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Abstract 

 

Consider data pairs 1 1( ,...,  ,  ,...,  ,   )i ir i ip ix x t t y  involving in a semiparametric 

regression model ( , )i i i iy x t   , where 
1

( , ) ( ),
p

i i i j ji

j

x t x g t 


   1, , ;i n  

  1,...,j p  is the semiparametric regression curve. Response variable iy
 
is assumed 

to be proportional to predictor variable 1 ( ,...,  )i i irx x x  , but  at the same time, its 

relationship with other predictor variables 
1( ,...,  )i i ipt t t

 
is unidentified. The ix   

and ( )j jig t
 

are, parametric and nonparametric components respectively.  In this 

study, the nonparametric component is approximated by Fourier series which is 

expressed by 

0

1

1
( ) cos

2

K

j ji j ji j kj ji

k

g t b t a a kt


   , 1,2,..., .  1,2,..., .j p i n   

This report also introduces the mathematical expressions of parametric estimator ̂ , 

nonparametric estimator ĝ , estimator for semiparametric regression curve  ˆ ( , )x t ,  

and their properties. The estimators are obtained from Penalized Least Square (PLS) 

optimization 

 
1

2 2
1 (2)

, (0, )
1 0

2
Min  X ( ) .

r

p

j j j j
g C

j

n y g g t dt



 
 





 


  
   

  
   

 

The solution of the PLS approximation produces the estimators  ˆ W( )y , 

ˆ M( )yg   and ˆ ( , ) N( )yx t   for a matrices  W( ),  M( ),  and N( ), that are 

depending on refined parameter  1 , , .p   
  While ̂ , ˆ ,g  and ˆ ( , )x t  are 

bias estimators, which are linear with respect to observation .y
 

 

 

Keywords: Fourier series, Penalized Least Square (PLS), Semiparametric     
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1. Introduction 

 

 A regression model, in general, describes relationship between response and 

predictor variables. Suppose that iy  is response variable  and it  
is predictor variable, 

then for n observations, the relationship of the variables can be expressed in a 

regression model ( ) ,  1,2,..., ,i i iy g t i n    where g is a regression function and i  
is a random error having characteristics as identically, independently, and normally 

distributed with zero mean and variance 2 . The regression curve g  can be estimated 

by means of three approximations, namely parametric, nonparametric, and 

semiparametric regressions. The parametric regression model is applied when a 

strong assumption of the form of the functional relationship between the response and 

predictor is acquired. In this case, the regression curve estimation is equivalent with 

the estimation of the parameters within the model (Eubank [1]). The nonparametric 

model is best applied on the data for which the regression curve is still unrecognized, 

or there is incomplete knowledge regarding the form of the data (Kayri, et.al. [2]). To 

estimate the nonparametric regression curve, Amato, et. al. [3] employed Fourier 

series estimator. The Fourier series estimator was previously developed by Bilodeau 

[4] to solve the seasonal data.  

 

 In many cases, linear or periodical relationship between response and 

predictor are often found in a number of real-life problems, which in turn, requires 

the Fourier series semiparametric modelling. The incomplete information of the 

functional relationship between the response and predictor leads to the inappropriate 

regression by means of parametric or nonparametric models. Therefore, a 

semiparametric regression model which combines both the parametric and the 

nonparametric models is needed (Engle  [5,16]). 

 

 The semiparametric regression has been widely developed in many forms of 

the nonparametric component. The semiparametric model with spline function has 

been applied by (You,  at.al. [6], You, J ,  Chen [7] and Eubank [1]). Speckman [8], 

Hong [9], You, J ,  Chen [7] and Manzana [10] employed Kernel function in excuting 

the semiparametric model. Qu [11,18] and Taylor [12] used Wavelet function. 

Menawhile, You [13] and Qingguo [14,17] applied local polynomial to estimate the 

semiparametric regression curve. However, appliying Fourier series function as the 

nonparametric component in developing the semiparametric model has not been 

reported yet. Accordingly, this article proposes the estimators for parametric and 

nonparametric in Fourier series semiparametric regression as well as their 

characteristics. 
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2. Semiparametric Regression Model 
 

 The mathematical expression of the response and predictor variables in the 

semiparametric regression model is given by 

1

( ) ,   1,  2,...,  .
p

i i j ji i

j

y x g t i n 


            (1) 

where i  is the random error which is assumed to be independent and identical with 

zero mean and variance  2 . Term ix   with  0 1, ,..., r      is the parametric 

component and 



1

( )
p

j ji
j

g t  is the unknown  nonparametric component and defined in a 

continous domain (0, )C  . The  gj(tji)  is expressed by 

0

1

1
( ) cos ,   1,  2,...,  ,    1,  2,...,  ,

2

K

j ji j ji j kj ji

k

g t b t a a kt i n j p


                   (2) 

This expression is recognized as Fourier series function. Fourier series is a 

trigonometric polynomial function that has the properties of flexibility so that it can 

adapt effectively to the local nature of the data. Suitable Fourier series is used to 

describe the curve that shows the sine wave and cosine. The Fourier series estimator, 

is generally used when a data investigated patterns are not known and there is a 

recurring tendency (Bilodeau [3] and Tripena [15]). 

Eq. (1) can be rewritten in matrix form as follows:                                       

X ( )y g t                                            (3) 

with 1 2

1 1 1

( ) ( ), ( ),..., ( ) ,
p p p

j j j j j jn

j j j

g t g t g t g t
  

 
  
 
  

 

 1 2, ,..., ,ny y y y   

 1 2, ,..., n      and X is matric in which their elements are the predictor of the 

parametric component.   

 

3. Estimation 
 The estimation of the parametric component   and the nonparametric 

component ( ),j jig t

 

in (1), is solved using the PLS optimization, is given in the 

following theorems. 
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Theorem 1. 

If the semiparametric regression model is given in Eq. (1) and the regression curve 

( )j jig t  is approximated by Eq. (2), then the estimator for the parametric ̂   and 

nonparametric 
ˆ ( )g t

 

will be obtained from PLS optimization 

 
1

2 2
1 (2)

, (0, )
1 0

2
Min  X ( ) .

r

p

j j j j
g C

j

n y g g t dt



 
 





 


  
   

  
   

 

where  
1ˆ X H( )X X H( )y  


   and   1
ˆ ( ) ( ) X X H( )X X H( )yg t S y   


    and  

          1 2( , , , )ny y y y  ,  

          
   H( )= I S( ) I S( )    ,                               (4) 

          
   



 
1

1( ) B B B+ D( ,..., ) BpS n ,        (5) 

          
 1 1 1B= 1 cos cos cos cos ,p p pt t Kt t t Kt

   
(6) 

          
 1 2 ,   1,2,..., ;j j j jnt t t t j p


   1 1 1 1 ,

 

         
 1 2cos cos cos cosj j j jnt t t t




          1 2X= ( , , , )nx x x    where 1 2(1, , , , )i i i rix x x x  , 1,  2,...,  i n . 

 

Proof: 

  and ( ),  1,2,...,j jig t j p  in the semiparametric model, Eq. (1), can be estimated by 

taking the optimization of the PLS:   

 
1

2

2
1 (2)

, (0, )
1 1 1 0               =1,2,...,

2
Min ( ) ( ) ,

r
j

p pn

i i j ji j j j j
g C

i j j
j p

n y x g t g t dt



 
 





 
  

  
    
   

     

Which can be rewritten as 

     
1 1
, (0, )

1
               =1,2,...,

Min , ,..., ,  0,  1,2,..., ,
r

j

p

p j j j j
g C

j
j p

R g g P g j p
 

  
 



 
   

 
                (7) 

where 

 
2

1

1

1 1

, ,..., ( ) ,
pn

p i i j ji

i j

R g g n y x g t 

 

 
   

 
 

     

(8)           

 
and  
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 
2

(2)

0

2
( ) ( ) . j j j j jP g g t dt




            (9) 

To solve Eq. (7), Goodness of fit 1( , ,..., ),pR g g
 
and Penalty ( )j jP g

 
must be derived 

for all components. The derivation of the Goodness of fit 1( , ,..., )pR g g
 
is given as 

the following:  

Suppose  i i iU y x  , then 1( , ,..., )pR g g  in Eq. (8) is given by:     

           

 

 
 

 
 

2

1
1

1 1

( ,  ,..., ) = ( ) .
pn

p i j ji
i j

R g g n U g t      

Since ( )j jig t  is a continous function, then ( )j jig t  can be approximated by Eq. (2), so 

that Eq. (8) can be rearranged as 

 

  

  
     

  
  

2

1
1 0

1 1 1

1
( ,  ,..., ) cos  .

2

pn K

p i j ji j kj ji
i j k

R g g n U b t a a kt

          

(10)

 

Consider   1 2 nU U U U  and  1 2 pw w w



,
 where 

 1
0 12

,j j j j Kjw b a a a
 

1,2,...,j p
 
and B is given in Eq. (6), the Goodness 

of fit 1( , ,..., )pR g g
 
in Eq. (8) can be then simplified as follows:

 

 
       1( ,  ( ))= B BR g t n U U                                           (11)                                                                                                                                                            

Eq. (2) can be used to evaluate the penalty ( )j jP g  in Eq. (9)

 

 

2
2

1
022

10

2
( ) cos

K

j j j j j kj j j

kj

d
P g b t a a kt dt

dt



 

  
       


             

          

2

2

10

2
 = cos

K

kj j j

k

k a kt dt



 

 
 
 


              

  
2

2 2 2

10

2
 cos + 2  cos cos  

K K

kj j kj j mj j j

k k m

k a kt k a kt m a mt dt



  

  
   

   
 

     (12) 

 

Concequently, Eq. (12) can be reexpressed as  

4 2

1

 ( )
K

j j kj

k

P g k a


                                        

                                               

(13)

 

                            

By taking into consideration the Eq. (13), the second term of the PLS in Eq. (7) 

becomes 
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4 2

1 1 1

( )=
p p K

j j j j kj

j j k

P g k a 
  

 
 
 

    

            

                   4 2 4 2 4 2

1 1 2 2

1 1 1

 = + + +
K K K

k k p kp

k k k

k a k a k a  
  

     
     
     
  

 

                                
 

 

4 2 4 2 4 2 4 2

1 11 21 31 1

4 2 4 2 4 2 4 2

2 12 22 32 2

 = 1 2 3 + 

    + 1 2 3  +

K

K

a a a K a

a a a K a





   

   

    

        

 4 2 4 2 4 2 4 2

1 2 3    +  1 2 3p p p p Kpa a a K a    

                             

(14)

 

                             

Given

           

 

1 1 1
1 01 11 1 2 01 12 2 0 12 2 2K K p p p Kpb a a a b a a a b a a a      

 1 1 1 2 2D( ,..., ) D ( ) D ( ) D ( )p p pdiag     ,    

 
 4 4 4D ( ) 0 0 1 2 ,   1,2,...,j j j j jK j p          

 
 

Eq.  (14) can be rearranged as 

1

( )=  D 
p

j j j

j

P g  


                   (15)

 

                            

Combining  Goodness of  fit  (11) dan  Penalty (15), the optimaization of the (7) is 

given by:

  
    


     







   
( 2 )

1
1 B B  ( ,..., )

K p pMin n U U D                      

 
  


    



  



      
( 2 )

1 1 1
12 B B B+D( ,..., ) 

K p pMin n UU n U n  

 
 








( 2 )

 Q( ) .
K p

Min  

Taking the partial derivative of ( )Q  with respect to  and taking its zero value, we 

obtain: 

                
  

    
 

   
      

 

1 1 1
1

( )
2 B B B+D( ,..., )p

Q
n UU n U n  

                        
       1 1

1 0 2 B 2 B B+D( ,..., pn U n  

                     
      1 1

1 -2 B B+D( ,..., ) 2 Bpn n U  

                
   


  

1
1 1

1
ˆ B B+D( ,..., ) Bpn n U
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  



 
1

1B B+ D( ,..., ) Bpn U
 

where

1 1 1
1 01 11 1 2 01 12 2 0 12 2 2
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .K K p p p Kpb a a a b a a a b a a a

 
 

From Eq. (11), it is found that ( ) B .g t 
  
Hence  

 
ˆˆ ( ) B ( ).g t                                                                            

             


 
1

1B B B+ D( ,..., ) Bpn U  

                        
= S( )U

    

      
 ˆ( ) y X .S   

   
(16) 

Where      1S( ) B B B+ D( ,..., ) B .pn
 

Furthermore, the estimation of the parameter   is evaluated from least square 

method by minimizing the error squared as follows

 

 

2

2

1 1 1

ˆ( ) ( ) 
pn n

i i i j ji

i i j

Q y x g t  
  

 
    

 
  

 

                        ˆ ˆ  ( )  ( )i i i iy x g t y x g t  
        

   
                    

    X S( )( X ) X S( )( X )y y y y     
         

        
                               

                        

        

Deriving ( )Q  with respect to   and taking its zero, we get 

        
( )

 I ( ) I ( ) 2 X I ( ) I ( ) y
Q

y S S y S S


    
 

           
 

      

    X I ( ) I ( ) XS S           

       0 = 2X I ( ) I ( ) y + 2X I ( ) I ( ) XS S S S          
 
      

         
       2X I ( ) I ( ) X   2X I ( ) I ( ) y .S S S S              

Estimator for   is then defined as 

        
1

ˆ X I S( ) I S( ) X X I S( ) I S( ) .y    


        
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Finally, the estimator of Fourier series regression curve for the parametric component 

̂  is given by: 

 
1ˆ X H( )X X H( )y  


 
                                            

(17) 

                  W( ) ,y
                                                                                                

 

where  
1

W( ) X H( )X X H( )  


   and    H( )= I S( ) I S( )    . 

 Substituting Eq. (17) into Eq. (16) leads the estimator for the nonparametric 

componen, explicitely: 

  1
ˆ ( ) ( ) X X H( )X X H( )yg t S y   


    

                       
M( ) ,y                   (18) 

where   1
M( ) ( ) I X X H( )X X H( ) .S   


    ∎ 

It implies that the estimator ˆ ( )g t is linear in observation y .
 

 

Implication: 
 

If 
1

( , ) ( )
p

i j ji i

j

x t x g t  


  
 

is a semiparametric function, then  the regression 

estimator ˆ ( , )x t  is linear in observation y . 

 

Proof: 

Using Eq. (17) and (18), we obtain estimator for semiparametric regression model, 

namely 
ˆˆ ˆ( , ) X  + ( )x t g t  

                 
(19) 

                         
 

1
 X X H( )X X H( )y + M( )y   


   

                           
  1

X X H( )X X H( ) + M( ) y   


   

                           
N( )y ,

   
 

where  
1

N( ) X X H( )X X H( ) + M( )   


  . This mathematical expression reveals 

that the regression estimator ˆ ( , )x t  is linear to observation y . 

              The estimator ̂  and  ĝ t  strongly depends on the selection of refined 

parameters .j  The ,   1, 2, ..., j j p   is refined the parameters controlling the 

goodness of fit and the function smoothness. The enormous number of j  yields on  
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very smooth regression curve and a very small value of ,j  producing  rough 

regression curve. Therefore, it is recommended to choose the optimum j  in order to 

acquire the best model for the estimation regression. One method in choosing the 

optimum refined parameter in Fourier series estimator is Generalized Cross 

Validation (GCV) method.  

 In addition, some lemmas are introduces to evaluate the characteristics of the 

Fourier representation ( ̂ , ˆ ( )g t  and ˆ ( , )x t ).  

 

Lemma 3: 

If ̂ , ˆ ( )g t  
and ˆ ( , )x t are, respectively,  given in Eq. (17), (18) and (19), then the 

bias estimators  , ( )g t  and ( , )x t  can be obtained.  

 

Proof: 

By taking the expectation value of Eq. (17), (18) and (19), it yields 

 
1ˆE( ) E X H( )X X H( )y  
  

 
 

                       
 

1
X H( )X X H( ) E( )y 


   

                           1
X H( )X X H( ) E X + (t)+g   


   

                      
 

1
= X H( )X X H( ) ( )g t  


 

   
 

                       
,  

ˆE( ( )) E(M( ) )g t y   

                             
M( )E( )y y  

                      M( ) E X + (t)+y g 
              

 

                               M( ) X ( )g t    

                               
( ).g t

 
and  

    ˆˆ ˆE ( , ) E X  + ( )x t g t    

                                     ˆ ˆE X E ( )g t   

     
                                 1ˆXE X H( )X X H( ) ( ) M( ) X ( )g t g t    


      

                                  X I ( )+M( )X M( ) ( )g t g t     
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                                     I + M( ) X I M( ) ( )g t      

                                  
( , ).x t    

Since ˆE( ) ,   ˆE( ( )) ( )g t g t   and  ˆE ( , ) ( , )x t x t  , then  , ( )g t  and ( , )x t  

are bias estimators. ∎  

 

 

4. Conclusion 

 
1. In accordance with the semiparametric regression model as depicted in Eq. (1) 

with nonparametric compponent as given in Eq. (2), we obtain 

 
1ˆ X H( )X X H( )y  


  ,   1
ˆ ( ) ( ) I X X H( )X X H( )yg t S   


   , and 

ˆˆ ˆ( , ) X  + ( )x t g t    as the parametric, nonparametric, and semiparametric 

estimators, respectively. 

2. The Fourier series estimator in the semiparametric regression is a bias estimator 

and linear in observation y . 
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[2] Kayri, M. and Zırhlıoğlu, G, Kernel Smoothing Function and Choosing 

Bandwidth for Non-Parametric Regression Methods, Ozean Journal of Applied 

Sciences. 2, 49-54 (2009). 

[3] Amato, U., Antoniadis, A. dan De-Feis, I., Fourier  Series  Approximation of 

Separable Models. Journal of Computational and Applied Mathematics.  146, 

459-479 (2002) 

[4] Bilodeau, M,  Fourier Smoother and Additive Models, The Canadian  Journal 

of  Statistics.  3, 257- 269, (1992). 

[5] Engle, R.F., Granger, C.W.J., Rice, C.A. and Weiss, A, Semiparametric 

Estimates Of The Relation Between Weather and Electricity Sales,  Journal of 

the American Statistical Association. 81, 310-320 (1986). 

[6] You, J. dan Zhou, X. (2009), Partially Linear Models and Polynomial Spline 

Approximations for the Analysis of Unbalanced Panel Data. Journal of 

Statistical Planning and Inference, 139, 679–695. 



 

5064                                                                                            Rahmawati Pane et al. 

 

 

[7] You, J ,  Chen, G., dan Zhou, X., 2005, B-Spline Estimation in a 

Semiparametric Regression Model with Nonlinear Time Series Errors. 

American Journal o/Applied Sciences, 2 (9 ) , 1343-1349. 

[8] Speckman, P. Kernel Smoothing in Partially Linear Model, Journal  Royal 

Statistical  society,B 50, 413-436. (1988) 

[9] Hong, S-Y., 2002, Normal Approximation Rate and Bias Reduction for 

Data-Driven Kernel Smoothing Estimator in a Semiparametric 

Regression Model, Journal of Multivariate Analysis, 80, 1-20. 

[10] Manzana, S. dan Zerom, D. (2005), Kernel Estimation of a Partially Linear 

Additive Model, Statistics & Probability Letters, 72, 313–322. 

[11] Qu, L. (2003). On Semiparametric Regression via Wavelets, Proquest  

Information and     Learning Company   United State. 

[12] Taylor, L. W. (2009), Using the Haar Wavelet Transform in the Semiparametric 

Specification of Time Series, Economic Modelling, 26, 392–403. 

[13] You, J ,  Zhou, X., dan Zhou, Y., 2010, Statistical Inference for Panel 

Data Semiparametric Partially Linear Regression Models with 

Heteroscedastic  Errors,  Journal of  Multivariate Analysis, 101, 1079-1101. 

[14] Qingguo, T. (2010), L1-estimation in a Semiparametric Model with 

Longitudinal Data, Journal of Statistical Planning and Inference, 140, 393-405. 

[15] Tripena, A. and Budiantara, I. N, Fourier Estimator in Nonparametric 

Regression, International Conference On Natural Sciences and Applied Natural 

Sciences, Ahmad Dahlan University, Yogyakarta (2007). 

[16] 16.Hardle, W,  Applied Nonparametric Regression, Cambridge University 

Press, New York  (1990).  

[17] Hardle, W., Liang, H., dan Gao, J., 2003. Partially Linear Models. 

[18] Hardle, W., Mori, Y., dan Vieu, P., 2007. Statistical Methods for 

Biostatistics and Related Fields, Springer Berlin Heidelberg, New York. 

 

 

Received: June 7, 2014 
 


