.  

GUIDE (version 5.2) is used for RT model development (Loh 2006b).  This research will 

hopefully advance the mathematical and industrial engineering sciences as applied to wood 

composites manufacture.  Applications of this research for the practitioner are analytical 

methods that will improve the understanding of sources of variation of manufacturing 

processes that may facilitate improvements in product quality, product safety and lower 

costs. 

 To accomplish this objective, 56 parametric RT models and 32 non-parametric 

quantile RT models are investigated for the IB of MDF.  Forty-eight parametric RT 

models and 24 non-parametric quantile RT models are further investigated for the IB and 

Parallel EI of OSB.  Quantile regression RT models are investigated for the median or 

50th percentile.  For MDF, RT models for three nominal products are investigated, 0.500”, 

0.625” and 0.750”.  The OSB manufacturer produced predominately one product, 7/16” 

roof sheathing (RS) for which RT models are explored. 
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In the spirit of model-building and to advance the understanding of data set 

dimensionality and its influence on model development (Draper and Smith 1981, Myers 

1990, Neter et al. 1996, and Kutner et al, 2004), RT models are developed for long and 

short record lengths, e.g., for 0.625” MDF RT models are developed for training data sets 

of 62 records, 100 records, 200 records, 300 records and 400 records (Table 5.1).  The 

record length of 62 builds upon the results of Chapter IV.  Validation data sets for both 

MDF and OSB are approximately 20% of the size of the training data sets (Draper and 

Smith 1981, Myers 1990, Neter et al. 1996, and Kutner et al. 2004).  Note that all records 

are time-ordered and the validation data set are one continuous grouping of time-ordered 

records that start after the last record of the training data set.  A challenge in this research 

in modeling industrial processes is low data set dimensionality, i.e., abundant data are 

available from on-line sensors but lack of data are available of destructive test strength 

properties due to infrequent sampling from the production line.   

The MDF data set has 184 independent variables and the OSB data set has 234 

independent variables (descriptions of variables are given in Appendix D).  Many authors 

note that ideally record length should be six to ten times the number of independent 

variables (Draper and Smith 1981, Myers 1990, Neter et al. 1996, and Kutner et al, 2004).  

Unfortunately, the data set used for this research by Dawson et al. (2006) did not allow for 

this ideal to be met. 

 A strength of RT analysis is illustrated by the histograms for the MDF 0.625” 

process variables “core fiber temperature” and “swing refiner separator outlet pressure” 

(Figure 5.1).  In RT analysis, models are investigated for these regressors as distinct sub-

groups.  This is further highlighted by the regression fits for each subgroup (or tree node) 
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of “swing refiner separator outlet pressure” (Figure 5.2).  If analyzed as one subgroup 

(typical of MLR), the simple linear fit is not significant.  When analyzed as two subgroups, 

the simple linear and polynomial regression fits have different slopes and intercepts.  This 

illustration highlights some of the strengths of RT methods when modeling heterogeneous 

data (Loh 2007a, Kim et al. 2007b).    

In general, pruning the RT models by v-fold cross-validation reduces the root 

mean square error of prediction (RMSEP) for MDF with the exception of the mixed 

stepwise model fits (Figures 5.3, 5.4 and 5.5).  The improvement in the RMSEP from v-

fold cross-validation pruning for MDF is more pronounced as the dimensionality of the 

data improve and approach a record length of 400 (Loh 2006b and Kim et al. 2007a).  For 

OSB, a more difficult data set to model, the RMSEP is reduced by v-fold cross-validation 

for all RT models with the exception of two shorter record lengths for polynomial RT 

models (Figures 5.6 and 5.7).  However, for both MDF and OSB, the RT models with the 

lowest RMSEP are not always the models with the most predictive capability.  The 

coefficient of determination (R2) for RT models by itself is not the best statistic in selecting 

a suitable RT model (Loh 2006b and Kim et al. 2007b).  More in-depth analysis using XY 

scatter plots, time-ordered predictions of validation data sets, and plots of residuals are all 

important elements in model selection (refer to best model criteria previously discussed in 

Chapter III).  The variable ranking feature of GUIDE (Loh 2007b) is used to pre-select 

significant regressors and improve the dimensionality of the data set as required for non-

parametric (quantile) regression development.  
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Medium Density Fiberboard 
 
Ranking of Key Regressors for all MDF Product Types 
  

The ranking capability of GUIDE (Loh 2006) indicates that resin percentage, 

refining plate position and press set-points are all important in influencing IB variation 

(Table 5.2).  “Waste fiber addition to refined core fiber” is a key variable for the thickest 

product (0.750”) and may indicate that addition of waste fiber and its effect on IB needs 

further investigation by the manufacturer.  A key process variable for the thinner 0.500” 

product is “mat weight at the Thayer scales.”  This may reflect difficulties with proper 

weight formation for thinner MDF products.   “Crew” is a surprising source of IB 

variation for 0.625” MDF.  This is an undesirable modeling regressor and makes the 

product more difficult to model.  Operator induced variation can be a source of variation 

and usually indicates the need for additional training (Deming 1986 and 1993). 

 
Medium Density Fiberboard RT Models 

MDF  0.500” Thickness. -- Eighteen parametric and eight non-parametric RT models are 

explored for this product type.  A candidate RT model for a record length of 100 is a 

third-order quantile RT model with v-fold cross-validation node pruning (Figures 5.8, 

Tables 1c and 2c, Appendix C).  The quantile RT model has five nodes and three terminal 

nodes.  Key metrics of this RT model are a RMSE of 8.63, RMSEP of 32.56 p.s.i. and 

homogeneous residual pattern.  Predicted IB does not approximate observed IB in the 

validation data set (Figure 5.9).  Four possible outlier values of IB in the validation data set 

result in poor model predictability.    

For a record length of 175, the best candidate model is a RT mixed stepwise 

regression model with v-fold cross-validation node pruning (Table 2c, Appendix C).  Key 
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metrics for this RT model are a RMSE of 7.89 p.s.i., RMSEP of 16.26 p.s.i., R2 of 0.72 and 

homogeneous residual pattern (Table 2c, Appendix C).   Given the low dimensionality of 

the training data set, the RT consists of only one root node after v-fold cross-validation 

pruning (Table 5.3).  Predicted IB tends to follow the general trend of observed IB in the 

validation data set with the exception of 12 contiguous records of overestimation in the 

middle of the validation data set (Figures 5.10 and 5.11).  A quantile RT model of the 

median IB reduces the RMSE to 7.70 p.s.i. but increases the RMSEP to 26.11 p.s.i. and has 

an undesirable predicted IB trend. 

A good candidate model using the shorter record length of 60 (investigated for 

MLR in Chapter IV) is a second-order RT model without node pruning.  The RT model 

has good explanatory value and moderate predictive capabilities of IB (Figures 5.12 and 

5.13).  The RT model has 15 total nodes and eight terminal nodes.  The RT model has a 

RMSE of 2.16 p.s.i., RMSEP of 15.74 p.s.i. with a tree model R2 of 0.96 and a 

homogeneous residual pattern (Table 1c, Appendix C).   

MDF  0.625” Thickness. -- Thirty-two parametric and 16 non-parametric quantile RT 

models are investigated for this product type (Tables 3c and 4c, Appendix C).  For a 

record length of 100, the best candidate model is a mixed stepwise regression model with 

v-fold cross-validation node pruning (Table 5.4, Table 4c, Appendix C).  Key metrics of 

this RT model are a RMSE of 9.42 p.s.i., RMSEP of 14.84 p.s.i., R2 of 0.51 and a 

homogeneous residual pattern.   The RT consists of only one root node after v-fold cross-

validation pruning.  Loh (2007) indicated in personal e-mails that pruning of a large 

number of nodes in GUIDE, even back to one node, is typical for data sets with low 

dimensionality.  Predicted IB was not favorable and tends to over-estimate observed IB of 
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the time-ordered validation set.  This outcome is not surprising given the low 

dimensionality of the data set and excessive node pruning.   

The possible benefit of the model may be explanatory in the regressor variables of 

the mixed stepwise regression equation (Table 5.4).  Regressor variables are related to chip 

digesting and refining of face fiber (fiber quality), resin percentage and face moisture 

content.  A quantile RT model of the median IB reduces the RMSE to 8.79 p.s.i. but 

results in an unacceptable increase of the RMSEP to 21.47 p.s.i. and poor prediction of IB 

in the validation set.  

For a record length of 200, the best possible candidate RT model is the piecewise 

simple linear model with v-fold cross-validation pruning.  The predictability for this RT 

model declines after the 11th record in the time-ordered validation data set.  Key metrics 

for this RT model are a RMSE of 11.16 p.s.i., RMSEP of 11.44 p.s.i. and a homogeneous 

residual pattern.  The RT model consists of three nodes with two terminal nodes (Figure 

5.14).  A quantile RT model of the median IB reduces the RMSE to 10.73 p.s.i. but results 

in an increase of the RMSEP to 12.90 p.s.i. and has poor predictability of the validation 

data set.  

Even though model quality is not necessarily optimal, the explanatory value of RT 

models starts to reveal itself with a record length of 200.  The split of cCI0023PT (“refiner 

steam pressure”) indicates possible heterogeneous data and the simple linear regression 

models for each node indicate that “press pre-position move time set-point” has a large 

negative influence when “refiner steam pressure” >_48.1.  “Core fiber moisture” had a 

negative influence when “refiner steam pressure” >_48.1.  Surprisingly, the regressor 

variable “Lab Technician = JY” is statistically significant in both node models and has a 
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negative influence on IB.  This may also explain some of the difficulty in developing a 

predictive model for this product.  This is an unacceptable manufacturing outcome given 

that a person or crew should not result in a lower IB or increase IB variance.  This source 

of variation should be vigorously investigated by the manufacturer and further training of 

this person and crew may be necessary.  Recall Deming’s (1986 and 1993) views on 

operator induced variance from “tampering” and his focus on training of operators and 

managers. 

For a record length of 300, the quantile RT model has a RMSE of 9.31, RMSEP 

of 16.33 p.s.i. and a homogeneous residual pattern.   The RT consists of only one root 

node after v-fold cross-validation pruning.  Key regressors in the quantile regression 

equation are “press pre-position set-point” which has a strong negative influence on IB.  

“Pre-compressor belt speed” and surprisingly “swing wax percent” have positive 

influences on IB.  “Forming line speed” has a negative influence on IB (Table 5.5).  

Predicted IB does not approximate observed IB in the validation data set but in some 

instances follows the time-ordered trend of IB (Figures 5.15 and 5.16).   

For a record length of 400, the most suitable RT model is a piecewise simple 

linear model with v-fold cross-validation node pruning.  Key metrics for this RT model are 

a RMSE of 11.33 p.s.i., RMSEP of 18.08 p.s.i., R2 of 0.34 and the residual pattern is 

homogeneous (Table 4c, Appendix C).  This RT model has 9 total nodes with 5 terminal 

nodes.  The desirable attribute of this RT model is its explanatory value in the regression 

tree (Figure 5.17).  The highest level of IB (mean = 145.7 p.s.i.) is for a “core fiber 

moisture >_10.0% and “core finer temperature” ≤_142.4.  The lowest level of IB (mean = 

133.3 p.s.i.) is for “core fiber moisture >_10.0% and “core finer temperature” >_142.4.  
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The manufacturer should investigate these variables further as such variables are sources 

of IB variation.  The predicted IB in the validation data set does not approximate observed 

IB after about the first six values (Figures 5.18 and 5.19).  This further highlights the 

difficulty of predictive modeling of industrial processes (Bernardy and Scherff 1998, 

Benardy and Scherff 1999, Young and Guess 2002, Young and Huber 2004, Young et al. 

2004, Dawson et al. 2006, Kim et al. 2007).  In this case the RT model would have to be 

reasseseed after about six IB tests in the validation data set.   

 The quantile RT model candidate for this record length has a RMSE to 13.16 p.s.i. 

and RMSEP to 14.32 p.s.i.  The predicted IB in the validation data set is worse than the 

piecewise simple linear model with v-fold cross-validation node pruning.   

A candidate model using the shorter record length of 62 (investigated for MLR in 

Chapter IV) is a second-order RT model with v-fold cross-validation pruning.  The RT 

model has good explanatory value and predictive capability (Figures 5.20 and 5.21).  The 

RT model has three total nodes with two terminal nodes.  The model has a RMSE of 9.55 

p.s.i., RMSEP of 11.29 p.s.i. with a tree model R2 of 0.60 and a homogeneous residual 

pattern (Table 4c, Appendix C).   

MDF 0.750” Thickness. -- Sixteen parametric and eight non-parametric quantile RT 

models are investigated for this product type (Tables 5c and 6c, Appendix C).  For a 

record length of 100, a suitable candidate model is a non-parametric quantile RT model 

without node pruning.  Key metrics for this RT model are a RMSE of 8.54 p.s.i., RMSEP 

of 22.17 p.s.i. and homogeneous residual pattern.   The RT model has 13 total nodes and 

seven terminal nodes.  Attractive features of this model are its explanatory value from the 

regression tree and also its predictive capability in the near term (Figures 5.22 and 5.23).   
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The highest level of IB (mean = 151) occurs with “refiner steam pressure” >_54.6 

and “press start control” ≤ _933.0.  The lowest level of IB (mean = 132) occurs with 

“refiner steam pressure” ≤_54.6 and “dry fuel bin speed” ≤_27.7.  This model is good 

example of the explanatory value of RT models (Loh 2007, Kim et al. 2007, Kim et al. 

2007), Figure 5.23.  “Core scavenger resin rate” has a significant influence on IB within 

each sub-tree as indicated by the quantile regression coefficients.  However, the level and 

direction of influence of “core scavenger resin rate” is dependent on other process 

variables and levels of the process variable within a sub-tree. 

Predictions of IB follow the trend of observed IB with a high degree of accuracy 

for the first eight records of the validation data set (Figure 5.22).  With the exception of 

the later records of the validation data set (17 through 20), the XY scatter plot reveals that 

IB predictions follow the scale of observed IB (Figure 5.24).   

For a record length of 200, the best candidate model of the 12 models 

investigated is a piecewise simple linear RT model without node pruning.  The RT model 

is quite large and consists of a total of 75 nodes with 38 terminal nodes.  Given the length 

of this RT model, it is in presented in GUIDE format as Illustration 1B, Appendix B.  Key 

metrics for this RT model are a RMSE of 2.97 p.s.i., RMSEP of 20.03 p.s.i., R2 of 0.96 and 

a homogeneous residual pattern.   The RT model is over fit without node pruning but it is 

the only model for this record length that has any approximation to observed IB in the 

validation data set (Figures 5.25 and 5.26).   

The highest level of IB (mean = 156) for this model occurs for “core dust ratio set-

point” ≤_7.5, “mat shave off height #1” >_0.14, “mat shave off height #1” ≤_0.52, “fiber 

bulk density” ≤_5.0, “core fiber humidifier temperature” >_102.6, “swing dyer outlet 
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temperature” ≤_154, “eDesp_Field3_Millamps” >_494.5 and “swing refiner fiber 

moisture” ≤_8.0.  The significant (α <_0.01) linear regressor within this sub-tree is “press 

position time” with a coefficient of 3.17, i.e., for every second increase in “press position 

time” IB increases by 3.17 p.s.i. if all other regressors are held constant.   

The lowest level of IB (mean = 112) occurs for “core dust ratio set-point” >_7.5, 

“core scavenger rate” ≤_6.0, “press temperature” >_347.2, and “face fiber humidity” 

>_50.5.  The significant (α <_0.01) linear regressor for this tree is “mat shave off height 

#1” with a positive coefficient of 53.9. 

A second-order RT model with v-fold cross-validation pruning using the shorter 

record length of 70 (investigated for MLR in Chapter IV) improved the ability to model 

this product type.  The RT model has one node, RMSE of 14.69 p.s.i., RMSEP of 15.87 

p.s.i. with a tree model R2 of 0.20 and a non-homogeneous residual pattern (Figures 5.27 

and 5.28, Table 6c, Appendix C).   

 
Oriented Strand Board  
 
Ranking of Key Regressors for the Parallel EI and IB of OSB 
  

The ranking capability of variables from GUIDE (Loh 2006) indicate that variation 

in top and bottom core layer moistures are significant factors influencing both Parallel EI 

and IB (Table 5.6).  Process variables related to press time also appear to be important but 

to a lesser extent.  Process variables related to forming speed also appear to be important 

in influencing Parallel EI strength variation.  The manufacturer should investigate these 

sources of variation in the process as such variation limits product quality and safety 

improvements, and potential cost savings (Deming 1986, 1993). 
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Oriented Strand Board RT Models 
 
Internal Bond. -- Twenty-four parametric and 12 non-parametric quantile RT models are 

investigated (Tables 7c and 8c, Appendix C).  For a record length of 100, the best 

candidate model is mixed stepwise all possible subsets RT model without node pruning.  

Key metrics for this RT model are a RMSE of 5.79 p.s.i., RMSEP of 9.24 p.s.i., R2 of 0.64 

and a homogenous residual pattern.  The RT model consists of a total of 23 nodes with 12 

terminal nodes (Illustration 2B, Appendix B).  Predicted IB for the validation data set 

approximates the observed IB in the time-ordered validation data set (Figures 5.29 and 

5.30).  Development of a quantile RT model of the median IB reduces the RMSE to 3.95 

p.s.i. but unsatisfactorily increases the RMSEP to 15.48 p.s.i. with unsatisfactory predicted 

IB in the validation data set.  

The subgroup with the highest mean IB (61.1 p.s.i.) for this model occurs for a 

“top core layer moisture content” >_5.4% and “press close time” >_56.5 seconds.  The 

significant (α < 0.01) linear regressors for this sub-tree are “bunker speed bottom surface 

layer” with a coefficient of 2.05 and “bunker speed top surface layer” with a coefficient of 

-3.41, i.e., for every unit increase in “bunker speed top surface layer” IB decreases by 3.41 

p.s.i. with everything else in the equation held constant (Illustration 2B, Appendix B) 

The subgroup with the lowest mean IB (38.2 p.s.i.) for this model occurs for “top 

core layer moisture content” ≤_5.2%, “main spreader top surface layer speed” >_54.9, and 

“main flaker 3 pass counter” ≤_249.7.  The significant linear regressors for this sub-tree 

are “bunker speed top core layer” with a coefficient of -2.84 and “bunker speed top 

surface layer” with a coefficient of 2.03.   
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For a record length of 200, the best candidate model is mixed stepwise all 

possible subsets RT model without node pruning.  Key metrics for this RT model are a 

RMSE of 7.03 p.s.i., RMSEP of 7.44 p.s.i., tree model R2 of 0.73 and a homogeneous 

residual pattern.  The RT model consists of a total of 33 nodes with 17 terminal nodes 

(Illustration 3B, Appendix B).  Predicted IB did not approximate the general trend of 

observed IB for the validation data set with some central tendency of predictions (Figures 

5.31 and 5.32).  Development of a quantile RT model increases the RMSE to 7.53 p.s.i. 

and the RMSEP to 8.12 p.s.i. and did not improve predictability. 

The subgroup with the highest mean IB (63.6 p.s.i.) for this model occurs for 

“press KI700A close 1 time” ≤_16.5, “top core layer moisture content” >_4.9%, “main 

dryer bin surface layer level” ≤_62.5, and “main blender bottom surface layer wood flow” 

≤_25954.  There is no significant linear equation within this sub-tree.   

The subgroup with the lowest mean IB (34.2 p.s.i.) for this model occurs for 

“press KI700A close 1 time” >_16.5, “press PC 741A” ≤_97.0, “main flaker speed as a 

percent” >_97.8, “bottom surface layer bunker speed” >_66.5 and “press KI700S full 

open time” ≤_16.5.  The two significant (α <_0.01) linear regressors within this sub-tree 

are “bunker speed bottom core layer” with a coefficient of -2.61 and “bunker speed 

bottom surface layer” with a coefficient of -6.19 (Illustration 3B, Appendix B).   

For a record length of 300, the best possible candidate model is again a mixed 

stepwise all possible subsets RT model without node pruning (Tables 7c and 8c, Appendix 

C).  Key metrics for this RT model are a RMSE of 5.07 p.s.i., RMSEP of 13.35 p.s.i., tree 

model R2 of 0.69 and a homogeneous residual pattern.  The RT model consists of a total 

of 39 nodes with 20 terminal nodes.  The predictions for this RT model do not 
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approximate observed IB in the validation data set (Figures 5.33 and 5.34).  Development 

of a quantile RT model of the median IB increases the RMSE to 7.53 p.s.i. and reduces the 

RMSEP to 8.12 p.s.i. and does not approximate IB in the validation data set.  

The subgroup with the highest level of mean IB (55.1 p.s.i.) for this model occurs 

for “main dry bin core level” >_37.5, “dryer wet bin #2” >_24.5, “press ZI 701 Step 3” 

>_972.5, “press LI795” ≤_15.1, “main blender top surface layer wood flow” >_35.5, 

“press PC 741B” >_747.0, and “press UY741B output” ≤_97.0.  There is no significant 

linear equation within this sub-tree.   

The lowest subgroup with a mean IB of 38.2 p.s.i. occurs for “main dryer bin core 

level” ≤_37.5, “dryer wet bin #2” >_24.5, “press ZI 701 step3” ≤_972.5, and “press MI 

780” >_1.1.  The three significant (α < 0.01) linear regressors for this sub-tree are “bunker 

speed top surface layer” with a coefficient of -0.18, “dryer 1 inlet temperature” with a 

coefficient of -0.015, and “dryer 1 outlet temperature” with a coefficient of 0.159.  

A candidate model using the shorter record length of 59 (investigated for MLR in 

Chapter IV) is a second-order RT model without node pruning.  The RT model has good 

explanatory value and with the exception of two points in the validation data set, 

moderately good predictive capabilities (Figures 5.35 and 5.36).  The RT model has 15 

total nodes and eight terminal nodes.  The RT model has a RMSE of 2.30 p.s.i., RMSEP of 

11.01 p.s.i. with a tree model R2 of 0.94 and a homogeneous residual pattern (Table 7c, 

Appendix C).   

Parallel EI. -- Twenty-four parametric and 12 non-parametric quantile RT models are 

explored for this OSB strength property (Tables 9c and 10c, Appendix C).  For a record 

length of 100, the best candidate model is a third-order RT model without node pruning.  
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Key metrics for this RT model are a RMSE of 920 in-lb2/ft, RMSEP of 4361 in-lb2/ft, tree 

model R2 of 0.94 and a homogeneous residual pattern.   The RT model consists of a total 

of 21 nodes with 11 terminal nodes (Illustration 4B, Appendix B).  Predicted IB for the 

validation data set when lagged one time period approximated the time-ordered observed 

IB (Figures 5.37 and 5.38).  Note that the Parallel EI is the only product in the study where 

lagging of predicted values improved predictions of IB.  This may be an indication that the 

lagging of sensor data for Parallel EI is not accurate and requires further investigation in 

the fusion database. 

The subgroup with the highest level of mean Parallel EI (63,030 in-lb2/ft) occurs 

for “press MI 747” ≤_2370, “flaker 2 stroke speed” >_3.5, and “flaker 3 stroke speed” 

>_1.5.  The significant (α < 0.01) regressors for this sub-tree are: 

Parallel EI =  ⎯ 2.35 x 106 + 1.37 x 106 (“Top core layer moisture content”) 

 ⎯ 2.57 x 105 (“Top core layer moisture content”)2 

 + 1.59 x 104 (“Top core layer moisture content”) 3. [5.1] 

 

The subgroup with the lowest mean Parallel EI (56,207 in-lb2/ft) occurs for “press 

MI 747” >_2370”, “main spreader top core level” >_54.5, and “main blender bottom 

surface layer wood flow” >_48.5.  The significant (α < 0.01) regressors for this sub-tree 

are: 

Parallel EI = ⎯ 3.76 x 107  + 4.41 x 106 (“Dryer wet bin #2”) 

 ⎯ 1.72 x 105 (“Dryer wet bin #2”)2 

 + 2.24 x 103 (“Dryer wet bin #2”) 3.   [5.2] 

 
For a record length of 200, the most suitable candidate model is a third-order RT 

model without node pruning (Table 9c, Appendix C).  Key metrics for this RT model are a 

RMSE of 946 in-lb2/ft, RMSEP of 5337 in-lb2/ft, tree model R2 of 0.94 and a 
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homogeneous residual pattern.   The RT model consists of a total of 45 nodes with 23 

terminal nodes.  Predicted Parallel EI (lagged one time period) for the validation data set 

does not approximate the time-ordered records with underestimation of large Parallel EI 

values (Figures 5.39 and 5.40).  Note predictions of Parallel EI are worse when not time-

lagged. 

The highest level of mean Parallel EI (63,696 in-lb2/ft) occurs for “core layer 

moisture” >_6.3%, “press main pressure” ≤_3387.5 and “press PC 741B” >_97.0.  The 

significant (α < 0.01) regressors for this sub-tree are: 

Parallel EI = ⎯ 1.10 x 107 + 3.70 x 105 (“Press position time”) 

 ⎯ 4.12 x 103 (“Press position time”)2 

 + 1.52 x 101 (“Press position time”) 3.   [5.3] 

 
The subgroup with the lowest mean Parallel EI (56,853 in-lb2/ft) occurs for “core 

layer moisture” ≤_6.3%, “press MI 734” ≤_13.3, “main dryer 5 outlet temperature” 

>_250.7, “press PMI 740” ≤_3600, “top surface layer moisture content” ≤_6.7%, “press 

PI 700 B” ≤_1141 and “main flaker 2 HMI” >_28.3.  The significant (α < 0.01) regressors 

for this sub-tree are: 

Parallel EI = 1.49 x 107 ⎯ 2.14 x 105 (“Press button-to button time”) 
 + 1.01 x 103 (“Press button-to button time”)2 

   ⎯ 1.53 x 101 (“Press button-to button time”) 3.   [5.4] 

 
For a record length of 300, the best predictive model is a piecewise simple linear 

RT model without node pruning.  Key metrics for this RT model are a RMSE of 1360 in-

lb2/ft, RMSEP of 6679 in-lb2/ft, tree model R2 of 0.91 and residual pattern with some 

heteroscedasticity.  The RT model is large and consists of a total of 97 nodes with 49 
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terminal nodes.  Predicted IB for the validation data set did not fit the observed IB very 

well even after time lagging. 

A candidate model using the shorter record length of 58 (investigated for MLR in 

Chapter IV) is a second-order RT model without node pruning.  The RT model has good 

explanatory value and good predictive capabilities of Parallel EI when predictions are 

lagged one time period (Figures 5.41 and 5.42).  The RT model has 15 total nodes and 

eight terminal nodes.  The RT model has a RMSE of 2.30 in-lb2/ft, RMSEP of 11.01 in-

lb2/ft with a tree model R2 of 0.94 and a homogeneous residual pattern (Table 9c, 

Appendix C).   

   
Chapter V Summary 
 

The investigation of modeling the IB of MDF and OSB, and the Parallel EI of 

OSB reveals RT models of the industrial process that have strong explanatory value and in 

some instances good predictability of the validation data sets.  A challenge of the research 

is to develop useful RT models from industrial data sets with low dimensionality.  Of the 

160 models investigated using GUIDE (Loh 2006), 15 models have strong explanatory 

value of IB and four of these 15 models have acceptable predictability in the validation 

data sets (Tables 5.7 and 5.8).  RT Models from shorter record lengths outperformed RT 

models with longer record lengths.  Recall Box’s (1979) famous quote, “All models are 

wrong but some are useful.” 

A comparison of the RMSEP for the RT models and similar MLR models 

(Chapter IV) reveals that the RMSEP is smaller for three of the six RT models for MDF 

(Figure 5.43).  For OSB, the RMSEP for RT models is smaller than the MLR models in 

only one of the four models. The RMSEP is not the only metric associated with a best 
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model criteria and in most cases, predictability of IB in the validation data set is superior in 

RT models relative to similar MLR models (e.g., OSB Parallel EI, Figures 4.45 and 5.41; 

OSB IB, Figures 4.42 and 5.35; MDF 0.500” Figures 4.11 and 5.10; MDF 0.750” Figures 

4.30 and 5.27).  Note that low RMSEP did not always have acceptable prediction along the 

scale of the validation data set. 

The in-depth investigation of RT models for MDF and OSB may have practical 

value to wood composite manufacturers.  The analyses reveal opportunities for product 

quality and safety improvements and cost savings, by identifying statistical sources of 

product strength variation that may otherwise go undetected using traditional MLR 

methods with assumptions of homogeneous data.  For MDF, process variables related to 

overall pressing time, press position times and core fiber moisture are highly significant (α 

< 0.01) in influencing IB variation (Table 5.2).  Even though such variables are commonly 

cited in the wood composites literature (Maloney 1977, Suchsland and Woodson 1986), the 

detail interactions identified by the RT sub-trees are helpful for discovering possible 

unknown sources and levels of process variation.  Surprisingly, the RT analysis identified a 

variable related to crew that is negatively correlated with the IB of MDF.  The RT models 

identified operator induced variation and the need for additional training of operators and 

managers (Deming 1986, 1993). 

Significant (α < 0.01) process variables related to the IB and Parallel EI of OSB 

are top and bottom core layers moisture content (Table 5.6).  Press position and overall 

press times also influence the IB variation of OSB but to a lesser extent.  Forming related 

variables are highly significant for the Parallel EI of OSB. 
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Appendix to Chapter V 



 139

Table 5.1.  Description of training and validation data sets for longest record lengths. 
Product Type Data n Time Length Months 

MDF 0.625” Training 400 10/27/05 to 8/6/06 9 months 
  Validation 80 8/6/06 to 10/5/06 2 months 

MDF 0.750” Training 200 10/28/05 to 8/21/06 10 months 
  Validation 40 8/21/06 to 9/30/06 1 month 

MDF 0.500” Training 175 11/4/05 to 8/10/06 9 months 
  Validation 33 8/10/06 to 10/23/06 2 months 

OSB IB 7/16” RS Training 300 6/1/06 to 10/13/06 4.5 months 
  Validation 60 10/13/06 to 11/10/06 1 month 

OSB 
Parallel EI 

 
7/16” RS 

 
Training 

 
300

 
6/1/06 to 10/13/06 

 
4.5 months 

  Validation 60 10/13/06 to 11/10/06 1 month 

 
 
 
 
 
Table 5.2.  Ten most important independent variables for MDF using GUIDE scoring. 
0.750” Thickness (n=200) 0.625” Thickness (n=400) 0.500” Thickness (n=175) 
Score Description Score Description Score Description 

 
100.00 

Waste fiber addition 
to refined core fiber 

 
100.00

Face refiner resin 
percentage set-point 

 
100.00 

Mat weight at the 
Thayer scales 

 
92.52 

Press overall time  
set-point 

 
97.76 

Swing refiner resin 
percentage set-point 

 
87.22 

Boiler 
temperature 

 
91.18 

Dry fuel bin #237 
speed 

 
93.39 

Swing refiner plate 
position 

 
81.41 

Press final 
position time set-
point 

 
90.62 

Dry fuel bin #236 
speed 

 
91.57 Press Pre-position 

time set-point* 

 
81.41 

Press final 
position time 
actual  

 
77.87 

Electrostatic 
precipitator 
Milliamps  

 
89.99 

Crew  
75.86 

Press pre-position 
time set-point 

76.62 Core refiner plate 
pressure 

89.90 Face Refiner Plate 
Position 

 
72.79 

Electrostatic 
precipitator 
Milliamps 

 
76.41 

Face refiner steam 
temperature 

 
84.69 

Face Bin Speed, i.e., 
time in forming bin 

 
72.33 

Core fiber 
digester pressure 

 
74.92 

 
Press total cycle 
time 

 
84.52 

Press pre-position 
thickness set-point 

 
72.01 

Press pre-position 
thickness set-
point 

 
74.85 

Core refiner auger 
feeder screw speed 

 
83.33 

Percentage wood 
chips 

 
71.96 

Bar #2 shave off 
of fiber mat at 
formers 

 
74.17 

 
Core fiber moisture 

 
82.18 

Press final position  
time actual 

 
70.78 

 
Core fiber 
moisture 

*Process variables highlighted in blue are common across all product types. 
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Table 5.3.  Mixed stepwise regression equation with v-fold cross-validation node pruning 
for 0.500” MDF, n=175.   

 GUIDE 
Regressor 

 
Description 

 
Coefficient 

 
t 

 
p-value 

1 Constant  -1098.30 -7.34 < 0.0001 
2 bFaceBlwPs Face refiner blow valve position 0.78 4.44 < 0.0001 
3 bSwgDigPrs Swing refiner digester pressure -1.08 -2.96 0.005 
4 cCI0023PT Refiner steam pressure 0.64 3.96 < 0.0001 
5 cSwgOutlet Swing Separator outlet 0.00 -3.32 0.0005 
6 cSwFbrMst Swing finer moisture 2.24 2.45 0.01 
7 cSwgTemp Swing refiner hot gas temp. -0.13 -3.95 < 0.0001 
8 dCoreRsnS Core fiber resin set-point 17.32 7.35 < 0.0001 
9 fCoreBtmSp Core fiber forming speed -0.28 -2.53 0.01 
10 fShavOffT2 Mat shave off height #2 -11.09 -3.23 0.001 
11 hPrCls3Tim Press close #3 time -1.66 -4.17 < 0.0001 
12 hPrAlTimeS Press overall time set-point 1.31 9.76 < 0.0001 
13 hPrTempP Press temperature 0.53 2.57 0.005 
14 hPrTempS Press temperature set-point -13.71 -3.26 0.001 
15 bFaceTempP Face dryer outlet temperature 1.18 6.01 < 0.0001 
16 bFaceH202W Face refiner water add percent -4.82 -8.89 < 0.0001 
17 cSwngChpL Swing chip chute level 1.25 4.51 < 0.0001 
18 dCoreEFCur Core dryer fan current 9.01 7.12 < 0.0001 

 

 

Table 5.4.  RT model mixed stepwise regression equation for 0.625” MDF, n=100. 
Regressor Coefficient t p-value18 
Constant 1301.00 4.66 < 0.0001 

Face Fiber Plate Position -0.019 -3.68 0.0001 
Face Resin to Wood Percentage 34.86 6.71 < 0.0001 

Face Scavenger to Wood Percentage -160.03 -3.59 0.0001 
Swing Digester Pressure -3.26 -7.00 < 0.0001 

Core Resin to Wood Percentage -18.52 -5.22 < 0.0001 
Face Fiber Moisture Content 8.89 2.83 0.005 

 
 
 
 
 
 

                                                 
18 Note that GUIDE does not give p-values.  P-values are derived from Milton and Arnold (2003) and 
represent the minimum level of significance for a given t statistic using Table V of the T distribution, p. 
700. 
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Table 5.5.  Key regressors in multiple linear quantile RT model for 0.625” MDF, n=300 

GUIDE  
Variable Industrial SQL Tag Description 

Quantile 
coefficient

hPrPPXSP hPressPrePostitionX_SP Press pre-position set-point -581.83 
gPreBBSpd gPrecompBottomBeltSpeed_SI Pre-compressor belt speed 99.37 
gFrmSpd gFormingWireSpeed_SI Forming line speed -99.34 

cSwgWx2W cSwingWaxToWood_Act Swing wax percent 88.34 
bFacePltPs bFacePlatePosition_ZI Face refiner plate position -25.28 
dCoreRsnS dCoreResin_SP Core resin percent set-point -16.61 

bFaceWFCur bFaceWestFanCurrent_PV Face dryer fan current -14.85 
hPrPPMTimS hPressPPMoveTime_SP Press pre-position move time SP -12.19 
cSwgRsn2Wd cSwingResinToWood_Act Swing refiner resin percent 10.49 
dCoreRsn2W dCoreResinToWood_Act Core resin percent 8.75 
hPrCls2Tim hPressClosetwoTime_PV Press Close #2 time 6.42 
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Table  5.6.  Ten most important independent variables for OSB using GUIDE scoring. 
Internal Bond (n=300) Parallel EI (n=300) 

Score Description Score Description 
 

100.00 
  
Top core layer moisture content 

 
100.00 

Bottom surface layer forming 
spreader arm speed 

 
95.65 

Bottom core layer moisture 
content   

 
94.97 Top core layer moisture content 

 
72.85 

   
Press position time 

 
92.50 Top surface layer moisture content 

 
63.15 

 
Press overall time step 
movement time 

 
92.15 Former bottom surface layer 

forming speed 
 

62.78 
   
Press overall time 

 
91.95 Bottom core layer moisture content 

 
56.89 

Bottom core layer density set-
point 

 
89.44 

Main dryer top surface layer moisture 
content 

 
54.94 Top core layer forming speed 

 
79.99 Dryer #5 Outlet Temperature 

 
53.80 

Blender bottom surface layer  
wood total 

 
79.57 Press step position 734 

 
52.32 

Total time of press open to press 
close 

 
78.54 Press step position 770 

 
70.78 

Blender bottom surface layer  
resin total 

 
75.43 

Former top surface layer forming 
speed 
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Table 5.7.  Candidate RT models for all MDF and OSB RT products, not including Chapter IV shorter record lengths. 
 

Product 
 

RT Model 
 

n 
Total 

Nodes 
Terminal 
Nodes 

 
RMSE 

 
RMSEP 

 
R2 

Explanatory 
Value 

Predictive 
Capability 

MDF 
0.500” 

Mixed Stepwise 
CV prune 

 
175 

 
1 

 
1 

 
7.89 

 
16.26 

 
0.72 

 
Moderate 

 
Moderate 

MDF 
0.500” 

Second-order Quantile  
CV prune 

 
100 

 
5 

 
3 

 
8.63 

 
32.56 

 
-- 

 
Good 

 
Poor 

MDF 
0.625” 

Mixed Stepwise 
CV prune 

 
400 

 
3 

 
2 

 
7.88 

 
23.66 

 
0.61 

 
Good 

 
Poor 

MDF 
0.625” 

MLR Quantile 
CV prune 

 
300 

 
1 

 
1 

 
9.31 

 
16.33 

 
-- 

 
Moderate 

 
Moderate 

MDF 
0.625” 

PW Simple Linear  
CV prune 

 
200 

 
3 

 
2 

 
11.16 

 
10.44 

 
0.29 

 
Poor 

 
Poor 

MDF 
0.625” 

Mixed Stepwise 
CV prune 

 
100 

 
1 

 
1 

 
9.42 

 
14.84 

 
0.51 

 
Moderate 

 
Poor 

MDF 
0.750” 

PW Simple Linear   
no pruning 

 
200 

 
75 

 
38 

 
2.97 

 
20.03 

 
0.96 

 
Good 

 
Moderate 

MDF 
0.750” 

MLR Quantile 
no pruning 

 
100 

 
13 

 
7 

 
8.54 

 
22.17 

 
-- 

 
Good 

 
Poor 

OSB 
IB 

Mixed Stepwise All 
Subsets no pruning 

 
300 

 
39 

 
20 

 
5.07 

 
13.35 

 
0.69 

 
Good 

 
Poor 

OSB 
IB 

Mixed Stepwise All 
Subsets no pruning 

 
200 

 
23 

 
12 

 
5.79 

 
9.24 

 
0.64 

 
Good 

 
Good 

OSB 
IB 

Mixed Stepwise All 
Subsets no pruning 

 
100 

 
33 

 
17 

 
7.03 

 
7.44 

 
0.73 

 
Good 

 
Moderate 

Parallel 
EI 

Piecewise  
Simple Linear 

 
300 

 
97 

 
49 

 
1360 

 
6679 

 
0.91 

 
Good 

 
Poor 

Parallel 
EI 

Second-order Model 
no pruning 

 
200 

 
45 

 
23 

 
946 

 
5337 

 
0.94 

 
Good 

 
Moderate 

Parallel 
EI 

Second-order Model 
no pruning 

 
100 

 
21 

 
11 

 
920 

 
4361 

 
0.94 

 
Good 

 
Good 

 



 144

Table 5.8.  Candidate RT models for MDF and OSB products for Chapter IV shorter record lengths. 
 

Product 
 

RT Model 
 

n 
Total 

Nodes 
Terminal 
Nodes 

 
RMSE 

 
RMSEP 

 
R2 

Explanatory 
Value 

Predictive 
Capability 

MDF 
0.500” 

Second-order  
no pruning 

 
60 

 
15 

 
8 

 
2.16 

 
15.74 

 
0.96 

 
Good 

 
Moderate 

MDF 
0.500” 

Second-order  
CV prune 

 
60 

 
3 

 
2 

 
8.01 

 
13.08 

 
0.50 

 
Moderate 

 
Poor 

MDF 
0.625” 

Second-order  
no pruning 

 
62 

 
17 

 
9 

 
2.36 

 
18.31 

 
0.98 

 
Good 

 
Poor 

MDF 
0.625” 

Second-order  
CV prune 

 
62 

 
3 

 
2 

 
9.55 

 
11.29 

 
0.60 

 
Moderate 

 
Good 

MDF 
0.750” 

Second-order  
no pruning 

 
70 

 
23 

 
12 

 
2.01 

 
30.10 

 
0.98 

 
Good 

 
Poor 

MDF 
0.750” 

Second-order  
CV prune 

 
70 

 
1 

 
1 

 
14.69 

 
15.87 

 
0.20 

 
Poor 

 
Poor 

OSB 
IB 

Second-order  
no pruning 

 
59 

 
15 

 
8 

 
2.30 

 
11.01 

 
0.94 

 
Good 

 
Moderate 

OSB 
IB 

Second-order  
CV prune 

 
59 

 
1 

 
1 

 
7.88 

 
9.17 

 
0.26 

 
Poor 

 
Poor 

Parallel 
EI 

Second-order Model 
no pruning 

 
58 

 
15 

 
8 

 
692 

 
2479 

 
0.96 

 
Good 

 
Good 

Parallel 
EI 

Second-order Model  
no pruning 

 
58 

 
1 

 
1 

 
3255 

 
5988 

 
0.10 

 
Poor 

 
Poor 
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Figure 5.1.  Histograms and quantile plots of “core fiber temperature” (top) and 
“swing refiner separator outlet pressure” (bottom) for 0.625” MDF, n=400. 
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Figure 5.2.  Linear and polynomial regression fits for IB to the sub-spaces of “swing 
refiner separator outlet pressure” for 0.625” MDF, n=400 (blue line fits the blue 
points; red line fits the red points; black line fits all of the data). 
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Figure 5.3.  RMSEP by record length and modeling type for 0.500” MDF IB. 
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Figure 5.4.  RMSEP by record length and modeling type for 0.625” MDF IB. 
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Figure 5.5.  RMSEP by record length and modeling type for 0.750” MDF IB. 
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Figure 5.6.  RMSEP by record length and modeling type for the IB of OSB. 
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Figure 5.7.  RMSEP by record length and modeling type for the Parallel EI of OSB. 
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Node 2T:                                                                                 Node 4T: 
Quantile Regressor Coefficient  Quantile Regressor Coefficient

Constant 158.01  Constant -1360.9 
Press pre-position 

time set-point 
 

175.06 
 Swing refiner chip 

chute level 
 

79.31 
(Press pre-position 

time set-point)2 
 
-1077.90 

 (Swing refiner chip 
chute level)2 

 
-1.42 

(Press pre-position 
time set-point)3 

 
976.86 

 (Swing refiner chip 
chute level)3 

 
0.009 

                                                                                                 Node 5T: 
   Quantile Regressor Coefficient
   Constant 167.88 
   Face refiner  

grinding pressure 
 

-7.06 
   (Face refiner  

grinding pressure)2 
 

0.62 
   (Face refiner  

grinding pressure)3 
 

-0.018  
Figure 5.8.  Quantile third-order RT model with v-fold cross-validation for 0.500” MDF, 
n=100. 

 

 

Quantile 
Regression  

n= 100 

Face Fiber Temp 
> 303.6 

 

Face Fiber Temp

≤ 303.6 
Mean IB = 142.0 

Fiber Humidity  
> 26.5 

Mean IB = 146 

Fiber Humidity

≤ 26.5 
Mean IB = 150.0 

Node 2T 
(n=29) 

Node 4T
(n=37) 

Node 5T
(n=34) 
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Figure 5.9.  XY scatter plot of training (top) and validation data sets (bottom) for the 
third-order quantile regression RT model with v-fold cross-validation node pruning for 
0.500” MDF, n=100. 
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Figure 5.10.  XY scatter plot of training (top) and validation data sets (bottom) for the 
stepwise regression RT model with v-fold cross-validation node pruning for 0.500” 
MDF, n=175. 
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Figure 5.11.  Time series graph of validation data set for the stepwise regression RT 
model with v-fold cross-validation node pruning for 0.500” MDF, n=35. 
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Figure 5.12.  Time series graph of validation data set for the second-order RT model 
without node pruning for 0.500” MDF, n=13. 
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Figure 5.13.  XY scatter plot of training (top) and validation data set (bottom) for the 
second-order RT model without node pruning for 0.500” MDF, n=60. 
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Regressor Coefficient t  Regressor Coefficient t 
Constant 232.75 17.79  Constant 158.61 45.85 

 
Core fiber moisture 

 
-9.24 

 
-7.00 

 Press pre-position 
move time set-point 

 
-70.33 

 
-5.21 

Tech JY -6.29 -2.13  Tech JY -9.58 -3.58 
       

RMSE 12.72   RMSE 11.45  
n 68   n 132  
R2 0.43   R2 0.20   

Figure 5.14.  RT and mixed stepwise regression equations for 0.625” MDF, n=200.  
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Figure 5.15.  Time series graph of validation data set for the multiple linear quantile RT 
model with v-fold cross-validation node pruning for 0.625” MDF, n=300. 
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Figure 5.16.  XY scatter plot of training (top) and validation data set (bottom) for the 
multiple linear quantile RT model with v-fold cross-validation node pruning for 0.625” 
MDF, n=300. 
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Node 3T:                                               Node 8T:                                                     Node 5T:                                                  Node 6T: 

Simple Linear 
Regression 

 
Coefficient 

Simple Linear 
Regression 

 
Coefficient

 Simple Linear 
Regression 

 
Coefficient

Simple Linear 
Regression 

 
Coefficient

Constant -96.7 Constant     120.8  Constant 295.6 Constant 118.5 
Press overall time 

set-point 
 

1.20 
Core refiner feeder 

screw speed 
 

0.036 
 Core fiber 

temperature 
 

-1.36 
Face refiner grinding 

steam flow 
 

-0.005 
Node 7T:         

Simple Linear 
Regression 

 
Coefficient 

       

Constant 472.8        
Swing digester 

pressure 
-3.57        

         

Note that all regressors in each terminal node are significant at an α < 0.01 

Figure 5.17.  Piecewise simple linear model with v-fold cross-validation node pruning for 0.625” MDF, n=400. 
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Figure 5.18.  Time series graph of validation data set for the piecewise simple linear 
model with v-fold cross-validation node pruning for 0.625” MDF, n=400. 
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Figure 5.19.  XY scatter plot of training data set (top) and validation data set (bottom) for 
the piecewise simple linear model with v-fold cross-validation node pruning for 0.625” 
MDF, n=400. 
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Figure 5.20.  XY scatter plot of training data set (top) and validation data set (bottom) for 
the second-order RT model with v-fold cross-validation node pruning for 0.625” MDF, 
n=62. 
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Figure 5.21.  Time series graph of validation data set for the second-order RT model with 
v-fold cross-validation node pruning for 0.625” MDF, n=13. 
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Figure 5.22.  Time series graph of validation data set for the multiple linear quantile RT 
model without node pruning for 0.750” MDF, n=100. 
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Node 4T:                                                                                                                          Node 6T:                                               Node 7T: 
Quantile Regressor Coefficient   Quantile Regressor Coefficient Quantile Regressor Coefficient

Constant 22938.0     (Nodes 10, 11, 12 and 13 on next page)  Constant 13750.0 Constant -16418.0 
Refiner steam pressure -2.61   Refiner steam pressure -1.08 Refiner steam pressure 1.39 
Press start control   1.48   Press start control   -0.22 Press start control   1.34 

Core fiber scavenger 
resin rate 

 
-4010.2 

  Core fiber scavenger 
resin rate 

 
-2211.4 

Core fiber scavenger 
resin rate 

 
2561.8 

Dry fuel bin rate 236 -21.24   Dry fuel bin rate 236 -1.63 Dry fuel bin rate 236 -1.02 
Dry fuel bin rate 237 21.54   Fiber temperature -0.21 Dry fuel bin rate 237 -5.78 

Fiber temperature -0.13     Fiber temperature -1.24 
         

Figure 5.23.  Multiple linear quantile RT model without node pruning for 0.750” MDF, n=100.  
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Node 10T: Node 11T:  
Quantile Regressor Coefficient  Quantile Regressor Coefficient 

Constant -2734.4  Constant 4020.8 
Refiner steam pressure 0.85  Refiner steam pressure -0.27 
Press start control   0.84  Press start control   0.15 

Core fiber scavenger 
resin rate 

 
34.27 

 Core fiber scavenger 
resin rate 

 
-667.37 

Dry fuel bin rate 236 -2.63  Dry fuel bin rate 236 -154.25 
Fiber temperature 0.86  eM2237Spd 154.49 

   Fiber temperature -0.01 
 
 
Node 12T: 

   
 
Node 13T: 

 

Quantile Regressor Coefficient  Quantile Regressor Coefficient 
Constant -41307.0  Constant 21874.0 

Refiner steam pressure 1.21  Refiner steam pressure -0.97 
Press start control   -1.83  Press start control   -0.59 

Core fiber scavenger 
resin rate 

 
7094.60 

 Core fiber scavenger 
resin rate 

 
-3519.70 

Dry fuel bin rate 236 7.85  Dry fuel bin rate 236 0.89 
Fiber temperature 3.18  Fiber temperature -4.59 

Figure 5.23 (continued).  Multiple linear quantile RT model without node pruning for 
0.750” MDF, n=100. 
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Figure 5.24.  XY scatter plot of training (top) and validation data sets (bottom) for 
the multiple linear quantile RT model without node pruning for 0.750” MDF, 
n=100. 
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Figure 5.25.  Time series graph of validation data set for the piecewise simple linear 
RT model without node pruning for 0.750” MDF, n=200. 
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Figure 5.26.  XY scatter plot of training (top) and validation data set (bottom) for the 
piecewise simple linear RT model without node pruning for 0.750” MDF, n=200. 
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Figure 5.27.  XY scatter plot of training (top) and validation data set (bottom) for the 
second-order RT model with v-fold cross-validation for 0.750” MDF, n=70. 
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Figure 5.28.  Time series graph of validation data set for the second-order RT 
model with v-fold cross-validation for 0.750” MDF, n=70. 
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Figure 5.29.  Time series graph of validation data set for the mixed stepwise all 
possible subsets RT model without node pruning for the IB of OSB, n=100. 
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Figure 5.30.  XY scatter plot of training (top) and validation data sets (bottom) for 
the mixed stepwise all possible subsets RT model without node pruning for the IB of 
OSB, n=100. 
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Figure 5.31.  Time series graph of validation data set for the mixed stepwise all possible 
subsets RT model without node pruning for the IB of OSB, n=200. 
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Figure 5.32.  XY scatter plot of training (top) and validation data sets (bottom) for the 
mixed stepwise all possible subsets RT model without node pruning for the IB of OSB, 
n=200. 
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Figure 5.33.  Time series graph of validation data set for the mixed stepwise all possible 
subsets RT model without node pruning for the IB of OSB, n=300. 
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Figure 5.34.  XY scatter plot of training (top) and validation data sets (bottom) for 
the mixed stepwise all possible subsets RT model without node pruning for the IB 
of OSB, n=300. 
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Figure 5.35.  XY scatter plot of training (top) and validation data sets (bottom) 
for the second-order RT model without node pruning for the IB of OSB, n=59. 
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Figure 5.36.  Time series graph of validation data set for the second-order RT 
model without node pruning for the IB of OSB, n=12. 
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Figure 5.37.  Time series graph of validation data set (lagged one time period) for 
the third-order RT model without node pruning for the Parallel EI of OSB, n=21. 
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Figure 5.38.  XY scatter plot of training (top) and validation data sets (bottom) for 
the third-order RT model without node pruning for the Parallel EI of OSB, n=100. 
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Figure 5.39.  Time series graph of validation data set for the third-order RT model 
without node pruning for the Parallel EI of OSB, n=200. 
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Figure 5.40.  XY scatter plot of training (top) and validation data sets (bottom) for the 
third-order RT model without node pruning for the Parallel EI of OSB, n=200. 
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Figure 5.41.  XY scatter plot of training (top) and validation data sets (bottom) for 
the second-order RT model without node pruning for the Parallel EI of OSB, 
n=58. 
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Figure 5.42.  Time series graph of validation data set (lagged one time period) for 
the second-order RT model without node pruning for the Parallel EI of OSB, 
n=58. 
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Figure 5.43. RMSEP for RT and MLR models discussed in Chapters IV and V. 
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CHAPTER VI. 
 

REGRESSION TREE MODELS WITH BOX COX 
TRANSFORMATIONS OF OSB STRENGTH PROPERTIES 

WITH CONSIDERATIONS FOR QUANTILE 
REGRESSION 

 
 
 Results are presented in this chapter for the third objective of the dissertation.  This 

chapter investigates regression trees (RT) with Box Cox transformations of Y for the internal 

bond (IB) of oriented strand board (OSB).  Recall from the Chapter III Methods the 

description of the Box Cox transforms of the response Y, equation [3.5], Figure 3.1.   The 

results of the chapter represent a synthesis of the results from Chapters III and IV.  

Preliminary studies of RT models with Box Cox transformations of IB for the MDF product 

types and the Parallel EI of OSB did not reveal any opportunities for RT model 

enhancement.  Recall from Chapter III the departure from normality of the OSB strength 

properties relative to the approximate normal distributions of MDF strength properties, i.e., 

Box Cox transforms may be more helpful in modeling when the response Y departs from 

normality (Box and Cox 1964).  

The ranking of regressors using GUIDE, version 5.2 (Loh 2006) indicate a 

difference in significant regressors with and without the Box Cox transform of the IB of 

OSB (Table 6.1).  Rankings without the Box Cox transform indicate that the regressors “top 

and bottom core layer moisture contents” are highly ranked regressors.  Regressors highly 

ranked with the Box Cox transform of IB are “top core layer forming spreader arm speed,” 

“press overall step movement time” and “press overall time.”  The regressors related to “top 

and bottom core layer moisture contents” are not ranked in the presence of the Box Cox 

transform.  In cases where the response Y departs from normality (e.g., IB of OSB), it may 
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be important when using RT methods to compare important regressors with and without 

the Box Cox transform.  These types of transforms may improve the accuracy of detecting 

key sources of process variation that influence product strength.  Accurate detection of 

sources of variation may optimize the use of critical company resources for programs 

targeted at improving product quality, product safety and lowering costs. 

 
RT Models of OSB with Box Cox Transforms of IB 
 

RT models with Box Cox transforms of IB are examined for four training data set 

record lengths, i.e., 59, 100, 200 and 300.  These record lengths are consistent with those 

used in previous chapters.  Recall the shortest record length of 59 is an outcome of the MLR 

results of Chapters IV and V.  The time-ordering of the records of the training data set are 

identical to those used in previous chapters, e.g., a record length of 59 is a contiguous set of 

the most current records not including the validation data set.  The record length of the 

validation data set is approximately 20 percent of the record length of the training data set 

records which are more recent than the training data set. 

In the results, the predicted and observed IBs are converted back from the Box Cox 

transformations of IB for ease of comparison and interpretation.  The two Box Cox 

transforms of IB identified in Chapter IV are: 

1.8 1.8

1.8 1

1 1
,

1.8 38.7754

Y Y
Y

Y

λ
−

− −
= =

&
    [6.1] 
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1 1
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0.2 0.0095
λ

−

− −
= =

&
Y Y

Y
Y

    [6.2] 
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OSB IB n=59 

Eight parametric and four non-parametric RT models are investigated for this record 

length (Figure 6.1).  The best candidate RT model with the Box Cox transform using 

equation [6.1] is a second-order model without node pruning.  The RT model has 15 total 

nodes with eight terminal nodes (Figure 6.2).  Key metrics of this model are a RMSE of 2.35 

p.s.i., RMSEP of 9.21 p.s.i., R2 of 0.90 and a homogenous residual pattern (Figure 6.3).  

Predicted IB for the validation data set approximate the observed IB in the time-ordered 

validation data set (Figures 6.4 and 6.5).  Development of a quantile RT model of the median 

IB increases the RMSE to 5.75 p.s.i. but reduces the RMSEP to 7.91 p.s.i. with 

heteroscedasticity in the residuals.  The predicted IB for the quantile model of the validation 

data set is comparable to the outcomes for the second-order RT model without node 

pruning developed in Chapter V (Figure 6.6).     

The subgroup with the highest mean IB (55.6 p.s.i.) for this model occurs for a 

“main forming line total weight” >_24.54, “secondary dryer #3 outlet temperature ≤_246.2 

and “press time for step 701” ≤_1023 (Figure 6.2).  The simple linear equation with 

significant (α < 0.01) regressors in the sub-tree is: 

IB = 61.0 + 0.25(main dryer #5 outlet temperature).  [6.3] 

 
The subgroup with the lowest mean IB (39.4 p.s.i.) for this model occurs for “main 

forming line total weight” >_24.54, “secondary dryer #3 outlet temperature >_246.2, “press 

time for step 742” ≤_2730 and “main dryer #3 outlet temperature” >_261.8.  The second-

order model with significant (α < 0.01) regressors in the sub-tree is: 

IB = -5212 + 16.7(core layer resin rate)  
 – 0.013(core layer resin rate)2.   [6.4] 
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The statistical relationship between “main forming line total weight” and IB in the 

RT model (node 1) is illustrated in Figure 6.7.  It may be important for the OSB 

manufacture to note “main forming line total weight” variation which falls below and above 

25.54 and its influence on IB.   

There is evidence from the predictions of IB in the validation data set that the RT 

model for this record length with the Box Cox transform of IB using equation [6.2] is 

superior to the second-order RT model without the Box Cox transform of IB developed in 

Chapter V.  As Loh (2006) enhances GUIDE software, the addition of Box Cox transforms 

as a user-defined input may be an important consideration. 

OSB IB n=100 

Eight parametric and four non-parametric RT models are investigated for this record 

length (Figure 6.1).  The best candidate RT model with the Box Cox transform is a mixed 

stepwise regression using all possible subsets without node pruning.  The RT model has 21 

total nodes with 11 terminal nodes.  Key metrics of this model are a RMSE of 5.46 p.s.i., 

RMSEP of 9.08 p.s.i., R2 of 0.64 and a homogenous residual pattern (Figure 6.8).  Predicted 

IB for the validation data set approximate the observed IB in the time-ordered validation 

data set (Figures 6.9 and 6.10).  Development of a quantile RT model of the median IB 

reduces the RMSE to 4.25 p.s.i. but increases the RMSEP to 14.58 p.s.i. with a 

homogeneous pattern in the residuals.  The predicted IB for the quantile model of the 

validation data set does not perform as well as mixed stepwise all possible subsets RT model 

without node pruning.     

There is evidence that the RT model for this record length with the Box Cox 

transform of IB using equation [6.2] is superior to the RT model with mixed stepwise 
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regression using all possible subsets without node pruning developed in Chapter V (Table 

5.8, Appendix to Chapter V).  Even though the RMSEP of 9.08 p.s.i. is higher and the R2 is 

lower (0.64) relative to the RT model without transforms (RMSEP of 7.44 p.s.i., R2 of 0.73), 

the strength of the RT model with Box Cox transforms is its better predictability of IB. 

OSB IB n=200 

Eight parametric and four non-parametric RT models are investigated for this record 

length (Figure 6.1).  The best candidate RT model with the Box Cox transform using 

equation [6.1] is a piecewise simple linear RT model with v-fold cross-validation node 

pruning.  The RT model has 7 total nodes with 4 terminal nodes.  Key metrics of this model 

are a RMSE of 8.37 p.s.i., RMSEP of 9.60 p.s.i., R2 of 0.37 and a homogenous residual 

pattern (Figure 6.11).  Predicted IB does not approximate the observed IB in the time-

ordered validation data set (Figures 6.12 and 6.13).  The best candidate quantile RT model of 

the median IB reduces the RMSE to 4.47 p.s.i. but increases the RMSEP to 21.60 p.s.i. with 

a homogeneous pattern in the residuals.  The predicted IB for the quantile model in the 

validation data set does not approximate observed IB.     

There is no evidence that the RT model for this record length with the Box Cox 

transform of IB is superior to the RT model with mixed stepwise regression using all 

possible subsets without node pruning developed in Chapter V (Table 5.8, Appendix to 

Chapter V).  Both the RMSE and RMSEP are higher than those of the RT model without 

the Box Cox transform and predictions of IB in the validation data set are worse. 

OSB IB n=300 

Eight parametric and four non-parametric RT models are also investigated for this 

record length (Figure 6.1).  The best candidate RT model with the Box Cox transform using 
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equation [6.1] is a mixed stepwise regression using all possible subsets without node pruning.    

The RT model has 73 total nodes with 37 terminal nodes.  Key metrics of this model are a 

RMSE of 6.06 p.s.i., RMSEP of 9.90 p.s.i., R2 of 0.51 and a homogenous residual pattern 

(Figure 6.14).  Predicted IB does not approximate observed IB in the time-ordered validation 

data set (Figures 6.15 and 6.16).  The best candidate quantile RT model of the median IB 

increases the RMSE to 6.16 p.s.i. and increases the RMSEP to 16.82 p.s.i. with a 

homogeneous pattern in the residuals.  The predicted IB for the quantile model of the 

validation data set does not approximate observed IB.     

There is no evidence that the RT model for this record length with the Box Cox 

transform of IB is superior to the RT model without the Box Cox transform developed in 

Chapter V (Table 5.8, Appendix to Chapter V).  The RMSE of 6.06 p.s.i. is higher than the 

RT model without transforms (RMSE of 5.07 p.s.i.), but the RMSEP of 9.90 p.s.i. is lower 

than that of the RT model without transforms (RMSEP of 13.35).  Both models perform 

poorly in predicting IB in the time-ordered validation data set.  It is interesting to note that 

the RT model with Box Cox transforms performs slightly better for the first 33 predictions 

of IB relative to the RT model without transforms, but the model predicts IB erratically in 

the later half of the validation data set. 

 
Chapter VI Summary 
  

The investigation of 48 RT models of the IB of OSB using Box Cox transforms of Y 

indicate that such transforms improve predictability of IB for the shorter record lengths of 

59 and 100.  There is no evidence that Box Cox transforms for longer records lengths of 200 

and 300 improve predictability of the IB of OSB.  There is also no evidence that quantile RT 

models with Box Cox transforms improve predictability of IB.  The RT models with Box 
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Cox transforms for the shorter record lengths have strong explanatory value of IB e.g., tree 

structure in Figure 6.2).    

Of the 48 models investigated in this chapter, 12 RT models have lower RMSEPs 

with Box Cox transforms.  The mixed stepwise all subsets RT model for a record length of 

300 has a lower RMSEP of 6.06 p.s.i. when compared to all of the other MLR models with 

and without Box Cox transforms of Chapter IV (Table 4.13).  However, the RMSEP of 9.21 

p.s.i. for a record length of 59 is greater that the RMSEPs for all MLR models of Chapter IV 

of the same record length. 

The ranking of regressors using GUIDE (Loh 2006) indicate a difference in 

significant regressors with and without the Box Cox transform of Y using equation [6.1].  

Regressors highly ranked with the Box Cox transform of equation [6.1] are “top core layer 

forming spreader arm speed,” “press overall step movement time” and “press overall time.”  

The regressors related to “top and bottom core layer moisture contents” which are ranked as 

being important without Box Cox transforms are not ranked.  This difference in rankings 

may be important when investigating response variables that exhibit departures from 

normality as is the case with the IB of OSB (recall Chapter III).  The possible incorrect 

ranking of significant regressors of the process may result in misallocation of scarce 

resources of a manufacturer, i.e., investigation and quality improvement programs targeted at 

process variables that do not have strong influences on strength properties.  The results of 

this chapter highlight the importance of investigating models with transforms which may be 

especially important when response variables depart from normality.  
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Appendix to Chapter VI 
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Table  6.1.  Comparison of ten most important independent variables for OSB IB using 
GUIDE scoring with and without Box Cox transform. 

Without Box Cox Transform With Box Cox Transform 
Score Description Score Description 

 
100.00 

  
Top core layer moisture content 

 
100.00

Top core layer forming spreader arm 
speed 

 
95.65 

   
Bottom core layer moisture content   

 
88.72 Press overall step movement time 

 
72.85 

   
Press position time 

 
82.93 Press overall time 

 
63.15 

 
Press overall time step movement time 

 
80.96 Top core layer forming speed 

 
62.78 

   
Press overall time 

 
73.68 Press time for step 741B 

 
56.89 Bottom core layer density set-point 

 
73.68 Press time for step 741A set-point 

 
54.94 Top core layer forming speed 

 
73.37 Main flaker speed 

 
53.80 

Blender bottom surface layer  
wood total 

 
71.93 Press position time 

 
52.32 Total time of press open to press close 

 
70.47 

Bottom surface layer forming 
spreader arm speed 

 
70.78 

Blender bottom surface layer  
resin total 

 
69.97 Press time for step 741C 

*Process variables highlighted in blue are common across all product types. 
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Figure 6.1.  Comparison of RMSEP with and without Box Cox transform for all RT models analyzed for OSB IB 
(yellow bars indicate best candidate models discussed in this chapter). 
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Figure 6.2.  Second-order model for OSB IB (n=59) with Box Cox transformation.  
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Mean IB = 39.4 

Node 8T
(n=5) 

Node 9T
(n=9) 

Node 11
(n=15) 

Node 13T
(n=6) 

Variable Descriptions 
 

Dry3out: “Secondary dryer #3 outlet temperature” 
MD3OutTemp: “Main dryer #3 outlet temperature” 
MFTTotwegt: “main forming line total weight” 
PMI731: “Press time for step 731” 
PMI742: “Press time for step 742” 
PTEMPBPOS: “Press temperature B position” 
PZI701Ste3: “Press time for step 701”
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Figure 6.3.  XY scatter plots of predicted and observed IB for OSB IB (n=59) 
without Box Cox transform (top graph) and with Box Cox transform (bottom 
graph). 
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Figure 6.4.  XY scatter plot of validation data sets for OSB IB (n=59) without 
Box Cox transform (top graph) and with Box Cox transform (bottom graph). 
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Figure 6.5.  Time series graph of validation data sets for OSB IB (n=59) without 
Box Cox transform (top graph) and with Box Cox transform (bottom graph). 
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Figure 6.6.  XY scatter plot (top graph) and time series graph (bottom graph) of 
predicted and observed IB for quantile RT model for OSB IB, n=59. 
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MFLTotWegt  50.420183 9.332103 5.40 <.0001 
Figure 6.7. Illustration of regression model differences for “main forming line total 
weight” in node one of RT model for OSB IB (n=59). 
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Figure 6.8.  XY scatter plots of predicted and observed IB for OSB IB (n=100) 
without Box Cox transform (top graph) and with Box Cox transform (bottom 
graph). 
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Figure 6.9.  XY scatter plot of validation data sets for OSB IB (n=100) without 
Box Cox transform (top graph) and with Box Cox transform (bottom graph). 
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Figure 6.10.  Time series graph of validation data sets for OSB IB (n=100) 
without Box Cox transform (top graph) and with Box Cox transform (bottom 
graph). 
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Figure 6.11.  XY scatter plots of predicted and observed IB for OSB IB 
(n=200) without Box Cox transform (top graph) and with Box Cox transform 
(bottom graph). 
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Figure 6.12.  XY scatter plot of validation data sets for OSB IB (n=200) without 
Box Cox transform (top graph) and with Box Cox transform (bottom graph). 
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Figure 6.13.  Time series graph of validation data sets for OSB IB (n=200) 
without Box Cox transform (top graph) and with Box Cox transform (bottom 
graph). 



 204

 

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Observed

P
re

d
ic

te
d

 

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Observed

P
re

d
ic

te
d

 
Figure 6.14.  XY scatter plots of predicted and observed IB for OSB IB 
(n=300) without Box Cox transform (top graph) and with Box Cox transform 
(bottom graph). 
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Figure 6.15.  XY scatter plot of validation data sets for OSB IB (n=300) 
without Box Cox transform (top graph) and with Box Cox transform (bottom 
graph). 

 
 



 206

0

10

20

30

40

50

60

70

80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Observed

P
re

d
ic

te
d

Observed

Predicted

 

0

10

20

30

40

50

60

70

80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Observed

P
re

d
ic

te
d

Observed

Predicted

Figure 6.16.  Time series graph of validation data sets for OSB IB (n=300) 
without Box Cox transform (top graph) and with Box Cox transform (bottom 
graph). 

 
 
 
 



 207

CHAPTER VII.  
 

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 
 

A quote cited earlier summarizes the theme and spirit of this dissertation, 

“Knowledge is the most valuable asset of a manufacturing enterprise, as it enables a business 

to differentiate itself from competitors and to compete efficiently and effectively to the best 

of its ability.”  This statement is very appropriate for the wood composites industry, or any 

other industry, which exists in a business era of unprecedented international competition, 

increasing raw material costs, increasing energy costs and declining product prices.  The 

results of this dissertation may directly benefit the wood composites industry in improving 

product quality, improving product safety, improving production efficiency and lowering 

costs. 

This dissertation is aligned with the philosophy of data mining (DM).  DM is directly 

related to the science of Decision Theory which is on the contemporary edge of the sciences 

of Artificial Intelligence, Machine Learning, Pattern Recognition and Data Visualization.  

Decision trees (DTs) are one of the most popular predictive learning methods used in DM.  

DTs were developed largely in response to the limitations of kernel methods, i.e., no matter 

how high the dimensionality of the predictor variable space, or how many variables are 

actually used for prediction (splits), the entire model is represented by a two-dimensional 

graphic, which can be plotted and easily interpreted.  DTs also have an advantage of being 

very resistant to irrelevant predictor or regressor variables.   

This dissertation is a comprehensive review of multiple linear regression (MLR) and 

regression tree (RT) models of the strength properties of medium density fiberboard (MDF) 
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and oriented strand board (OSB).  Parametric and non-parametric (quantile regression) RT 

models are investigated with additional considerations for the Box Cox transform of Y.  

Process variables influencing the tensile strength properties of the internal bond (IB) for 

MDF and OSB are investigated.  The flexure strength property of Parallel EI (EI) is also 

investigated for OSB.   

Fused data are used for model development of destructive test data of strength 

properties and real-time sensor data from the production line.  Appropriate time-laggings of 

sensor data are used in the fused database.  There are 184 independent variables or 

regressors for MDF and 234 regressors for OSB.  Three MDF product types are examined, 

0.500”, 0.625” and 0.750” with corresponding record lengths of 209, 245 and 517.  One 

OSB product type of 7/16” roof-sheathing (RS) of record length 393 is examined.  The data 

sets are from a southeastern U.S. MDF producer and a southeastern U.S. OSB producer.  

The distribution of the IB of MDF from the data exhibits normality.  The log normal 

distribution is the closest fit for the distribution of the IB of OSB and the largest extreme 

value distribution is the closest fit for the Parallel EI of OSB. 

 The null research hypothesis of this dissertation is that there is no significant 

difference in the explanatory or predictive capabilities of three modeling methods: first-, 

second- and third-order MLR models with interaction terms; parametric regression trees; 

and non-parametric (quantile) regression trees.  Given this hypothesis the dissertation has 

three objectives: 

 Investigate the explanatory or predictive capabilities of first-, second- and 
third-order MLR models with interactions; 

 
 Investigate parametric and non-parametric (quantile) regression trees models 

using GUDE software, version 5.2 (Loh 2006); 



 209

 Compare the explanatory and predictive capabilities of the models developed 
in the first and second objectives. 

 
To satisfy these objectives a total of 1,335 models are developed and analyzed. 

 Acceptable models using traditional MLR are more feasible for MDF than for OSB.  

MLR models for the IB of MDF are more acceptable as thickness increases and record 

length decreases.  Box Cox transforms of Y (IB) for MDF did not improve MLR model 

quality or predictive capability.  Acceptable MLR models for MDF are a second-order model 

for 0.500” thickness for a small record length (n=60) and a first-order model for 0.625” 

thickness for a small record length (n=62).  Significant regressors (α < 0.01) for these MLR 

models are related to overall pressing time and press pre-position time settings. 

One acceptable second-order MLR model is developed of the IB of OSB for a short 

record length (n=58) of the IB of OSB.  No acceptable MLR models are feasible for the 

Parallel EI for OSB.  Common among all statistically significant regressors for all MLR 

models of OSB Parallel EI are process variables related to mat forming speed which are 

negatively correlated with IB.  The explanatory value of MLR models for the IB and Parallel 

EI of OSB may be more valuable to the wood composites practitioner than the predictive 

capability of such models.  However, the practitioner should note that models with poor 

predictability have weak explanatory value in the regressors. 

RT models have stronger explanatory value from their two-dimensional structure 

than MLR models.  In most instances RT models outperform MLR in predictability in the 

validation data sets.  Of the 160 RT models investigated without Box Cox transforms, 15 

models have strong explanatory value and four of these 15 models have accurate 

predictability of the validation data sets.  For MDF, process variables related to overall 

pressing time (negative correlation), press position times (negative correlation) and core fiber 
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moisture (positive correlation) are highly significant (α < 0.01) in influencing IB.  

Surprisingly, the RT analysis identified a variable related to crew that is negatively correlated 

with the IB of MDF.  Significant (α < 0.01) process variables related to the IB and Parallel 

EI of OSB from RT models without Box Cox transforms are top and bottom core layers 

moisture content (positive correlation).  Core layer forming and other forming-related 

process variables (negative correlation) are highly significant (α < 0.01) in influencing the 

variation of the Parallel EI of OSB.   

The investigation of RT models of the IB of OSB using Box Cox transforms of Y 

indicate that such transforms improve predictability for the record lengths less than 100.  

There is no evidence that Box Cox transforms for records lengths greater than 100 improve 

predictability of the IB of OSB.  There is also no evidence that quantile RT models with Box 

Cox transforms improve predictability of OSB IB.   

Significant regressors of the IB of OSB are different with and without the Box Cox 

transform.  “Top core layer forming spreader arm speed,” “press overall step movement 

time” and “press overall time” are highly ranked regressors with the Box Cox transform.  

Regressors related to “top and bottom core layer moisture contents” which are ranked as 

being highly important without Box Cox transforms are not ranked in the presence of the 

transform (recall the departure from normality in the IB of OSB).  This may highlight the 

importance of examining the distribution of a dependent variable and the effect of the 

distribution on model results.     

The evidence from the investigation of 1,335 models of the strength properties of 

MDF and OSB support the alternative research hypothesis, i.e., MLR models and RT 

models with and without Box Cox transforms yield different conclusions.  Given that 
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industrial data may be highly heterogeneous and depart from normality the results 

indicate that MLR methods should be used with great caution.  The results further 

indicate that RT models have high explanatory value with their tree structure and are at 

least as predictive as black box deterministic methods that have low explanatory value.     

Results from this dissertation will hopefully advance the industrial engineering and 

statistical sciences as applied to wood composites manufacture.  It is also hoped that the 

results of this dissertation will be valuable to the wood composites practitioner.   

Future research should explore the development and use of regression trees in real-

time wood composites manufacture.  Pre-conditioning regression trees with deterministic 

algorithms such as genetic algorithms and neural networks needs further exploration.  The 

combination of regression trees with principal components analysis and partial least squares 

methods should be studied.  NIR spectroscopy methods offer capabilities of direct 

measurement of furnish; modeling industrial processes using NIR spectroscopy data fused 

with production-line sensor data in combination with RT analysis may offer fruitful research 

opportunities and benefits the industry. 

From a scientific perspective can benefit the fields of decision theory and decision 

trees, and lead to advancements in decision tree software.  From a practical perspective my 

hope is that the results will lead to improvements in MDF and OSB product quality, product 

safety and manufacturing costs.  In the present business era, the wood composites industry 

cannot afford to ignore the potential benefits from the use of data mining and regression 

tree methods. 
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APPENDIX A 
Development of an automated real-time distributed data fusion system 

 
An automated real-time distributed data fusion database was developed aligned the real-time 
process sensor data with the destructive testing data of the laboratory.  Real-time process 
data were collected using Wonderware Industrial SQL 8.0 (http://www.wonderware.com/) 
and were combined with the laboratory test results by product type at the point in time when 
a panel was extracted from the production line for testing.  The real-time sensor data were 
collected using a median of 100 sensor data records (note, sensor data varied in the rate of 
collection from 2 milliseconds to several seconds depending on type of sensor). Lag times, 
corresponding to the period of time required for the furnish to travel through the process 
from the point where a given parameter had an influence, to the point where the panel was 
extracted for destructive testing, were taken into account when collecting process data with 
Industrial SQL.  A unique number (idnum) was generated when the panel was extracted 
from the process and was later used to match the process data with the lab results. 
 
When the lab results were matched with the process data, the combined data were recorded 
into two tables that appear in a fused database, i.e., relational database of real-time sensor 
data and destructive test lab data.  A Microsoft SQL table “InSQLPivot” table was created 
that contained the lab and process snapshot data.  The “InSQLPivot_AV” table contained 
the lab data and median estimates of the last 100 records of real-time process data.  Real-
time process records are stored at rates of seconds and milliseconds.  An exclusive feature of 
the “InSQLPivot_AV” was not only the automated alignment and fusion of real-time 
process data with lab data, but also the time-lagging of real-time process data.  Real-time 
process data from on-line sensors were time-lagged according to the distance and time from 
the press.  The time lag varied from zero seconds at the press, to several minutes at the 
forming and refining stage. 
 
Data Fusion Process. -- Four tables were created within a Microsoft SQL database named 
“GANN.”   The tables in the “GANN” database were: 
 

 InSQLPivot 
 InSQLPivot_AV 
 InSQLPivot_temp 
 InSQLPivot_temp2. 

 
“InSQLPivot” stored the lab and process snapshot data.  “InSQLPivot” consisted of 
columns for both lab and process data.  The field names for the lab data were preserved 
from the table where the lab data originated.  The lab data were retrieved from “table_main” 
which was also located in the “GANN” database.  The filed names for the process data were 
identical to the tag names for the respective process parameters that were stored in these 
fields.  In addition to these columns, there also existed a “DateTime” column that is used to 
record the time at which the process data were collected.  Process data are actually collected 
at three different times for a given entry into the “InSQLPivot” table 
(‘gUnloaderDataSnapshot’, ‘gPressDataSnapshot’ and ‘gFormingDataSnapshot’) the time 
that is recorded into the “DateTime” field corresponds to the latest of these three times 
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(‘gUnloaderDataSnapshot’). These sample tags associated with lab test time varied by test 
site. 
 
“InSQLPivot” stored the lab data and the time-lagged process summary data.  
“InSQLPivot_AV” consisted of identical columns to the “InSQLPivot” table and 
accumulated data in the same manner.  “InSQLPivot_temp” and “InSQLPivot_temp2” 
were used for temporary storage of data while the stored procedures were running.  These 
tables should never be altered as the stored procedures will not run without them. 

SQL Stored Procedures. -- Four stored procedures were created within the GANN SQL 
database: 

 sp_Fill_InSQLPivot_From_Lab_DB 
 sp_Fill_ InSQLPivot_AV_From_Lab_DB 
 sp_Fill_From_eventsnapshot 
 sp_Fill_From_summarydata. 

 
The stored procedure “sp_Fill_InSQLPivot_From_Lab_DB” records a copy of the lab data 
into the “InSQLPivot” table.  The Transact-SQL code for this procedure is available in 
Dawson et al. (2006).  The “sp_Fill_ InSQLPivot_AV_From_Lab_DB” stored procedure 
records a copy of the lab data into the “InSQLPivot_AV” table.  The stored procedure 
“sp_Fill_From_eventsnapshot” records data from the “v_eventsnapshot” view (generated 
by Industrial SQL) into the “InSQLPivot.”  The “v_eventsnapshot” data are matched to the 
lab data using a unique number (i.e., idnum).  The stored procedure  
“sp_Fill_From_eventsnapshot” records data from the “v_summarydata” view (generated by 
Industrial SQL) into the “InSQLPivot.”  The “v_summarydata” data are matched to the lab 
data using a unique number (idnum).   
 
SQL Data Transformation Services. -- Data transformation services (DTS) are used to 
output the “InSQLPivot” and “InSQLPivot_AV” tables into two comma separated variable 
(CSV) files (“InSQLPivot.csv” and “InSQLPivot_AV.csv”).  Figure 1a, outlines the layout of 
this data transformation process.  Data Transformation Services can be found within SQL 
Server Enterprise Manager.  The location of the CSV files on the SQL server is D:\DB 
Dump\. 
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Figure 1a. Data Transformation Services window and illustration for data fusion system. 
 
SQL Jobs. -- Three jobs were used to automate the process of inserting data into the 
“InSQLPivot” and “InSQLPivot_AV” tables and to generate the CSV files of these tables: 
 

 InSQLPivot_Filler 
 InSQLPivot_AV_Filler 
 Create_CSVs_From_InSQLPivots. 

 
The job “InSQLPivot_Filler” was used to execute the stored procedures 
“sp_Fill_InSQLPivot_From_Lab_DB” and “sp_Fill_From_eventsnapshot” every 10 
minutes. 
 
The job “InSQLPivot_AV_Filler” was also used to execute the stored procedures 
“sp_Fill_InSQLPivot_AV_From_Lab_DB” and “sp_Fill_From_ summarydata” every 10 
minutes.  The job “Create_CSVs_From_InSQLPivots” was used to execute the Data 
Transformation Service (DTS) Package “Create_CSVs_From_InSQLPivots” every 30 
minutes to fuse the lab and process data.  This DTS scheduling can be adjusted as required, 
as the scheduling merely dictates the frequency at which the “InSQLPivot” and 
“InSQLPivot_AV” tables are updated and the time(s) at which the CSV files are generated 
(Figure 2a) . 
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Figure 2a.  Example of automated fused database from OSB plant. 

Adding a New Tag to be Stored in InSQLPivot and InSQLPivot_AV. -- New columns 
can be added to the “InSQLPivot” and “InSQLPivot_AV” tables to record additional 
snapshot and summary data process parameters.  SQL Server Enterprise Manager will not 
facilitate the addition of extra columns to these tables, using the design view method, 
because they already contain such a large number of columns.  Columns can however be 
added programmatically using SQL Query Analyzer.  The following script will add a new 
column named “tagname” to the “InSQLPivot” and “InSQLPivot_AV” tables: 

 
USE gann 
BEGIN TRANSACTION 
ALTER TABLE dbo.InSQLPivot ADD 
 tagname float(53) NULL 
ALTER TABLE dbo.InSQLPivot_AV ADD 
 tagname float(53) NULL 
GO 
COMMIT 
 
Note that the tag labeled “tagname” should already exist as an event snapshot within 
Industrial SQL before creating the additional column in the “InSQLPivot” and 
“InSQLPivot_AV” tables.  The stored procedures used to automatically fill these tables will 
detect the addition of the new column and seek the data from the “v_eventsnapshot” and 
“v_summarydata” views. 
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APPENDIX B 
Regression Tree Models in Guide Format 

 

ILLUSTRATION 1B 
MDF 0.750”, n=200: Piecewise Simple Linear RT Model without node Pruning 

 
Regression tree (75 Total Nodes, 38 Terminal Nodes):  
  Node 1: dCoreDRSP <=    7.50000 
    Node 2: fShavOffT1 <=    0.13803 
      Node 4: eDespMamp <=   78.55425 
        Node 8: avgib-mean =  1.44500E+02 
      Node 4: eDespMamp >   78.55425 
        Node 9: avgib-mean =  1.39714E+02 
    Node 2: fShavOffT1 >    0.13803 
      Node 5: fShavOffT1 <=    0.52402 
        Node 10: gFBlkDenst <=    5.00497 
          Node 20: fCoreHTmpT <=  1.02565E+02 
            Node 40: cSwgH20F <=   47.64060 
              Node 80: avgib-mean =  1.37667E+02 
            Node 40: cSwgH20F >   47.64060 
              Node 81: avgib-mean =  1.43750E+02 
          Node 20: fCoreHTmpT >  1.02565E+02 
            Node 41: cSwOTemp <=  1.54425E+02 
              Node 82: eDFld3Mamp <=  4.94517E+02 
                Node 164: bFaceWFCur <=   94.12000 
                  Node 328: avgib-mean =  1.33400E+02 
                Node 164: bFaceWFCur >   94.12000 
                  Node 329: avgib-mean =  1.47750E+02 
              Node 82: eDFld3Mamp >  4.94517E+02 
                Node 165: cSwFbrMst <=    8.01420 
                  Node 330: avgib-mean =  1.55600E+02 
                Node 165: cSwFbrMst >    8.01420 
                  Node 331: fCoreMatMs <=    7.05117 
                    Node 662: avgib-mean =  1.39000E+02 
                  Node 331: fCoreMatMs >    7.05117 
                    Node 663: avgib-mean =  1.39500E+02 
            Node 41: cSwOTemp >  1.54425E+02 
              Node 83: dCoreGrndP <=   -1.56056 
                Node 166: eDryrPrs <=    6.48971 
                  Node 332: avgib-mean =  1.49833E+02 
                Node 166: eDryrPrs >    6.48971 
                  Node 333: eBoilrH20F <=   23.38240 
                    Node 666: avgib-mean =  1.41500E+02 
                  Node 333: eBoilrH20F >   23.38240 
                    Node 667: avgib-mean =  1.37000E+02 
              Node 83: dCoreGrndP >   -1.56056 
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                Node 167: avgib-mean =  1.49857E+02 
        Node 10: gFBlkDenst >    5.00497 
          Node 21: cSwgScv2W <=    6.00008 
            Node 42: fFaceMstM <=    7.85800 
              Node 84: avgib-mean =  1.39500E+02 
            Node 42: fFaceMstM >    7.85800 
              Node 85: avgib-mean =  1.47500E+02 
          Node 21: cSwgScv2W >    6.00008 
            Node 43: aFaceBinLv <=   43.80000 
              Node 86: cSwngGSF <=  2.03732E+03 
                Node 172: avgib-mean =  1.48400E+02 
              Node 86: cSwngGSF >  2.03732E+03 
                Node 173: avgib-mean =  1.49600E+02 
            Node 43: aFaceBinLv >   43.80000 
              Node 87: avgib-mean =  1.49000E+02 
      Node 5: fShavOffT1 >    0.52402 
        Node 11: aCoreBinLv <=   47.79080 
          Node 22: dCoreRTSFw <=  7.52119E+03 
            Node 44: dCoreRsnS <=   12.90000 
              Node 88: avgib-mean =  1.34750E+02 
            Node 44: dCoreRsnS >   12.90000 
              Node 89: avgib-mean =  1.19750E+02 
          Node 22: dCoreRTSFw >  7.52119E+03 
            Node 45: aShvAugSpd <=   31.00115 
              Node 90: avgib-mean =  1.46250E+02 
            Node 45: aShvAugSpd >   31.00115 
              Node 91: avgib-mean =  1.42250E+02 
        Node 11: aCoreBinLv >   47.79080 
          Node 23: bDryFbrRt <=  1.91538E+04 
            Node 46: hPrOpnTime <=   18.00415 
              Node 92: avgib-mean =  1.28500E+02 
            Node 46: hPrOpnTime >   18.00415 
              Node 93: avgib-mean =  1.30000E+02 
          Node 23: bDryFbrRt >  1.91538E+04 
            Node 47: eDryESPTmp <=  7.44705E+02 
              Node 94: avgib-mean =  1.41000E+02 
            Node 47: eDryESPTmp >  7.44705E+02 
              Node 95: avgib-mean =  1.26500E+02 
  Node 1: dCoreDRSP >    7.50000 
    Node 3: dCoreScvWR <=    6.00034 
      Node 6: hPrTempP <=  3.47248E+02 
        Node 12: fShavOffT1 <=    0.37083 
          Node 24: cSwgH20W <=   37.99810 
            Node 48: cSwgScv2W <=    6.00009 
              Node 96: avgib-mean =  1.43500E+02 
            Node 48: cSwgScv2W >    6.00009 
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              Node 97: avgib-mean =  1.36800E+02 
          Node 24: cSwgH20W >   37.99810 
            Node 49: eDesp3KV <=   40.52945 
              Node 98: avgib-mean =  1.41800E+02 
            Node 49: eDesp3KV >   40.52945 
              Node 99: avgib-mean =  1.32400E+02 
        Node 12: fShavOffT1 >    0.37083 
          Node 25: cSwMtrBSpd <=   33.32085 
            Node 50: eDryrPrs <=    6.49700 
              Node 100: avgib-mean =  1.47571E+02 
            Node 50: eDryrPrs >    6.49700 
              Node 101: avgib-mean =  1.34500E+02 
          Node 25: cSwMtrBSpd >   33.32085 
            Node 51: avgib-mean =  1.29667E+02 
      Node 6: hPrTempP >  3.47248E+02 
        Node 13: fHumidity <=   50.46480 
          Node 26: avgib-mean =  1.38286E+02 
        Node 13: fHumidity >   50.46480 
          Node 27: avgib-mean =  1.12400E+02 
    Node 3: dCoreScvWR >    6.00034 
      Node 7: hPrTempP <=  3.46182E+02 
        Node 14: avgib-mean =  1.26800E+02 
      Node 7: hPrTempP >  3.46182E+02 
        Node 15: aFaceBinLv <=   45.11000 
          Node 30: avgib-mean =  1.35714E+02 
        Node 15: aFaceBinLv >   45.11000 
          Node 31: avgib-mean =  1.36286E+02 
 
Node     No. Cases   Mat.     Node       Node       Node   Split       
  label   cases   fit   rank     D-mean       MSE       R^2    variable    
    1       245     200     2   1.390E+02    2.02E+02   0.0790 dCoreDRSP              
    2       148     127     2   1.412E+02    2.02E+02   0.1092 fShavOffT1            
    4        14      13     2   1.419E+02    2.27E+02   0.6002 eDespMamp             
    8T       6       6     2   1.445E+02    3.57E+01   0.9569 NONE                   
    9T       8       7     2   1.397E+02    1.08E+02   0.8111 NONE                   
    5       134     114     2   1.411E+02    1.72E+02   0.1274 fShavOffT1             
   10       91      79     2   1.445E+02    1.55E+02   0.1204 gFBlkDenst             
   20       66      56     2   1.434E+02    1.40E+02   0.2326 fCoreHTmpT             
   40       10      10     2   1.401E+02    6.97E+01   0.7387 cSwgH20F               
   80T       6       6     2   1.377E+02    5.63E+01   0.8824 NONE                   
   81T       4       4     2   1.438E+02    3.82E-01   0.9941 NONE                   
   41       56      46     2   1.441E+02    1.18E+02   0.3185 cSwOTemp               
   82       30      25     2   1.427E+02    1.07E+02   0.4870 eDFld3Mamp             
  164      13       9     2   1.398E+02    6.52E+01   0.8119 bFaceWFCur             
  328T      5       5     2   1.334E+02    1.00E+01   0.9822 NONE                   
  329T      8       4     2   1.478E+02    3.29E+00   0.9769 NONE                   
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  165      17      16     2   1.444E+02    7.88E+01   0.5085 cSwFbrMst              
  330T      6       5     2   1.556E+02    4.72E+00   0.9750 NONE                   
  331      11      11     2   1.393E+02    3.16E+01   0.6265 fCoreMatMs             
  662T      5       5     2   1.390E+02    4.83E+00   0.9397 NONE                   
  663T      6       6     2   1.395E+02    7.30E+00   0.9440 NONE                   
   83       26      21     2   1.458E+02    7.69E+01   0.4581 dCoreGrndP             
  166      18      14     2   1.438E+02    6.53E+01   0.4747 eDryrPrs               
  332T      8       6     2   1.498E+02    8.74E+00   0.9336 NONE                   
  333      10       8     2   1.392E+02    3.79E+01   0.6085 eBoilrH20F             
  666T      4       4     2   1.415E+02    2.31E-05   1.0000 NONE                   
  667T      6       4     2   1.370E+02    7.04E-01   0.9965 NONE                   
  167T      8       7     2   1.499E+02    1.37E+01   0.9337 NONE                   
   21        25      23     2   1.471E+02    1.05E+02   0.3587 cSwgScv2W              
   42         8       8     2   1.435E+02    3.90E+01   0.8213 fFaceMstM              
   84T       4       4     2   1.395E+02    4.79E+00   0.9868 NONE                   
   85T       4       4     2   1.475E+02    2.69E-01   0.9988 NONE                   
   43        17      15     2   1.490E+02    6.17E+01   0.5942 aFaceBinLv             
   86        10      10     2   1.490E+02    4.21E+01   0.6885 cSwngGSF               
  172T       5       5     2   1.484E+02    1.42E+01   0.8771 NONE                   
  173T       5       5     2   1.496E+02    6.01E+00   0.9753 NONE                   
   87T        7       5     2   1.490E+02    1.44E+01   0.9519 NONE                   
   11        43      35     2   1.334E+02    1.21E+02   0.2887 aCoreBinLv             
   22        19      16     2   1.358E+02    7.62E+01  0.5592 dCoreRTSFw             
   44          9       8     2   1.272E+02    1.92E+01   0.8936 dCoreRsnS              
   88T        5       4     2   1.348E+02    6.88E-01   0.9973 NONE                   
   89T        4       4     2   1.198E+02    2.68E-01   0.9958 NONE                   
   45         10       8     2   1.442E+02    4.25E+00   0.8596 aShvAugSpd             
   90T        6       4     2   1.462E+02    2.02E-01   0.9849 NONE                   
   91T        4       4     2   1.422E+02    6.51E-02   0.9989 NONE                   
   23         24      19     2   1.315E+02    9.08E+01   0.4916 bDryFbrRt              
   46          9       8     2   1.292E+02    3.45E+01   0.7473 hPrOpnTime             
   92T        5       4     2   1.285E+02    1.64E+01   0.9585 NONE                   
   93T        4       4     2   1.300E+02    4.52E-01   0.9652 NONE                   
   47         15      11     2   1.331E+02    2.68E+01   0.8877 eDryESPTmp             
   94T        5       5     2   1.410E+02    4.54E+00   0.9896 NONE                   
   95T       10       6     2   1.265E+02    6.99E+00   0.8931 NONE                   
    3          97      73     2   1.352E+02    1.63E+02   0.1418 dCoreScvWR             
    6          71      54     2   1.358E+02    1.46E+02   0.1774 hPrTempP               
   12         59      42     2   1.382E+02    1.15E+02   0.2262 fShavOffT1             
   24         31      21     2   1.389E+02    8.50E+01   0.3800 cSwgH20W               
   48         13      11     2   1.405E+02    2.99E+01   0.5060 cSwgScv2W              
   96T        7       6     2  1.435E+02    2.97E+00   0.9282 NONE                   
   97T        6       5     2   1.368E+02    1.41E+01   0.8355 NONE                   
   49         18      10     2   1.371E+02    5.01E+01   0.7997 eDesp3KV               
   98T        5       5     2   1.418E+02    1.38E+01   0.8848 NONE                   
   99T       13       5     2   1.324E+02    1.31E+01   0.9723 NONE                   
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   25         28      21     2   1.375E+02    7.41E+01   0.5738 cSwMtrBSpd             
   50         15      15     2   1.406E+02    3.81E+01   0.6669 eDryrPrs               
  100T       7       7     2   1.476E+02    9.83E+00   0.9210 NONE                   
  101T       8       8     2   1.345E+02    1.29E+01   0.6594 NONE                   
   51T      13       6     2   1.297E+02    2.93E+01   0.9102 NONE                   
   13        12      12     2   1.275E+02    2.93E+01   0.8701 fHumidity              
   26T        7       7     2   1.383E+02    4.23E+00   0.8767 NONE                   
   27T        5       5     2   1.124E+02    3.03E+00   0.9296 NONE                   
    7         26      19     2   1.336E+02    9.24E+01   0.6214 hPrTempP               
   14T        7       5     2   1.268E+02    1.15E+00   0.9982 NONE                    
   15         19      14     2   1.360E+02    2.34E+01   0.8503 aFaceBinLv             
   30T      10       7     2   1.357E+02    4.08E+00   0.9609 NONE                   
   31T        9       7     2   1.363E+02    6.78E+00   0.9750 NONE                   
   
Node 1: Intermediate node 
 A case goes into Node 2 if dCoreDRSP <= 7.5000000E+00 
 dCoreDRSP mean =   6.61138335000000      
 ---------------------------- 
 Node 2: Intermediate node 
 A case goes into Node 4 if fShavOffT1 <= 1.3803350E-01 
 fShavOffT1 mean =  0.399134422598425      
 ---------------------------- 
 Node 4: Intermediate node 
 A case goes into Node 8 if eDespMamp <= 7.8554250E+01 
 eDespMamp mean =   85.3898846153846      
 ---------------------------- 
 Node 8: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         2.1699E+02    26.88 
 fShavOffT3     -1.3148E+02   -9.42     3.6447E-01     5.5131E-01     8.1370E-01 
 ---------------------------- 
 Node 9: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient      t-stat       Min           Mean           Max 
 Constant        -3.2634E+01       -0.87 
 fCore2Face       3.6277E+00        4.63    4.2000E+01    4.7509E+01    5.6000E+01 
 ---------------------------- 
 Node 5: Intermediate node 
 A case goes into Node 10 if fShavOffT1 <= 5.2401650E-01 
 fShavOffT1 mean =  0.441650622807018      
 ---------------------------- 
 Node 10: Intermediate node 
 A case goes into Node 20 if gFBlkDenst <= 5.0049700E+00 
 gFBlkDenst mean =   4.81147670886076      
 ---------------------------- 
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 Node 20: Intermediate node 
 A case goes into Node 40 if fCoreHTmpT <= 1.0256500E+02 
 fCoreHTmpT mean =   111.773216071429      
 ---------------------------- 
 
 Node 40: Intermediate node 
 A case goes into Node 80 if cSwgH20F <= 4.7640600E+01 
 cSwgH20F mean =   48.8630500000000      
 ---------------------------- 
 
Node 80: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         8.5738E+01     8.61 
 cSwngMPwr       7.0067E-02       5.48     4.0568E+02     7.4113E+02    1.2023E+03 
 ---------------------------- 
 Node 81: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient    t-stat    Min            Mean            Max 
 Constant         4.0779E+02     28.27 
 dCoreMtrBS     -4.5028E+00   -18.31   5.6742E+01     5.8640E+01    6.0275E+01 
 ---------------------------- 
 Node 41: Intermediate node 
 A case goes into Node 82 if cSwOTemp <= 1.5442550E+02 
 cSwOTemp mean =   152.331543478261      
 ---------------------------- 
 Node 82: Intermediate node 
 A case goes into Node 164 if eDFld3Mamp <= 4.9451650E+02 
 eDFld3Mamp mean =   487.753720000000      
 ---------------------------- 
 Node 164: Intermediate node 
 A case goes into Node 328 if bFaceWFCur <= 9.4120000E+01 
 bFaceWFCur mean =   94.2264111111111      
 ---------------------------- 
 Node 328: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         3.5985E+02   20.36 
 bFaceBnLvl      -3.0777E+00    -12.85   6.4378E+01     7.3576E+01     8.0969E+01 
 ---------------------------- 
 Node 329: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient     t-stat   Min            Mean            Max 
 Constant         1.6391E+02     82.88 
 fFaceHDP        3.8352E+01     9.20    -6.4367E-01    -4.2137E-01    -1.6484E-01 
 ---------------------------- 
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 Node 165: Intermediate node 
 A case goes into Node 330 if cSwFbrMst <= 8.0141950E+00 
 cSwFbrMst mean =   8.09143812500000      
 ---------------------------- 
 Node 330: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat  Min            Mean            Max 
 Constant         1.1232E+02     27.30 
 hPrPTime        3.1742E+00     10.82    9.8917E+00     1.3633E+01     1.7342E+01 
 ---------------------------- 
 Node 331: Intermediate node 
 A case goes into Node 662 if fCoreMatMs <= 7.0511700E+00 
 fCoreMatMs mean =   7.14003000000000      
 ---------------------------- 
 Node 662: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant        -4.7508E+01    -1.74 
 hPrTCyclP       9.1776E-01       6.83     1.9172E+02     2.0322E+02     2.1216E+02 
 ---------------------------- 
 Node 663: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant        -1.3698E+03   -7.45 
 fHumidPrs       1.0448E+01     8.21     1.4333E+02     1.4446E+02     1.4547E+02 
 ---------------------------- 
 Node 83: Intermediate node 
 A case goes into Node 166 if dCoreGrndP <= -1.5605650E+00 
 dCoreGrndP mean =  -1.43533238095238      
 ---------------------------- 
 Node 166: Intermediate node 
 A case goes into Node 332 if eDryrPrs <= 6.4897100E+00 
 eDryrPrs mean =   6.48609214285714      
 ---------------------------- 
 Node 332: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient      t-stat   Min            Mean            Max 
 Constant       -1.9732E+03    -6.97 
 hPrStmP          1.4838E+01     7.50     1.4232E+02     1.4308E+02     1.4421E+02 
 ---------------------------- 
 Node 333: Intermediate node 
 A case goes into Node 666 if eBoilrH20F <= 2.3382400E+01 
 eBoilrH20F mean =   23.4775625000000      
 ---------------------------- 
 
 Node 666: Terminal node 
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 Coefficients of least squares regression function: 
 Regressor       Coefficient      t-stat       Min            Mean            Max 
 Constant       -3.6107E+02   -1760.90 
 aChipPrct        7.0010E+00    2451.14   7.1000E+01  7.1785E+01     7.3000E+01 
 ---------------------------- 
 Node 667: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant       -6.9074E+01   -7.99 
 eM2236Spd       7.7037E+00     23.86    2.5000E+01     2.6750E+01     2.8000E+01 
 ---------------------------- 
 Node 167: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat  Min            Mean            Max 
 Constant         7.3410E+00   0.43 
 fShaveOff1      5.6036E+01     8.39     2.2193E+00     2.5433E+00     2.7424E+00 
 ---------------------------- 
 Node 21: Intermediate node 
 A case goes into Node 42 if cSwgScv2W <= 6.0000800E+00 
 cSwgScv2W mean =   6.00075739130435      
 ---------------------------- 
 Node 42: Intermediate node 
 A case goes into Node 84 if fFaceMstM <= 7.8580000E+00 
 fFaceMstM mean =   7.96750125000000      
 ---------------------------- 
 Node 84: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat    Min            Mean            Max 
 Constant        -1.1005E+05   -12.20 
 cSwgScv2W       1.8367E+04    12.22     5.9980E+00     5.9990E+00     6.0000E+00 
 ---------------------------- 
 Node 85: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant        -2.2756E+02  -25.01 
 dCoreRsnS       2.9074E+01    41.23    1.2500E+01     1.2900E+01     1.3500E+01 
 ---------------------------- 
 Node 43: Intermediate node 
 A case goes into Node 86 if aFaceBinLv <= 4.3800000E+01 
 aFaceBinLv mean =   40.9454533333333      
 ---------------------------- 
 Node 86: Intermediate node 
 A case goes into Node 172 if cSwngGSF <= 2.0373200E+03 
 cSwngGSF mean =   1926.10200000000      
 ---------------------------- 
 Node 172: Terminal node 
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 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat  Min            Mean            Max 
 Constant         8.9653E+01    7.00 
 aChipSloLv      8.9089E-01       4.63     5.3292E+01     6.5942E+01     7.5487E+01 
 ---------------------------- 
 Node 173: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient      t-stat    Min            Mean            Max 
 Constant         1.9254E+02     47.05 
 cCO0046         -1.4218E+00    -10.89   2.0000E+01     3.0200E+01     3.8000E+01 
 ---------------------------- 
 Node 87: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         3.1174E+03    8.09 
 bFaceFanCr     -3.1610E+01    -7.70     9.3089E+01     9.3906E+01     9.4207E+01 
 ---------------------------- 
 Node 11: Intermediate node 
 A case goes into Node 22 if aCoreBinLv <= 4.7790800E+01 
 aCoreBinLv mean =   50.8490028571429      
 ---------------------------- 
 Node 22: Intermediate node 
 A case goes into Node 44 if dCoreRTSFw <= 7.5211900E+03 
 dCoreRTSFw mean =   8043.66562500000      
 ---------------------------- 
 Node 44: Intermediate node 
 A case goes into Node 88 if dCoreRsnS <= 1.2900000E+01 
 dCoreRsnS mean =   12.4625000000000      
 ---------------------------- 
 Node 88: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat    Min            Mean            Max 
 Constant        -1.3013E+03    -24.51 
 gMxActual       4.0775E+02     27.05    3.4884E+00     3.5218E+00     3.5583E+00 
 ---------------------------- 
 Node 89: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         1.7194E+02    71.60 
 dCoreBnLvl     -7.8809E-01     -21.86   6.1576E+01     6.6222E+01     7.8628E+01 
 ---------------------------- 
 Node 45: Intermediate node 
 A case goes into Node 90 if aShvAugSpd <= 3.1001150E+01 
 aShvAugSpd mean =   31.4754750000000      
 ---------------------------- 
 Node 90: Terminal node 
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 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant        -1.1053E+04    -11.28 
 cSwgScv2W       1.8665E+03     11.42    5.9980E+00     5.9999E+00     6.0017E+00 
 ---------------------------- 
 Node 91: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean           Max 
 Constant         3.2012E+02     78.07 
 fCoreHTmpT     -1.5542E+00    -43.40   1.0889E+02     1.1444E+02     1.1780E+02 
 ---------------------------- 
 Node 23: Intermediate node 
 A case goes into Node 46 if bDryFbrRt <= 1.9153850E+04 
 bDryFbrRt mean =   19568.2052631579      
 ---------------------------- 
 Node 46: Intermediate node 
 A case goes into Node 92 if hPrOpnTime <= 1.8004150E+01 
 hPrOpnTime mean =   23.2520750000000      
 ---------------------------- 
 Node 92: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         1.5395E+02     36.16 
 hPrPPMTimS     -1.2214E+02    -6.79     1.1667E-01     2.0833E-01    4.0000E-01 
 ---------------------------- 
 Node 93: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat    Min            Mean            Max 
 Constant         1.8989E+02     23.60 
 eBoilrStmP      -2.1343E-01     -7.45     2.6145E+02     2.8059E+02     2.9339E+02 
 ---------------------------- 
 Node 47: Intermediate node 
 A case goes into Node 94 if eDryESPTmp <= 7.4470450E+02 
 eDryESPTmp mean =   741.973272727273      
 ---------------------------- 
 Node 94: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient      t-stat    Min            Mean            Max 
 Constant        -1.2610E+04   -16.73 
 hPrTempP        3.6777E+01    16.91     3.4618E+02     3.4672E+02     3.4734E+02 
 ---------------------------- 
 Node 95: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         1.4062E+02    52.66 
 cSwgOutlet     -5.6689E-03     -5.78    1.0233E+03     2.4903E+03     4.1474E+03 
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 ---------------------------- 
 Node 3: Intermediate node 
 A case goes into Node 6 if dCoreScvWR <= 6.0003400E+00 
 dCoreScvWR mean =   6.00020506849315      
 ---------------------------- 
 Node 6: Intermediate node 
 A case goes into Node 12 if hPrTempP <= 3.4724800E+02 
 hPrTempP mean =   344.592055555555      
 ---------------------------- 
 Node 12: Intermediate node 
 A case goes into Node 24 if fShavOffT1 <= 3.7083350E-01 
 fShavOffT1 mean =  0.371528562619048      
 ---------------------------- 
 Node 24: Intermediate node 
 A case goes into Node 48 if cSwgH20W <= 3.7998100E+01 
 cSwgH20W mean =   35.7147809523810      
 ---------------------------- 
 Node 48: Intermediate node 
 A case goes into Node 96 if cSwgScv2W <= 6.0000950E+00 
 cSwgScv2W mean =   6.00023909090909      
 ---------------------------- 
 Node 96: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         8.9397E+02   8.56 
 gMxAverage     -2.1314E+02    -7.19    3.4915E+00     3.5210E+00     3.5581E+00 
 ---------------------------- 
 Node 97: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat  Min            Mean            Max 
 Constant        -5.4643E+01  -1.11 
 eBoilrStmP       6.8746E-01       3.90     2.6172E+02     2.7848E+02     2.8987E+02 
 ---------------------------- 
 Node 49: Intermediate node 
 A case goes into Node 98 if eDesp3KV <= 4.0529450E+01 
 eDesp3KV mean =   40.3451400000000      
 ---------------------------- 
 Node 98: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         1.4352E+03     5.33 
 fCoreHumid     -2.7372E+01    -4.80    4.6921E+01     4.7254E+01     4.7749E+01 
 ---------------------------- 
 Node 99: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
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 Constant        -6.7361E+04  -10.24 
 dCoreScvWR      1.1251E+04     10.26   5.9962E+00     5.9991E+00     6.0002E+00 
 ---------------------------- 
 Node 25: Intermediate node 
 A case goes into Node 50 if cSwMtrBSpd <= 3.3320850E+01 
 cSwMtrBSpd mean =   32.0288190476190      
 ---------------------------- 
 Node 50: Intermediate node 
 A case goes into Node 100 if eDryrPrs <= 6.4970000E+00 
 eDryrPrs mean =   6.44042533333333      
 ---------------------------- 
 Node 100: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient     t-stat   Min            Mean            Max 
 Constant         1.4121E+05     7.64 
 dCoreScvWR     -2.3511E+04    -7.63    5.9991E+00     6.0000E+00     6.0003E+00 
 ---------------------------- 
 Node 101: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient    t-stat   Min            Mean            Max 
 Constant         1.2805E+02     56.15 
 fShavOffT3      1.1603E+01     3.41    -2.4510E-01     5.5604E-01     1.0209E+00 
 ---------------------------- 
 Node 51: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat    Min            Mean            Max 
 Constant         1.4515E+02    44.20 
 hPrPPMTimS     -1.0717E+02    -6.37    0.0000E+00     1.4444E-01     3.5000E-01 
 ---------------------------- 
 Node 13: Intermediate node 
 A case goes into Node 26 if fHumidity <= 5.0464800E+01 
 fHumidity mean =   38.9410416666667      
 ---------------------------- 
 Node 26: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         1.5536E+02   52.36 
 cSwPltPI        -8.4100E+01    -5.96    1.2235E-01     2.0304E-01     3.0422E-01 
 ---------------------------- 
 Node 27: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat  Min            Mean            Max 
 Constant         9.6705E+01     37.01 
 fShavOffT1      5.3930E+01     6.29     1.9067E-01     2.9102E-01     4.0473E-01 
 ---------------------------- 
 Node 7: Intermediate node 
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 A case goes into Node 14 if hPrTempP <= 3.4618150E+02 
 hPrTempP mean =   344.544052631579      
 ---------------------------- 
 Node 14: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat     Min            Mean            Max 
 Constant         3.9073E+02    60.81 
 eAmmonaF       -9.7070E+02    -41.19  2.3511E-01     2.7189E-01    2.9571E-01 
 ---------------------------- 
 Node 15: Intermediate node 
 A case goes into Node 30 if aFaceBinLv <= 4.5110000E+01 
 aFaceBinLv mean =   45.4139357142857      
 ---------------------------- 
 Node 30: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         1.6606E+02    58.40 
 dCoreRSSpd     -5.6235E-01    -11.08   2.4913E+01     5.3971E+01     6.9760E+01 
 ---------------------------- 
 Node 31: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat     Min            Mean            Max 
 Constant         1.2407E+04    14.12 
 hPrTempP       -3.5373E+01   -13.96   3.4630E+02     3.4690E+02     3.4740E+02 
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ILLUSTRATION 2B 
OSB IB 7/16” RS, n=100: Mixed Stepwise RT Model for All Possible Subsets 

No Prune 

 
Regression Tree (23 Total Nodes, 12 terminal nodes): 
  Node 1: MTCLMoiLev <=    5.18742 
    Node 2: MSTSLOFSpA <=   54.90909 
      Node 4: IB-mean =  48.91745 
    Node 2: MSTSLOFSpA >   54.90909 
      Node 5: MF3PasCont <=  2.49750E+02 
        Node 10: MSBCLOFDSP <=    6.17598 
          Node 20: IB-mean =  38.23089 
        Node 10: MSBCLOFDSP >    6.17598 
          Node 21: IB-mean =  46.54200 
      Node 5: MF3PasCont >  2.49750E+02 
        Node 11: PMI736 <=   13.00000 
          Node 22: PMI746 <=  2.52000E+03 
            Node 44: Dry1Out <=  2.53500E+02 
              Node 88: IB-mean =  40.12000 
            Node 44: Dry1Out >  2.53500E+02 
              Node 89: IB-mean =  43.34900 
          Node 22: PMI746 >  2.52000E+03 
            Node 45: IB-mean =  40.03717 
        Node 11: PMI736 >   13.00000 
          Node 23: IB-mean =  45.96050 
  Node 1: MTCLMoiLev >    5.18742 
    Node 3: MTCLMoiLev <=    5.41640 
      Node 6: IB-mean =  48.54244 
    Node 3: MTCLMoiLev >    5.41640 
      Node 7: PrsClosTim <=   56.50000 
        Node 14: PZI740 <=   71.50000 
          Node 28: WaxRatCL <=  3.16349E+02 
            Node 56: IB-mean =  54.90971 
          Node 28: WaxRatCL >  3.16349E+02 
            Node 57: IB-mean =  52.45867 
        Node 14: PZI740 >   71.50000 
          Node 29: IB-mean =  47.20767 
      Node 7: PrsClosTim >   56.50000 
        Node 15: IB-mean =  61.05073 

  
 
Node   No. Cases   Mat.    Node       Node       Node   Split       
label    cases    fit   rank    D-mean       MSE       R^2    variable  
    1       194      101     3   4.787E+01    6.98E+01   0.2648 MTCLMoiLev            
    2       128        59    3   4.385E+01    4.08E+01   0.2156 MSTSLOFSpA            
    4T      13        11     3   4.892E+01    1.44E+01   0.6687 NONE                  
    5       115        48     3   4.269E+01    3.86E+01   0.2170 MF3PasCont            
   10       38        17     3   4.214E+01    3.86E+01   0.4308 MSBCLOFDSP            



 249

   20T        9       9     3   3.823E+01    2.22E+01   0.3330 NONE                  
   21T      29       8     3   4.654E+01    4.66E+01   0.4883 NONE                  
   11        77      31     3   4.299E+01    2.23E+01   0.5053 PMI736                
   22        47      19     3   4.111E+01    2.60E+01   0.3483 PMI746                
   44        29      13     3   4.161E+01    3.60E+01   0.2180 Dry1Out               
   88T      21       7     2   4.012E+01    3.42E+01   0.0559 NONE                  
   89T        8       6     2   4.335E+01    6.13E+01   0.0000 NONE                  
   45T      18       6     2   4.004E+01    0.00E+00   1.0000 NONE                  
   23T      30      12     3   4.596E+01    1.22E+01   0.7553 NONE                  
    3         66      42     3   5.353E+01    5.70E+01   0.4569 MTCLMoiLev            
    6T       16       9     3   4.854E+01    2.23E+01   0.7368 NONE                  
    7         50      33     3   5.489E+01    5.67E+01   0.4850 PrsClosTim            
   14         33      22     3   5.181E+01    4.44E+01   0.5803 PZI740                
   28         25      16     3   5.353E+01    5.18E+01   0.4860 WaxRatCL              
   56T        9       7     2   5.491E+01    1.56E+02   0.0411 NONE                  
   57T      16       9     3   5.246E+01    5.68E+01   0.2761 NONE                  
   29T        8       6     2   4.721E+01    7.47E+01   0.4292 NONE                  
   15T      17      11     3   6.105E+01    4.24E+01   0.4905 NONE        
 
Regression Tree Least Squares Functions: 
  
Node 1: Intermediate node 
 A case goes into Node 2 if MTCLMoiLev <= 5.1874247E+00 
 MTCLMoiLev mean =   5.13977918654455      
 ---------------------------- 
 Node 2: Intermediate node 
 A case goes into Node 4 if MSTSLOFSpA <= 5.4909090E+01 
 MSTSLOFSpA mean =   60.6910631530508      
 ---------------------------- 
 Node 4: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient   t-stat    Min            Mean            Max 
 Constant        4.4506E+01    13.16  
 BnkSpdTCL     -2.8398E+00   -3.89    1.1000E+01    2.8727E+01    4.6000E+01 
 BnkSpdTSL   2.0342E+00    4.00     1.4000E+01    4.2273E+01     6.8000E+01 
 ---------------------------- 
 Node 5: Intermediate node 
 A case goes into Node 10 if MF3PasCont <= 2.4975000E+02 
 MF3PasCont mean =   406.708333333333      
 ---------------------------- 
 Node 10: Intermediate node 
 A case goes into Node 20 if MSBCLOFDSP <= 6.1759762E+00 
 MSBCLOFDSP mean =   6.09058882200000      
 ---------------------------- 
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Node 20: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat   Min            Mean            Max 
 Constant        4.3041E+01     1.31 
 BnkSpdBSL    -1.1550E+00   -1.44     5.6000E+01    6.4889E+01    7.3000E+01 
 BnkSpdTCL    1.5940E+00     0.95     4.0000E+01    4.4000E+01     4.7000E+01 
 ---------------------------- 
 Node 21: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat    Min            Mean            Max 
 Constant        1.6141E+02    2.38 
 BnkSpdBCL   -2.0793E-01    -0.08     4.1000E+01     4.3688E+01     4.6000E+01 
 BnkSpdBSL    -1.5166E+00   -1.29     6.3000E+01     6.9750E+01     7.5000E+01 
 ---------------------------- 
 Node 11: Intermediate node 
 A case goes into Node 22 if PMI736 <= 1.3000000E+01 
 PMI736 mean =   6.48064506341935      
 ---------------------------- 
 Node 22: Intermediate node 
 A case goes into Node 44 if PMI746 <= 2.5200000E+03 
 PMI746 mean =   2226.36842105263      
 ---------------------------- 
 Node 44: Intermediate node 
 A case goes into Node 88 if Dry1Out <= 2.5350000E+02 
 Dry1Out mean =   250.500000000000      
 ---------------------------- 
 Node 88: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient      t-stat         
 Constant        4.1500E+01    12.34 
 ---------------------------- 
 Node 89: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat        
 Constant        4.3349E+01     16.60 
 ---------------------------- 
 Node 45: Terminal node 
 Coefficients of least squares regression function: 
 Regressor     Coefficient      t-stat        
 Constant       4.0037E+01     18.47 
 ---------------------------- 
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 Node 23: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient      t-stat       Min            Mean            Max 
 Constant       6.0536E+01   18.22 
 DyBiLBoBSL -7.5753E-01     -2.96     0.0000E+00    4.1708E+01     5.4500E+01 
 DyBiLBoCL    2.7232E-01      1.57     0.0000E+00    6.2500E+01     7.5000E+01 
 ---------------------------- 
 Node 3: Intermediate node 
 A case goes into Node 6 if MTCLMoiLev <= 5.4163983E+00 
 MTCLMoiLev mean =   5.93038741752381      
 ---------------------------- 
 Node 6: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat    Min            Mean            Max 
 Constant        5.7884E+01    8.21 
 BnkSpdBSL    2.0537E+00     3.91     3.0000E+01    6.0111E+01     7.5000E+01 
 BnkSpdTCL    -3.4049E+00   -4.08    1.9000E+01    3.9000E+01     4.6000E+01 
 ---------------------------- 
 Node 7: Intermediate node 
 A case goes into Node 14 if PrsClosTim <= 5.6500000E+01 
 PrsClosTim mean =   55.0000000000000      
 ---------------------------- 
 Node 14: Intermediate node 
 A case goes into Node 28 if PZI740 <= 7.1500000E+01 
 PZI740 mean =   57.3181818181818      
 ---------------------------- 
 Node 28: Intermediate node 
 A case goes into Node 56 if WaxRatCL <= 3.1634933E+02 
 WaxRatCL mean =   727.071659205125      
 ---------------------------- 
Node 56: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat        
 Constant        5.6837E+01    9.02 
 ---------------------------- 
 Node 57: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient      t-stat    Min            Mean            Max 
 Constant        6.5805E+01    5.21 
 BnkSpdBSL    6.4793E-01      0.92     2.4000E+01    5.5333E+01     6.6000E+01 
 BnkSpdTCL   -1.3139E+00   -1.25    1.8000E+01    3.7444E+01     4.7000E+01 
 ---------------------------- 
 Node 29: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient     t-stat        
 Constant        4.7208E+01   12.38 
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 ---------------------------- 
 Node 15: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient     t-stat   Min            Mean            Max 
 Constant        7.4357E+01    9.97 
 BnkSpdBCL    -1.8369E+00   -2.35   1.8000E+01     3.5364E+01     4.6000E+01 
 BnkSpdTSL    9.5415E-01     1.89   2.8000E+01     5.4136E+01     6.9000E+01 
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ILLUSTRATION 3B 
OSB IB 7/16” RS, n=200: Mixed Stepwise RT Model for All Possible Subsets  

No Prune 

 
Regression tree (33 Total Nodes, 17 Terminal Nodes): 
  Node 1: PKI700AC1T <=   16.50000 
    Node 2: MTCLMoiLev <=    4.84696 
      Node 4: PPI700A <=  9.32500E+02 
        Node 8: MD5OutTem <=  2.47250E+02 
          Node 16: IB-mean =  41.18314 
        Node 8: MD5OutTem >  2.47250E+02 
          Node 17: IB-mean =  48.11538 
      Node 4: PPI700A >  9.32500E+02 
        Node 9: IB-mean =  40.13382 
    Node 2: MTCLMoiLev >    4.84696 
      Node 5: MDBBSLLev <=   62.50000 
        Node 10: MBBSLSPFB <=  2.59241E+04 
          Node 20: IB-mean =  63.61629 
        Node 10: MBBSLSPFB >  2.59241E+04 
          Node 21: PTI796C <=  2.23050E+02 
            Node 42: IB-mean =  56.67327 
          Node 21: PTI796C >  2.23050E+02 
            Node 43: MBTRFTP <=  5.48991E+03 
              Node 86: IB-mean =  52.34825 
            Node 43: MBTRFTP >  5.48991E+03 
              Node 87: IB-mean =  43.68167 
      Node 5: MDBBSLLev >   62.50000 
        Node 11: MBBSLRFTC <=  6.72257E+02 
          Node 22: IB-mean =  47.57145 
        Node 11: MBBSLRFTC >  6.72257E+02 
          Node 23: IB-mean =  44.68070 
  Node 1: PKI700AC1T >   16.50000 
    Node 3: PPC741B <=   97.00000 
      Node 6: MFLSpdAPer <=   97.81804 
        Node 12: PZI701St17 <=  3.69950E+03 
          Node 24: IB-mean =  44.35308 
        Node 12: PZI701St17 >  3.69950E+03 
          Node 25: IB-mean =  44.52422 
      Node 6: MFLSpdAPer >   97.81804 
        Node 13: BnkSpdBSL <=   66.50000 
          Node 26: IB-mean =  38.16686 
        Node 13: BnkSpdBSL >   66.50000 
          Node 27: PKI700SFOY <=   16.50000 
            Node 54: IB-mean =  34.23363 
          Node 27: PKI700SFOY >   16.50000 
            Node 55: PKI700SFOY <=   18.50000 
              Node 110: IB-mean =  44.96364 
            Node 55: PKI700SFOY >   18.50000 
              Node 111: IB-mean =  38.53143 



 254

    Node 3: PPC741B >   97.00000 
      Node 7: MBWoFCV <=   31.50000 
        Node 14: IB-mean =  50.91569 
      Node 7: MBWoFCV >   31.50000 
        Node 15: IB-mean =  47.26390 

   
Node  No. Cases   Mat.     Node       Node       Node   Split       
  label   cases    fit   rank     D-mean       MSE       R^2   variable   
    1       293      200     3   4.571E+01    6.30E+01   0.2445 PKI700AC1T            
    2       175      111     3   4.688E+01    6.52E+01   0.2952 MTCLMoiLev            
    4       83         48     3   4.245E+01    3.84E+01   0.3597 PPI700A               
    8       34         20     3   4.569E+01    3.49E+01   0.3062 MD5OutTem             
   16T      9          7     2   4.118E+01    3.82E+01   0.1422 NONE                  
   17T    25         13     3   4.812E+01    2.79E+01   0.3249 NONE                  
    9T     49         28     3   4.013E+01    2.94E+01   0.5062 PKI700SFOY            
    5       92         63     3   5.026E+01    5.53E+01   0.4104 MDBBSLLev             
   10      54         32     3   5.467E+01    5.60E+01   0.4504 MBBSLSPFB             
   20T    11          7     2   6.362E+01    4.33E+01   0.0519 NONE                  
   21       43        25     3   5.217E+01    4.48E+01   0.5099 PTI796C               
   42T    28        11     3   5.667E+01    3.03E+01   0.7076 NONE                  
   43       15       14     3   4.863E+01    5.62E+01   0.2119 MBTRFTP               
   86T      9         8     3   5.235E+01    1.70E+01   0.7088 NONE                  
   87T      6         6     2   4.368E+01    5.90E+01   0.0000 NONE                  
   11       38       31     3   4.571E+01    2.69E+01   0.4654 MBBSLRFTC             
   22T     13       11     3   4.757E+01    1.67E+01   0.8518 NONE                  
   23T     25       20     3   4.468E+01    1.54E+01   0.4163 PMI732                
    3      118       89     3   4.424E+01    5.61E+01   0.2064 PPC741B               
    6        68       55     3   4.150E+01    3.64E+01   0.2924 MFLSpdAPer            
   12        32      22     3   4.442E+01    3.68E+01   0.3933 PZI701St17            
   24T     13       13     3   4.435E+01    3.09E+01   0.6145 ResiRatCL             
   25T     19        9     3   4.452E+01    4.04E+01   0.3075 NONE                  
   13       36       33     3   3.956E+01    2.51E+01   0.3754 BnkSpdBSL             
   26T       8        7     2   3.817E+01    0.00E+00   1.0000 NONE                  
   27       28       26     3   3.993E+01    2.34E+01   0.5071 PKI700SFOY            
   54T       9        8     3   3.423E+01    3.82E+00   0.5899 NONE                  
   55       19       18     3   4.246E+01    2.37E+01   0.4679 PKI700SFOY            
  110T    11       11     3   4.496E+01    1.96E+01   0.6321 NONE                  
  111T      8        7     2   3.853E+01    0.00E+00   1.0000 NONE                  
    7        50       34     3   4.866E+01    5.75E+01   0.2351 MBWoFCV               
   14T     17       13     3   5.092E+01    4.69E+01   0.2216 Dr1OutMois            
   15T     33       21     3   4.726E+01    3.39E+01   0.6233 PTI796D               
   
Node 1: Intermediate node 
 A case goes into Node 2 if PKI700AC1T <= 1.6500000E+01 
 PKI700AC1T mean =   16.4800000000000      
 ---------------------------- 
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Node 2: Intermediate node 
 A case goes into Node 4 if MTCLMoiLev <= 4.8469572E+00 
 MTCLMoiLev mean =   4.99087761439640      
 ---------------------------- 
 Node 4: Intermediate node 
 A case goes into Node 8 if PPI700A <= 9.3250000E+02 
 PPI700A mean =   1800.72916666667      
 ---------------------------- 
 Node 8: Intermediate node 
 A case goes into Node 16 if MD5OutTem <= 2.4725000E+02 
 MD5OutTem mean =   251.375000000000      
 ---------------------------- 
 Node 16: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient      t-stat        
 Constant        4.2906E+01    14.27 
 ---------------------------- 
 Node 17: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient      t-stat   Min            Mean            Max 
 Constant        5.1340E+01    5.19 
 BnkSpdBCL  -9.9614E-01    -2.17   1.9000E+01     4.2692E+01     4.9000E+01 
 DyBiLBoCL   5.6489E-01      1.79     3.9000E+01     6.9577E+01     8.0000E+01 
 ---------------------------- 
 Node 9: Terminal node 
 Coefficients of least squares regression function: 
 Regressor     Coefficient      t-stat   Min            Mean            Max 
 Constant        7.6142E+01     9.98 
 DryWeBin2    -7.2477E-01     -2.67    1.1000E+01     2.4143E+01     2.8000E+01 
 DryWeBin4    -8.2400E-01     -3.91    1.2000E+01     2.2464E+01     2.7000E+01 
 ---------------------------- 
 Node 5: Intermediate node 
 A case goes into Node 10 if MDBBSLLev <= 6.2500000E+01 
 MDBBSLLev mean =   55.5555555555556      
 ---------------------------- 
 Node 10: Intermediate node 
 A case goes into Node 20 if MBBSLSPFB <= 2.5924136E+04 
 MBBSLSPFB mean =   33217.3470691563      
 ---------------------------- 
 Node 20: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat        
 Constant        6.3662E+01   25.58 
 ---------------------------- 
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Node 21: Intermediate node 
 A case goes into Node 42 if PTI796C <= 2.2305000E+02 
 PTI796C mean =   221.751996704000      
 ---------------------------- 
Node 42: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat    Min           Mean            Max 
 Constant        7.3835E+01    15.32 
 BnkSpdTCL    -2.8238E+00    -2.99   1.6000E+01    3.3500E+01    4.7000E+01 
 BnkSpdTSL    1.5658E+00     2.50     2.3000E+01    4.9455E+01    6.9000E+01 
 ---------------------------- 
 Node 43: Intermediate node 
 A case goes into Node 86 if MBTRFTP <= 5.4899058E+03 
 MBTRFTP mean =   5293.54849678571      
 ---------------------------- 
 Node 86: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat    Min            Mean            Max 
 Constant       -5.6765E+00   -0.09 
 BnkSpdBCL   -8.4508E-01    -0.70    4.1000E+01     4.3250E+01     4.5000E+01 
 BnkSpdBSL    1.3921E+00    3.40    6.2000E+01     6.7938E+01     7.5000E+01 
 ---------------------------- 
 Node 87: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat        
 Constant        4.3682E+01     17.07 
 ---------------------------- 
 Node 11: Intermediate node 
 A case goes into Node 22 if MBBSLRFTC <= 6.7225726E+02 
 MBBSLRFTC mean =   1783.75080588774      
 ---------------------------- 
 Node 22: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient     t-stat   Min           Mean            Max 
 Constant        4.4245E+01    11.19 
 BnkSpdBCL   -1.8727E+01   -6.78     0.0000E+00     3.9273E+01     4.7000E+01 
 BnkSpdTCL   1.8833E+01    6.78     0.0000E+00     3.9227E+01     4.7000E+01 
 ---------------------------- 
 Node 23: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient     t-stat  Min            Mean            Max 
 Constant        7.1426E+01    4.10 
 BnkSpdBCL   -9.5509E-01    -2.66    3.8000E+01    4.3250E+01    4.7000E+01 
 Dry2Out        5.9232E-02     2.10    1.2200E+02    2.4585E+02    2.8300E+02 
 ---------------------------- 
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 Node 3: Intermediate node 
 A case goes into Node 6 if PPC741B <= 9.7000000E+01 
 PPC741B mean =   51.9325842696629      
 ---------------------------- 
 Node 6: Intermediate node 
 A case goes into Node 12 if MFLSpdAPer <= 9.7818043E+01 
 MFLSpdAPer mean =   88.3700883374545      
 ---------------------------- 
 Node 12: Intermediate node 
 A case goes into Node 24 if PZI701St17 <= 3.6995000E+03 
 PZI701St17 mean =   3699.36363636364      
 ---------------------------- 
Node 24: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient   t-stat   Min            Mean            Max 
 Constant        6.5949E+01     9.68 
 BnkSpdTSL    -5.5024E-01    -3.93     2.7000E+01    5.6308E+01    7.1000E+01 
 DyBiLBoTSL 3.0933E-01      2.76     0.0000E+00    3.0346E+01    7.0000E+01 
 ---------------------------- 
 Node 25: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat    Min            Mean            Max 
 Constant        4.9459E+01   7.77 
 BnkSpdBSL    1.5376E+00    1.19     1.4000E+01     4.8333E+01     6.5000E+01 
 BnkSpdTCL   -2.4016E+00   -1.29     1.1000E+01     3.3000E+01     4.6000E+01 
 ---------------------------- 
 Node 13: Intermediate node 
 A case goes into Node 26 if BnkSpdBSL <= 6.6500000E+01 
 BnkSpdBSL mean =   68.5454545454545      
 ---------------------------- 
 Node 26: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat        
 Constant        3.8167E+01    26.81 
 ---------------------------- 
 Node 27: Intermediate node 
 A case goes into Node 54 if PKI700SFOY <= 1.6500000E+01 
 PKI700SFOY mean =   17.6153846153846      
 ---------------------------- 
 Node 54: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat   Min            Mean            Max 
 Constant        9.0247E+01    4.32 
 BnkSpdBCL    -2.6161E-01    -0.98     4.3000E+01     4.5750E+01     5.0000E+01 
 BnkSpdBSL    -6.1979E-01    -2.24     6.7000E+01     7.1062E+01     7.6000E+01 
 ---------------------------- 
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 Node 55: Intermediate node 
 A case goes into Node 110 if PKI700SFOY <= 1.8500000E+01 
 PKI700SFOY mean =   18.5000000000000      
 ---------------------------- 
 Node 110: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient      t-stat    Min            Mean            Max 
 Constant        1.8288E+02    3.50 
 BnkSpdBSL     -2.6262E+00  -3.49     6.7000E+01     6.9000E+01     7.2000E+01 
 DyBiLBoBSL  8.3554E-01     1.95     4.7000E+01     5.1818E+01     5.7000E+01 
 ---------------------------- 
Node 111: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient     t-stat        
 Constant        3.8531E+01    33.20 
 ---------------------------- 
 Node 7: Intermediate node 
 A case goes into Node 14 if MBWoFCV <= 3.1500000E+01 
 MBWoFCV mean =   34.8676470588235      
 ---------------------------- 
 Node 14: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient      t-stat  Min            Mean            Max 
 Constant        3.3700E+01   3.20 
 DyBiLBoBSL  3.1929E-02      0.38     0.0000E+00     3.2462E+01     8.2000E+01 
 DyBiLBoCL   2.7262E-01      1.53     3.4000E+01     5.9346E+01     8.0000E+01 
 ---------------------------- 
 Node 15: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat   Min            Mean            Max 
 Constant        1.4491E+02     7.71 
 BnkSpdTCL   -1.3599E+00    -3.28    3.3000E+01     4.2476E+01     4.7000E+01 
 Dry3Out        -1.6252E-01     -3.56    1.2700E+02    2.4540E+02     2.7450E+02 
 ---------------------------- 
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ILLUSTRATION 4B 
OSB Parallel EI 7/16” RS, n=100: Third-order RT Model No Prune 

 
Regression tree (21 Total Nodes, 11 Terminal Nodes): 
  Node 1: PMI747 <=  2.37000E+03 
    Node 2: Flk2StoSpd <=    3.50000 
      Node 4: WeBi5Tot24 <=  1.39800E+03 
        Node 8: MBTRFTP <=  4.91516E+03 
          Node 16: ParlEI-mean =  5.70204E+04 
        Node 8: MBTRFTP >  4.91516E+03 
          Node 17: ParlEI-mean =  5.80785E+04 
      Node 4: WeBi5Tot24 >  1.39800E+03 
        Node 9: ParlEI-mean =  6.08591E+04 
    Node 2: Flk2StoSpd >    3.50000 
      Node 5: Flk3StoSpd <=    1.50000 
        Node 10: ParlEI-mean =  5.92819E+04 
      Node 5: Flk3StoSpd >    1.50000 
        Node 11: ParlEI-mean =  6.30303E+04 
  Node 1: PMI747 >  2.37000E+03 
    Node 3: MSTCLLev <=   54.50000 
      Node 6: PPI740 <=   87.05000 
        Node 12: PTI793 <=  1.64500E+02 
          Node 24: ParlEI-mean =  5.76362E+04 
        Node 12: PTI793 >  1.64500E+02 
          Node 25: ParlEI-mean =  5.87825E+04 
      Node 6: PPI740 >   87.05000 
        Node 13: PTI796A <=  1.67550E+02 
          Node 26: ParlEI-mean =  5.97514E+04 
        Node 13: PTI796A >  1.67550E+02 
          Node 27: ParlEI-mean =  6.01949E+04 
    Node 3: MSTCLLev >   54.50000 
      Node 7: MBBSLWFCV <=   48.50000 
        Node 14: ParlEI-mean =  5.77287E+04 
      Node 7: MBBSLWFCV >   48.50000 
        Node 15: ParlEI-mean =  5.68532E+04 
  
Node   No. Cases   Mat.    Node       Node      Node  Split       
  label  cases   fit   rank    D-mean       MSE       R^2   variable    
    1       194     101     4   5.898E+04    1.17E+07   0.1608 PMI747                 
    2        95        49     4   5.950E+04    1.14E+07   0.3688 Flk2StoSpd             
    4        68        31     4   5.853E+04    8.15E+06   0.4092 WeBi5Tot24             
    8        43        21     4  5.742E+04    2.91E+06   0.7504 MBTRFTP                
   16T     17        13    4   5.702E+04    2.10E+06   0.8496 NONE                      
   17T     26          8     4   5.808E+04    8.22E+05   0.9511 NONE                   
    9T      25        10     4   6.086E+04    3.38E+06   0.7850 NONE                   
    5        27        18     4   6.116E+04    1.22E+07   0.5244 Flk3StoSpd             
   10T     10          9     4   5.928E+04    9.91E+05   0.9749 NONE                   
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   11T     17          9     4   6.303E+04    2.12E+06   0.8924 NONE                   
    3        99        52     4   5.849E+04    8.99E+06   0.1695 MSTCLLev               
    6        70        36     4   5.902E+04    6.69E+06   0.3186 PPI740                   
   12         53      19     4  5.818E+04    4.18E+06   0.6255 PTI793                 
   24T      38      10     4   5.764E+04    1.66E+06   0.9076 NONE                   
   25T      15        9     4   5.878E+04    8.48E+05   0.9202 NONE                   
   13         17     17     4   5.996E+04    .06E+06   0.6636 PTI796A                   
   26T        9       9     4   5.975E+04    5.48E+05   0.9684 NONE                   
   27T        8       8     4   6.019E+04    5.55E+05   0.9280 NONE                   
    7         29      16     4   5.729E+04    5.45E+06   0.6206 MBBSLWFCV              
   14T      15       8     4   5.773E+04    1.78E+06   0.9491 NONE                   
   15T      14       8     4   5.685E+04    4.81E+05   0.9347 NONE                   
     
 Node 1: Intermediate node 
 A case goes into Node 2 if PMI747 <= 2.3700000E+03 
 PMI747 mean =   2141.93069306931      
 ---------------------------- 
 Node 2: Intermediate node 
 A case goes into Node 4 if Flk2StoSpd <= 3.5000000E+00 
 Flk2StoSpd mean =   2.71428571428571      
 ---------------------------- 
 Node 4: Intermediate node 
 A case goes into Node 8 if WeBi5Tot24 <= 1.3980000E+03 
 WeBi5Tot24 mean =   1091.41935483871      
 ---------------------------- 
 Node 8: Intermediate node 
 A case goes into Node 16 if MBTRFTP <= 4.9151611E+03 
 MBTRFTP mean =   4567.32204978095      
 ---------------------------- 
 Node 16: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient    t-stat     Min            Mean            Max 
 Constant        4.2123E+04     14.14 
 Dry1In          1.6849E+02     4.41     8.1000E+01     6.6131E+02     1.1490E+03 
 Dry1In^2       -2.9544E-01     -3.93 
 Dry1In^3        1.3999E-04       3.60 
 Lower and upper truncation bounds =      5.2122E+04                  6.4638E+04 
 ---------------------------- 
 Node 17: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat   Min            Mean            Max 
 Constant       -1.9819E+06   -7.23 
 Dry5Out         2.6159E+04     7.37     1.8500E+02     2.4794E+02     2.8600E+02 
 Dry5Out^2     -1.0983E+02    -7.29 
 Dry5Out^3     1.5137E-01       7.19 
 Lower and upper truncation bounds =      5.2842E+04                  6.2945E+04 
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 Node 9: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat   Min            Mean            Max 
 Constant       -1.9186E+06    -4.06 
 MBBSLSP       1.4103E+04     4.13     3.4500E+02     4.1355E+02     5.0150E+02 
 MBBSLSP^2   -3.3151E+01    -4.06 
 MBBSLSP^3   2.5725E-02       3.99 
 Lower and upper truncation bounds =      5.5501E+04                  6.7853E+04 
 ---------------------------- 
 Node 5: Intermediate node 
 A case goes into Node 10 if Flk3StoSpd <= 1.5000000E+00 
 Flk3StoSpd mean =   1.66666666666667      
 ---------------------------- 
 Node 10: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient      t-stat    Min            Mean           Max 
 Constant        -1.8984E+07   -5.52 
 MSBSLOFDSP   6.3933E+06     5.59     8.2360E+00     8.7784E+00     1.0009E+01 
 MSBSLOFDSP^2  -7.1407E+05    -5.65 
 MSBSLOFDSP^3  2.6529E+04     5.71 
 Lower and upper truncation bounds =      5.3487E+04                  7.3270E+04 
 ---------------------------- 
 Node 11: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant        -2.3549E+06    -4.42 
 MTCLMoiLev      1.3712E+06     4.62     4.5484E+00    5.2418E+00     6.4819E+00 
 MTCLMoiLev^2    -2.5710E+05    -4.72 
 MTCLMoiLev^3  1.5930E+04     4.81 
 Lower and upper truncation bounds =      5.7786E+04                  7.0383E+04 
 ---------------------------- 
 Node 3: Intermediate node 
 A case goes into Node 6 if MSTCLLev <= 5.4500000E+01 
 MSTCLLev mean =   52.9807692307692      
 ---------------------------- 
 Node 6: Intermediate node 
 A case goes into Node 12 if PPI740 <= 8.7050000E+01 
 PPI740 mean =   86.8166666666666      
 ---------------------------- 
 Node 12: Intermediate node 
 A case goes into Node 24 if PTI793 <= 1.6450000E+02 
 PTI793 mean =   163.315789473684      
 ---------------------------- 
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Node 24: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient      t-stat   Min            Mean            Max 
 Constant         1.0076E+07     7.99 
 MFLCorWegt     -1.0251E+06    -7.92    1.8936E+01     1.9322E+01    2.0027E+01 
 MFLCorWegt^2     2.6211E+04     7.90 
 Lower and upper truncation bounds =      5.3016E+04                  6.5936E+04 
 ---------------------------- 
 Node 25: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         8.7677E+04   16.66 
 MF2PasCont     -2.0020E+02    -5.51     1.9950E+02     4.6861E+02     9.3200E+02 
 MF2PasCont^2     3.7675E-01       5.26 
 MF2PasCont^3  -2.0503E-04     -4.90 
 Lower and upper truncation bounds =      5.4595E+04                  6.3625E+04 
 ---------------------------- 
 Node 13: Intermediate node 
 A case goes into Node 26 if PTI796A <= 1.6755000E+02 
 PTI796A mean =   167.088232800000      
 ---------------------------- 
 Node 26: Terminal node 
 Coefficients of least squares regression function: 
 Regressor      Coefficient       t-stat   Min            Mean            Max 
 Constant         2.6157E+06     7.63 
 ResiRatTSL      -1.7321E+04    -7.39    3.7227E+02     4.1646E+02    5.2142E+02 
 ResiRatTSL^2     3.8729E+01     7.30 
 ResiRatTSL^3  -2.8553E-02     -7.19 
 Lower and upper truncation bounds =      5.5206E+04                  6.6791E+04 
 ---------------------------- 
 Node 27: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         6.0864E+04    126.43 
 WaxRatBSL      -4.0478E+01    -5.46   6.6952E+00   4.0826E+02    1.0975E+03 
 WaxRatBSL^2     1.2619E-01        6.43 
 WaxRatBSL^3    -8.1984E-05     -6.68 
 Lower and upper truncation bounds =      5.5841E+04                  6.4745E+04 
 ---------------------------- 
 Node 7: Intermediate node 
 A case goes into Node 14 if MBBSLWFCV <= 4.8500000E+01 
 MBBSLWFCV mean =   50.1875000000000      
 ---------------------------- 
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Node 14: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant         5.7945E+04   43.43 
 MBWoFCV         7.9232E+03    4.07     0.0000E+00     2.8375E+01     3.6000E+01 
 MBWoFCV^2      -5.4702E+02    -4.41 
 MBWoFCV^3       9.2189E+00     4.71 
 Lower and upper truncation bounds =      5.1375E+04                  6.6557E+04 
 ---------------------------- 
 Node 15: Terminal node 
 Coefficients of least squares regression function: 
 Regressor       Coefficient       t-stat   Min            Mean            Max 
 Constant        -3.7609E+07    -6.56 
 DryWeBin2       4.4140E+06     6.53     2.4000E+01     2.5375E+01     2.7000E+01 
 DryWeBin2^2    -1.7224E+05    -6.49 
 DryWeBin2^3     2.2381E+03     6.45 
 Lower and upper truncation bounds =      5.3685E+04                  6.0493E+04 
 ---------------------------- 
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APPENDIX C 
GUIDE Decision Tree Results for All Models Investigated 
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Table 1c.  GUIDE decision tree results with no pruning for the IB of 0.500” MDF. 
 

RT algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP 
R2 Tree 
Model 

 Training Validation       
No Pruning:         

Piecewise simple linear 100 20 13 7 9.9% 6.84 26.38 0.78 
Piecewise simple linear 175 35 19 10 10.5% 6.91 26.58 0.78 

         
Best third-order model 100 20 25 13 9.9% 11.87 12.54 0.96 
Best third-order model 175 35 43 22 10.5% 2.92 23.74 0.96 

         
Mixed stepwise 100 20 13 7 9.9% 13.81 16.85 0.78 
Mixed stepwise 175 35 39 20 10.5% 12.82 13.63 0.26 

         
Stepwise -all possible subsets 100 20 25 13 9.9% 8.10 31.93 0.69 
Stepwise -all possible subsets 175 35 45 23 10.5% 9.12 16.34 0.62 

 
 

Second-order model 
(shorter record length  

from Chapter IV)* 

 
60 

 
13 

 
15 

 
8 

 
8.5% 

 
2.16 

 
15.74 

 
0.96 

*Models highlighted in blue are discussed in chapter (note quantile regression models are not listed). 
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Table 2c.  GUIDE decision tree results with pruning by v-fold cross-validation for the IB of 0.500” MDF. 
 

RT Algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP
R2 Tree 
Model 

 Training Validation       
Pruning by v-fold  
cross-validation 

        

Piecewise simple linear 100 20 3 2 9.9% 11.19 24.86 0.40 
Piecewise simple linear 175 35 3 2 10.5% 11.51 12.40 0.41 

         
Best third-order model 100 20 1 1 9.9% 11.57 14.47 0.33 
Best third-order model 175 35 1 1 10.5% 12.12 12.63 0.33 

         
Mixed stepwise 100 20 7 4 9.9% 11.69 23.10 0.64 
Mixed stepwise 175 35 1 1 10.5% 7.89 16.26 0.72 

         

Stepwise -all possible subsets 100 20 9 5 9.9% 11.69 23.10 0.61 
Stepwise -all possible subsets 175 35 5 3 10.5% 10.94 19.12 0.46 

 
Second-order model 

(shorter record length  
from Chapter IV) 

 
60 

 
13 

 
3 

 
2 

 
8.5% 

 
8.01 

 
13.08 

 
0.50 
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Table 3c.  GUIDE decision tree results with no pruning for the IB of 0.625” MDF. 
 

RT Algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP 
R2 Tree 
Model 

 Training Validation       
No Pruning:         

Piecewise simple linear 100 20 15 8 9.7% 4.88 15.21 0.87 
Piecewise simple linear 200 40 27 14 9.5% 5.64 20.94 0.82 
Piecewise simple linear 300 60 43 22 9.9% 5.53 17.95 0.83 
Piecewise simple linear 400 80 151 76 10.0% 3.00 26.60 0.95 

        

Best third-order model 100 20 25 13 9.7% 1.76 19.89 0.98 
Best third-order model 200 40 47 24 9.5% 3.90 24.28 0.94 
Best third-order model 300 60 77 37 9.9% 2.52 20.32 0.97 
Best third-order model 400 80 77 39 10.0% 5.06 20.80 0.87 

         

Mixed stepwise 100 20 19 10 9.7% 13.00 10.94 0.07 
Mixed stepwise 200 40 35 18 9.5% 12.57 13.93 0.10 
Mixed stepwise 300 60 51 26 9.9% 12.17 15.49 0.20 
Mixed stepwise 400 80 57 29 10.0% 12.49 14.59 0.19 

         

Stepwise -all possible subsets 100 20 27 14 9.7% 9.22 11.20 0.48 
Stepwise -all possible subsets 200 40 51 26 9.5% 10.92 18.72 0.33 
Stepwise -all possible subsets 300 60 75 37 9.9% 10.25 19.88 0.43 
Stepwise -all possible subsets 400 80 73 37 10.0% 7.81 21.96 0.68 

 
Second-order model 

(shorter record length  
from Chapter IV) 

 
62 

 
13 

 
17 

 
9 

 
11.1% 

 
2.36 

 
18.31 

 
0.98 
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Table 4c.  GUIDE results with pruning by v-fold cross-validation for the IB of 0.625” MDF. 
 

RT Algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP
R2 Tree 
Model 

 Training Validation       
Pruning by v-fold  
cross-validation 

        

Piecewise simple linear 100 20 5 3 9.7% 8.26 13.44 0.62 
Piecewise simple linear 200 40 3 2 9.5% 11.16 11.44 0.29 
Piecewise simple linear 300 60 3 2 9.9% 11.50 13.59 0.28 

Piecewise simple linear 400 80 9 5 10.0% 11.33 18.08 0.34 
         

Best third-order model 100 20 1 1 9.7% 11.47 22.84 0.28 
Best third-order model 200 40 3 2 9.5% 11.06 17.15 0.32 
Best third-order model 300 60 3 2 9.9% 13.11 13.53 0.27 
Best third-order model 400 80 7 4 10.0% 11.35 15.68 0.33 

         

Mixed stepwise 100 20 1 1 9.7% 9.42 14.84 0.51 
Mixed stepwise 200 40 1 1 9.5% 8.33 17.10 0.61 
Mixed stepwise 300 60 3 2 9.9% 7.82 18.51 0.67 
Mixed stepwise 400 80 3 2 10.0% 7.88 23.66 0.61 

         

Stepwise - all possible subsets 100 20 19 10 9.7% 9.71 11.16 0.67 
Stepwise - all possible subsets 200 40 2 1 9.5% 12.10 13.13 0.18 
Stepwise - all possible subsets 300 60 2 1 9.9% 12.31 13.42 0.18 
Stepwise - all possible subsets 400 80 7 4 10.0% 11.52 20.39 0.36 

 
Second-order model 

(shorter record length  
from Chapter IV) 

 
62 

 
13 

 
3 

 
2 

 
11.1% 

 
9.55 

 
11.29 

 
0.60 
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Table 5c.  GUIDE decision tree results with no pruning for the IB of 0.750”MDF.  
 

RT Algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP
R2 Tree 
Model 

 Training Validation       
No Pruning:         

Piecewise simple linear 100 20 35 18 9.7% 3.25 23.35 0.94 
Piecewise simple linear 200 40 75 38 10.6% 2.97 20.03 0.96 

         
Best third-order model 100 20 19 10 9.7% 3.34 23.98 0.79 
Best third-order model 200 40 23 12 10.6% 3.50 24.33 0.94 

         
Mixed stepwise 100 20 13 7 9.7% 13.55 14.76 0.16 
Mixed stepwise 200 40 31 16 10.6% 14.38 18.57 0.97 

         
Stepwise - all possible subsets  100 20 27 14 9.7% 12.29 22.44 0.17 
Stepwise - all possible subsets 200 40 47 24 10.6% 11.52 13.16 0.46 

 
Second-order model 

(shorter record length  
from Chapter IV) 

 
70 

 
14 

 
23 

 
12 

 
12.1% 

 
2.01 

 
30.10 

 
0.98 
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Table 6c.  GUIDE decision tree results with pruning by v-fold cross-validation for the IB of 0.750” MDF. 
 

RT Algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP
R2 Tree 
Model 

 Training Validation       
Pruning by v-fold  
cross-validation 

        

Piecewise simple linear 100 20 1 1 9.7% 12.85 14.43 0.10 
Piecewise simple linear 200 40 1 1 10.6% 14.15 15.75 0.07 

         
Best third-order model 100 20 1 1 9.7% 12.36 11.58 0.15 
Best third-order model 200 40 1 1 10.6% 14.00 17.88 0.10 

         
Mixed stepwise 100 20 5 3 9.7% 12.86 13.69 0.10 
Mixed stepwise 200 40 7 4 10.6% 13.44 18.80 0.17 

         
Stepwise - all possible subsets 100 20 1 1 9.7% 12.54 16.52 0.15 
Stepwise - all possible subsets 200 40 1 1 10.6% 14.14 14.72 0.13 

 
Second-order model 

(shorter record length  
from Chapter IV) 

 
70 

 
14 

 
1 

 
1 

 
12.1% 

 
14.69 

 
15.87 

 
0.20 
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Table 7c.  GUIDE decision tree results with no pruning for the IB of OSB. 
 

RT Algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP
R2 Tree 
Model 

 Training Validation       
No Pruning:         

Piecewise simple linear 100 20 33 17 20.2% 2.18 15.01 0.95 
Piecewise simple linear 200 40 69 35 19.9% 2.08 13.04 0.95 
Piecewise simple linear 300 60 100 51 19.6% 2.07 14.61 0.95 

         
Best third-order model 100 20 23 12 20.2% 4.27 7.14 0.96 
Best third-order model 200 40 49 25 19.9% 4.27 10.30 0.94 
Best third-order model 300 60 71 36 19.6% 4.67 15.05 0.95 

         
Mixed stepwise 100 20 11 6 20.2% 7.70 9.28 0.36 
Mixed stepwise 200 40 21 11 19.9% 7.65 8.67 0.28 
Mixed stepwise 300 60 41 21 19.6% 7.79 11.30 0.25 

         
Stepwise - all possible subsets  100 20 23 12 20.2% 5.79 9.24 0.64 
Stepwise - all possible subsets 200 40 33 17 19.9% 7.03 7.44 0.73 
Stepwise - all possible subsets  300 60 39 20 19.6% 5.07 13.35 0.69 

 
Second-order model 

(shorter record length  
from Chapter IV) 

 
59 

 
12 

 
15 

 
8 

 
19.6% 

 
2.30 

 
11.01 

 
0.94 
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Table 8c.  GUIDE decision tree results with pruning by v-fold cross-validation for the IB of OSB. 
 

RT Algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP
R2 Tree 
Model 

 Training Validation       
Pruning by v-fold  
cross-validation 

        

Piecewise simple linear 100 20 2 1 20.2% 8.48 8.47 0.22 
Piecewise simple linear 200 40 3 2 19.9% 7.53 8.41 0.31 
Piecewise simple linear 300 60 2 1 19.6% 8.28 9.15 0.13 

         
Best third-order model 100 20 2 1 20.2% 8.14 7.41 0.28 
Best third-order model 200 40 2 1 19.9% 7.86 7.37 0.25 
Best third-order Model 300 60 2 1 19.6% 8.43 9.46 0.16 

         
Mixed stepwise 100 20 3 2 20.2% 5.42 8.35 0.68 
Mixed stepwise 200 40 2 1 19.9% 7.03 7.44 0.40 
Mixed stepwise 300 60 3 2 19.6% 7.28 9.36 0.35 

         
Stepwise - all possible subsets  100 20 3 2 20.2% 6.68 9.01 0.52 
Stepwise - all possible subsets 200 40 2 1 19.9% 7.86 7.37 0.25 
Stepwise - all possible subsets  300 60 2 1 19.6% 8.15 9.80 0.18 

 
Second-order model 

(shorter record length  
from Chapter IV) 

 
59 

 
12 

 
1 

 
1 

 
19.6% 

 
7.88 

 
9.17 

 
0.26 
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Table 9c.  GUIDE decision tree results with no pruning for the Parallel EI of OSB. 
 

RT Algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP
R2 Tree 
Model 

 Training Validation       
No Pruning:         

Piecewise simple linear 100 20 37 19 20.2% 3040 5583 0.96 
Piecewise simple linear 200 40 65 33 19.9% 1476 5852 0.84 
Piecewise simple linear 300 60 97 49 19.6% 1360 6679 0.91 

         
Best third-order model 100 20 21 11 20.2% 920 4361 0.94 
Best third-order model 200 40 45 23 19.9% 946 5337 0.94 
Best third-order model 300 60 71 36 19.6% 1103 6128 0.94 

         
Mixed stepwise 100 20 9 5 20.2% 3565 3888 0.05 
Mixed stepwise 200 40 25 13 19.9% 3566 4207 0.08 
Mixed stepwise 300 60 41 21 19.6% 4314 4097 0.14 

         
Stepwise - all possible subsets  100 20 25 13 20.2% 2059 4670 0.68 
Stepwise - all possible subsets 200 40 53 27 19.9% 2798 4853 0.43 

Stepwise - all possible subsets  300 60 75 38 19.6% 4376 8066 0.11 

 
Second-order model 

(shorter record length  
from Chapter IV) 

 
58 

 
12 

 
15 

 
8 

 
8.5% 

 
692 

 
2479 

 
0.96 
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Table 10c.  GUIDE decision tree results with pruning by v-fold cross-validation for the Parallel EI of OSB. 
 

RT Algorithm 
 

n 
Total 

Nodes 
Terminal 

nodes 
 

CV 
 

RMSE 
 

RMSEP
R2 Tree 
Model 

 Training Validation       
Pruning by v-fold  
cross-validation 

        

Piecewise simple linear 100 20 2 1 6.24% 3528 3994 0.07 
Piecewise simple linear 200 40 2 1 8.25% 3615 4185 0.05 
Piecewise simple linear 300 60 2 1 7.74% 4414 3778 0.09 

         
Best third-order model 100 20 2 1 6.24% 3356 3825 0.16 
Best third-order model 200 40 2 1 8.25% 3615 4185 0.07 
Best third-order model 300 60 2 1 7.74% 4382 3837 0.11 

         
Mixed stepwise 100 20 5 3 6.24% 3040 5583 0.31 
Mixed stepwise 200 40 21 11 8.25% 3560 4165 0.07 
Mixed stepwise 300 60 29 15 7.74% 4388 4001 0.11 

         
Stepwise - all possible subsets 100 20 2 1 6.24% 3475 4150 0.10 
Stepwise - all possible subsets 200 40 2 1 8.25% 3547 4231 0.09 
Stepwise - all possible subsets  300 60 5 3 7.74% 2990 5941 0.29 

 
Second-order model 

(shorter record length  
from Chapter IV) 

 
58 

 
12 

 
1 

 
1 

 
8.5% 

 
3255 

 
5988 

 
0.10 
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APPENDIX D 
Variable Description 

 
Medium Density Fiberboard 
 Industrial Tag Name GUIDE name 

1 Validate Validate 

2 idnum 625 idnum 

3 shiftcode shiftcode 

4 tech tech 

5 avgib avgib 

6 aChipExitAugerSpeed_SI aChipAugSp 

7 aChipsRawWeight_WT aChipWght 

8 aChipStorageSiloLevel_LI aChipSloLv 

9 aCoreMeteringBinLevel_LI aCoreBinLv 

10 aFaceMeteringBinLevel_LI aFaceBinLv 

11 aRMSChipsPercent aChipPrct 

12 aShavingsExitAugerSpeed_SI aShvAugSpd 

13 aShavingsRawWeight_WI aShvRawWgt 

14 bDry_Fibre_Rate bDryFbrRt 

15 bFaceBlowValvePostion_ZI bFaceBlwPs 

16 bFaceFiberMoisture_Act bFacFibrMs 

17 bFaceGrindingPressure_PV bFacGrdPrs 

18 bFaceHotGasTemp_TI bFaceTemp 

19 bFaceMeteringBin_Spd bFaceBnSpd 

20 bFacePlatePosition_ZI bFacePltPs 

21 bFaceResinFlow_PV bFaceResn 

22 bFaceResinSolids bFaceResnS 

23 bFaceResinToWood_Act bFaceResnW 

24 bFaceResinToWood_SP bFacResnWS 

25 bFaceScavToWood_Act bFacScvW 

26 bFaceScavToWood_SP bFacScvWS 

27 bFaceWaterFlow_PV bFacH20Flw 

28 bFaceWaxDryFiberWeight_WI bFacWxWgt 

29 bFaceWaxFlow_PV bFacWxFlw 

30 bMainMotorPower_JI bMotorPwr 

31 bSwingDigesterPressure_PV bSwgDigPrs 

32 cCDry_Fibre_Rate cDryFbrRt 

33 cCI0023PT cCI0023PT 

34 cCO0046PCV cCO0046 

35 cPressStartPositionControl_SP cPrsPstnCt 

36 cResinDryFiberWeight_WI cRsnFbrWgt 

37 cSwing_Seperator_Outlet_PT_two cSwgOutlet 

38 cSwingBlowValvePosition_ZI cSwBlwVlv 

39 cSwingDigesterLevel_PV cSwDgstrL 
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40 cSwingDigesterPressure_PV cSwDgsPres 

41 cSwingFiberMoisture_Act cSwFbrMst 

42 cSwingFiberWetWeight_WI cSwFibWgt 

43 cSwingGrindingPressure_PV cSwgGrndP 

44 cSwingHotGasTemp_TI cSwgTemp 

45 cSwingPlatePosition_ZI cSwPltPI 

46 cSwingResinFlow_PV cSwgRsnF 

47 cSwingResinToWood_Act cSwgRsn2Wd 

48 cSwingScavFlow_PV cSwgScvF 

49 cSwingScavToWood_Act cSwgScv2W 

50 cSwingWaterFlow_PV cSwgH20F 

51 cSwingWaterToWood_Act cSwgH20W 

52 cSwingWaxDryFiberWeight_WI cSwgWxFbrW 

53 cSwingWaxFlow_PV cSwgWxF 

54 cSwingWaxPercentSolids cSwgWxSd 

55 cSwingWaxToWood_Act cSwgWx2W 

56 cSwinResinToWood_SP cSwgRsn2W 

57 dCoreDigesterPressure_PV dCoreDgstP 

58 dCoreFiberWetWeight_WI dCoreFbrW 

59 dCoreGrindingPressure_PV dCoreGrndP 

60 dCoreGrindingSteamFlow_FI dCoreGrndS 

61 dCoreMeteringBin_Spd dCoreMtrBS 

62 dCoreMeteringScrew_Dmd dCoreMtrSr 

63 dCoreOutletTemp_PV dCoreTemp 

64 dCorePlatePosition_ZI dCorePltP 

65 dCoreResin_SP dCoreRsnS 

66 dCoreResinDryFiberWeight_WI dCoreRsnW 

67 dCoreResinFlow_PV dCoreRsnF 

68 dCoreResinToWood_Act dCoreRsn2W 

69 dCoreScavWaadRate_Act dCoreScvWR 

70 dCoreTotalWeight_Tons dCorelWgh 

71 dCoreWater_PV dCoreH20 

72 dCoreWaterToWood dCoreWtr2W 

73 dCoreWax_PV dCoreWx 

74 dCoreWaxToWood_Act dCoreWx2W 

75 dDry_Fibre_Rate dDryFbrR 

76 eAmmoniaFlow eAmmonaF 

77 eBoilerInjectionWaterFlow_FI eBoilrH20F 

78 eBoilerSteamFlow_FT eBoilrStmF 

79 eBoilerSteamPressure_PV eBoilrStmP 

80 eDesp_Field1_Kilovolts eDesp1KV 

81 eDesp_Field1_Milliamps eDespMamp 

82 eDesp_Field2_Kilovolts eDesp2KV 

83 eDesp_Field3_Kilovolts eDesp3KV 

84 eDryerMassFlow_FI eDryrFlw 
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85 eDryerSupplyPressure_PI eDryrPrs 

86 eE_Vapour_Temp eVaprTemp 

87 eEI0311AI eEI0311AI 

88 eEI0338FT eEI0338FT 

89 eEI1071FT eEI1071FT 

90 eM2236_Spd eM2236Spd 

91 eM2237_Spd eM2237Spd 

92 eM2241_Spd eM2241Spd 

93 eM2243_Spd eM2243Spd 

94 fCoreBinBottomSpeed_SI fCoreBtmSpd 

95 fCoreFiberMatMoisture_MI fCoreMatMst 

96 fCoreHumidifierTemp_PV fCoreHTmpP 

97 fCoreHumidifierTemp_TI fCoreHTmpT 

98 fCoreHumidity_PV fCoreHumid 

99 fFaceBinBottomSpeed_SI fFaceBtmSd 

100 fFaceFiberMatMoisture_MI fFaceMstM 

101 fFaceHumidifierDraft_PV fFaceHDP 

102 fFaceHumidifierTemp_PV fFaceHTP 

103 fFormerThayerWeight_PV fFormerWgt 

104 fHumidifierSupplyPressue_PV fHumidPrs 

105 fMatCoreToFaceRatio_SP fCore2Face 

106 fShaveOffElevatorLevelone_LI fShaveOff1 

107 fShaveOffElevatorLeveltwo_LI fShaveOff2 

108 fShaveOffMatThicknesstwo_LI fShavOffT2 

109 fShaveOffMatThicknessthree_LI fShavOffT3 

110 fShaveOffMatThicknessfour_LI fShavOffT4 

111 gFormingWireSpeed_SI gFrmSpd 

112 gOOPAverageBoardWeight_PV gAvgBrdWgt 

113 gPrecompBottomBeltSpeed_SI gPreBBSpd 

114 hPressCloseoneTime_PV hPrClsTime 

115 hPressClosetwoTime_PV hPrCls2Tim 

116 hPressClosethreeTime_PV hPrCls3Tim 

117 hPressClosingTime_PV hPrClsTimP 

118 hPressFinalPositionHoldTime_SP hPrFPHTime 

119 hPressFinalPositionTrip_SP hPrFPTrip 

120 hPressOverallTime_PV hPrAllTime 

121 hPressOverallTime_SP hPrAlTimeS 

122 hPressPostionTime_PV hPrPTime 

123 hPressPPHoldTime_PV hPrPPHTime 

124 hPressPPHoldTime_SP hPrPPHTimS 

125 hPressPPMoveTime_SP hPrPPMTimS 

126 hPressPrePostitionX_SP hPrPPXSP 

127 hPressSteamPressure_PI hPrStmP 

128 hPressTemp_PV hPrTempP 

129 hPressTemp_SP hPrTempS 
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130 hPressTotalCycleTime_PV hPrTCyclP 

131 gMeasurexTarget gMsrexTgt 

132 dCoreBlowLinePressure_PI dCoreBLPrs 

133 bFaceFibreBinLevel bFaceBnLvl 

134 dCoreFibreBinLevel dCoreBnLvl 

135 bFaceChipChuteLevel_PV bFaceChpLv 

136 bFaceDigesterLevel_PV bFaceDigLv 

137 bFaceDigesterPressure_PV bFaceDigPr 

138 bFaceEastFanCurrent_PV bFaceFanCr 

139 dCoreResinPressure_PI dCoreResnP 

140 bFaceGrindingSteamFlow_FI bFaceGrdSF 

141 bFaceOutletTemp_PV bFaceTempP 

142 bFacePlugFeederScrewSpeed bFacePFSS 

143 bFaceRefinerFeederScrewSpeed bFaceRFSS 

144 bFaceResinDryFiberWeight_WI bFaceResnW 

145 bFaceScavFlow_PV bFaceScvF 

146 bFaceWaterToWood_Act bFaceH202W 

147 bFaceWaxToWood_Act bFaceWx2W 

148 bFaceWestFanCurrent_PV bFaceWFCur 

149 cResinWaterTankTemp_PV cResnH20Tp 

150 cSwingChipChuteLevel_PV cSwngChpL 

151 cSwingGrindingSteamFlow_FI cSwngGSF 

152 cSwingMainMotorPower_JI cSwngMPwr 

153 cSwingMeteringBin_Spd cSwMtrBSpd 

154 cSwingOutletTemp_PV cSwOTemp 

155 cSwingPlugFeederScrewSpeed cSwPgFSSpd 

156 cSwingRefinerFeederScrewSpeed cSwRFSSpd 

157 cSwingRefinerTotalSteamFlow cSwRTSFlw 

158 dCoreBlowValvePosition_ZI dCoreBVP 

159 dCoreDustRatio_SP dCoreDRSP 

160 dCoreEastFanCurrent_PV dCoreEFCur 

161 dCoreFiberMoisture_Act dCoreMoist 

162 dCorePlugFeederScrewSpeed dCoreFSSpd 

163 dCoreRefinerFeederScrewSpeed dCoreRSSpd 

164 dCoreRefinerTotalSteamFlow dCoreRTSFw 

165 dCoreScavFlow_PV dCoreScvFP 

166 dCoreWaterToWood_Act dCoreH202W 

167 dMainMotorPower_JI dMnMtrPwr 

168 eDesp_Field2_Milliamps eDFld2Mamp 

169 eDesp_Field3_Milliamps eDFld3Mamp 

170 eDryerSupplyPressure_PV eDryrSPrs 

171 eDryESPOutletTemp_TI eDryESPTmp 

172 eE_Nox_Lbs_Hr eENoxLbsHr 

173 ePressSteamFlow_FI ePrStmFlow 

174 fFaceHumidifierTemp_TI fFaceHTemp 
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175 fFaceHumidity_PV fFaceHumid 

176 fOutsideHeadTemperature fOutHdTmp 

177 fRelativeHumidity fHumidity 

178 fShaveOffElevatorLevelthree_LI fShaveOff3 

179 fShaveOffElevatorLevelfour_LI fShaveOff4 

180 fShaveOffMatThicknessone_LI fShavOffT1 

181 gBulkDensity gBlkDensty 

182 gFiberBulkDensity_PV gFBlkDenst 

183 gMeasurexActual gMxActual 

184 gMeasurexAverage gMxAverage 

185 hPositionTime hPosTime 

186 hPressFullOpenTime_PV hPrOpnTime 

187 hPressPrePositionTime_PV hPPstnTime 

188 hPressStartPositionControl_SP hPrSCtrlSP 
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Oriented Strand Board 

 Industrial Tag Name GUIDE name 

1 TestNumber Number 

2 Weight Weight 

3 Thickness Thick 

4 Density Density 

5 ParallelEI ParlEI 

6 PerpendicularEI PerpEI 

7 ParallelMM ParlMM 

8 PerpendicularMM PerpMM 

9 WetMM WetMM 

10 IB IB 

11 ThicknessSwell Thicksweel 

12 WaterAbsorption WtAbsorpt 

13 ParallelLE ParlLE 

14 PerpendicularLE PerpLE 

15 BunkerSpeed_BCL BnkSpdBCL 

16 BunkerSpeed_BSL BnkSpdBSL 

17 BunkerSpeed_TCL BnkSpdTCL 

18 BunkerSpeed_TSL BnkSpdTSL 

19 DryBinLiveBottom_BSL DyBiLBoBSL 

20 DryBinLiveBottom_CL DyBiLBoCL 

21 DryBinLiveBottom_TSL DyBiLBoTSL 

22 Dryer1_Inlet Dry1In 

23 Dryer1_Outlet Dry1Out 

24 Dryer2_Inlet Dry2In 

25 Dryer2_Outlet Dry2Out 

26 Dryer3_Inlet Dry3In 

27 Dryer3_Outlet Dry3Out 

28 Dryer4_Inlet Dry4In 

29 Dryer4_Outlet Dry4Out 

30 Dryer5_Inlet Dry5In 

31 Dryer5_Outlet Dry5Out 

32 WetBin_5_Total_Runtime_24_Hour WeBi5Tot24 

33 DryerWetBin1 DryWeBin1 

34 DryerWetBin2 DryWeBin2 

35 DryerWetBin3 DryWeBin3 

36 DryerWetBin4 DryWeBin4 

37 DryerWetBin5 DryWeBin5 

38 Flaker1_StrokeSpeed Flk1StoSpd 

39 Flaker2_StrokeSpeed Flk2StoSpd 

40 Flaker3_StrokeSpeed Flk3StoSpd 

41 FormingLineSpeed FomLinSpd 

42 MainBlenderBSLResinFlowPIDPV MBBSLRFPV 

43 MainBlenderBSLWaxFlowPIDPV MBBSLWFPV 
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44 MainBlenderBSLResinFlowPIDCV MBBSLRFCV 

45 MainBlenderBSLResinFlowPIDDeviation MBBSLRFD 

46 MainBlenderBSLResinFlowPIDRatioFB MBBSLRFB 

47 MainBlenderBSLResinFlowPIDRatioSP NBBSLRSP 

48 MainBlenderBSLResinFlowPIDSP MBBSLSP 

49 MainBlenderBSLResinFlowTotalCurrent MBBSLRFTC 

50 MainBlenderBSLResinFlowTotalPrev MBBSLRFTP 

51 MainBlenderBSLWoodFlowPIDCV MBBSLWFCV 

52 MainBlenderBSLWoodFlowPIDManCV MBBSLMCV 

53 MainBlenderBSLWoodFlowPIDPV MBBSLPV 

54 MainBlenderBSLWoodFlowPIDSPFB MBBSLSPFB 

55 MainBlenderBSLWoodTotalCurrent MBBSLWTC 

56 MainBlenderBSLWoodTotalPrev MBBSLWTP 

57 MainBlenderCoreResinFlowPIDCV MBCRFCV 

58 MainBlenderCoreResinFlowPIDDeviation MBCRFD 

59 MainBlenderCoreResinFlowPIDPV MBCRFPV 

60 MainBlenderCoreResinFlowPIDRatioFB MBCRFRFB 

61 MainBlenderCoreResinFlowPIDRatioSP MBCRFRSP 

62 MainBlenderCoreResinFlowPIDSP MBCRFSP 

63 MainBlenderCoreResinFlowTotalCurrent MBCRFTC 

64 MainBlenderCoreResinFlowTotalPrev MBCRFTP 

65 MainBlenderCoreWoodFlowPIDCV MBCWoFCV 

66 MainBlenderCoreWoodFlowPIDManCV MBCWoFMCV 

67 MainBlenderCoreWoodFlowPIDManCVFB MBCWoFMVFB 

68 MainBlenderCoreWoodFlowPIDPV MBCWoFPV 

69 MainBlenderCoreWoodFlowPIDSP MBCWoFSP 

70 MainBlenderCoreWoodFlowPIDSPFB MBCWoFSPFB 

71 MainBlenderCoreWoodTotalCurrent MBCWoTC 

72 MainBlenderCoreWoodTotalPrev MBCWoTP 

73 MainBlenderTSLResinFlowPIDCV MBTRFCV 

74 MainBlenderTSLResinFlowPIDDeviation MBTRFDe 

75 MainBlenderTSLResinFlowPIDPV MBTRFPV 

76 MainBlenderTSLResinFlowPIDRatioFB MBTRFRFB 

77 MainBlenderTSLResinFlowPIDRatioSP MBTRFRSP 

78 MainBlenderTSLResinFlowPIDSP MBTRFSP 

79 MainBlenderTSLResinFlowTotalCurrent MBTRFTC 

80 MainBlenderTSLResinFlowTotalPrev MBTRFTP 

81 MainBlenderTSLWoodFlowPIDCV MBWoFCV 

82 MainBlenderTSLWoodFlowPIDManCV MBWoFMCV 

83 MainBlenderTSLWoodFlowPIDManCVFB MBWoFMCVFB 

84 MainBlenderTSLWoodFlowPIDPV MBWoFPV 

85 MainBlenderTSLWoodFlowPIDSPFB MBWoFSPFB 

86 MainBlenderTSLWoodTotalCurrent MBWoTC 

87 MainBlenderTSLWoodTotalPrev MBWoTP 

88 MainBSLMoistureLevel MBSLMoiLev 
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89 MainDryBinBSLLevel MDBBSLLev 

90 MainDryBinCoreLevel MDBCLev 

91 MainDryBinTSLLevel MDBTSLLev 

92 MainDryer1OutletTemp MD1OutTem 

93 MainDryer2OutletTemp MD2OutTem 

94 MainDryer3OutletTemp MD3OutTem 

95 MainDryer4OutletTemp MD4OutTem 

96 MainDryer5OutletTemp MD5OutTem 

97 MainFlaker_1_HMI_Watchdog MF1HMIWatd 

98 MainFlaker_1_Watchdog MF1Watdog 

99 MainFlaker_2_HMI_Watchdog MF2HMIWatd 

100 MainFlaker_3_HMI_Watchdog MF3HMIWatd 

101 MainFlaker_Support_HMI_Watchdog MFSHMIWat 

102 MainFlaker1FlakeTime MF1Flakt 

103 MainFlaker1PassCounter MF1PasCont 

104 MainFlaker2FlakeTime MF2Flakt 

105 MainFlaker2PassCounter MF2PasCont 

106 MainFlaker3FlakeTime MF3Flakt 

107 MainFlaker3PassCounter MF3PasCont 

108 MainFLSpeedActualFpm MFLSpdAFpm 

109 MainFLSpeedActualPercent MFLSpdAPer 

110 MainFLSpeedSPAcceptedFpm MFLSpdAcpF 

111 MainFLSpeedSPAcceptedPercent MFLSpdAcpP 

112 MainFLSpeedSPFpm MFLSpdFpm 

113 MainFormingLineCoreWeight MFLCorWegt 

114 MainFormingLineTearWeight MFLTerWegt 

115 MainFormingLineTotalWeight MFLTotWegt 

116 MainHotOil2OilTemp MHOil2OilT 

117 MainHotOilTotalFlow MHOilTotFl 

118 MainPressTemperature MPTemp 

119 MainSpreaderBCLLevel MSpBCLLev 

120 MainSpreaderBCLOFSpeedActual MSpBCLOFSA 

121 MainSpreaderBSLLevel MSBSLLev 

122 MainSpreaderBSLOFSpeedActual MSBSLOFSpA 

123 MainSpreaderCLWeightActual MSCLWegAct 

124 MainSpreaderSLWeightActual MSSLWegAct 

125 MainSpreaderTCLLevel MSTCLLev 

126 MainSpreaderTCLOFSpeedActual MSTCLOFSpA 

127 MainSpreaderTotalWeightActual MSToWegAct 

128 MainSpreaderTSLLevel MSTSLLev 

129 MainSpreaderTSLOFSpeedActual MSTSLOFSpA 

130 MainTCLMoistureLevel MTCLMoiLev 

131 MainTSLMoistureLevel MTSLMoiLev 

132 Moisture_BSL MosturBSL 

133 Moisture_CL MosturCL 
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134 Moisture_TSL MosturTSL 

135 PressClosingTime PrsClosTim 

136 PressDecompression_3 PrsDecomp3 

137 Pressi_AVG_POS PrsAVGPOS 

138 Pressi_HK700-Close3Rate PrHK700C3R 

139 Pressi_HK700-Decompress3Rate PHK700D3Ti 

140 Pressi_HK700-Decompress3Time PHK700D3Tr 

141 Pressi_HK700-FinalPositionTrip PHK700FPTr 

142 Pressi_HK700-OverallTime PHK700OvTi 

143 Pressi_HK700-PPMoveTime PHK700PPMT 

144 Pressi_HK700-PrePosn1 PHK700PP1 

145 Pressi_HK700-PrePosnX PHK700PPX 

146 Pressi_HK701-Decompress1Trip PHK71DP1Tr 

147 Pressi_HK701-Decompress2Trip PHK71DP2Tr 

148 Pressi_HK701-Decompress3Rate PHK71DP3Ti 

149 Pressi_HK701-Decompress3Time PHK71DP3Tr 

150 Pressi_HK701-FinalPositionTrip PHK71FPTri 

151 Pressi_HK701-OverallTime PHK701OvTi 

152 Pressi_HK701-PrePosn1 PHK701PPo1 

153 Pressi_HK701-PrePosnX PHK701PPX 

154 Pressi_KI700A-Close1Time PKI700AC1T 

155 Pressi_KI700C-Close2Time PKI700CC2T 

156 Pressi_KI700I-ClosingTime PKI700ICTi 

157 Pressi_KI700J-PositionTime PKI700JPTi 

158 Pressi_KI700M-OverallTime PKI700MOTi 

159 Pressi_KI700P-Decompress3Time PKI700PD3T 

160 Pressi_KI700Q-OpeningTime PKI700QOTi 

161 Pressi_KI700R-TotalCycleTime PKI700RTCT 

162 Pressi_KI700S-FullOpenTime PKI700SFOY 

163 Pressi_KI700T-ButtonTime PKI700TBTi 

164 Pressi_LI770 PLI770 

165 Pressi_LI780 PLI780 

166 Pressi_LI795 PLI795 

167 Pressi_MI731 PMI731 

168 Pressi_MI732 PMI732 

169 Pressi_MI733 PMI733 

170 Pressi_MI734 PMI734 

171 Pressi_MI735 PMI735 

172 Pressi_MI736 PMI736 

173 Pressi_MI737 PMI737 

174 Pressi_MI740 PMI740 

175 Pressi_MI741 PMI741 

176 Pressi_MI742 PMI742 

177 Pressi_MI743 PMI743 

178 Pressi_MI744 PMI744 
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179 Pressi_MI745 PMI745 

180 Pressi_MI746 PMI746 

181 Pressi_MI747 PMI747 

182 Pressi_MI748 PMI748 

183 Pressi_MI770 PMI770 

184 Pressi_MI780 PMI780 

185 Pressi_MI795 PMI795 

186 Pressi_PC741A PPC741A 

187 Pressi_PC741B PPC741B 

188 Pressi_PC741C PPC741C 

189 Pressi_PI700A PPI700A 

190 Pressi_PI700B PPI700B 

191 Pressi_PI740 PPI740 

192 Pressi_PI770 PPI770 

193 Pressi_PIC700-PV PPIC700PV 

194 Pressi_QI700 PQI700 

195 Pressi_TEMPOA_POS PTEMPAPOS 

196 Pressi_TEMPOB_POS PTEMPBPOS 

197 Pressi_TI700 PTI700 

198 Pressi_TI770 PTI770 

199 Pressi_TI793 PTI793 

200 Pressi_TI796A PTI796A 

201 Pressi_TI796B PTI796B 

202 Pressi_TI796C PTI796C 

203 Pressi_TI796D PTI796D 

204 Pressi_UY741B-Output PUY741BOut 

205 Pressi_YI741-ASectSP PYI741ASSP 

206 Pressi_YZ741C PYZ741C 

207 Pressi_YZ743C PYZ743C 

208 Pressi_YZ744A PYZ744A 

209 Pressi_YZ745B PYZ745B 

210 Pressi_YZ747B PYZ747B 

211 Pressi_YZ747C PYZ747C 

212 Pressi_ZI701 PZI701 

213 Pressi_ZI701-Step1 PZI701St1 

214 Pressi_ZI701-Step12 PZI701St12 

215 Pressi_ZI701-Step13 PZI701St13 

216 Pressi_ZI701-Step15 PZI701St15 

217 Pressi_ZI701-Step17 PZI701St17 

218 Pressi_ZI701-Step2 PZI701Ste2 

219 Pressi_ZI701-Step3 PZI701Ste3 

220 Pressi_ZI701-Step4 PZI701Ste4 

221 Pressi_ZI701-Step5 PZI701Ste5 

222 Pressi_ZI701-Step6 PZI701Ste6 

223 Pressi_ZI701-Step7 PZI701Ste7 



 285

224 Pressi_ZI701-Step9 PZI701Ste9 

225 Pressi_ZI701B PZI701B 

226 Pressi_ZI740 PZI740 

227 Pressi_ZIC700-Kp PZIC700Kp 

228 Pressi_ZIC700-PV PZIC700PV 

229 Pressi_ZIC700SP PZIC700SP 

230 Pressi_ZIC700-Vc PZIC700Vc 

231 Pressi_ZIC740SP PZIC740SP 

232 PressMainPressure PreMaiPres 

233 PressTemperature PreTempt 

234 PressTotalCycleTime PreToCyTi 

235 ResinRate_BSL ResiRatBSL 

236 ResinRate_CL ResiRatCL 

237 ResinRate_TSL ResiRatTSL 

238 WaxRate_BSL WaxRatBSL 

239 WaxRate_CL WaxRatCL 

240 WaxRate_TSL WaxRatTSL 

241 WeightScale_BSL WegScaBSL 

242 WeightScale_CORE WegScaCORE 

243 WeightScale_TSL WegScaTSL 

244 MainSpreaderBCLOFDensitySP MSBCLOFDSP 

245 MainSpreaderBSLOFDensitySP MSBSLOFDSP 

246 Dryer1OutletMoisture Dr1OutMois 

247 Dryer2OutletMoisture Dr2OutMois 

248 Dryer3OutletMoisture Dr3OutMois 

249 Dryer4OultetMoisture Dr4OutMois 

250 Dryer5OutletMoisture Dr5OutMois 

 
 
 
 
 
 
 
 
 
 



Vita 

 
 

Timothy Mark Young was born in Appleton, Wisconsin on September 6, 1956.  Tim 

graduated from Xavier High School in Appleton in May, 1974.  He attended the University 

of Wisconsin Fox Valley Extension campus for two years before transferring to the 

University of Wisconsin at Madison.  Tim received a B.S. in Forestry in December, 1979 and 

worked for one year for the U.S. Forest Service in Yaak, Montana in 1980.  He returned to 

the University of Wisconsin and received a M.S. in Forest Economics in May, 1983.   

Tim worked as a Research Associate for the University of Tennessee from 1983 to 

1993 and completed a M.S. in Statistics from the University of Tennessee in December 1993. 

He worked for Georgia-Pacific Corporation from 1994 to 1998 in South Carolina as 

Director of Continuous Improvement and returned to the University of Tennessee in 

December of 1998.  Tim was a Research Assistant Professor in the Forest Products Center 

from December 1998 to December 2003 and was promoted to Research Associate Professor 

in January 2004.  In 2007, he obtained a Doctor of Philosophy degree from the University of 

Tennessee in Natural Resources with a concentration in Statistics. 


	Parametric and Non-Parametric Regression Tree Models of the Strength Properties of Engineered Wood Panels Using Real-time Industrial Data
	Recommended Citation

	White, C.  2002.  Intelligent business strategies: real-time data warehousing heats up.  DM 
	Review Magazine (August). http://www.dmreview.com/article_sub.cfm?articleId=5570. referenced 
	SQL Stored Procedures. -- Four stored procedures were created within the GANN SQL database:
	SQL Data Transformation Services. -- Data transformation services (DTS) are used to output the “InSQLPivot” and “InSQLPivot_AV” tables into two comma separated variable (CSV) files (“InSQLPivot.csv” and “InSQLPivot_AV.csv”).  Figure 1a, outlines the layout of this data transformation process.  Data Transformation Services can be found within SQL Server Enterprise Manager.  The location of the CSV files on the SQL server is D:\DB Dump\.
	Adding a New Tag to be Stored in InSQLPivot and InSQLPivot_AV. -- New columns can be added to the “InSQLPivot” and “InSQLPivot_AV” tables to record additional snapshot and summary data process parameters.  SQL Server Enterprise Manager will not facilitate the addition of extra columns to these tables, using the design view method, because they already contain such a large number of columns.  Columns can however be added programmatically using SQL Query Analyzer.  The following script will add a new column named “tagname” to the “InSQLPivot” and “InSQLPivot_AV” tables:

