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Abstract

The forest products industry is undergoing unprecedented change from international
competition, increasing fiber costs, rising energy prices and falling product prices.
Competitive businesses have the key ability to adapt quickly to change through improved
knowledge. Among adaptations to change are better product development, improved
process efficiency and superior product quality. This dissertation is directly related to
improving the knowledge of forest products manufacturers by investigating data mining
(DM) methods that improve the ability to quantify causality of sources of variation. A
contemporary DM method related to decision theory is decision trees (DTs). DTs are
designed for heterogeneous data and are highly resistant to irrelevant regressors. The tree
structures of DT’ are also easy to interpret.

The research hypothesis of this dissertation is that there is no significant difference
in the explanatory or predictive capabilities of multiple linear regression (MLR) models,
parametric regression trees (RTs) and non-parametric quantile RTs. To test this hypothesis
1,335 statistical models are developed. Box Cox transforms of Y are considered. Models are
developed for the internal bond (IB) of medium density fiberboard (MDF) and the IB (and
Parallel EI) of oriented strand board (OSB) from automatically fused data of destructive test
data and real-time production line sensor data.

Models with good predictability of the validation data set are possible for MDF 1B
when using traditional MLR methods with short record lengths without Box Cox
transforms. Significant regressors (o0 < 0.01) for MDF MLR models are related to overall

pressing time and press pre-position time settings.



Parametric and non-parametric RT models without Box Cox transforms outperform

the predictability of MLLR models. For MDF IB, process variables related to overall pressing
time, press position times and core fiber moisture are significant (o < 0.01). RT models
with Box Cox transforms of OSB IB improve predictability for record lengths less than 100.
Significant regressors (o0 < 0.01) of OSB IB are related to pressing times and core layer
moisture. Significant regressors (o < 0.01) of OSB Parallel EI are related to forming speed
and pressing times. There is evidence from the extensive investigation of 1,335 models to

support the alternative research hypothesis.
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CHAPTERI. INTRODUCTION

An underlying basis of statistical methods is the study of variance (0'2). Variance

in the context of manufacturing is defined as estimated process variance (62). In forest

products manufacturing, process variance results in inferior product quality, poor product
safety and noncompetitive costs. Process variance is masked by higher than necessary
operational targets (e.g., weight, thickness, density, resin, etc.) which require higher than
necessary energy use which in combination are not competitive or sustainable in a highly
competitive market place.

A common goal for statistical research is to investigate and quantify causality
between independent variables (X) and response variables (Y) with a high level of scientific
inference. As Friedman (2001) notes, given a set of measured values of attributes,
characteristics or properties on a object (observation) X = (X, X,, .... X), which are
often called “variables,” the goal is to predict (estimate) the unknown value of another
attribute Y. In quantifying causality, de Mast and Trip (2007) note the important
distinction between exploratory and confirmatory data analysis which they attribute to
Tukey’s (1977) work. As Tukey (1977) pointed out, confirmatory data analysis is
concerned with testing a pre-specified hypothesis. The purpose of exploratory data analysis
is hypothesis generation (de Mast and Trip 2007). This dissertation is undertaken in the
spirit of exploratory data analysis and hypothesis generation. The dissertation is aligned
with Gleser’s (1996) “First Law of Applied Statistics,” i.e., two individuals using the same

statistical method on the same data should arrive at the same conclusion.



The goal of the dissertation is to improve the understanding of causality for the
strength properties of MDF and OSB from industrial derived data. The dissertation is
focused on exploratory analysis in the context of data mining, i.e., quantifying unknown
causality from large volumes of electronically collected data which are fused with
destructive data of strength properties.

Data mining (IDM), also called Knowledge-Discovery in Databases (KDDD) or
Knowledge-Discovery and Data Mining, is the process of automatically searching large
volumes of data for patterns (http://en.wikipedia.org/wiki/Data mining. referenced
10/4/07). DM is the contemporary edge of the sciences of Artificial Intelligence, Machine
Learning, Pattern Recognition and Data Visualization. DM evolved from advancements in
database management systems (DBMS) and on-line (real-time) transaction processing
(OLTP). From a statistical perspective it can be viewed as computer automated
exploratory data analysis of large complex data sets (Friedman and Wall 2005).

Exponential growth of data mining applications has occurred globally for many
industries (Harding et al. 2006). Rapid growth in data mining applications in the forest
products industry is imminent and is desperately needed for the industry’s economic

survival.

The New Millennium for the Forest Products Industry

Forests sustain an important forest products economy in the U.S. and state of
Tennessee. The forest products industry contributed more than $240 billion to the U.S.
economy and employed more than 1,000,000 Americans in 2002 (U.S. Census Bureau
2004). Over 180,000 Tennesseans were employed by the forest products industry in 2000

accounting for 6.6 percent of Tennessee’s economy by generating $21.7 billion in value in
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that same year (Young et al. 2007). Threats to this economic sector have arisen in the
form of unprecedented levels of international competition, constrained credit markets,
increasing fiber costs, increasing energy costs and substitution from renewable wood
products to non-renewable oil- and cement-derived products.’

Wood costs represent the largest single component of total manufacturing costs
for most forest products manufacturers. Some U.S. manufacturers must contend with
wood costs as high as 60% of total manufacturing costs.” Demand/capacity ratios for the
engineered wood panel sector are falling below the critical threshold of 85 percent, a level
that results in declining real prices. A renewed emphasis on reducing costs is desperately

needed by this important economic sectot.

Rationale and Justification

Poor production efficiencies in the engineered wood panel sector occur from
unacceptably high levels of wood waste due to low strength and high wood-density targets.
Poor production efficiencies lead to high wood use, high energy usage, and an overall lack
of business competitiveness. Wood waste is a significant contributor to costs. In 2003,
the engineered wood panel sector produced 64.3 billion square feet of panels and wood
waste ranged from three percent to nine percent (Composite Panel Association 2004,
TECO 2004). Reducing wood waste by one percent could translate into annual savings of

as much as $700,000 per producer and promote wiser use of the forest resource.’

1U.S. structural wood panel mills lost 5.8 percent of the North American market in 2004, primarily
from Europe and South America. Imports over the long term are forecast to increase (Engineered
Wood Association 2004).

2Personal communications 2005 and 2006: Georgia-Pacific, ].M. Huber Corporation, Louisiana-
Pacific Corporation, Norbord Corporation and Weyerhaeuser Corporations.

3Personal communications 2005 and 2006: Georgia-Pacific, ].M. Huber Corporation, Louisiana-
Pacific Corporation, Norbord Corporation and Weyerhaeuser Corporations.



Improved production efficiencies, reduced wood waste, and lower costs are possible from
data mining by improving the knowledge of causality of sources of unknown process
variation.

Many organizations can be labeled as “data-rich” and “knowledge-poor” (Chen
2005). Modeling of wood composite manufacturing processes enables complex processes
to be better understood by examining the patterns in data related to the previous behavior
of a manufacturing process (Young and Guess 2002). The benefits of first-order models
in engineered wood panel production are well documented (Young 1997, Gruebel 1999,
Bernardy and Scherff 1998, 1999, Erilsson et al. 2000, Young and Guess 2002, Guess et al.
2003, and Kim et al. 2007). Erilsson et al. (2000) discussed the potential of stochastic
models for engineered wood manufacture, while Gruebel (1999) documented medium
density fiberboard (MDF) manufacturing cost savings of five percent to ten percent from
the use of “off-line” first-order statistical models. Dawson et al. (2006) developed a
genetic algorithm/neural network (GANN) real-time predictive model of MDF and
oriented strand board (OSB) manufacturing processes that resulted in cost annual savings
at two test sites ranging from $700,000 to $1.2 million.

This dissertation investigates the use of Regression Tree (RT) models to identify
unknown causality between process variables and strength properties of wood composites.
RT models are known for their high explanatory value and RT models are at least as

predictive as black box deterministic methods (Loh 2002).

Problem Statement and Scope
The problem statement of this dissertation is to explore the explanatory and

predictive capabilities of parametric and non-parametric (quantile) regression tree models
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of the strength properties of MDF and OSB using real-time sensor data amassed in
manufacturers’ data warehouses. Specifically, this research will investigate the explanatory
and predictive capabilities of three modeling methods: first-, second- and third-order
statistical multiple linear regression models with interaction terms, parametric regression
trees, and non-parametric (quantile) regression trees. The models are developed for one

MDF and one OSB mill both located in the southeastern United States.

Dissertation Hypothesis

The null research hypothesis of this dissertation is that there is no significant
difference in the explanatory or predictive capabilities of three modeling methods: first-,
second- and third-order statistical multiple linear regression models with interaction terms;
parametric regression trees; and non-parametric (quantile) regression trees. The test of this
research hypothesis hopefully will incrementally advance the statistical and industrial

engineering sciences as applied to wood composites manufacture.

Dissertation Objectives

1. Investigate first-, second- and third-order MLR models

First-, second- and third-order MLLR models with interaction terms are investigated
for MDF and OSB wood composite strength properties. The database to support this
work is the real-time relation database developed by Young and Guess (2002), enhanced
by Dawson et al. (2006). MLR models are developed for three predominately
manufactured products (0.500”, 0.625”” and 0.750” industrial grades) for MDF and one

OSB product (7/16” roof sheathing) for each test site.



2. Investigate regression tree (RT) models

Parametric and non-parametric (quantile) regression trees (RT) are investigated for
each MDF and OSB manufacturing test site. The same database of the first objective is
used. RT models are developed for the same nominally produced MDF and OSB
products defined in the first objective.

3. Compare the explanatory and predictive capabilities of the MLLR and RT models
developed in the first and second objectives.

The explanatory and predictive capabilities of the MLLR and RT models developed
in the first and second objectives are compared. Model prediction capabilities are analyzed
for appropriate validation data sets from each MDF and OSB mill.

There is no documentation in the literature of the investigation and application of
decision tree theory to manufactured wood composites strength properties. It is hoped
that this research will at least incrementally expand the sciences of wood composites
manufacture and decision tree theory.

The dissertation is organized in seven chapters. In Chapter II the relevant
literature for the dissertation is reviewed. The methods used in the research are presented
in Chapter III, with a description of the data and an assessment of the data quality
(descriptive statistics and distribution fits) for the important response variables. The
results of the first objective are given in Chapter IV. Chapter V is the core chapter of the
dissertation where results are presented on regression trees. Chapter VI compares the
results of the first two objectives. Chapter VII summarizes the dissertation with
conclusions and a discussion of future research. The Bibliography and General

Appendices follow Chapter VII.



CHAPTERII. LITERATURE REVIEW

Information technology is the largest single capital investment for many enterprises
(Thorpe 1998). However, many companies struggle with making use of the vast amount
of data that is acquired at increasingly faster rates. Thorpe (1998) called this phenomenon
the “Information Paradox” where companies invest increasing amounts of money on
information acquisition but cannot demonstrate a connection between the money spent
and business results. This paradox is caused from the lack of useful “real-time relational
databases” that are of sufficient design and organization where parametric and non-
parametric statistical methods can be used to investigate unknown causality and develop
scientific knowledge. The data warehouse in many ways is the nucleus for process
knowledge of a manufacturing enterprise. As Harding et al. (2006) noted, “Knowledge is
the most valuable asset of a manufacturing enterprise, as it enables a business to
differentiate itself from competitors and to compete efficiently and effectively to the best
of its ability.” The Harding et al. (20006) statement is very appropriate for the wood
composites industry in the present era of unprecedented competition, increasing raw

material costs, increasing energy costs and declining product prices.

Data Warehouse

As Inmom and Hackathorn (1994) noted, a data warehouse is the main repository

of the organization's historical data, its corporate memory.* The central concept of a data

*The origin of the data warehouse can be traced to studies at MIT in the 1970s which were
targeted at developing an optimal technical architecture. At the time, the craft of data processing
was evolving into the profession of information management. The MIT work led to the modern
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warehouse is that it is a collection of records. Data warehouses usually consist of one or
more databases of volumes of records. The structure of a database is known as a schema.
The schema describes the objects that are represented in the database and the table
relationships among them. Multiple related tables each consisting of rows and columns is
the most common form of schema (White 2002). Schema design is a critical factor in
ensuring optimal storage and data compression, and also ensures the overall usefulness of
the data during retrieval for analysis.

Real-time Data Warehouse

Real-time data warehousing originated and evolved with the computer industry.
Real-time data captures manufacturing activity as it occurs. Real-time data usually are
stored in a data warehouse either at the occurrence of an event or as a function of time.
Most real-time data warehouse platforms can efficiently store multiple gigabytes of process
data. Real-time data warehousing has become affordable in the last decade and it is hard
to find a modern forest products manufacturer that does not have some type of real-time
data warehousing platform. However, most forest products manufacturers use real-time
data for simple trending analysis and rudimentary process knowledge. They struggle with
using real-time databases for advanced analytics and scientific knowledge of the process.
This dissertation directly addresses improved scientific knowledge of processes from the
use of parametric and non-parametric regression tree methods using real-time process
data.

Real-time databases have inherent data storage characteristics that need to be

understood before advanced analytics can occur. Data quality is a key obstacle in the use

concept of the Information Center

(http://www.damanconsulting.com/company/articles/dwrealtime.htm referenced 10/5/07).



of real-time data storage. Real-time data quality problems such as null fields, repeated
records, correct time stamps, bi-modality/multi-modality and data leverage are significant
issues which confound advanced analytics and data mining efforts. Some research has
addressed data quality issues during real-time data retrieval using first-order statistical
models and deterministic algorithms (e.g., genetic algorithms and neural networks) to
model the wood composite process (Gruebel 1999; Bernardy and Scherff 1998, 1999;
Young et al. 2004 and Dawson et al. 2006). The key first step in the use of real-time data
is the development of the real-time relational database.

Real-time Relational Database

A real-time relational database is defined as the alignment of real-time process
sensor data from the production line with product quality data, e.g., destructive test data of
strength quality developed from the mill testing laboratory. The real-time relational
database used in this dissertation is considered to be distributed data fusion (also called
track-to-track fusion) where data from multiple diverse sensors are combined in order to
make inferences about a physical event, activity or situation, e.g., internal bond tensile
strength, modulus of elasticity flexure strength, etc. (Hall 1992). Intellectual latency is the
most significant issue in real-time relational databases. Some intellectual latency results
from improper time alignment of process sensor data with product quality data. Young
and Guess (2002) developed an automated relational database that addressed some of the

issues of intellectual latency. Clapp et al. (2007) use the Eigenvalues from principal

> Data fusion or information fusion are names that have been given to a variety of interrelated
expert system problems which have arisen primarily in military applications (Goodman et al. 1997).
Other applications of data fusion include remote sensing, medical diagnostics and robotics
(Blackman and Broida 1990, Hovanessian 1980).



component analysis to identify improper time alignment of real-time process sensors with
destructive test data for MDF.

A data warehouse or real-time data warehouse contains just data. The key to
scientific inference and improvement is the conversion of information or data into
knowledge. This dissertation attempts to advance the scientific understanding of MDF
and OSB manufacture. Many forest products manufacturers are unsuccessful in the
information-to-knowledge transformation because they lack the key foundation of an

automated real-time relational database.

Data Mining

Data mining (DM) is used to discover patterns and relationships in data, with an
emphasis on large observational databases (Friedman and Wall 2005). DM is a large
discipline and a plethora of literature exists on the subject. The literature review of DM in
this chapter is not intended to be comprehensive, but instead a helpful precursor for the
analytical methods used in this dissertation.

DM is the contemporary edge of the sciences of Artificial Intelligence, Machine
Learning, Pattern Recognition and Data Visualization. DM evolved from advances in
database management systems (DBMS) and on-line (real-time) transaction processing
(OLTP). From a statistical perspective it can be viewed as computer automated
exploratory data analysis of large complex data sets (Friedman 2001). DM is directly
related to the field of Decision Theory. As Friedman (2001) notes, “It also affords
enormous research opportunities for new methodological developments... .... Statistics

can potentially have a major influence on Data Mining.”
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DM is closely related to machine learning and prediction. The predictive or
machine learning problem is easy to state if difficult to solve in general (Friedman 2001).
Given a set of measured values of attributes, characteristics or properties, on a object
(observation) X = (X, X,, .... X,), which are often called “variables,” the goal is to
predict (estimate) the unknown value of another attribute Y (Friedman 2001). The
quantity Y'is called the “output,” “dependent” or “response” variable, and X = (X, X,

23 <¢y

.... X,) are referred to as the “input,” “independent,

) <<

predictor” or "regressor” variables

(Friedman 2001). The prediction takes the form of a function Y=F (x,,%y,..0..x,) = F(x)

n

that maps a point X in the space of all joint values of the predictor variables, to a point

Y in the space of response values (Friedman 2001). Most scientists agree that the goal is to
produce a “good” predictive F(x).

Decision trees are one of the most popular predictive learning methods used in
data mining. Decision trees were developed largely in response to the limitations of kernel
methods (Friedman 2001).® No matter how high the dimensionality of the predictor
variable space, or how many variables are actually used for prediction (splits), the entire
model can be represented by a two-dimensional graphic, which can be plotted and easily
interpreted (Friedman 2001). Decision trees have an advantage of being very resistant to
irrelevant predictor or regressor variables, i.e., since the recursive tree building algorithm
estimates the optimal variable on which to split at each step, regressors unrelated to the

response tend not to be chosen for splitting (Breiman et al. 1984). Friedman (2001) also

% Kernel Methods (KMs) are a class of algorithms for pattern analysis, whose best known element
is the Support Vector Machine (SVM). Support vector machines (SVMs) are a set of related
supervised learning methods used for classification and regression. They belong to a family of
generalized linear classifiers. The general task of pattern analysis is to find and study general types
of relations (for example clusters, rankings, principal components, correlations, classifications) in
general types of data (http://en.wikipedia.org/wiki/Kernel methods referenced 10/5/07).
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notes a strength of decision trees is that regressors do not have to be tuned (standardized)
which makes the method an “off-the-shelf” procedure. Fore example, NIR spectral data
have been used with decision trees to enhance automated classifications of fruit and
organic matter in soil (Ware et al. 2001, Shepherd and Walsh 2002, Shepherd et al. 2003).
This ease of interpretation from two-dimensional plots makes decision trees a
powerful tool for the practitioner and an appropriate methodology for this dissertation for
ease of use by practitioner. Fitting quotes supportive of this dissertation are by C. Dickens
and J.H. Friedman (Friedman 1994), “Every time computing power increases by a factor
of ten we should totally rethink how we compute.” Friedman’s (2001) corollary, “Every
time the amount of data increases by a factor of ten, we should totally rethink how and
what we compute.” A more detailed literature review of decision trees is presented later in

this chapter.

Multiple Linear Regression

The method of least squares and the precursor to regression analysis can be dated
to 1805 by the publication of Legendre’s work on the subject (Stigler 19806). Sir Francis
Galton discovered regression around 1885 in studies of heredity (Stigler 1986). Galton’s
regression (as finally developed by Yule) was not simply an adaptation of least squares to a
different set of problems; it was a new way of thinking about multivariate data (Stigler
1980).

Today regression analysis remains one of the most popular and globally used tools.
Practitioners like regression analysis because of ease of interpretation in the coefficients
that do not require standardization of the data of either the dependent and independent

variables. Practitioners also like the visual interpretation of regression. Simple linear (SL)
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and multiple linear regression (MLR) methods are widely available on business and
statistical software, and MLR is a prerequisite for most undergraduate business and science
degrees.

For situations where the data are drawn from reasonably homogeneous
populations, traditional methods such as MLR can yield insightful analyses. The
usefulness of MR in data mining can breakdown quickly if the stringent assumptions
associated with MLR are not met, e.g., normality assumption of the response (Y).

There is a plethora of literature on regression analysis and many tomes are available
on the method. An extensive literature review of the heavily referenced MLR method is

not presented in this dissertation given that it is not the primary method used for analysis.

Quantile Regression

As noted by Koenker (2005), Edgeworth’s (1888) work on median methods is the
genesis of the idea of quantile regression. Edgeworth emphasize that the assumed
optimality of the sample mean as an estimator of location was crucially dependent on the
assumption that the observations came from a common normal distribution. If the
observations departed from normals with different variances, the median, Edgeworth
argued, could easily be superior to the mean. Koenker (2005) notes that Edgeworth (1888)
discards the Boscovich-Laplace constraint related to least squares that the residuals sum to
zero and proposes to minimize the sum of the absolute residuals in both slope and
intercept parameters. Unfortunately, the computational rigors associated with
Edgeworth’s (1888) work limited the application of the method until the development of

linear programming which provides an efficient conceptual approach. Mosteller (1940)
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discovered that quantile estimators are almost as efficient as the maximum likelihood
estimators for most conventional parametric models.

Quantile regression as introduced by Koenker and Bassett (1978) seeks to extend
these ideas to the estimation of conditional quantile function, i.e., models in which
quantiles of the conditional distribution of the response variable are expressed as functions
of observed covariates. The quantile regression literature in economics makes a persuasive
case for the value of going beyond models for the conditional mean (Chamberlain 1994).
Koenker and Billias (2001) explore quantile regression models for unemployment duration
data and offer an introduction to quantile regression for demand analysis. There is also a
growing literature database in empirical finance employing quantile regression methods.
Bassett and Chen (2001) consider quantile regression index models to characterize mutual
fund investment styles. Shaffer (2007) and Young et al. (2007c) explore the first uses of
quantile regression in modeling the internal bond strength property of MDF. The method

of quantile regression is described in more detail in the next chapter.

Decision Trees

The machine learning technique for inducing a decision tree from data is called
decision tree learning, or (colloquially) “decision trees”.” Decision tree (DT) models have
grown into a powerful class of methods for examining complex relationships with many
types of data (Kim et al. 2007). Researchers and practitioners find great explanatory value
in DT models. DT models are more useful than MLR models when data are not

homogeneous (Figure 2.1).

7 http:/ /en.wikipedia.org/wiki/Regression Tree referenced 10/5/07.
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A “regression tree” is a decision tree for numerical data. A “classification” tree is a
decision tree for categorical data. Since this dissertation uses numerical data from
industrial processes, the primary focus of the following literature review is for the
regression tree (RT).

A regression tree is a piecewise constant or piecewise linear estimate of a
regression function, constructed by recursively partitioning the data and sample space. Its
name derives from the practice of displaying the partitions as a decision tree, from which
the roles of the regressors are inferred (Figure 2.2).

Construction of a regression tree consists of the following general steps performed
iteratively, ending with step four:

o Partition the data,

o Fit a model to the data in each partition,

o Stop when the residuals of the model are near zero or a small
fraction of observations are left,

o Prune the tree if it over fits.

Most of the contemporary regression tree algorithms differ on steps one and two. Many

popular graphical-user interface software packages that have DT algorithms do not have

step four (e.g., JMP - http://www.jmp.com/, Statistica - http://www.statsoft.com/, etc.,
referenced 10/5/07).

The AID (“Automatic Interaction Detection”) algorithm by Morgan and Sunquist
(1963), Kass (1975) and Fielding (1977) is the first implementations of the DT idea. AID
searches over all axis-orthogonal partitions and yields a piecewise constant estimate (Loh
2002). At each stage, the partition that minimizes the total sums of squared errors (SSE) is
selected. Splitting stops if the fractional decrease in total SSE is less than a pre-specified y

or if the sample size is too small. As noted by Loh (2002), a weakness of AID is that it is
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hard to specify v, i.e., too small or too large a y leads to over- or under-fitting. Another
weakness of AID (Doyle 1973) is that the “greedy search” approach induces a bias in
variable selection, e.g., if X, and X, are ordered regressors with n, > n,, X, will have a
higher chance of being selected which leads to erroneous inferences from the final tree
structure. “Greedy search” methods find the regressor that minimizes the total SSE in the
regression models fitted to the data subsets defined by the split (e.g., JMP and Statistica).
“Greedy search” methods are also computationally expensive (Loh 2002).

The CARTO (“Classification and Regression Trees”, http:/ /www.salford-systems.com/

referenced 9/20/07) algorithm followed AID and is a popular DT method (Breiman et al.
1984). Unlike AID, it avoids choosing a ¥ by employing a backward-elimination strategy
to determine the tree (Loh 2002). It grows an ovetly large tree and then prunes away some
branches, using a test sample or v-fold cross-validation (CV) to estimate the total SSE. In
step two of the four general steps of decision trees, the CART regression tree fits a mean

function in each partition (also called a piecewise constant regression tree).

The MARS© (“Multivariate Adaptive Regression Splines” by Friedman (1991,

http://www.salford-systems.com/ referenced 9/20/07) method combines spline fitting
with recursive partitioning to produce a continuous regression function estimate
(Chaudhuri et al. 1995). Chaudhuri at al. (1995) note that the complexity of the estimate
from MARS©O makes interpretation difficult and theoretical analysis of the spline statistical
properties extremely challenging.

Quinlan's (1992) M5 method constructs an ordinary regression tree with a stepwise
linear regression model fitted to each node at every stage. As noted in Kim et al. (2007b),

Chaudhuri et al. (1994) chose a residual-based approach from MLR models. This
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approach selects the variable with the signs of the residuals which appear most non-
random, as determined by the significance probabilities of two-sample t-tests.

The FIRM algorithm (“Formal Inference-based Recursive Modeling”) by Hawkins (1997)
addresses the bias problem of AID by using Bonferroni-adjusted significance tests to select
predictors for splitting. Unlike AID and CART, FIRM splits each node into as many as
ten subnodes for an ordered regressor. As Loh (2002) noted from Hawkins (1997) work,
the Bonferroni adjustment can over-correct, resulting in a bias toward regressors that have
fewer splits.

As cited by Loh (2002), other methods have been proposed for determining the
final tree: Ciampi et al. (1988, 1991) combine non-adjacent partitions; Chaudhuri et al.
(1994) use a CV-based, look-ahead procedure; Marshall (1995) finds non-hierarchical
partitions; Chipman et al. (1998) and Denison et al. (1998) employ Bayesian methods to
search among trees; and Li et al. (2000) use a stopping rule based on statistical significance
tests.

The GUIDE, ver. 5.2 (“Generalized, Unbiased, Interaction Detection and Estimation”) DT
algorithm is used in this research. GUIDE (Loh 2002, Chaudhuri and Loh 2002) extend
the idea of Chaudhuri et al. (1994) by means of “curvature tests”

(www.stat.wisc.edu/~loh/ referenced 10/5/07). A curvature test is a chi-square test of

association for a two-way contingency table where the rows are determined by the signs of
the residuals (positive versus non-positive) from a fitted regression model. The idea is that
if a model fits well, its residuals should have little ot no association with the values of the

regressor variable.
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As Kim et al. (2007) note, GUIDE has five properties that make it desirable for
the analysis and interpretation of large datasets: (1) negligible bias in split variable selection;
(2) sensitivity to curvature and local pairwise interactions between predictor variables; (3)
applicability to numerical (continuous) and categorical variables; (4) choice of simple linear,
multiple, best, Poisson, or quantile regression models (and proportional hazard analysis);
and (5) choice of three roles for each numerical predictor variable (split selection only,
regression modeling only, or both). Another strength of GUIDE is the boot-strap
adjustment of p-values, which is important consideration when dealing with small sample
sizes often encountered with industrial data. Preliminary versions of the GUIDE
algorithm are described in Chaudhuri et al. (1994) and Chaudhuri (2000). Additional

documentation can be found in Loh (2006), Kim et al. (2007), Loh (2007a), Loh (2007b),

Loh et al. (2007) and at the web-site www.stat.wisc.edu/~ loh/ referenced 10/5/07.
Since the main advantage of a regression tree over other models is the ease with
which the model can be interpreted, it is important that the construction method be free
of selection bias (Loh 2002). GUIDE achieves this goal by employing a lack-of-fit test
followed by a bootstrap adjustment of the p-values which is critical because parametric p-

values are data-size dependent (Loh 2007a)."

8 Bootstrapping is the practice of estimating properties of an estimator (such as its variance) by
measuring those properties when sampling from an approximating distribution. One standard
choice for approximating a distribution is the empirical distribution of the observed data. The
advantage of bootstrapping over analytical method is its great simplicity - it is straightforward to
apply the bootstrap to derive estimates of standard errors and confidence intervals for complex
estimators of complex parameters of the distribution, such as percentile points, proportions, odds
ratio, and correlation coefficients (http://en.wikipedia.org/wiki/Bootstrapping %28statistics%29
referenced 10/5/07). Bootstrapping is distinguished from the jackknife procedure used to detect
outliers, and v-fold cross-validation used to make sure that results are repeatable. Bootstrapping is
becoming popular because it does not requite the normality assumption to be met, and because it
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Decision trees represent a contemporary scientifically-based decision-making
method for forest products practitioners interested in improving the understanding of
industrial process. Decision trees represent an “off the shelf” technology and may be

superior to MLR models (and kernel methods) when data are non-homogeneous.

Predictive Modeling of Engineered Wood Panels

Engineered wood panel manufacturing may have a large number of differing, but
interdependent, process variables that may have complex functional forms which influence
strength properties.” Wood passes through many processing stages that may influence
final strength properties. Key process parameters may include mat-forming consistency,
line speed, press temperature, press closing rates, wood chip dimensions, fiber dimension,
fiber-resin formation, etc. At the time of production, the quality of engineered wood is
unknown, i.e., samples are analyzed at a later time in a lab using destructive testing. The
time span between destructive tests may vary from two to six hours depending on the type
of product. Hours of unacceptable engineered wood production may go undetected
between these tests. Many engineered wood panel producers create a hedge of higher than
needed density targets to make up for the lack of product quality knowledge between
destructive tests. As a consequence, high density targets as a hedge require higher than
necessary resin, wood fiber and energy inputs. In an era of strong market competition,

higher than necessary density targets are not sustainable or competitive in the long term.

can be effectively utilized with smaller sample sizes (n < 20),
http://en.wikipedia.org/wiki/Bootstrapping %28statistics%29 (referenced 10/5/07).

? Strength properties are usually determined from destructive testing, e.g., internal bond tensile
strength, maximum load flexure strength, maximum deflection flexure strength, modulus of
rupture flexure strength, modulus of elasticity flexute strength, etc.
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Process variables may exert simple linear univariate effects on final product quality
characteristics while others may produce non-linear multivariate effects. These effects may
be dynamic and be dependent on wood furnish, temperature, line speed, tool sharpness,
etc. Some work has been initiated in real-time data mining and predictive modeling of
final product quality characteristics of forest products using statistical methods (Young
1997; Bernardy and Scherff 1998, 1999; Gruebel 1999; Erilsson et al. 2000; Young and
Guess 2002; Young and Huber 2004; Clapp et al. 2007). Erilsson et al. (2000) discussed
the potential of statistical models for engineered wood manufacture, while Gruebel (1999)
documented MDF manufacturing cost savings of 5 to 10 percent from the use of “off-
line” first-order statistical models (e.g., faster line speeds, reduced raw material inputs,
reduced energy usage, etc.). There is no evidence from the literature of the use of decision
tree methods for analyzing or predicting strength properties of engineered wood panels.

Other research has investigated non-statistical heuristic models (e.g., genetic
algorithms and neural networks) to develop real-time predictions of product quality
characteristics of forest products (Cook and Wolfe 1991, Cook and Chiu 1997, Estévez et
al. 2003, Toivanen et al. 2003, Young et al. 2004 and Dawson et al. 2006). Much work is
published on theoretical models that explain final product quality characteristics (Wu and
Piao 1999; Xu 2000; Humphrey and Thoemen 2000; Barnes 2001; Shupe et al. 2001;
Zombori et al. 2001). Applications of theoretical models for wood composites

manufacture are not evident in the literature.

Medium Density Fiberboard (MDF)

Large-scale production of MDF began in the 1980s. MDF is an engineered wood

product formed by breaking down softwood (Pznus spp.) into wood fibers, often in a
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defibrator (i.e.,“refiner”), combining it with wax and resin, forming mats and applying high
temperature and pressure to create panels. MDF is a popular wood composite material.
MDF advantages are that it has uniform density and that it has a surface that is smooth
and free of grain patterns and defects. Its smooth surface makes it an excellent base for
laminates for counter tops and cabinets. MDF is a non-structural panel that has extensive
use in furniture, shelving, laminate flooring, decorative molding and doors (Figure 2.3).

MDF’s name comes from the distinction in densities. MDF typically greater than
1% in thickness has a density of 600-800 kg/m? (38-50 Ibs/ft’). High-density fiberboard
(less than 2” thickness) has a density of 500-1,400 kg/m? (31-90 lbs/ft’). An illustrative
comparison of the densities of wood composites and natural solid wood is presented in
(Figure 2.4).

Some people prefer using MDF over regular lumber because it has a lower impact
on the environment. MDF is made from cellulosic waste products, which sometime are
dumped in landfills. This attraction has helped MDF gain popularity among homeowners

(www.wisegeek.com/what-is-mdf.htm referenced 10/5/07).

One contentious issue for MDF is the use of formaldehyde (HCHO) resins and
the associated health risks. MDF contains a higher resin-to-wood ratio than any other
urea-formaldehyde (UF) wood composites and is the highest formaldehyde-emitting wood
composite. Under U.S. Department of Housing and Urban Development (HUD) rule 24
CFR, HCHO emissions are limited to 0.2 parts per million (ppm) for floor underlayment
and manufactured home floor decking, and 0.3 ppm for other products (TECO 2007).

In June of 2004, the International Agency for Research into Cancer (part of World

Health Organization), upgraded formaldehyde from category 2A (probably carcinogenic to
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humans) to Category 1 (carcinogenic to humans), see Sharp (2004). Reclassification is
based on evidence of increased incidence of the relatively rare, nasopharyngeal cancer
among individuals exposed in the past to high levels of formaldehyde (Sharp 2004).

The litigation potential of formaldehyde poisoning from wood composites is
illustrated in Spake (2007). An estimated 275,000 Americans are living in more than
102,000 mobile homes that FEMA purchased for $2.6 billion after hurricane Katrina
(Spake 2007). A class-action lawsuit was filed against FEMA and some trailer
manufacturers in Louisiana in June 2006 on behalf of residents suffering from respiratory

and flu-like illnesses they attribute to formaldehyde inside their trailers (Spake 2007).

Oriented Strand Board (OSB)

Oriented strand board (OSB) is a structural engineered wood composite panel
consisting of mats formed from resinated wood strands of approximately 0.030” (inches)
in thickness, 2” in width and 4” in length. The mats are pressed into panels under heat
and pressure in multi-opening or continuous presses. OSB is a structural product used in
residential and non-residential construction for sheathing in walls, floors and roofs (Figure
2.5). OSB is the most commonly used structural engineered wood panel in new residential

housing construction in North America (http://www.osbguide.com/faqs/faql.html

referenced 10/5/07).

The OSB industry is currently experiencing unprecedented growth in North
America in new mill startups and mill capacity expansion. Since 1990, new startups of
mills have increased by 85 percent to 65 mills, while production capacity has increased by
more than 100%, to a record 28 billion square feet per year (Adair 2005). OSB is

aggressively replacing plywood as the primary sheathing demanded in North America.
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Approximately 65 percent of the 43 billion square feet of construction sheathing used in
2005 consisted of OSB, while the remaining 35 percent consisted of plywood sheathing
(Adair 2005). Note that 73 percent of all OSB sheathing is used in residential housing

construction. Residential housing construction in the U.S. is predicted to decline from a

record of almost 2.0 million annual new housing starts in 2005 to approximately 1.8

million housing starts by 2010 (Adair 2005). The decline in housing starts, in conjunction

with recent OSB capacity expansion, will put downward pressure on OSB market prices

and producers will be forced to improve efficiency. These market pressures will require

OSB manufacturers to maintain a strong focus on reliability, quality and cost (Wang et al.

2007). The methods and results from this dissertation, if adopted, are directly beneficial

practitioners in the wood composites industry.

to

23



Appendix to Chapter II
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Figure 2.1. Illustration of MLR fit and DT piecewise linear fit to non homogeneous data

(Kim et al. 2007).
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Figure 2.2. Illustration of a decision tree (Kim et al. 2007).
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Figure 2.3. Illustration of applications of MDF
(http://images.google.com/images?hl=en&q=mdf&gbv=2 referenced 10/5/07).
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Figure 2.4. Illustration of densities for solid wood, MDF and WPC
(http://pas.ce.wsu.edu/CE546/Lectures/Lecturel-Aug20006.pdf referenced
10/5/07).
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Figure 2.5. Illustration of OSB wood strands, panels and uses in construction.
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CHAPTER III. METHODS

Multiple Linear Regression

One of the most traditional and popular statistical methods is multiple linear
regression (MLR). For situations where the data are drawn from reasonably homogeneous
populations and the response (Y) is normally distributed, traditional methods such as MLR
can yield insightful analyses. The usefulness of MLLR can breakdown quickly if these
stringent assumptions are not met.

Most practitioners use first-order multiple linear regression (MLR) models of the
form:

Y=0+BX +¢ [3.1]

where, Y is an (# X 1) vector of dependent observations, X is an (# X p) matrix of

independent variables of known form, B is an (p x 1) vector of parameters, € is an (7 x 1)
vector of errors. From a practical perspective second- and third-order MLLR models of the

form:

Y:oc+BX+yX2+s, [3.2]

and
_ 2 3
Y=0+BX+yX“+0X " +¢ [3.3]
may be more helpful. In this research, MLR models are investigated up to third-order

models with interaction terms.
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The least squares method is fundamental to MLR and is used to find an affine
function that best fits a given set of data."’ The least squares method is very defendable by
minimizing the sum of the # squared errors (SSE) of the predicted values on the fitted line.

A key step in using MLR for data mining is to develop a model building or best
model criteria. A popular model building method for MLR is stepwise regression.
Stepwise regression was introduced by Efroymson (1960) and was intended to be an
automated procedure for selecting the most statistically significant variables from a large
pool of explanatory variables. The mixed selection procedure is the most defendable
stepwise procedure and it is a combination of the forward selection and backward
elimination procedures.'’ In stepwise regression the user specifies the probabilities (ct) for
an independent variable “to stay” and also the probabilities “to leave” the model.

Stepwise regression is typically used in conjunction with a “best model criteria.”
Young and Guess (2002) found multicollinearity and heteroscedasticity (i.e., unequal
variances of the residuals) to be significant problems when modeling MDF product quality
from real-time data. Young and Guess (2002) used the following “best model criteria”

which is also used in this research:

10An affine (from the Latin, affinis, “connected with”) subspace of a vector space (sometimes called
a linear manifold) is a coset of a linear subspace. A linear subspace of a vector space is a subset
that is closed under linear combinations, e.g., linear regression equation of a linear subspace

(http://mathworld.wolfram.com/AffineFunction.html. referenced 10/4/07).

11 The forward selection procedure attempts to insert variables until the regression is satisfactory
(Draper and Smith 1981). The order of insertion is determined by using the partial correlation
coefficient as a measure of the importance of variables not yet in the equation (Neter et al. 1996).
This starts by finding the most correlated independent variable (x) with Y, and so forth. The
overall regression is checked for significance, the improvements in R? value and the partial F-values
are noted. The partial F-values are compared with an appropriate F percentage point and the
corresponding independent variables are retained or rejected from the model according to
significance. This continues until a suitable the first-order linear regression equation is developed
(Kutner et al. 2004, Neter et. al. 1996, and Myers 1990).

29



o maximum Adjusted R®,,

o minimum Akaike’s Information Criterion (AIC), Akaike (1974),

o Variance Inflation Factor (VIF) < 10,

o significance of independent variables p-value < 0.10,

o absence of heteroscedasticity in residuals, E(g) = 0,"

o examination or residual plots,

o root mean square error of prediction (RMSEP),

o XY scatter plot of predicted and observed values for the
validation data set.

Adjusted R?, is a better measure for building models with the potential of a large
number of independent variables than is the coefficient of determination (R%). R* will
always increase as an additional independent variable is added to the model, where R®, will
only increase if the residual sum of squares decreases (Draper and Smith 1981). R’,
minimizes the risk of “over-fitting” and penalizes for it. AIC protects against model bias
and VIFs less than ten protect against multicollinearity and the development of ill-founded
models.

An important procedure for variable reduction is called “all possible subsets” or
“all possible regression procedure” (Neter et al. 1996). The purpose of all possible subsets
is to identify a small group of regression models that are “good” according to a specified
criterion, e.g.., criteria specified by Young and Guess (2002). The limited number of

regressors might consist of three to six good subsets according to specified criteria. The

all possible subsets approach assumes that the number of observations exceeds the

I 5.2
2 (Y, -Y)
-1 s A
12R§:1—<1—R2)(n j,osmq N ST = RN LIPS S
n—p Z (Yl —Y)Z SSTO
i=1
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Cp: 5 —-(N-2p) ; AIC=nln| — |+2p.
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maximum number of parameters (7 > p), and that #» should be six to ten times larger than p
(Kutner et al. 2004).
Plotting residuals (e = y — y) is an important diagnostic for checking model quality
(Draper and Smith 1981). Departures from normal errors can detect if:
o the regression function is not linear,
o the error terms do not have a constant variance,
o the error terms are not independent,
o the model fits all but one or a few outlier observations,
o the error terms are not normally distributed,
o one or several important predictor variables have been omitted
from the model.
A key method for assessing the quality of model predictions of the validation data

set is cross-validation (Kutner et al. 2004). A validation sample is simply a sample that is

withheld from the estimation of a regression model. The model developed is then used to

predict the true values of the records withheld. Statistics such as R?

validation (coefﬁcient Of
determination for the validation sample) and root mean square error of the predicted

(RMSEDP) are calculated for the validation data set to compare the performance of the

training models. The RMSEP statistic is:

where, 7 is the number of observations, Y, is the /~th actual value and @71' is the 7th

predicted value.

Box Cox Transforms of Y

Sometimes a transformation on the response Y fits the model better than the

original response. A commonly used transformation raises the response Y to some power.
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Models are investigated in this research using the Box Cox transforms of the response Y’
(Box and Cox 1964). Box and Cox (1964) formalized a family of power transformations.
The formula for the transformation is constructed so that it provides a continuous

definition and the error sums of squares are comparable:

yor 1Y =1 : 0=
= {5 if 2 #0, Yia(V)if =0 3.5]

Y'vk—l

where Y is the geometric mean.” The plot of Y”and A (Figure 3.1) illustrates the effect of

this family of power transformations on Y.

Quantile Regression Trees

For 0 < a <1, quantile regression analysis focuses on the conditional a-th quantile
of the response Y given a covariate vector X = (X, X, ....., X,). Unlike usual regression
analysis, which focuses only on the mean of Y given X, quantile regression is capable of

providing insight into the median as well as the lower and upper tails of the conditional

distribution of the response with varying choices of o (Chaudhuri and Loh 2002). As a

13 g g " 2

The geometric mean of a collection of positive data is defined as the #th root of the product of
all the members of the data set, where 7 is the number of members. The geometric mean of a data
set [a1, az, ..., @) is given by:

The geometric mean of a data set is smaller than or equal to the data set's arithmetic mean (the two
means are equal if and only if all members of the data set are equal).
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result, quantile regression is quite effective as a tool for exploring and modeling the nature
of dependence of a response on the covariates when the covariates have different effects
on different parts of the conditional distribution of the response (Chaudhuri and Loh
2002).

Examining causality between process variables and product quality characteristics
beyond the mean of the distribution is an important issue for forest products
manufacturers. Most forest products manufacturers (especially wood composites
manufacturers) have a strong interest in understanding the lower percentiles (failures,
safety risk, claims, etc.) of the distribution of manufactured product quality.

Traditionally, MLLR is used to study causality between independent variables and
the average of a response variable, with an important goal of making useful predictions of
the response variable. However, there are three important assumptions of the MLR
approach: 1) assumption of linearity; 2) the assumption of a normal or Gaussian
distribution for the response variable; and 3) models the mean of the distribution of the
response variable.

Quantile regression (QR) is intended to offer a comprehensive strategy for
completing the regression picture (Koenker 2005). As Mosteller and Tukey (1977) note in
their influential text, as cited by Koenker (2005): ““...the regression curve gives a grand
summary for the averages of the distributions corresponding to the set of Xs...and so
regression often gives a rather incomplete picture. Just as the mean gives an incomplete
picture of a single distribution, so the regression curve gives a correspondingly incomplete

picture for a set of distributions.”
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Quantile Regression (QR) is an approach that allows us to examine the behavior of
the target variable (Y) beyond its average of the Gaussian distribution (e.g., median or 50th
percentile, 10" percentile, 80" percentile, 95" percentile, etc.). Examining causality of the
median and average tendencies of the distribution of a product quality characteristic may
yield different conclusions. Shaffer et al. (2007) and Young et al. (2007b) note that
independent variables influencing the response variable of the IB of MDF varied
dramatically by quantile. In some cases the sign and strength of the coefficient of similar
independent variables explaining IB was reversed by quantile.

The QR model does not require the product quality characteristics to be normally
distributed and does not have the other rigid assumptions associated with MLR. The first-

order QR model has the form:

0, (z]|x)=F,+xp+F ' (7) [3.6]
where, le_ is the conditional value of the response variable given 7 in the i" trial, A is
the intercept, B, are parameters, 7 denotes the quantile, x; is the value of the independent
variable in the i" trial, Fis the common distribution function (e.g., normal, Weibull,

lognormal, other, etc.) of the error givenr, E(Fu_l(r)) =0, for i=1,...,n (Koenker

2005).

Just as we can define the sample mean as the solution to the problem of
minimizing a sum of squared residuals, we can define the median as the solution to the
problem of minimizing a sum of absolute residuals (Koenker and Hallock 2001). The
symmetry of the piecewise linear absolute value function implies that the minimization of
the sum of absolute residuals must equate the number of positive and negative residuals,

thus assuring that there are the same number of observations above and below the median
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(Koenker and Hallock 2001). Minimizing the sum of asymmetrically-weighted absolute

residuals yields the quantiles (Koenker and Hallock 2001). Solving
. n
min & o ;-9 [3.7]
1=

where the function p( | ) is a tilted absolute value function that yields the tth sample
quantile as its solution (Koenker and Hallock 2001), Figure 3.2. To obtain an estimate of
the conditional median function in quantile regression, we simply replace the scalar & in
equation [3.7] by the parametric function &(x,, ) and set T to ¥2."* To obtain estimates of

the other conditional quantile functions, replace absolute values by p-( | ) and solve,

ﬂA(T) =min ﬁl pT(yl' - f(xl' A) 3.8]
l: 2

For any quantile 7 € (0,1). The quantity L(7) is called the Tth regression quantile.

QR is an important non-parametric statistical method for forest products
practitioners interested in exploring causality beyond the mean of the distribution. A
strength of GUIDE decision trees is that it allows for quantile regression fits in the
terminal nodes of the trees. Use of quantile regression trees for examining causality of

engineered wood panel strength properties is not documented in the literature.

Decision Trees and the GUIDE Method

As noted earlier, a regression tree is a piecewise constant or piecewise intrinsically
linear estimate of a regression function, constructed by recursively partitioning the data

and sample space (Loh 2002). A decision tree partitions the data space of all joint

14 Variants of this idea were proposed in the mid-eighteenth century by Boscovich and
subsequently investigated by Laplace and Edgeworth (Koenker and Hallock 2001).
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regressor values X into J-disjoint regions{R; }/ (Friedman 2001). For a given set of joint

regressor values X, the tree prediction ¥ = Tj(X ) assigns as the response estimate, the
value assigned to each region containing X:
XeR =T (X)=Y,. [3.9]
Given a set of regions, the optimal response values associated with each region are

easily obtained, namely the value that minimizes prediction error (risk) in that region:

Y, =arg m‘ln E[L(y,y)| X eR,]. [3.10]

As noted by Friedman (2001), the difficult problem is to find a good set of regions{R, Y.

Unlike kernel methods (e.g., rudimentary kernel method such as multiple linear regression
and assumption of homogeneity), decision trees attempt to use the data to estimate a good
partition instead of a user defined model.

GUIDE can recursively partition a dataset and fit a constant, best, multiple linear
or quantile regression model to the observations in each partition. GUIDE first
constructs a nested sequence of tree-structured models and then uses v-fold cross-
validation to select the smallest tree-structure which has an estimated mean prediction
deviance that lies within a minimum variance (e.g., standard error of training data set or

standard error of both training and validation set ~ “global range”). GUIDE employs the
Pearson chi-square (%) test to detect lack-of-fit of the residuals in choosing a regressor

variable to partition at each stage. As Loh (2006b) notes, GUIDE does not have the
selection bias of CART (Breiman et al. 1984) and other tree algorithms that rely solely on

greedy search optimization.
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The GUIDE algorithms (Loh 2002b) for fitting piecewise constant and piecewise
linear models are:
Algorithm 1. Chi-square tests for constant fit:
1. Obtain the residuals from a constant model fitted to the Y data.

2. For each numerical-valued variable, divide the data into four groups at
the sample quartiles; construct a 2 x 4 contingency table with the
signs of the residuals (positive versus non-positive) as rows and the
groups as columns; count the number of observations in each cell
and compute the 7’ statistic and its theoretical p-value from a ¥

distribution. We refer to this as a curvature test.

3. Do the same for each categorical variable, using the categories of the
variable to form the columns of the contingency table and omitting
columns with zero column totals.

4. To detect interactions between a pair of numerical-valued variables (X,
X)), divide the (X; X))-space into four quadrants by splitting the
range of each variable into two halves at the sample median;
construct a 2 x 4 contingency table using the residual signs as rows
and the quadrants as columns; compute the 7’ statistic and p-
value. Again, columns with zero column totals are omitted.

5. Do the same for each pair of categorical variables, using their value pairs
to divide the sample space. For example, if X; and X; take ¢ and ¢
values, respectively, the X2 statistic and p-value are computed from
a table with two rows and number of columns equal to g¢ less the
number of columns with zero totals.

6. For each pair of variables (X;, X)) where X, is numerical-valued and X; is
categorical, divide the X;-space into two at the sample median and
the X| space into as many sets as the number of categories in its
range (if X has ¢ categories, this splits the (X, X)) space into 2¢
subsets);
construct a 2 x 2¢ contingency table with the signs of the residuals
as rows and the subsets as columns; compute a %’ statistic and p-

value for the table after omitting columns with zero totals.

If the smallest p-value is from a curvature test, it is natural to select the associated
X variable to split the node. If the smallest p-value is from an interaction test, one
of the two interacting variables is selected. In order to fit a constant model in each
node, the choice of variable is based on reduction in SSE.
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Algorithm 2. Choose between interacting pair of X variables (Loh 2002):

Suppose that a pair of variables is selected because their interaction test is the most
significant among all the curvature and interaction tests.

1. If both variables are numerical-valued, the node is split in turn along the
sample mean of each variable; for each split, the SSE for a constant
model is obtained for each subnode; the variable yielding the split
with the smaller total SSE is selected.

2. Otherwise if at least one variable is categorical, the one with the smaller
curvature p-value is selected.

If a variable from a significant interaction is selected to spilt a node, the other
variable is not automatically required in the pair to split in the children nodes.
Instead, it competes for splits at every node with all of the other variables that
remain.

To complete the tree construction algorithm the split points are selected as well as the size
of the tree.

The GUIDE algorithms (Loh 2000) for fitting piecewise linear models via stepwise
regression are:

Algorithm 1. (Tree construction). These steps are applied recursively to each
node of the tree, starting with the root node that holds the whole dataset.

1. Let #denote the current node. Fit a simple linear regression to each
predictor variable in the data in # Choose the regressor yielding the
smallest residual mean squared error and record its model R%.

2. Stop if R* > 0.99 or if the number of observations is less than 27,
where n; is a small user-specified constant. Otherwise, go to the next
step.

3. For each observation associated with a positive residual, define the
class variable Z = 1; else define Z = 0.

4. Use Algorithm 2 to find a variable X' to split #into left and right
subnodes # and #.

a) If X'is ordered, search for a split of the form X' < x. For every
x such that 4 and 7% contain at least 7, observations each, find
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S, the smallest total sum of squared residuals obtainable by
fitting a simple linear model to the data in #4 and # separately.
Select the smallest value of x that minimizes S.

b) If X'is categorical, search for a split of the form X' € C, where
C is a subset of the values taken by X'. For every C such that 4
and 7% have at least 7, observations each, calculate the sample
variances of Z in 4 and #%. Select the set C for which the
weighted sum of the variances is minimum, with weights
proportional to sample sizes in 7 and 4 .

5. Apply step 1 to 4 and # separately.
Algorithm 2. (Split variable selection):

1. Use Algorithms 3 and 4 (next page) to find the smallest curvature and
interaction p-values p* and p” and their associated variables X

and {X", X,"}

2. If p9 < p?, define X' = X to be the variable to split t.

3. Otherwise, if p© > p?, then:

a) If either X l(i)or X ;j is categorical, define X' = X l(i) if it has the

smaller curvature p-value; otherwise, define X' = X"

b) Otherwise, if X”and X{” are both ordered variables, search
over all splits of #along X" . For each split into subnodes 7

and £, fit a simple linear model on X" to the data in 4 and %

separately and record the total sum of squared residuals. Let S,
denote the smallest total sum of squared residuals over all
()
2

possible splits of zon X . Repeat the process with X\”and

obtain the corresponding smallest total sum of squared residuals
S,. If S, <S,, define X' = X,”; otherwise, define X' = X{".

Algorithm 3. (Curvature tests):
1. For each predictor variable X:

a) Construct a 2 X s cross-classification table. The rows of the
table are formed by the values of Z. If Xis a categorical
variable, its values define the columns, i.e., 7 is the number of
distinct values of X. If X'is quantitative, its values are grouped
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into four intervals at the sample quartiles and the groups
constitute the columns, i.e., 7 = 4.

b) Compute the significance probability of the chi-squared test of
association between the rows and columns of the table.

2. Let p" denote the smallest significance probability and let X denote
the associated X variable.

Algorithm 4. (Interaction tests):

1. For each pair of variables X; and X, catry out the following interaction
test:

a) If X;and X are both ordered variables, divide the (X;,X)-space
into four quadrants by splitting the range of each variable into
two halves at the sample median; construct a 2 X 4 contingency
table using the Z values as rows and the quadrants as columns.
After dropping any columns with zero column totals, compute
the chi-squared statistic and its p-value.

b) 1If X and Xjare both categorical variables, use their value-pairs
to divide the sample space. For example, if X; and X take ¢
and ¢ values, respectively, the chi-squared statistic and p-value
are computed from a table with two rows and number of
columns equal to ¢ less the number of columns with zero
totals.

¢ If Xis ordered and Xjis categorical, divide the X-space into
two at the sample median and the X;-space into as many sets as
the number of categories in its range—if X, has ¢ categories,
this splits the (X, X)-space into 2¢ subsets. Construct a 2X2¢
contingency table with the signs of the residuals as rows and
the 2¢ subsets as columns. Compute the chi-squared statistic
and its p-value, after dropping any columns with zero totals.

2. Let p” denote the smallest p-value and let X" and X" denote the pair

of variables associated with p®.
After tree building terminates, the tree is pruned using v-fold cross-validation. Let
E, be the smallest v-fold cross-validation estimate of prediction mean squared error and let

o be a positive number. The smallest subtree is selected whose v-fold cross-validation

estimate of mean square error is within a times the standard error of E,, (Loh 20006).
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The split selection approach is different from that of CART, which constructs
piecewise constant models only and which searches for the best variable to split and the
best split point simultaneously at each node. CART’s variable selection is inherently biased
toward choosing variables that permit more splits (Loh 2006). GUIDE does not have
such bias because it uses p-values for variable selection (Loh 2000).

v-fold cross-validation

This type of v-fold cross-validation is useful when no test sample is available and
the learning sample is too small to have the test sample taken from it. The user-specified »
value for v-fold cross-validation (its default value is 10) determines the number of random
subsamples, as equal in size as possible, that are formed from the training (learning)
sample. A tree of the specified size is computed » times, each time leaving out one of the
subsamples from the computations, and using that subsample as a test sample for v-fold
cross-validation, so that each subsample is used (v - 1) times in the learning sample and just
once as the test sample. The v-fold cross-validation costs are computed for each of the »
test samples and then averaged to give the v-fold estimate of the v-fold cross-validation
costs Breiman et al. (1984).

The total number of cases is divided into » subsamples Z,, Z,, ..., Z, of almost
equal sizes. The subsample Z - Z, is used to construct the predictor 4. Then the v-fold

cross-validation estimate is computed from the subsample Z, in the following way:

cr 1 v 2
R <d>=§2 > (g —d(x,) [3.11]

vov (%,,0,)€7,

where 4" (x)is computed from the sub sample Z - Z, .
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GUIDE Importance Ranking

The GUIDE importance ranking (Loh 2007) is used in this dissertation to reduce

the number of regressors and increase the dimensionality in the data set for the use of

quantile regression in each terminal node of the regression tree. The GUIDE importance

ranking is estimated by:
1. Fit a constant model to the data in the node and obtain residuals,

2. Cross-tabulate each categorical variable with the signs of the residuals,

3. Discretize each numerical variable X into four groups at the quartiles and

cross-tabulate with the signs of the residuals,

4. Compute each 7y’ -value and convert it to a %} -value using two applications

of the Wilson-Hilferty (1931) approximation:

3
) 1/3
%> = max| 0, g+\/§ (X—] 142 3.12]
1%

6. Select the variable with largest value % to split the node.

Importance score of X is:
IMP(i) =) \n(t)x; (t,0) [3.13]
t

where, summation is over all intermediate nodes #
n(?) is the sample size at node #

¥: (¢,0)is the Wilson-Hilferty chi-squared value of X at 7.
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Data Set Description

Medium Density Fiberboard (MDF)

The MDF data set is from a southeastern U.S. manufacturer. The plant has an
annual capacity of 100 million sq. ft., 5/8 inch basis and a 12-platen multi-opening (“day-
light”) press. The plant started production in early 1993. The primary mechanical
property defining strength quality for MDF producers and their customers is internal bond
(IB). Destructive tests of IB are taken at approximate time intervals of two hours from
one press platen (#8) while the production line is running.

The real-time data fusion database of Young and Guess (2002) as refined by
Dawson et al. (2000) is used for this dissertation research (Appendix A). Three nominal
products of the producer are used in this research. The products are 0.750 inches (),
0.625” and 0.5007, all industrial (“IND”) grade. The manufacturer requested that the
densities of these “IND” products not be reported in the public domain. The 0.500”
product has 209 records dating from 11/25/05 to 09/30/06; 0.625” product has 517
records dating from 11/15/05 to 10/18/06; and the 0.750” product has 245 records
dating from 11/16/05 to 10/14/06. Five records are eliminated from the 0.750” product
set given an excessive level of null fields in the records (#639 - 1/4/06; #786 - 1/19/006;
#1526 - 4/7/06; #1526 — 4/7/06; a duplicate record, and #1642 - 4/26/06). Two records
are eliminated from the 0.625” product set given an excessive level of null fields and
possible incorrect product classification (#1878 - 5/17/06; #2996 — 9/13/06). No
records are eliminated from the 0.500” product set.

The MDF data set has 183 independent variables (regressors) that correspond to

real-time sensors on the production line. Sensor data are time-lagged in the data to reflect
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the location of the sensor relative to the location of the press where the MDF panel is
created (Dawson et al. 2000).

Oriented Strand Board (OSB)

The OSB data set is from a southeastern U.S. manufacturer. The plant has an
annual capacity of 500 million sq. ft., 3/8-inch roof sheathing (RS) basis and has a 16-
platen multiple opening press. The plant started production in December 2004. The
primary mechanical properties defining product quality for this OSB manufacturer are IB
tensile strength and Parallel Elasticity Index (EI) flexure strength. Destructive tests are
taken two or three times per 12-hour shift to determine product quality of manufactured
product.

The real-time data fusion database created by Young and Guess (2002) as refined
by Dawson et al. (2000) is also used in this research (Appendix A). The fused database
consists of destructive test data with 234 process sensor regressor variables. The data set
contains 238 records from 7/27/2005 to 11/20/2006. After communication with the
Technical Director, four data records are removed from the data set given that the records
are defined as experimental for either a “new product trial” or resin experiment. The
records are: #10106 (04/22/2006 2:58:41 PM); #9250612 (09/26/2006 8:10:44 PM);
#92806316 (10/05/2006 12:41:53 PM); and #935 (11/04/2006 1:10:48 PM). Similar to
the MDF data, sensor data are time-lagged in the data to reflect the location of the sensor
relative to the location of the press where the OSB panel is created (Dawson et al. 2000).

In model building a general rule of thumb is to use 80 percent of the entire data set
for the training (or learning) data set and the remaining 20 percent for the validation (or

calibration) data set (Kutner et al. 2004). Validation records when time-ordered, as is the
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case of this data, are the most current 20 percent of the records (Kutner et al. 2004). A
challenge in this research is low dimensionality of both MDF and OSB data sets. Many
authors note that ideal record length should be six to ten times the number of independent
variables (Draper and Smith 1981, Myers 1990, Neter et al. 1996, and Kutner et al, 2004).
Unfortunately, the data fusion records developed by Dawson et al. (2000) given the long
sampling intervals between destructive tests did not allow for this ideal to be met. I
envision future research with these companies that may facilitate improved data set

dimensionality.

Data Quality and Descriptive Statistics

Medium Density Fiberboard (MDF)

0.500” Thickness. -- Descriptive statistics of IB that characterize the location, variability

and shape of the 0.500” thickness data are presented. The mean (141.6 p.s.i.) and median
(141 p.s.i.) for this product are similar (Table 3.1). The coefficient of variation (CV)
characterizes variability of the data and a CV of 10.4 percent (standard deviation 14.8 p.s.i.)
for 0.500” illustrates that the standard deviation comprises almost 10 percent of the scale
of the mean. The shape of the data is characterized by skewness and kurtosis. The low
kurtosis value of 0.07 indicates a distribution that has a rounded peak with wide shoulders.
Skewness measures the direction and degree of asymmetry. The skewness value of 0.15
indicates some mild positive skewness (tail to the right) of the data. The histogram of
0.500” IB (Figure 3.3) indicates mild asymmetry of the distribution. The box plot, a useful
visualization tool indicates that this product may have four IB values that are possible

outliers, i.e., any point outside the whisker and the box are possible outliers.
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Probability plots are a common graphical technique to demonstrate how a
particular data set fits a specific candidate probability distribution. The data are ordered
and plotted against the theoretical order statistics of the desired distribution. There is
evidence that a data set conforms to a specific distribution if the data fall along the straight
calibration line between the two ordered data sets.

Simultaneous confidence bands, along with pointwise confidence intervals provide
objective assessments of deviation from the line (Meeker and Escobar 1998). Data points

outside the confidence bands are shown to deviate from the candidate probability

distribution under investigation. S-Plus and SPLIDA (www.insightful.com/splus
referenced 10/5/07) are used to investigate the Normal, Logistic, Log Logistic, Log
Normal, Weibull (two parameter), Largest Extreme Value, Smallest Extreme Value,
Frechet and Exponential probability distributions. The log likelihood and AIC scores are
also developed in this research to provide quantitative evidence of the distribution that
best fits the data (Akaike 1974, Bozdogan 2000). The AIC scores and probability plots
indicate that the Normal or possibly the Log Logistic distributions are reasonable fits for

the IB of 0.500” MDF (Table 3.2, Figures 3.4 and 3.5).

0.625” Thickness. -- The mean (139.1 p.s.i.) and median (139 p.s.i.) for 0.625” MDF are
similar and smaller than for 0.500” MDF (Table 3.3). The CV of 10.7 percent indicates a
standard deviation (14.9 p.s.i.) that comprises approximately 10 percent of the scale of the
mean. The low kurtosis value of 0.19 indicates a distribution that has a rounded peak with

wide shoulders. The skewness value of 0.26 indicates some mild positive (tail to the right)

skewness of the data which is more skewed than 0.500” MDF. The histogram of 0.625”
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IB (Figure 3.0) illustrates asymmetry of the distribution. The box plot indicates that this
product may have as many as 10 outliers.

The AIC scores and probability plots indicate that the Normal or possibly the Log
Normal distributions are reasonable fits for the IB of 0.625” MDF (Table 3.4, Figures 3.7
and 3.8). This Normal distribution fit is similar to that of 0.500” MDF. This distribution
fit is similar to the findings of Edwards (2004) for the same product but different mill.

0.750” Thickness. -- The mean (138.6 p.s.i.) and median (138 p.s.i.) for this product are

very similar (Table 3.5). The location statistics for the 0.750” MDF product relative to the
aforementioned products suggest that IB decreases as thickness increases for this data set.
The CV of 10.8 percent for this product indicates that that standard deviation (14.9 p.s.i.)
comprises more than 10 percent of the scale of the mean. The low kurtosis value of 0.15
for this product indicates a distribution that has a rounded peak with wide shoulders. The
skewness value of 0.008 for this product indicates minimal skewness of the data. The
histogram of 0.750” IB (Figure 3.9) indicates that the distribution of 1B is approximately
symmetrical. The box plot indicates that this product may have five IB values that are
outliers.

There is statistical evidence that the Normal or Logistic distributions are
reasonable fits for the IB of 0.750” MDF (Table 3.6). The AIC scores and probability

plots are used to support this conclusion (Figures 3.10 and 3.11).

Oriented Strand Board

Internal Bond. -- The mean (46.2 p.s.i.) and median (45.4 p.s.i.) for this product are
dissimilar (Table 3.7). The CV of 20.3 percent (standard deviation 9.4 p.s.i.) encompasses
20 percent of the scale of the mean. The low kurtosis value of 0.18 indicates a distribution
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with positive kurtosis that is mildly leptokurtic, i.e., it has a more acute “peak” around the
mean. The skewness value of 0.62 indicates a positive skewness (tail to the right) of the
data. The histogram of IB (Figure 3.12) indicates an asymmetric distribution with a tail to
the right. The box plot indicates seven IB values that are possible outliers, all to the right-
side of the distribution.

The AIC scores and probability plots indicate that the Log Normal or Largest
Extreme Values distributions are reasonable fits for the IB of 0.500” MDF (Table 3.8,
Figures 3.13 and 3.14). Note the distinct difference in distribution fits relative to the

Normal distribution fits of MDF products.

Parallel EI. - The mean (59,666 lb-in’/ft) and median (58,963 Ib-in*/ft) for 7/16” RS
OSB are dissimilar (Table 3.9). A CV of 7.5 percent indicates a standard deviation (4480
Ib-in”/ft) that encompasses about seven percent of the scale of the mean. The high
kurtosis value of 0.99 indicates a leptokurtic distribution with sharp peaks and wider tails.
A skewness value of 0.87 indicates positive skewness (tail to the right) of the data. The
histogram of 7/16” RS Parallel EI (Figutre 3.15) is asymmetric and is a good illustration
tool to support the kurtosis and skewness descriptive statistics. The box plot indicates that
this strength property may have as many as ten outliers.

The AIC scores and probability plots indicate that the Largest Extreme Value or
Log Logistic are reasonable fits for the Parallel EI of 7/16” RS OSB (Table 3.10, Figures
3.16 and 3.17). Again, note the departure in distribution fits relative to the Normal

distribution fits for MDF products.
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Appendix to Chapter 111
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Table 3.1. Descriptive statistics for the IB of 0.500” MDF.

Statistic Value
Minimum 102
Maximum 184

Range 82

Median 141

Mean 141.63
Standard Deviation 14.79
Variance 218.62
Coefficient of Variation 10.44
Skewness 0.1462
Kurtosis 0.0728

N 209

Table 3.2. Selected model scores for the IB of 0.500” MDF.

Model Fit Log Likelihood AIC

Normal -859.0 1722.0

Log Logistic -860.3 1724.6
Logistic -860.4 1724.8
Weibull -870.2 1744.4

Largest Extreme Value -871.2 1746.4
Smallest Extreme Value -880.3 1764.6
Frechet -882.4 1768.8

Log Normal -895.2 1794.4
Exponential -1244.0 2492.0

Table 3.3. Descriptive statistics for the IB of 0.625” MDF.

Statistic Value
Minimum 97
Maximum 186

Range 89

Median 139

Mean 139.13
Standard Deviation 14.93
Variance 222.89
Coefficient of Variation 10.73
Skewness 0.2589
Kurtosis 0.1909

N 517
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Table 3.4. Selected model scores for the IB of 0.625” MDF.

Model Fit Log Likelihood AIC
Normal -2097 4198

Log Normal -2098 4200
Logistic -2101 4206

Log Logistic -2102 4208
Weibull -2126 4256

Largest Extreme Value -2128 4260
Smallest Extreme Value -2153 4310
Frechet -2155 4314
Exponential -3062 6128

Table 3.5. Descriptive statistics for the IB of 0.750” MDF.

Statistic Value
Minimum 100
Maximum 177

Range 77

Median 138

Mean 138.57
Standard Deviation 14.94
Variance 223.15
Coefficient of Variation 10.78
Skewness 0.0078
Kurtosis 0.1491

N 245

Table 3.6. Selected model scores for the IB of 0.750” MDF.

Model Fit Log Likelihood AIC
Normal -1010 2024
Logistic -1010 2024

Log Logistic -1011 2026

Log Normal -1012 2028
Weibull -1019 2042

Largest Extreme Value -1030 2064
Smallest Extreme Value -1030 2064
Frechet -1045 2094
Exponential -1453 2910




Table 3.7. Descriptive statistics for the IB of OSB.

Statistic Value
Minimum 27.90
Maximum 74.82

Range 46.92

Median 45.44

Mean 46.18
Standard Deviation 9.39
Variance 88.21
Coefficient of Variation 20.34
Skewness 0.6216
Kurtosis 0.1784

N 234

Table 3.8. Selected model scores for the 1B of OSB.

Model Fit Log Likelihood AIC

Log Normal -1423 2850
Largest Extreme Value -1424 2852
Log Logistic -1429 2862
Normal -1437 2878
Logistic -1439 2882
Frechet -1440 2884
Weibull -1456 2916
Smallest Extreme Value -1501 3006
Exponential -1899 3802

Table 3.9. Descriptive statistics for the Parallel EI of OSB.

Statistic Value
Minimum 47245.98
Maximum 76444.00

Range 29198.03

Median 58962.93

Mean 59665.90
Standard Deviation 4479.57
Variance 20066524.40
Coefficient of Variation 7.51
Skewness 0.8733
Kurtosis 0.9999

N 234
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Table 3.10. Selected model scotres for the Parallel EI of OSB.

Model Fit Log Likelihood AIC
Largest Extreme Value -3841 7686
Log Logistic -3848 7700
Frechet -3848 7700

Log Normal -3850 7704
Logistic -3855 7714
Normal -3861 7726
Weibull -3918 7840
Smallest Extreme Value -3942 7888
Exponential -4715 9434

Figure 3.1. Plot of Y"and A illustrating the effect of this family of power
transformations on Y (SAS Institute, Inc. 2007).
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Figure 3.2. Quantile regression p function.
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Figure 3.3. Box plot and histogram of the IB of 0.500” MDF.
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Figure 3.4. Normal probability plot of the IB of 0.500” MDF.
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Figure 3.5. Log Logistic probability plot of the IB of 0.500” MDF.
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Figure 3.6. Box plot and histogram of the IB of 0.625” MDF.
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Figure 3.7. Normal probability plot of the IB of 0.625” MDF.
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Figure 3.8. Log Normal probability plot of the IB of 0.625” MDF.
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Figure 3.9. Box plot and histogram of the IB of 0.750” MDF.
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Figure 3.11. Logistic probability plot of the IB of 0.750” MDF.
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Figure 3.12. Box plot and histogram of the IB of OSB.
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Figure 3.13. Log Normal probability plot of the IB of OSB.
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Figure 3.14. Largest Extreme Value probability plot of the IB of OSB.
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Figure 3.15. Box plot and histogram of the Parallel EI of OSB.
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Figure 3.16. Largest Extreme Value probability plot of the Parallel EI of OSB.
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Figure 3.17. Log Logistic probability plot of the Parallel EI of OSB.
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CHAPTERIV.

FIRST-, SECOND- AND THIRD-ORDER MULTIPLE
LINEAR REGRESSION MODELS WITH
INTERACTIONS
OF MDF AND OSB STRENGTH PROPERTIES

Results are presented in this chapter for the first objective of the dissertation.
Models of MDF and OSB strength properties using rudimentary regression methods are
explored. The regression methods used in this chapter, even though fundamental,
establish the foundation for the chapters to follow. The results of this chapter are
presented in the spirit of notable statistical scholars as related to model building, i.e., less
complex or rudimentary statistical model building methods should be investigated before
proceeding with more complex statistical methods (Box and Cox 1964, Box 1979, Draper
and Smith 1981, Deming 1986). This first objective of the dissertation will hopefully
advance the philosophies of “All Possible Subsets” and “Best Model Criteria” for multiple
linear regression modeling of industrial processes (Akaike 1974, Box 1979, Draper and
Smith 1981, Myers 1990, Neter et al. 1996, Young and Guess 2002, and Kutner et al.
2004).

In the spirit of exploring less complex models initially; first-, second- and third-
order multiple linear regression models with interaction terms are developed for the IB of
MDF for three nominal products types (0.500”, 0.625” and 0.750”). Models are also
explored for the IB and Parallel EI of OSB for the product 7/16” RS. The Box Cox

transforms of Y are further investigated for all regression models (Box and Cox 1964)
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Forty regression models for MDF and 19 regression models for OSB are
investigated in detail. Mixed stepwise regression with an all possible subsets criteria
(discussed in Chapter II Methods) is used for initial model selection. Least squares
methods are used for final model development (Plackett 1960). Models are developed for
the entire record length for each product type of MDF and OSB. In addition, models are
investigated for shorter record lengths. Investigating shorter record lengths builds upon
the ideas presented by Bernardy and Scherft (1998, 1999), Erilsson et al. (2000), Young
and Guess (2002), Young and Huber (2004) and Shaffer (2007) when investigating
industrial data, i.e., the literature indicates that acceptable regression models of final
product strength properties for engineered wood panels are possible for shorter record
lengths. Modeling industrial processes using shorter record lengths addresses influences
due to raw material change, product/setup change and tool/machinery-wear on final
strength properties where these influences are transcended across longer record length
models. For example, in MDF manufacture the refiner or defibrator plates that convert
wood chips into fiber wear continuously through their life cycle which varies from seven
to ten days unless a catastrophic event occurs, e.g., metal contaminate passes through
defibrator plates (Suchsland and Woodson 1986, Maloney 1993, Young and Huber 2004).
In OSB manufacture, the flaker knives that convert a log into wood strands are changed
several times per week based on the number of cycle counts of the flaker or if catastrophic
knife failure occurs (Woestheinrich and Meier 2001, Young and Huber 2004). Another
significant challenge in modeling industrial processes is addressing influences on final
strength properties from periodic setup changes that occur from changes in the customer

order file.
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To explore models with shorter record lengths, regression models are developed
sequentially starting at a record length of 50 and ending at the total record length for each
product type, e.g., 350 regression models are developed for 0.625” MDF for record lengths
50, 51, 52,....., 398, 399, 400. Record lengths for all models are contiguous and start at the
most current record and progress backward in time for each record. Initial models with
the highest adjusted R’, lowest AIC, highest degrees of freedom and lowest RMSE are
screened before investigating such models in more detail, e.g., plotting model residuals,
RMSEP, plot of predicted values in the validation data set, etc. (Figures 4.1, 4.2 and 4.3).
The analysis indicates that better MLR models result (using the best model criteria) from
shorter record lengths of 60 to 70 records (approximately seven days) for the three MDF
product types, and from 58 to 59 records (approximately 14 days) for OSB. These results
are not contrary to the findings of previous research (Bernardy and Scherff 1998, 1999,

Erilsson et al. 2000, Young and Guess 2002, Young and Huber 2004, and Shaffer 2007).

Medium Density Fiberboard

0.500” Thickness

An acceptable model for MDF 0.500” thickness (n=060) is a second-order model
with 13 regressors (Tables 4.1 and 4.2). The model has an adjusted R* of 0.72, RMSE of
0.02 p.s.i. and homogeneous residual pattern (Figure 4.4). An attractive feature of the
model is relatively accurate predictions of observed IB for extreme values in the validation
data set (Figures 4.5 and 4.6). The regressors: “eVaprTemp” (boiler temperature) has a
negative linear scaled estimate of -10.9 p.s.i.; “hPrAlTimeS” (press overall time set-point)

has a positive linear scaled estimate of 12.6 p.s.i.; and “hPrCls2Tim” (press close two time)
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has a negative polynomial scaled estimate of -14.9 p.s.i. on IB (Table 4.3)." This second-
order model reveals a possible optimal IB of 138 p.s.i. for specific levels of the statistically
significant (o < 0.02) regressors in the model (Figures 4.7 and 4.8).

The best possible model for entire record length (n=175) for MDF 0.500”
thickness is a first-order model with 17 regressors (Tables 4.1 and 4.4). The model has an
adjusted R® of 0.69, RMSE of 8.33 p.s.i. and homogeneous residual pattern (Figure 4.9).
The model did not approximate predictions of observed IB in the validation data set even
though predicted IB follows the general time-ordered trend of 1B (Figures 4.10 and 4.11).
The regressors “hPrAlTimeS” (press overall time set-point) and “dCoreRsnS” (core resin
set-point) have positive linear scaled estimates of 26.2 p.s.i. and 26.9 p.s.i., respectively
(Table 4.5). The regressor “bFaceH202W”” (face fiber water to wood ratio at refiners) has
a negative linear scaled estimate of -15.1 p.s.i. on IB. This first-order model for all records
reveals a possible optimal IB of 142 p.s.i for specific levels of the statistically significant (o
< 0.02) regressors (Figure 4.12).

0.625” Thickness

An acceptable model for MDF 0.625” thickness (n=62) is a first-order model with
11 regressors (Tables 4.1 and 4.6). The model has an adjusted R* of 0.78, RMSE of 7.15
p.s.d. and homogeneous residual pattern (Figure 4.13). Predicted IB approximated the
time-trend and scale of observed IB in the validation data set (Figures 4.14 and 4.15).
“oPreBBSpd” (pre-compressor bottom belt speed) has the strongest effect on IB with a

negative linear scaled estimate of -32.6 p.s.i. (Table 4.7). An optimal IB of approximately

15 Scaled estimate is the change in the dependent variable (“IB”) when the regressor is moved over
one-half of its range. Scaled estimate is a method of examining the relative influence of regressors
on the dependent when the regressors have differing units of measure (scale).
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138 p.s.i. is attainable for specific levels of the statistically significant regressors, o < 0.03
(Figure 4.16). The response surface for “pre-compressor bottom belt speed” greater than
90 feet per minute and “cCO0046” (refiner steam pressure) greater than 35 results in an
abrupt decline in IB which approaches the lower specification limit of 90 p.s.i. of the
manufacturer (Figure 4.17).

The best possible model for entire record length (n=400) for MDF 0.625”
thickness is a second-order model with 34 regressors (Tables 4.1 and 4.8). Even though
this model has a large number of regressors it is not contrary to the literature on modeling
industrial processes (Bernardy and Scherff 1998, 1999, Erilsson et al. 2000, Young and
Guess 2002, Young and Huber 2004, and Shaffer 2007). The model has an adjusted R? of
0.60, RMSE of 8.80 p.s.i. and homogeneous residual pattern (Figure 4.18). Predicted 1B
does not approximate the time-trend and scale of observed IB in the validation data set
(Figures 4.19 and 4.20). The regressor “hPrPPMTimS” (press pre-position move time set-
point) has a negative polynomial scaled estimate of -17.7 p.s.i. on IB (Table 4.9). The
regressor “cSwngChpL” (swing refiner wood chip level) has a positive linear scaled
estimate of 20.6 p.s.i. (Table 4.9). This second-order model reveals an optimal IB of
approximately 152 p.s.i at specific levels of the statistically significant (a0 < 0.10) regressors
(Figure 4.21). A negatively conical-shaped response surface exists for this model for
“press pre-position move time set-point” and “core fiber humidifier temperature.” This
negatively conical-shaped response surface reveals a unique maximum IB of approximately

160 p.s.i. with other significant regressors held constant (Figure 4.22).
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0.750” Thickness

An acceptable model for MDF 0.750” thickness (n=70) is a second-order model
with 18 regressors (Tables 4.1 and 4.10). The model has an adjusted R* of 0.82, RMSE of
7.05 p.s.i. and mild heteroscedasticity in the residuals (Figure 4.23). Predicted IB does not
approximate the time-trend and scale of observed IB in the validation data set (Figures
4.24 and 4.25). The regressor “dCoreDRSP” (core dust ratio set point) has a strong linear
negative scaled estimate on IB of -29.4 p.s.i. (Table 4.11). “Core dust ratio set point”
reflects the quantity of internal recycled dust waste from the sander and forming line trim
saws that is added to the clean wood fiber generated at the defibrators. The regressor
“dCoreScvWR” (core fiber scavenger resin content) has a negative polynomial scaled
estimate on IB of -26.6 p.s.i. (Table 4.11). The regressor “aChipAugSp” (chip exit auger
speed at the refiners) also has a negative linear scaled estimate on IB of -20.6 p.s.i. (Table
4.11). An optimal IB of approximately 129 p.s.i. is attainable at specific levels of the
statistically significant regressors, a. < 0.05 (Figure 4.26). A negatively conical-shaped
response surface exists for the regressors “fFaceMstm” (face fiber mat moisture content)
and “core fiber scavenger resin content” which reveals a unique maximum of
approximately 130 p.s.i. when other significant regressors are constant. The response
surface between “hPrOpnTime” (press full open time) and “core fiber scavenger resin
content” indicates a steep descent towards failing IB (i.e., less than the lower specification
limit of 90 p.s.i.) for “core fiber scavenger resin content’ levels greater than 5.5 percent
and fast “press full open times” (Figure 4.27).

An acceptable multiple linear regression model is not possible for the MDF 0.750”

thickness for the full record length of 200 (Tables 4.1 and 4.12). The best possible model
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has an adjusted R® of only 0.42, RMSE of 11.27 p.s.i. and non-homogeneous residual
pattern (Figure 4.28). Predicted IB did not approximate observed IB in the validation data
set (Figures 4.29 and 4.30). The challenges of modeling strength properties of wood
composites from industrial data using MLR methods are exemplified for the MDF 0.750”

thickness and full record length.

Oriented Strand Board

Internal Bond — 7/16” RS

The strength properties (IB and Parallel EI) of OSB are a more challenging
engineered wood panel to model using MLR methods and the given data set. Finding
acceptable MLR models using the entire record length of 300 are difficult (Table 4.13).
Figure 4.31 illustrates the poor performance for IB models (i.e., adjusted R?, RMSE and
AIC) for record lengths greater than 60 and Figure 4.32 illustrates the overall difficulty for
any record length when modeling the Parallel EI of OSB. Recall from Chapter III that the
distributions of IB and Parallel EI of OSB are non-normal (i.e., also recall the assumption
of normality in the response variable required for multiple linear regression analysis). Box
Cox transforms of Y (IB) tend to produce better MLLR models for the IB of OSB. Box
Cox transforms of Parallel EI did not improve the ability to develop acceptable MLR
models for the Parallel EI of OSB. Two regression models for IB are discussed.

An acceptable model for OSB IB for a small record length (n=59) is a second-

order model with the Box Cox transform of Y, where

YI.S _1 YI.S _1
G , [4.1]
1.8Y 38.7754
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and Y is defined as the geometric mean of IB. The model has 16 regressors (Tables 4.13
and 4.14). The model has an adjusted R* of 0.82, RMSE of 3.95 p.s.i. with some
heteroscedasticity in the transformed residuals (Figure 4.33). Predicted IB approximates
the time-trend and scale of observed IB in the 12 record validation data set (Figures 4.34
and 4.35). The regressor “Dry20ut” (dryer #2 outlet temperature) has a strong positive
linear scaled estimate on IB of 15.3 p.s.i. (Table 4.15). “BnkSpdTCL” (bunker speed for
top core layer) and “MD4OutTem” (main dryer #4 outlet temperature) have negative
linear scaled estimates on IB of -11.2 and -10.6 p.s.i., respectively. The regressor
“MSBCLOFDSP” (main spreader bottom core layer density set-point) also has a negative
polynomial scaled estimate on IB of -10.1 p.s.i. The negative scaled estimates for bunker
speed and spreader density set-points for the core layers may indicate that line speed is too
fast for the machine capabilities of the wood strand forming system at the plant.

An optimal IB of approximately 48 p.s.i. is attainable at specific levels of the
statistically significant regressors, o < 0.03 (Figure 4.36). The second-order model reveals
some useful relationships between the statistically significant regressors and IB (Figure
4.37). The three-dimensional polynomial graphs in Figure 4.37 illustrate that fast bunker
speeds and low moisture content result in IB less than 50 p.s.i. The results of this
regression model may indicate that the operational procedures at the plant for mat forming
speed and moisture level need reevaluation.

The model for OSB IB for the entire record length (n=300) is presented to
illustrate the problems associated with modeling the IB of OSB for longer record lengths
using MLR (recall Figure 4.31). A second-order model with the Box Cox transform of Y’

yielded the best possible model. The Box Cox transform is:
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YO.Z _1 YO.Z _1
Y'=———r= , [4.2]
0.2Y 0.0095

where Y is defined as the geometric mean of IB. The model has 31 regressors (Tables 4.13
and 4.16). The model has a low adjusted R* of 0.45, RMSE of 6.70 p.s.i. and non-
homogeneous residual pattern (Figure 4.38). Predicted IB has some approximation of the
time-trend and scale of lower observed IB values in the 60 record validation data set but is
generally unacceptable (Figures 4.39 and 4.40). The regressor “BnkSpdTCL” (bunker
speed for top core layer) has a strong negative polynomial scaled estimate on IB of -17.7
p.sd. (Table 4.17). “MSTSLOFSpA” (main spreader speed top surface layer) has a negative
linear scaled estimate effect on IB of -14.2 p.s.i. The negative scaled estimates for bunker
top core layer and top surface spreader speeds for the larger record length is in general
agreement with the results of the shorter record length MLR model for OSB IB. Both the
shorter and longer record length MILR models indicate that line speeds may be too fast for
high strength properties given the machine capabilities of the mat forming system. Fast
bunker speeds may result in poor mat forming which the literature also suggests has a
negative influence on OSB strength properties (Suchsland and Woodson 1986, Maloney
1993, Kruse et al. 2000, Nishimura and Ansell 2002).

Any discussion of an optimal IB and three-dimensional polynomial graphs are
inappropriate given the poor predictive capabilities of this longer record length MLR
model. The results of the MLR models (shorter and longer record lengths) may have some
explanatory value to the manufacturer in that mat forming procedures may need

reevaluation given their negative influence on strength properties using the given data set.
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Parallel EI — 7/16” RS

Parallel EI for OSB is a more difficult strength property to model using MLLR
relative to IB. This is illustrated by the results for shorter and longer record length MLLR
models in Table 4.13 and Figure 4.32. Box Cox transforms of Y did not improve model
quality. Given the poor results of multiple linear regression models, one model is
discussed for the Parallel EI of OSB.

The best possible model for OSB Parallel EI for a shorter record length (n=58) is a
first-order model with 11 regressors (Tables 4.13 and 4.18). The model has an adjusted R?
of 0.59, RMSE of 2,233 p.s.i. and homogeneous residual pattern (Figure 4.41). Predicted
Parallel EI approximates some observed Parallel EI values in the validation data set
(Figures 4.42 and 4.43). The regressor “MHOII20ilT” (main hot oil temperature for
press) has a strong negative linear scaled estimate on Parallel EI of -5,891 in-1b*/ft, i.e., as
“main hot oil temperature for press” increases Parallel EI decreases (Table 4.19).

Discussions of an optimal IB and three-dimensional graphics are inappropriate
given the poor predictive capabilities of this model. The inability to model Parallel EI
using MILR may be indicative of non-homogenous data typical of OSB processes.
However, the results of the first-order regression model for Parallel EI for the shorter
record length may have some explanatory value, e.g., “main hot oil temperature for press”
requires further root-cause investigation. Given that higher than necessary press oil
temperatures result in lower Parallel EI strength (poor product safety and quality) and high
oil temperatures require more energy, it may be advantageous for the manufacturer to

investigate the effect of press hot oil temperatures and Parallel EI using a designed
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experiment, i.e., the exploratory data analysis facilitates hypothesis generation (de Mast and

Trip 2007).

Chapter IV Summary

Forty regression models for MDF and 19 regression models for OSB are
investigated from a possible subset of 625 regression models for MDF and 500 possible
regression models for OSB. First-, second- and third-order models with interaction terms
and Box Cox transforms of Y are explored. Mixed stepwise regression with all possible
subsets and a best model criteria (Young and Guess 2002) is used to develop a set of final
candidate regression models. Candidate models are compared for the entire record length
and smaller record lengths of the training data set.

Acceptable regression models are more feasible for MDF relative to OSB when
using MLLR methods for this given data set. MDF models for IB are more acceptable as
thickness increases. First- and second-order models for MDF are more acceptable than
higher-ordered models with interaction terms. Box Cox transforms of Y (IB) for MDF
did not improve model quality or predictive capability. A surprising outcome of the MLR
research is the lack of significance of interaction terms in most MLR models, i.e., MLLR
was unable to detect significant interactions for this data set.

The most appropriate models for MDF are a second-order model for 0.500”
thickness for a small record length (n=60) and a first-order model for 0.625” thickness for
a small record length (n=62). The MDF 0.500” thickness model has an adjusted R* of
0.72, RMSE of 6.02 p.s.i. and homogeneous residual pattern. An attractive feature of the

model is relatively accurate predictions of observed IB for extreme values in the validation

data set. Highly statistical significant (o < 0.0001) regressors for this model are
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“eVaprTemp” (boiler temperature), “hPrAlTimeS” (press overall time set-point) and
“hPrCls2Tim” (press close two time).

The best possible model for entire record length (n=400) for MDF 0.625”
thickness is a second-order model with 34 regressors. The model has an adjusted R* of
0.60, RMSE of 8.80 p.s... and homogeneous residual pattern. Predicted IB does not
approximate the time-trend and scale of observed IB in the validation data set. Highly
statistical significant (o < 0.0001) regressors for this model are “hPrPPMTimS” (press
pre-position move time set-point) and “cSwngChpl.” (swing refiner wood chip level).

One acceptable model is developed for the shorter record length of IB for OSB.
The best possible model for OSB IB for a small record length (n=59) is a second-order
model with the Box Cox transform of Y, equation [4.1]. Recall from Chapter II that the
distribution of OSB IB is non-normal. The model has 16 regressors with an adjusted R of
0.82, RMSE of 3.95 p.s.i. with mild heteroscedasticity in the residuals. Predicted IB
approximates the time-trend and scale of observed IB in the time-ordered validation data
set. Highly statistically significant (a0 < 0.0001) regressors for this model are “Dry20Out”
(dryer #2 outlet temperature), “BnkSpdTCL” (bunker speed for top core layer),
“MD4OutTem” (main dryer #4 outlet temperature) and “MSBCLOFDSP” (main spreader
bottom core layer density set-point). Common among all statistically significant regressors
for all models of OSB IB are process variables related to mat forming speed, e.g.,
regressors related to fast mat forming are negatively correlated with IB. This may suggest
that mat forming/line speed procedures need reevaluation by the manufacturer. In
general, MLLR models for the IB and Parallel EI OSB may have some explanatory value to

the manufacturer.
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Appendix to Chapter IV
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Table 4.1. Comparison of optimal record length with full record length for first-, second-
and third-order stepwise regression models with interactions for MDF IB (shaded records
are discussed).

n n
MLR Model R? | training | validation | p | RMSE | RMSEP | RMSEP*
MDF 0.500:
Shorter Record Length!

First-order 0.40 60 13 3 9.10 15.68 71.96
Second-order 0.78 60 13 13 6.02 11.93 31.53
Third-order 0.79 60 13 17 6.13 16.54 16.89

Third-order interaction 0.68 60 13 11 7.12 16.48 16.26
N=175

First-order 0.72 175 33 17 8.33 16.90 16.85
Second-order 0.75 175 33 26 8.01 33.05 33.14
Third order nsEx -- -- -- - - --

Second-order interaction | 0.75 175 33 27 8.13 26.30 25.20
MDF 0.625:
Shorter Record Length

First-order 0.82 62 13 11 7.15 15.51 15.06
Second-order ns¥k -- -- -- - - --
Third order nsEx -- -- -- - - --

Fitst-order interaction 0.86 62 13 13 6.42 14.95 35.35
N=400

First-order 0.56 400 80 27 9.61 14.88 74.51
Second-order 0.60 400 80 34 8.80 17.66 11.62
Third-order 0.57 400 80 33 9.57 20.01 30.98

Third-order interaction 0.62 400 80 39 8.98 17.00 16.60
MDF 0.750:
Shorter Record Length

First-order 0.88 70 14 17 6.55 50.40 35.77
Second-order 0.87 70 14 18 7.04 25.34 45.34
Third-order ns¥* -- -- -- - - --

Second-order interaction | 0.93 70 14 20 5.35 36.78 36.35
N=200

First-order 0.40 200 40 13 | 11.81 24.53 38.67
Second-order 0.48 200 40 19 | 11.20 21.41 22.32
Third-order 0.46 200 40 19 | 11.45 23.70 26.36

Third-order interaction 0.51 200 40 30 | 11.27 22.22 35.95

*Using Box Cox transform that minimizes SSE in training model.
*#’ns” indicates that all higher-order terms or interaction are statistically insignificant, o0 < 0.05

' “Shorter Record Length” indicates a algorithm that is developed for this dissertation in SAS
where starting at record length of the 50 most current records of the training dataset, one record at
a time is added to 50 going backward in time up to 400 (entire training data set). The record length
that has the highest adjusted R, lowest Akaike’s Information criteria, lowest RMSE and largest
degrees of freedom for regressors with p-values < 0.05 is defined as the “Shorter Record Length.”
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Table 4.2. Summary of fit for second-order model, MDF 0.500”, n=060.

RSquare 0.782368

RSquare Adj 0.720863

RMSE 0.023386

Mean of Response 134.3

Observations (or Sum

Wagts) 60

Source DF| Sum of Squares Mean Square| F Ratio

Model 13 5999.6658 461.513 12.7204

Error 46 1668.9342 36.281| Prob >F

C. Total 59 7668.6000 <.0001

Term Estimate| Std Error| t Ratio| Prob>|t| VIF
eVaprTemp -0.177238|  0.036078 -4.91 <.0001| 1.5212056
hPrAlTimeS 1.2555327|  0.308288 4.07 0.0002 3.7318
(hPrCls2Tim) -14.87093 3.8799 -3.83 0.0004| 1.4382511
aChipSloLv -0.23975 0.067|  -3.58 0.0008| 1.1975309
eM2236Spd 1.8986316]  0.534033 3.56 0.0009| 1.5764171
(eBoilrStmP)* -0.009198|  0.002654|  -3.47 0.0012| 1.3268543
eBoilrH20F 1.7599991 0.531146 3.31 0.0018] 2.9295179
(aChipAugSp)” 0.0928276|  0.028699 3.23 0.0023| 1.4450588
fFaceMstM 9.3605094|  3.136594 2.98 0.0045| 1.6468404
dCoreTemp 0.4680389|  0.177172 2.64 0.0112] 1.6400362
eBoiltStmP -0.16841 0.065804|  -2.56 0.0138| 1.7141641
hPrCls2Tim -2.537921 2.144555 -1.18 0.2427| 2.1211698
aChipAugSp 0.2098292|  0.187562 1.12 0.2691| 1.6473552
Table 4.3. Scaled estimates for the second-order model, MDF 0.500”, n=60.

Term Scaled Estimate Plot Estimate Prob> | t|
Intercept 138.02053| g <.0001
eVaprTemp -10.93825| | | <.0001
hPrAITimeS 12.555327| | 0.0002
(hPrCls2Tim)* -14.87093| | 0.0004
aChipSloLv -7.900344| | 0.0008
eM2236Spd 11111741 | 0.0009
(eBoiltStmP) * -10.56352] | 0.0012
eBoilrtH20F 8.0502358| | | 0.0018
(aChipAugSp)” 10.502659( | | 0.0023
fFaceMstM 7.1155784| | | 0.0045
dCoreTemp 0.6639379| | | 0.0112
eBoilrStmP -5.707314| | 0.0138
hPrCls2Tim -2.537921| | 0.2427
aChipAugSp 2.2319116] | | 0.2691
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Table 4.4. Summary of fit for the first-order model, MDF 0.500”, n=175.

RSquare 0.718264

RSquare Adj 0.687757

RMSE 8.328322

Mean of Response 142.1314

Observations (or Sum

Wets) 175

Source DF| Sum of Squares Mean Square F Ratio

Model 17 27762.308 1633.08 23.5446

Error 157 10889.669 69.36| Prob>F

C. Total 174 38651.977 <.0001

Term Estimate| Std Error| tRatio| Prob>|t| VIF
hPrAITimeS 1.3079995| 0.133949 9.76 <.0001| 3.7434208
bFaceH202W -4.820736| 0.541971 -8.89 <.0001] 3.1612959
dCoreRsnS 17.32292|  2.357255 7.35 <.0001] 8.12380064
Intercept -1098.295|  149.7139 -7.34 <.0001 .
dCoreEFCur 9.0144848| 1.265357 7.12 <.0001| 3.788578
bFaceTempP 1.1762998 0.19568 0.01 <.0001] 2.0295956
cSwngChpL 1.2455158| 0.276299 4.51 <.0001| 2.2207622
bFaceBlwPs 0.780404 0.17566 4.44 <.0001] 1.591995
hPrCls3Tim -1.657122|  0.397479 -4.17 <.0001| 1.4072354
cCI0023PT 0.6445722| 0.162684 3.96 0.0001] 3.7545353
cSwgTemp -0.127347|  0.032247 -3.95 0.0001| 2.3223254
cSwgOutlet -0.003666|  0.001105 -3.32 0.0011| 3.5325045
hPrTempS -13.70927|  4.202486 -3.26 0.0014| 2.2348617
tShavOffT2 -11.09113|  3.431005 -3.23 0.0015 1.16896
bSwgDigPrs -1.07664|  0.364255 -2.96 0.0036] 2.0515018
hPrTempP 0.5310372]  0.206305 2.57 0.0110] 1.2991691
tCoreBtmSpd -0.276621|  0.109367 -2.53 0.0124| 1.6958934
cSwEFbrMst 2.2413875] 0.915535 2.45 0.0155| 2.1603165
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Table 4.5. Scaled estimates for the first-order model, MDF 0.500”, n=175.

Term Scaled Estimate| Plot Estimate Prob> | t|
Intercept 142.13143| —mm <.0001
hPrAlTimeS 26.159989| | <.0001
bFaceH202W -15.05853]| | | <.0001
dCoreRsnS 26.850526| | <.0001
dCoreEFCur 14.545322] | | <.0001
bFaceTempP 12.263514| | ! <.0001
cSwngChpL 9.5191039| | | <.0001
bFaceBlwPs 7.0052577| | | <.0001
hPrCls3Tim -10.50891]| | <.0001
cCI0023PT 10.115271| | | 0.0001
cSwgTemp -8.633337| | | 0.0001
cSwgOutlet -8.829031] | 0.0011
hPrTempS -5.483709| | | 0.0014
tShavOffT2 -5.719322| | | 0.0015
bSweDigPrs -5.52494| | | 0.0036
hPrTempP 5.1266327| | | 0.0110
fCoreBtmSpd -6.638905]| | 0.0124
cSwlbrMst 5.2163699| | | 0.0155
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Table 4.6. Summary of fit for the first-order model for MDF 0.625”, n=062.

RSquare 0.820207
RSquare Adj 0.780653
RMSE 7.152845
Mean of Response 137.8387
Observations (or Sum Wats) 62

Source DF| Sum of Squares| Mean Square F Ratio

Model 11 11670.227 1060.93 20.7362

Error 50 2558.160 51.16] Prob>F

C. Total 61 14228.387 <.0001

Term Estimate Std Error t Ratio| Prob>|t| VIF
gPreBBSpd -2.762799 0.309655 -8.92 <.0001] 1.8988451
cCO0046 -1.15042 0.170876 -6.73 <.0001| 2.0540133
fShavOffT4 21.492844 3.612926 5.95 <.0001| 1.3207313
fFaceBtmSd 1.8526461 0.32647 5.67 <.0001| 2.5182647
eDesp2KV 5.4013529 1.010135 5.35 <.0001| 2.3358217
bFaceResn\W 11.888464 2.391513 4.97 <.0001] 1.3685181
tFaceHTemp 0.7713985 0.183562 4.20 0.0001| 1.5121018
Intercept -386.8612 95.4818 -4.05 0.0002 .
eBoiltStmP 0.2565715 0.070923 3.62 0.0007( 1.2809381
aFaceBinLv 0.7548149 0.262673 2.87 0.0059| 1.6346084
dCoreDgstP 2.1168635 0.886009 2.39 0.0207] 2.1329888
eDesp3KV -1.818336 0.795924 -2.28 0.0266( 1.8925804

Table 4.7. Scaled estimates for the first-order model for MDF 0.625”, n=062.

Term Scaled Estimate Plot Estimate Prob> | t|
Intercept 137.83871| —m=m <.0001
gPreBBSpd -32.56305( | | <.0001
cCO0046 -15.53067| | | <.0001
fShavOffT4 12.969104| ! <.0001
fFaceBtmSd 16.673815] | | <.0001
eDesp2KV 15.884569( | ! <.0001
bFaceResnW 11.067209| | | <.0001
fFaceHTemp 10.015838( | | 0.0001
eBoiltStmP 10.037077| | | 0.0007
aFaceBinLv 12.389003] | 0.0059
dCoreDgstP 9.6865557| | 0.0207
eDesp3KV -6.068786( | | 0.0266
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Table 4.8. Summary of fit for the second-order model for MDF 0.625”, n=400.

RSquare 0.633705

RSquare Adj 0.599584

Root Mean Square Error 8.804945

Mean of Response 138.74

Observations (or Sum Wets) 400

Source DF| Sum of Squares| Mean Square F Ratio

Model 34 48955.586 1439.87 18.5725

Error 365 28297.374 77.53] Prob >F

C. Total 399 77252.960 <.0001

Term Estimate| Std Error| t Ratio| Prob> | t| VIF
(dCoreRsn2W) 2 -2.884208| 0.745586 -3.87 0.0001 2.4949
(aShvRawWegt) 2 0.2360818] 0.059078 4.00 <.0001 1.7308179
fFaceHTemp 0.5056718] 0.110281 4.59 <.0001 2.8190149
cSwngGSF 0.005356] 0.001134 4,72 <.0001 4.0698072
(dCoreRSSpd) 2 -0.007729] 0.001633 -4.73 <.0001 1.47989
bFaceResnW 7.6020405 1.573282 4.83 <.0001 5.6197302
(fCoreHTmpT) 2 -0.043923] 0.008833 -4.97 <.0001 1.2888891
fShaveOff1 -10.6519] 2.058475 -5.17 <.0001 29677648
hPtPPHTImS 0.4146414 0.07813 5.31 <.0001 2.277471
fFaceHDP -22.859| 4.176386 -5.47 <.0001 3.810249
fFaceMstM 7.424371 1.282882 5.79 <.0001 2.0664754
cSwngChpL 0.9172788| 0.152653 6.01 <.0001 3.0535694
Intercept -192.8156( 30.62812 -6.30 <.0001 .
(hPrPPMTimS) 2 -393.0008| 49.07952 -8.01 <.0001 2.0281255
hP+PPMTimS -73.05629( 7.460664 -9.79 <.0001 2.9471743
(dCoreGrndP) 2 0.0051658] 0.001367 3.78 0.0002 1.9470552
bFaceChpLv -0.43902] 0.118891 -3.69 0.0003 2.6179267
(bFacWxFlw) 2 -5.327495( 1.501129 -3.55 0.0004 1.3707585
cSwOTemp 0.5184105] 0.148662 3.49 0.0005 3.0764163
(dCoreTemp) 2 -0.035526] 0.010608 -3.35 0.0009 1.3011849
(cCO0046) 2 -0.032509] 0.009966 -3.26 0.0012 2.0437715
hPrCls3Tim 0.9748332 0.301569 3.23 0.0013 1.7977473
aShvRawWgt -0.837664| 0.265102 -3.16 0.0017 2.5084494
bFaceGrdSF 0.0026394] 0.000834 3.16 0.0017 2.8795972
dCoreDgstP 0.3816478| 0.133967 2.85 0.0046 2.3325764
(bFaceGrdSF) 2 -1.43e-6 5.379e-7 -2.66 0.0082 1.771709
(cSwngChpl.)2 -0.019772] 0.008023 -2.46 0.0142 1.4707526
gBlkDensty 2.5823849 1.212478 2.13 0.0339 1.7632221
cCO0046 -0.142804 0.08415 -1.70 0.0905 24181741
bFacWxFlw 1.8077344| 1.322547 1.37 0.1725 2.0244267
dCoreTemp -0.180852( 0.135594 -1.33 0.1831 27771113
dCoreRsn2W 1.6574445 1.258765 1.32 0.1888 7.1452341
fCoreHTmpT -0.101971 0.111246 -0.92 0.3599 2.4620296
dCoreGrndP -0.052095| 0.057937 -0.90 0.3692 4.4041632
dCoreRSSpd 0.0402315 0.04679 0.86 0.3904 2.8193236
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Table 4.9. Scaled estimates for the second-order model for MDF 0.625”, n=400.

Term Scaled Estimate Plot Estimate Prob> | t|
Intercept 152.0052| g <.0001
hPrPPMTimS -15.52446| | <.0001
(hPrPPMTim$)’ -17.74644| | <.0001
cSwngChpL 20.587038| | <.0001
fFaceMstM 9.8533654| | | <.0001
fFaceHDP -16.00591| | | <.0001
hPrPPHTImS 8.6158952( | | <.0001
fShaveOff1 -12.1144| | <.0001
(fCoreHTmpT)? -17.41053| | <.0001
bFaceResnW 11.48064) | <.0001
(dCoreRSSpd) * -10.80214| | | <.0001
cSwngGSF 9.4727133| | | <.0001
fFaceHTemp 8.2768612| ! <.0001
(aShvRawWat) * 12.786978| | | <.0001
(dCoreRsn2W) -11.99363| | 0.0001
(dCoreGrndP) 10.970469| | | 0.0002
bFaceChplLv -6.591924| | 0.0003
(bFacWxFlw) * -11.60046| | | 0.0004
cSwOTemp 9.065704| | | 0.0005
(dCoreTemp)” -9.112319] | 0.0009
(cCO0046) > -6.835026| | | 0.0012
hPrCls3Tim 0.3364159| | | 0.0013
bFaceGrdSF 0.1360352[ | | 0.0017
aShvRawWgt -6.164849| | | 0.0017
dCoreDgstP 4.7175293| | | 0.0046
(bFaceGrdSF) ? -7.726765| | | 0.0082
(cSwngChpl.) * -9.959648| | 0.0142
gBlkDensty 3.9983969| | | 0.0339
cCO0046 -2.070655| g | 0.0905
bFacWxFlw 2.6675381| | 0.1725
dCoreTemp -2.896438( | | 0.1831
dCoreRsn2W 3.3798773| | | 0.1888
fCoreHTmpT -2.030186] | 0.3599
dCoreGrndP -2.400699| | 0.3692
dCoreRSSpd 1.5040443] | | 0.3904
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Table 4.10. Summary of fit for the second-order model for MDF 0.750”, n=70.

RSquare 0.866206

RSquare Adj 0.818985

RMSE 7.04955

Mean of Response 137.5429

Observations (or Sum

Wats) 70

Source DF| Sum of Squares Mean Square| F Ratio

Model 18 16408.868 911.604 18.3435

Error 51 2534.504 49.696| Prob >F

C. Total 09 18943.371 <.0001

Term Estimate| Std Error| t Ratio| Prob>|t]| VIF
dCoreDRSP -4.193256|  0.488731| -8.58 <.0001| 3.120832
aChipAugSp -1.358512|  0.194398| -6.99 <.0001| 1.9185558
hPrCIsTimP 1.0052124|  0.165454|  6.08 <.0001| 4.4569595
eEI1071FT 444.82459|  74.08204|  6.00 <.0001} 6.9689426
(cSwegWxFbrW)* 0.0046517|  0.000839|  5.55 <.0001| 1.8011744
(dCoreScvWR) * -331761.1 01638.22| -5.38 <.0001| 2.8948707
eM2236Spd 2.1244118|  0.442149| 4.80 <.0001| 2.4077811
eDespMamp -0.377945|  0.085829| -4.40 <.0001| 1.8428637
dCoreGrndS 0.279431 0.068211 4.10 0.0002| 5.5394067
eDFld3Mamp 0.0957255|  0.025881 3.70 0.0005| 6.772589
hPrOpnTime -0.508435|  0.149654| -3.40 0.0013| 1.4694515
Intercept -12247.58|  3848.063| -3.18 0.0025 .
(eDFId3Mamp) * 0.0010352|  0.000326|  3.17 0.0026| 4.1411091
dCoreScvWR 1996.0091 643.7091 3.10 0.0031] 2.6738128
cSwgWxFbrW -0.106905|  0.040723| -2.63 0.0114| 2.2176688
eM2241Spd 0.210673|  0.081191 2.59 0.0123 1.6239658
(fFaceMstM) * -17.40546|  7.323693| -2.38 0.0213] 1.5580044
bFacResnWS 8.5379183|  4.081285|  2.09 0.0414| 4.0369594
fFaceMstM 5.2222213|  3.820829 1.37 0.1777| 2.0559436
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Table 4.11. Scaled estimates for the second-order model for MDF 0.750”, n=70.

Term Scaled Estimate Plot Estimate Prob> | t|
Intercept 128.95612| —mm <.0001
dCoreDRSP -29.35279| | <.0001
aChipAugSp -20.58037| | <.0001
hPrClsTimP 22.805757| | <.0001
eEI1071FT 22.381794| | | <.0001
(cSwgWxFbr\)* 26.990087| | <.0001
(dCoreScvWR)® -26.63432| | <.0001
eM2236Spd 13.226269| | | <.0001
eDespMamp -12.54792| | <.0001
dCoreGrndS 19.898003| | | 0.0002
eDFld3Mamp 11.715886| | | 0.0005
hPrOpnTime -7.781167| | 0.0013
(eDF1d3Mamp)® 15.506291| | | 0.0026
dCoreScvWR 17.884241| | | 0.0031
cSwgWxFbrW -8.143196| | 0.0114
eM2241Spd 7.4345014| | | 0.0123
(fFaceMstM)” -11.70343| | 0.0213
bFacResnWS 7.6841264| | | 0.0414
fFaceMstM 42822215 | 1 0.1777
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Table 4.12. Summary of fit for the second-order model with interaction terms, MDF

0.750”, n=200.
RSquare 0.505768
RSquare Adj 0.418035
RMSE 11.27371
Mean of Response 139
Observations (or Sum Wets) 200
Source DF Sum of Mean Square| F Ratio

Squares
Model 30 21980.695 732.690 5.7648
Error 169 21479.305 127.096| Prob >F
C. Total 199 43460.000 <.0001
Term Estimate| Std Error| t Ratio| Prob>|t] VIF
dCoreDRSP -2.679268| 0.541799 -4.95 <.0001]| 3.6151547
(hPosTime) -0.0868|  0.01899 -4.57 <.0001] 2.7062869
(cSwDgstrL)*(fFaceHumid) -0.473084| 0.10574 -4.47 <.0001| 1.425036
eM2237Spd 1.4618715]  0.34692 4.21 <.0001] 2.3819806
hPosTime 1.2161295| 0.290269 4.19 <.0001]| 4.5833167
(aChipAugSp)’ -0.007036| 0.00188 -3.74 0.0002| 4.3746127
dCoreTemp 0.7787551]  0.21668 3.59 0.0004| 2.3038131
fFaceMstM -8.102769| 2.312433 -3.50 0.0006| 1.887095
cCI0023PT 0.441632| 0.137226 3.22 0.0015] 2.7396871
eBoilrStmF -0.000725| 0.000228 -3.18 0.0018] 1.6058179
(hPrAlTimeS)* 0.0158995| 0.005161 3.08 0.0024| 2.4529553
(dCoreH202W) * -18064.02| 6498.356 -2.78 0.0061| 1.8294963
cSwDgstrL 0.3675405 0.1342 2.74 0.0068| 2.2961775
bFaceChpLv 0.7709831] 0.296203 2.60 0.0101] 2.7347898
dCoreWx 6.5576589| 2.633773 2.49 0.0137] 1.9611066
(dCoreDRSP)° 0.2024948| 0.100035 2.02 0.0445] 2.6518824
dCoreH202W -278.5607| 179.3951 -1.55 0.1223] 1.8647891
Intercept 12367.099| 7999.038 1.55 0.1240 .
fFaceHumid 1.9617084| 1.305062 1.50 0.1347] 1.555024
(aCoreBinLv)*(fFaceHumid) -0.244344|  0.16361 -1.49 0.1372] 1.3924855
(cSwgScv2W)*(fFaceHumid) -917.4004| 642.7628 -1.43 0.1553] 1.6063435
bFaceGrdSF 0.0016839| 0.001257 1.34 0.1821] 1.4667581
eDespMamp -0.093732| 0.074288 -1.26 0.2088] 2.0984209
aChipAugSp 0.2359341| 0.276238 0.85 0.3943| 4.9187954
(aCoreBinlLv)*(cSwgTemp) 0.0035755] 0.005454 0.66 0.5130| 1.2229218
hPrAlTimeS 0.0643628| 0.117366 0.55 0.5841| 3.8740363
cSwgScv2W -226.6042| 439.4665 -0.52 0.6068| 1.2430773
cSwgTemp -0.014433| 0.041891 -0.34 0.7309] 1.6033888
(aChipAugSp) * -0.005469| 0.018031 -0.30 0.7620] 1.5456402
(eDespMamp) * -0.000426| 0.002938 -0.15 0.8848| 1.4204288
aCoreBinLv 0.0102356 0.1213 0.08 0.9329] 1.620821
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Table 4.13. Comparison of optimal record length with full record length for first, second-
and third-order stepwise regression models with interactions for OSB IB and Parallel EI
(shaded records are discussed).

n n
MLR Model R’ | training | validation | p | RMSE | RMSEP | RMSEP”
Internal Bond:
Shorter Record Length'”
First-order 0.81 59 12 12| 4.57 7.60 7.53
Second-order 0.87 59 12 16| 3.95 5.05 4.67
Third-order ns¥** -- -- -- -- - --
Second-order ns¥** - - - -- - -
interaction
N=300
First-order 0.42 300 60 23| 7.14 9.64 8.95
Second-order 0.51 300 60 31 6.70 12.74 9.67
Third-order 0.41 300 60 251 7.26 12.67 12.26
Third-order n§**x -- -- -- -- -- --
interaction
Parallel EI:
Shorter Record Length
First-order 0.67 58 16 11 | 2233 5901 - otk
Second-order 0.32 58 16 6 3026 4371 - fokok
Third-order 0.77 58 16 14| 1934 6724 otk
Third-order 0.83 58 16 14| 1632 4446 4345
interaction
N=300
First-order 0.22 300 60 8 4141 4082 koK
Second-order 0.42 300 60 27 | 3708 4706 -tk
Third-order 0.47 300 60 33 | 3583 5500 ok
Third-order 0.42 300 60 27 | 3700 5860 btk
interaction

*Using Box Cox transform that minimizes SSE in training model.
**+“ns” indicates that all higher-order or interaction terms are statistically insignificant, o < 0.05
***No regressors statistically significant (a0 <.10) with Box Cox transform.

"7 “Shorter Record Length” indicates a algorithm that is developed for this dissertation in SAS
where starting at record length of the 50 most current records of the training dataset, one record at
a time is added to 50 going backward in time up to 400 (entire training data set). The record length
that has the highest adjusted R, lowest Akaike’s Information criteria and largest degrees of

freedom for regressors with p-values < 0.05 is defined as the “Shorter Record Length.”

85




Table 4.14. Summary of fit for the second-order model with Box Cox transform, OSB 1B,

n=>59.

RSquare 0.868944

RSquare Adj 0.819018

Root Mean Square Error 3.9463

Mean of Response 47.273

Observations (or Sum

Wets) 59

Source DF| Sum of Squares Mean Square| F Ratio

Model 16 4336.7443 271.047|  17.4046

Error 42 654.0779 15.573| Ptrob > F

C. Total 58 4990.8222 <.0001

Term Estimate| Std Error| t Ratio|Prob> |t| VIF
Dry20Out 0.2696975 0.06007 4.49|  <.0001| 3.8977687
PKI700QOTi -1.085833|  0.230843 -4.70]  <.0001| 1.1644498
MTCLMoilev 4.1187788| 0.866295 4.75] <.0001] 1.4902689
Dr30utMois 10.618419| 2.172934 4.89]  <.0001] 2.9474968
(MSBCLOFDSP) -7.958358| 1.628046 -4.89]  <.0001| 1.6827701
MSBCLOFDSP 7.793946| 1.465713 5.32| <.0001| 2.5681587
MD4OutTem -0.136677|  0.023966 -5.70|  <.0001] 1.5609997
BnkSpdTCL -1.11911]  0.195796 -5.72]  <.0001| 1.9450153
Intercept -344.7253|  54.49197 -6.33|  <.0001 .
PZ1701Ste5 0.2558758|  0.032004 8.00] <.0001] 1.5380048
(Dry20ut)* 0.002579|  0.000849 3.04 0.0041] 2.8050309
MHOII20iIT 0.2185511 0.0744 2.94 0.0054| 1.9082734
(DyBiL.BoTSL)? -0.003644| 0.001255 -2.90 0.0058| 1.930353
(MD10utTem)” 0.0020606|  0.000794 2.60 0.0130] 3.012923
(MTCLMoilev)* 1.4676874| 0.639984 2.29 0.0269| 1.1929714
MD1OutTem 0.0640726| 0.047577 1.35 0.1853] 3.008842
DyBilLBoTSL 0.0121548| 0.054203 0.22 0.8237| 2.2017116
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Table 4.15. Scaled estimates for the second-order model with Box Cox transform, OSB

1B, n=59.

Term Scaled Estimate Plot Estimate Prob> | t|
(MSBCLOFDSP)* -10.09921] | <.0001
BnkSpdTCL -11.1911) | <.0001
Dr30utMois 8.683211| | | <.0001
Dry20ut 15.305335| | 1 <.0001
Intercept 48.277364| — =3 <.0001
MD4OutTem -10.59246| | | <.0001
MSBCLOFDSP 8.7798951| | I <.0001
MTCLMoilev 8.3410961| | I <.0001
PKI700QOT1 -10.31541| | <.0001
PZ1701Ste5 13.817295| | I <.0001
(Dry20ut) > 8.3059136| | ] 0.0041
MHOIiI201T 6.7750838| | | 0.0054
(DyBiL.BoTSL)* -8.22131| | 0.0058
(MD10OutTem)* 8.3742336| | | 0.0130
(MTCILMoil ev)’ 6.0192566| | | 0.0269
MD10utTem 4.0846307| | 0.1853
DyBilLBoTSL 0.5773526] | 0.8237
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Table 4.16. Summary of fit for the second-order model with Box Cox transform, OSB IB,

n=300.

RSquare 0.507502

RSquare Adj 0.450534

RMSE 6.700853

Mean of Response 46.10673

Observations (or Sum

Wets) 300

Source DF| Sum of Squares Mean Square| F Ratio

Model 31 12400.187 400.006 8.9085

Error 268 12033.583 44901| Prob >F

C. Total 300 24433.770 <.0001

Term Estimate| Std Error| t Ratio| Prob> |t| VIF
PZ1701Ste4 0.1454053| 0.023306 6.24 <.0001| 1.9433827
MBCRFRFB 29.266959| 5.105569 5.73 <.0001| 1.9484868
(BnkSpdTCL)* -0.026281| 0.005682 -4.62 <.0001| 4.4203533
MDBCLev 0.1332334| 0.029632 4.50 <.0001| 1.7135019
PLI795 -1.200244| 0.269747 -4.45 <.0001| 1.6807351
PKI700]PTi 0.1635721] 0.043072 3.80 0.0002| 4.6007777
DryWeBin5 0.9390069|  0.24899 3.77 0.0002| 7.6965839
(Dry3In) -2.131e-5]  6.02e-6 -3.54 0.0005| 8.0090149
(PLI795)° -0.211566| 0.061922 -3.42 0.0007| 1.3924604
MSTSLOFSpA -0.372706| 0.110389 -3.38 0.0008| 7.9630801
Dry4Out -0.040535|  0.01223 -3.31 0.0010{ 1.819225
(PHK71DP3Ti)” -0.005221| 0.001607 -3.25 0.0013] 9.4723208
(DryWeBin5) * 0.0977245|  0.03019 3.24 0.0014| 8.6916278
PHK71DP3Ti 0.2581961| 0.080939 3.19 0.0016] 8.4073128
DryWeBin2 -0.75231|  0.24009 -3.13 0.0019] 8.5310591
Dry3In -0.009475| 0.003034 -3.12 0.0020] 6.1050943
MFLTerWegt -2.23522