
Parametric and nonparametric methods hint dark energy
evolution

Reginald Christian Bernardoa,∗, Daniela Grandónb, Jackson Levi Saidc,d, Vı́ctor H.
Cárdenase

aInstitute of Physics, Academia Sinica, Taipei 11529, Taiwan
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Abstract

We study dark energy through the viewpoints of parametric and nonparametric analyses

of late-time cosmological data. We consider four Hubble parameter priors reflecting the

Hubble tension and make use of two phenomenological functions, namely, a normalized

dark energy density and a compactified dark energy equation of state. We predict the

shape of both functions and present new constraints on the dark energy equation of

state. The results hint at dark energy evolution regardless of the choice of the method

and of the priors. The fact that similar evolutions for the dark energy densities are found

through drastically different approaches suggests that the features found in this paper

are driven by the data, and are not artifact of the reconstruction methods applied.

1. Introduction

The ΛCDM model is the parametrically simplest, and arguably the most successful,

cosmological model to date [1–4]. However, on the fundamental side, there are concerns,

for one, relying on a cosmological constant Λ to support the current accelerating phase

of cosmic expansion whereas its theoretical value differs from the observed one by several
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order of magnitude [5]. It also leaves unanswered: “What is the origin of the cosmolog-

ical constant Λ?” [6, 7] and “Why is this constant coincidentally of the same order of

magnitude as the matter contribution today?” [8, 9]. In addition to these longstand-

ing theoretical problems, the tension between the early [10, 11] and late [12–15] Universe

measurements of the cosmological parameters now has become an open problem prompt-

ing to revisit the cornerstones of modern cosmology such as the cosmological principle

[16] and the general theory of relativity [17, 18]. With these considerations, it becomes

more important to openly explore the alternatives to the standard model of cosmology

such as when Λ is replaced by an evolving dark energy (DE) component, one whose

nature remains yet to be determined.

There are various frameworks in which DE can be inherently dynamical. Most of

these fall under the wing of scalar-tensor theories wherein a scalar field acts as both

DE in the cosmological arena and a measure of the deviation of the underlying physical

model from general relativity [19–24]. In some models, a vector may also take the place

of the scalar [25, 26], or sometimes, scalar and vector fields may coexist, their interplay

determining the overall cosmological dynamics [27, 28].

Given these models, a reasonable way to proceed is therefore to test each one with

observational data. And, indeed, a lot of progress have been made in this direction

leading to a selection of observationally competitive theories of DE [18, 29–35]. However,

the number of viable theoretical models may, in principle, also be quite large and testing

new models is often taxing and computationally expensive. Theory-agnostic frameworks,

on the other hand, offer a refreshing take to studying DE phenomenology [36–40], and is

the direction to be considered in this work. Adding new substance to this approach, it

was recently shown how modified gravity can lead to preferred directions in the parameter

space when viewed as dynamical DE [41].

Parametric approaches in cosmology are well known to be sourced by proposals of new

physics such as modified gravity and dark matter or DE models. Instead, nonparametric

approaches offer a new way by which a physics independent setup can be established

where elements in a data set are related together statistically. Thus, instead of using

data sets to fit an a priori model, we now use observational data to train a statistical

model to eventually offer reconstructions of cosmological functions from which cosmo-

2



logical parameters can be inferred. In this work, we consider a joint parametric and

nonparametric statistical analysis of late-time cosmological observations [42–45]. This

naturally ties in with the theme of theory-agnostic frameworks as both approaches can be

implemented without specifying a cosmological model. We look at DE in light of recent

data using both implementations, and analyze whether there are quantifiable departures

from the ΛCDM model that emerge regardless of the stark differences of the methods

applied. Our goal is to therefore establish a baseline where a sensible assessment of both

can be made, and, most importantly, to draw conclusions about the nature of DE from

both methods.

For our parametric analysis (Section 2.2), we consider a form of the DE function

[X(z) = ρDE(z)/ρDE(0)] in terms of a set of free parameters to be constrained using

observational data [46–50]. This is an alternative to the traditional parametric methods

beginning with the DE equation of state (DE EoS) w(z) [51, 52] but with the advantage

of better preserving the dynamical information in DE specifically since the luminosity

distance is two integrals away from w(z). Once the best fit is obtained, we reconstruct

the DE phenomenological functions such as X(z) and the DE equation of state (DE EoS)

which quantify the deviation of DE from otherwise being a stale, constant Λ. We invoke

both quadratic and cubic parametrizations of the DE function that have been studied

recently in Ref. [53].

On the other hand, we tackle the problem of elucidating the nature of DE by using

Gaussian processes (GP) [54] (Section 2.3), our representative nonparametric approach

that utilizes a covariance function (or the kernel) that relates observable points in the

data to make predictions on an entire range of points. This method has been widely

used in cosmology [55–73] principally because it is data-driven and makes no assumption

about the underlying cosmological model.

The overall motivation of this work is then this. Given the results obtained with both

parametric and nonparametric approaches, we compare them and analyze the trends ob-

tained for each method. This part is interesting because it can shed some light on DE

dynamics if the features found when using GP match the ones obtained with the para-

metric forms. In addition, we employ four different H0 priors reported in the literature

[10, 74–76] that represent the current Hubble tension. In this way, our results may also
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add further insight on the current tension by analyzing its impact on DE evolution.

The rest of this paper proceeds as follows. We introduce the observational data under

study and briefly review both parametric and nonparametric methods to be considered

(Section 2). Then, we discuss our main results jointly coming from parametric and

nonparametric analyses. First, using the base Hubble data, we discuss two phenomeno-

logical functions capable of describing dynamical DE, a normalized DE density (Section

3.1) and a compactified DE equation of state (Section 3.2). We then extend the analysis

by including supernovae observations (Section 4) and put together our constraints on the

DE equation of state in Table 2 (Section 5). We summarize our work in Section 6 and

pave the road for further studies on the subject. Our computations are transparently

presented as jupyter notebooks and can be downloaded from our GitHub repository1.

2. Statistical analysis of cosmological data

We introduce the data sets that form the core of our study. Then, we review model-

independent, parametric and nonparametric approaches to studying DE evolution.

2.1. Late-time cosmic data

We consider measurements of the Hubble function H(Z) at a number of redshifts Z

from cosmic chronometers (CC) and baryon acoustic oscillations (BAO). The CC data

set consists of 31 data points [45, 77–81] obtained through a differential aging method

involving adjacent and passively evolving galaxies. This relies on measurements of the

temporally adjacent galaxies’ ages and redshifts through which the Hubble function at a

redshift z = Z can be approximately obtained as H(z) = ȧ/a ∼ (∆z/∆t) / (1 + z). The

second part of this Hubble data, namely BAO, comes from fluctuations of the baryon

density in the early Universe which leave observational imprints on the sky often referred

to as standard rulers. The BAO directly measures the combination H(z)rd where rd

is the radius of the sound horizon during baryon drag. This additionally relies on the

ΛCDM model which sets the scale of the sound horizon (rd = 147.74 Mpc) during baryon

drag and supplements 26 more points to the Hubble data [82–93]. The compiled Hubble

1Link to GitHub here: https://github.com/reggiebernardo/notebooks.
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data from CC and BAO form the base of our study and is also important for establishing

a sensible assessment that transcends the technical differences between parametric and

nonparametric approaches.

For this paper, we do not take into account the recently proposed covariance matrix

of the CC [94], but rather we consider only uncorrelated points at various redshifts often

considered for parametric and nonparametric analyses of the expansion data. Obviously,

however, this full covariance matrix should be considered in a future work building on

this preliminary assessment. The expansion data used in this work is presented on Table

A.3.

We additionally take into account the 1048 supernovae (SNe) type Ia observations

using the Pantheon data set [12]. This provides a measurement of the supernovae appar-

ent magnitudes at their brightest states and comes with a full covariance matrix relating

the measurements at various redshifts ranging from 0.01 < z < 2.3. We also make use

of the SNe measurements of E(z) of the CANDELS and CLASH Multi-Cycle Treasury

data (MCT) [95]. This compression of the Pantheon data in terms of the normalized

expansion function is utilized for the GP which together with an H0 prior can be used

to reconstruct H(z) = H0E(z). We do so by using the covariance matrix of the samples

and considering only five out of six points due to the non-Gaussian nature of the last

point (which makes it incompatible with the GP) [59, 65]. When considering the SNe

observations, we marginalize analytically over the nuisance parameter, which in this case

is the SNe absolute magnitude, as detailed in Ref. [96]. The H0 priors are then treated

together with the SNe observations in statistically the same manner as with only the

base Hubble data.

The redshift distribution of the base Hubble data (Table A.3) and SNe observations

considered in this work is shown in Figure 1(a). These data sets both take on the form

of a Gamma distribution [97].

The use of priors on the Hubble constant H0 helps to reduce the uncertainties in the

reconstruction. Also, performing the statistical analysis with different H0 priors makes

the results reflective of any possible influence from the Hubble tension. Keeping this in

mind, we consider three priors on H0 that have been reported in the literature, namely

the Riess (R21) prior which is HR21
0 = 73.04±1.04 km s−1 Mpc−1 [76], the Anand (A21)
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(a) (b)

Figure 1: (a) Redshift distributions of the base Hubble data coming from CC and BAO, and SNe

observations. (b) H0 priors considered in this paper: HP18
0 = 67.4 ± 0.5 km s−1Mpc−1, HTRGB

0 =

69.8± 1.9 km s−1Mpc−1, HA21
0 = 71.5± 1.8 km s−1Mpc−1, and HR21

0 = 73.04± 1.04 km s−1Mpc−1.

prior HR21
0 = 71.5 ± 1.8 km s−1 Mpc−1 [75], the Carnegie-Chicago (TRGB) Hubble

prior HTRGB
0 = 69.8 ± 1.9 km s−1 Mpc−1 [74], and the latest value from the Planck

collaboration (P18) HP18
0 = 67.4± 0.5 km s−1 Mpc−1 [10]. These H0 values illustrated

in Figure 1(b) represent the current Hubble tension and are considered in this analysis

to shed more light on this intriguing puzzle [98].

We emphasize that the usage of parameter priors such as those on H0 compromise

the notion of “model-independence” depending on which assumptions were considered to

obtain the priors in the first place. The local measurements of the expansion rate (R21,

A21, and TRGB) for example are arguably cosmology-independent unlike the Planck

prior (P18) which necessarily assumes the ΛCDM model. At the same time, these local

distance-ladder values differ in terms of how the supernovae were calibrated, with HR21
0

being calibrated using cepheids while HTRGB
0 using the tip of the red giant branch.

HA21
0 is a recent reanalysis of the TRGB prior which lead to a slight positive shift in the

estimate of H0. On the other hand, considering these different measurement of H0 in

compromised model-independent analyses adds insight as to how the Hubble tension may

influence the estimates of cosmological parameters. We hope that such interplay between

different H0 values and other cosmological parameters can eventually trace a resolution

to the Hubble tension. Obviously, given the significance of H0 (in setting cosmic distance

scales) and the Hubble tension, no method of cosmological analysis can be ignored.
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On a different note, to keep the parametric and nonparametric treatments identical,

we consider the matter fraction prior (Ωm0h
2 = 0.1430 ± 0.0011) [10] which is directly

measured from the cosmic microwave background using the peak structure in the damping

tail. Therefore, even though the methods are intrinsically different, they stand on at

least a common ground in this analysis, which is the Planck prior on combination of the

matter density and the present expansion rate. This is particularly needed for the GP

since unlike parametric methods, the GP does not estimate parameters outside of the

information it is provided, but rather it reconstructs a particular data set which it is

given. We discuss the methods in detail in the following sections to make this clearer.

2.2. Parametric methods

A direct probe to test if a cosmological constant Λ drives the evolution, consists in

considering an arbitrary function X(z), in the range of the data. As far as we know,

this was first proposed in Ref. [46] assuming a linear interpolation between redshifts,

and also a quadratic one in Refs. [47, 48]. The results of all these first explorations were

that the DE density showed a slight increase with redshift, being consistent with Λ at

2σ. With more and higher quality data, the problem was revisited in Ref. [49] where a

quadratic interpolation was used, with data from supernovae, gas mass fraction in galaxy

clusters, BAO, and the cosmic microwave background. Surprisingly, the trend obtained

was opposite to the previous one, indicating a DE density that decreases with redshift,

even giving negative values for z > 1.5 at 1σ (which is consistent with Refs. [99, 100]).

The extension of this work in light of more recent data is presented in Ref. [53], where

evidence for DE evolution using a quadratic and also a cubic interpolation was studied.

The evolution of the dark energy sector enters into the evolution of the cosmology

through the normalized Hubble parameter E(z) = H(z)/H0 through the Friedmann

equation

E(z)2 = Ωm0(1 + z)3 + (1− Ωm0)X(z) , (1)

where a flat background is assumed. The X(z) parametrization then enters all facets of

the cosmological evolution. In particular, the luminosity distance is modified through

the changes in the evolution of the reduced Hubble parameter in

dL(z) =
c(1 + z)

H0

∫ z

0

dz′

E(z′)
. (2)
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Thus, we can contain any deviations in the data from a cosmological constant in the

evolution of the X(z) parameter. In the work that follows, we aim to explore the space

of realisations of X(z) through parametric and nonparametric techniques.

For the quadratic parametrization, we use

X(z) = x0
(z − z1)(z − z2)

(z0 − z1)(z0 − z2)
+ x1

(z − z0)(z − z2)

(z1 − z0)(z1 − z2)
+ x2

(z − z0)(z − z1)

(z2 − z0)(z2 − z1)
, (3)

where x0, x1 and x2 are constant values of X(z) evaluated at z0, z1 and z2 where

we assume that z2 > z1 > z0. Setting X(z = z0 = 0) = 1 by definition, and using

x1 = X(zm/2) and x2 = X(zm) with zm being the maximum redshift in the data set,

Eq. (3) reduces to

X(z) = 1 + (4x1 − x2 − 3)

(
z

zm

)
− 2 (2x1 − x2 − 1)

(
z

zm

)2

. (4)

It is worth noting that when all xi = 1, then X(z) = 1, or rather, that the model

reduces to ΛCDM in this limit. Substituting Eq. (4) into the Friedmann equation and

then sampling over the parameter space with the Hubble data, we obtain the posteriors

shown in Figure 2.

It can be seen from this that the parameters are influenced by the choice of prior on

H0. This motivates us to further consider them in the analysis to make conclusions that

would be impervious to the Hubble tension. The most notable feature of Figure 2 is

that the posteriors of x1 and x2 continue to deviate further from ΛCDM (x1 = x2 = 1)

for increasing values of H0. Granted, the reason for this hierarchy maybe that because

the Planck Ωm0h
2 prior is used. However, even for the Planck prior, the measured

(x1, x2) turns out to be x1 = 0.8 ± 0.1 and x2 = −0.6 ± 0.6, which disfavours ΛCDM

(x1 = x2 = 1) at 95% confidence. Nonetheless, these measured values together with their

covariances can be used to reconstruct the shape of X(z) and the DE equation of state.

Also, Figure 2 shows that the value of Ωm0h
2 is fairly constant irrespective of the value

of priors on H0, while x1 and x2 seem to be correlated giving lower and higher values

with respectively higher and lower H0 priors. As one would expect the value of H0 varies

with the value of priors on this parameter. Furthermore, having fixed Ωm0h
2 using the

cosmic microwave background data, it can be seen that the tension in H0 also reflects

as a tension in the matter fraction Ωm0 in the opposite direction in parameter space.
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Figure 2: The sampled posteriors of the parameters (H0,Ωm0, x1, x2) in quadratic parametrized DE for

each H0 prior: HP18
0 = 67.4 ± 0.5 km s−1Mpc−1, HTRGB

0 = 69.8 ± 1.9 km s−1Mpc−1, and HA21
0 =

71.5± 1.8 km s−1Mpc−1, and HR21
0 = 73.04± 1.04 km s−1Mpc−1. These were obtained with the base

Hubble data (CC + BAO).

This will be discussed in Section 3. But, for the meantime, we move on a step further to

generalize this parametric approach.

Following the same idea, for a cubic parametrization we get

X(z) = 1 +
1

2
(−11 + 18x1 − 9x2 + 2x3)

(
z

zm

)
− 9

2
(−2 + 5x1 − 4x2 + x3)

(
z

zm

)2

+
9

2
(−1 + 3x1 − 3x2 + x3)

(
z

zm

)3

.

(5)

As we did before, we set z0 = 0 in such a way that x0 = X(z = z0 = 0) = 1, and we

set z3 = zm as the maximum redshift in the data. The other points are z2 = 2zm/3

and z1 = zm/3. In summary, the free parameters are x1 = X(z1), x2 = X(z2), and

x3 = X(z3). As before, the ΛCDM limit can be seen to be x1 = x2 = x3 = 1. Here, the

results of the sampling are shown in Figure 3.
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Figure 3: The sampled posteriors of the parameters (H0,Ωm0, x1, x2, x3) in cubic parametrized DE for

each H0 prior: HP18
0 = 67.4 ± 0.5 km s−1Mpc−1, HTRGB

0 = 69.8 ± 1.9 km s−1Mpc−1, and HA21
0 =

71.5± 1.8 km s−1Mpc−1, and HR21
0 = 73.04± 1.04 km s−1Mpc−1. These were obtained with the base

Hubble data (CC + BAO).

Clearly, again, we see the influence of the choice of H0 on the parameters of the model.

The hierarchy of deviation from the ΛCDM model can also be seen with increasing values

of H0, i.e., the deviation of the posteriors of x1, x2, and x3 away from x1 = x2 = x3 = 1

increases in the order P18, TRGB, A21, and R21, which is most poignant in the x3

parameter. As in the quadratic case, this can be traced to the use of the Planck prior

on the combination Ωm0h
2 of the matter fraction and the Hubble constant. Appendix

B shows the distribution of Ωm0h
2 confirming that the Planck prior on this combination

is respected in both the quadratic and cubic methods during the Bayesian analysis. But
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then again, the inevitable is that even forHP18
0 , a deviation from ΛCDM cannot be turned

away, particularly with the marginalized posterior of x3 = −0.9 ± 0.5 excluding x3 = 1

at more than 2σ. Also, we again see the correlation feature for the xi parameters, while

the value of Ωm0 reflects the tension on H0 having fixed Ωm0 by the cosmic microwave

background damping tail. We shall see this deviation again later by reconstructing the

X(z) function itself and the DE equation of state.

A noteworthy observation also emerges. In both Figures 2 and 3, the Hubble tension

is practically only influencing the matter density and not the dark energy parameters,

i.e., there are no tensions in xi. This means that our conclusions on dark energy evolution

would be transparent to the Hubble tension, motivating our use of the various H0 priors.

To conclude this section, we note that polynomials of degree higher than three are not

considered in this work since they do not perform significantly different using these data

sets. This was discussed in Ref. [53] where higher order polynomial based parametriza-

tions of DE were shown to be disfavored in terms of statistical performance due to

additional free parameters. This provides a natural cutoff for which only certain models

are favoured. We also emphasize that our conclusions hold regardless of the choice of zm

[53].

2.3. Nonparametric reconstruction methods

We provide a brief introduction to nonparametric reconstruction methods and the

GP approach in particular [101, 102].

Parametric descriptions of cosmological expansion require a fundamental understand-

ing of the gravitational and matter content of the Universe, such as in ΛCDM. On the

other hand, nonparametric techniques provide a physics-independent avenue by which

cosmological parameters can be inferred from the reconstructions with a particular con-

fidence in a certain range.

Parametric descriptions of cosmological expansion require a fundamental understand-

ing of the gravitational and matter content of the Universe, such as in ΛCDM. On the

other hand, nonparametric techniques provide a physics-independent avenue by which

cosmological quantities can be inferred from the reconstructions with a particular con-

fidence in a certain range. This is important so that we can infer the evolution of

cosmological parameters without the need of a prescribed physical description, which is
11



very important in assessing the performance of cosmological models [59, 103, 104]. Non-

parametric reconstruction methods are based purely on learning how elements in a data

set are connected together in a statistical way. This requires some approach in which

a statistical setup is established. These statistical models are constructed to mimic the

behaviour of the natural process from which the data sets are being taken. In this case,

we are probing expansion data and considering the GP reconstruction method. GP relies

on using a covariance function, or kernel, which represents the way in which the data set

elements are related together. The training process is an iterative one in which the kernel

hyperparameters (non-physical parameters) are progressively approximated by maximiz-

ing the reconstruction likelihood. The kernel can then be used to reconstruct the entire

parameter evolution for some limited range (which is normally limited to the range of

the data set under consideration).

The GP is an emerging scientific tool in cosmology for the reconstruction of a data

set primarily due to its objectivity in making predictions even without a cosmological

model [55, 56, 105]. This is a particularly refreshing change of view in analyzing data

in light of the cosmological tensions where the very foundations of the field such as the

cosmological principle and general relativity are being closely reexamined. Moreover, the

ease with which the GP algorithm can be implemented makes it an even more attractive

approach. This is summarized in three equations (Eqs. (6), (7), and (8)) which we turn

to next.

Consider an observation of a function H(z) with a covariance matrix C of size N ×N

where N is the number of points in the data. In terms of a covariance function K (z∗, z̃∗),

also often referred to as the kernel, relating the function values at coordinates z∗ and

z̃∗ 6= z∗, the mean and covariance of the GP reconstruction of the nth derivative of H(z)

are given by

〈H∗(n)〉 = K(n,0) (z∗, Z) [K (Z,Z) + C]
−1
H (Z) , (6)

and

cov
(
H∗(n)

)
= K(n,n) (z∗, z∗)−K(n,0) (z∗, Z) [K (Z,Z) + C]

−1
K(0,n) (Z, z∗) , (7)

respectively, where Z stands the redshifts in the observation and f (n,m)(x, y) refers to

the nth partial derivative of a function f with respect to its first argument x and the mth

12



partial derivative with respect to the second argument y. The kernel is then optimized

for the input data (or the observation) H(Z) by letting its internal hyperparameters θ be

determined through the marginalization of the likelihood function L = p (H|Z, θ) where

lnL = −1

2
H (Z)

T
[K (Z,Z) + C]

−1
H (Z)− 1

2
ln |K (Z,Z) + C| − N

2
ln (2π) . (8)

In practice, optimization is usually taken as an efficient substitute to marginalization.

Eqs. (6–8) therefore reflect the simplicity of the GP algorithm and why it is often pursued

for nonparametric reconstruction not only in cosmology but in others fields as well.

Figure 4 shows the GP reconstructed Hubble function provided the compiled Hubble

data from the CC and BAO. The GP reconstructed evolution of H(z) provides reasonable

confidence levels for the whole range of redshifts of interest. Moreover, in the inset, we

show how the different priors on H0 affect the reconstructed H0 values as well as its

neighboring low redshift vicinity.

Figure 4: The GP reconstructed Hubble function per H0 prior: HP18
0 = 67.4 ± 0.5 km s−1Mpc−1,

HTRGB
0 = 69.8 ± 1.9 km s−1Mpc−1, HA21

0 = 71.5 ± 1.8 km s−1Mpc−1, and HR21
0 = 73.04 ± 1.04 km

s−1Mpc−1. The colored and hatched parts show the region within 2σ of the GP. Hatches: (P18: “−”),

(TRGB: “/”), (A21: “|”), (R21: “\”). The inset shows the low redshift region z ∈ (0, 0.3) of the GP

reconstructed Hubble function.

This illustrates the GP algorithm. It predicts the intermediate points within a data

set unlike the parametric approaches which make best estimates of the parameters. The

GPs shown in Figure 4 also clearly reflect the Hubble tension coming from the choice

of an H0 prior. The inset exemplifies this by showing the low redshift region of the

reconstruction.
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Understandably, the GP also comes with quirks, the most notable of these are overfit-

ting [104], underestimating uncertainties [106], and kernel selection [70, 107]. In addition,

it has been shown that features of the reconstruction may depend on the hyperparam-

eter priors for certain data sets [108]. For the data set at hand, we optimized the GP

starting with a common hyperparameter length of 2 units and an amplitude of 130 units.

Later, we shall witness this overfitting in our assessment of the GP and the parametric

methods in the next section. On the other hand, the underestimated uncertainties can

be seen in Figure 4 where clearly the reconstructed function is generally narrower than

the error bars of the data points. The kernel selection problem was also tackled in Refs.

[70] by employing evolutionary algorithms to reduce prejudice in choosing a kernel for a

specific problem. In fact, in Figure 4, we are using the Matern(ν = 5/2) kernel which was

singled out as preferable by the evolutionary algorithms when using Hubble data from

cosmic chronometers and supernovae. We shall continue to rely on this kernel throughout

this paper but also note that different kernel choices only lead to statistically consistent

results [70].

3. Statistical reconstruction and evidence of dynamical dark energy

We present our main results, hinting at a preference for a dynamical DE scenario,

derived from both parametric and nonparametric analyses of observations in the late

Universe.

3.1. Dark energy from Hubble data

We present the reconstructed DE density and assess the performance of each approach

implemented in the reconstructions using various statistical metrics.

Figure 5 shows the normalized DE density X(z) obtained using the quadratic and

cubic parametric methods as well as the GP for each H0 prior. The ΛCDM curves appear

as horizontal dotted line at X = 1.

This reveals that regardless of theH0 prior, the concordance ΛCDM model is generally

supported at low redshifts. However, the situation becomes more nuanced at higher

redshifts where the posteriors in all of the methods begin to slip pastX(z) ∼ 1. Generally,

it can be seen that the deviation from ΛCDM happens to be more observable at higher
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(a) HP18
0 = 67.4± 0.5 km s−1Mpc−1 (b) HTRGB

0 = 69.8± 1.9 km s−1Mpc−1

(c) HA21
0 = 71.5± 1.8 km s−1Mpc−1 (d) HR21

0 = 73.04± 1.04 km s−1Mpc−1

Figure 5: The reconstructed normalized DE per method derived from the base Hubble data (CC +

BAO) for each H0 prior: (a) P18, (b) TRGB, (c) A21, and (d) R21. Legends: “quad” and “cubic”

stands for the quadratic and cubic parametrized DE, respectively; “GP” for the GPs. The colored and

hatched regions show the 2σ confidence interval of the reconstructions. Hatches: (quad: “−”), (cubic:

“|”), (GP: “/”). The inset zooms in on the low redshift region z ∈ (0, 0.3).

redshifts for the larger H0 priors. For z & 1.5, the quadratic method disfavours the

ΛCDM line from within its 2σ region. The cubic method and the GP also supports this

beyond 2σ-exclusion of ΛCDM, albeit starting at a higher redshift z ∼ 2.3 where the

earliest observational data can be found. The influence of the H0 priors also come into

play at low redshifts (z . 0.3). The insets of Figure 5 show that the cubic method and

the GP even excludes ΛCDM at more than 2σ, with the exception of the HP18
0 prior. The

exception may be due to the use of a matter fraction prior coming from Planck; however,
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regardless of this, even the reconstruction of X(z) coming from the HP18
0 prior suggests

a deviation from the concordance model at the higher redshifts. This becomes even more

notable considering that the Planck constraints assume a constant Λ dark energy to

support the cosmic acceleration, yet the late Universe spells an inconsistency with this

assumption. Overall, all three methods, despite their intrinsic differences, seemingly hint

at dynamical DE, or rather an evolving X(z) as shown in Figure 5. It should be noted

that this conclusion holds regardless of the choice of H0 prior, and despite the fact that

a minority of the points in the data set are anchored on the ΛCDM model.

A notable characteristic of DE which appears in Figure 5 is that X(z) < 0 is teased by

all reconstructions. This is supported by other recent reports using different approaches

[50, 100, 109]. Imposing a hard prior X(z) > 0 would instead put a limit to the constrain-

ing capability of data-driven approaches as the theory space which they cover becomes

narrower. We draw the reader to the last paragraph of the introduction as well as Ap-

pendix A of Ref. [50] for an elaboration of this point. The possibility of non-positive

energy densities allows data-driven approaches to flourish by covering a wider range of

phenomenology permissible in modified gravity.

We also highlight the interesting difference between the low redshift behavior of the

GP and the parametrized approaches as can be seen in the insets of Figure 5. In both

parametrized methods, it can be seen that as one goes closer to z = 0, the poste-

rior shrinks to an infinitely narrower size. This can be traced from the fact that these

parametrized methods are an expansion about the redshift, i.e., X(z) ∼ 1 + az + bz2 +

O(z3) for constants a, b, · · · . The GP, on the other hand, does not share this feature,

and continues to be able to make a reasonable prediction for low redshifts even down to

z = 0 since X(z = 0) = 1 by construction.

The robustness of this result stands on the observation that the intrinsically contrast-

ing parametric and nonparametric approaches somehow agree in their macrophysical im-

plications. Echoing our sentiments in the introduction, each method is unequivocally

challenged in its own way, likely leaving traces of nonphysical artefacts in their recon-

struction, but when all agree on a conclusion despite this difference, there could at least

be a physical picture emerging that transcends such details. This hints to an evolving

dark energy picture in this work.
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To improve our confidence in their performance, we move on to assess each method.

We consider the χ2 measure in order to assess the quality of the reconstruction together

with other measures, where

χ2 =
∑
z

(
Hrec(z)−Hobs(z)

σobs(z)

)2

, (9)

where Hrec(z) is the reconstructed Hubble function while Hobs(z) and σobs(z) are the

mean and uncertainty of the data. This statistic (χ2) measures how far away a recon-

struction is in units of the uncertainty of the data and has the particular advantage for

this work that it can be defined for both parametric and nonparametric approaches. This

would not be true for the information criterion and the Bayes factor which are associ-

ated with parametric methods but do not make sense for a nonparametric analysis. A

respectable χ2 would be close to the size of the data N while overfitting in a parametric

sense corresponds to χ2 < N .

We further consider two statistical measures which have been used previously to

compare nonparametric reconstruction methods [104]. These are given by

D =
∑
z

(
Hrec(z)−Hobs(z)√
σrec(z)2 + σobs(z)2

)
, (10)

and

γ2 =
∑
z

(
Hrec(z)−Hobs(z)√
σrec(z)2 + σobs(z)2

)2

, (11)

where σrec(z) is the uncertainty in the reconstruction. A crucial difference between the

familiar χ2 and the statistics D and γ2 is how they treat the uncertainties in the recon-

struction. Notably, D and γ2 consider the uncertainty in a reconstruction on an equal

footing with the uncertainty in the data, but D can be positive or negative (depending

on whether the data points lie mostly above/below the best fit) while γ2 is strictly pos-

itive. Most importantly, all three statistics χ2, D, and γ2 are capable of being defined

for parametric and nonparametric methods, which make them suitable for this study.

Generally speaking, the smaller χ2, D, and γ2 are, the better a reconstruction is.

The statistics χ2, D, and γ2 measuring the deviation for each method from the Hubble

data are presented in Table 1. A clear, unequivocal result is that each of the theory-

agnostic implementations outperforms the ΛCDM model. This holds independent of the
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choice of an H0 prior and can be observed for each of the metrics where the ΛCDM

values always bring the largest deviation throughout. Understandably, this may also be

viewed as unsurprising, considering the fact that the parametric methods enjoy more

parameters than ΛCDM while machine learning algorithms such as the GP are prone to

overfitting.

Table 1: An assessment of the performance of each method using the statistics given by Eqs. (9), (10),

and (11) with the Hubble data from cosmic chronometers and baryon acoustic oscillations. The Planck

prior for the matter fraction Ωm0h2 = 0.1430± 0.0011 was considered throughout [10].

H0 prior Method/Model χ2 D γ2

P18

ΛCDM 37.6 −3.11 30.7

Parametric (quadratic) 30.6 −3.06 7.01

Parametric (cubic) 27.0 −3.08 14.3

Nonparametric (GP) 26.6 −2.19 25.2

TRGB

ΛCDM 38.6 1.27 24.6

Parametric (quadratic) 32.1 −2.28 6.15

Parametric (cubic) 26.1 −1.69 10.8

Nonparametric (GP) 26.1 −1.03 24.4

A21

ΛCDM 42.8 4.29 25.2

Parametric (quadratic) 33.8 −1.84 6.99

Parametric (cubic) 25.7 −1.13 11.3

Nonparametric (GP) 25.8 −0.25 24.0

R21

ΛCDM 60.0 15.5 34.8

Parametric (quadratic) 36.4 −0.97 8.16

Parametric (cubic) 25.3 −0.72 13.3

Nonparametric (GP) 25.6 0.53 23.6

Recalling that our Hubble data consists of N = 57 points coming from CC (31 points)

and BAO (26 points), a good χ2 can be recognized as χ2 ∼ 57. Table 1 therefore shows

which of the methods overfit the data. However, it must be pointed out that the best
18



fit ΛCDM model also tends toward this direction for any of the H0 priors. On the other

hand, all of the model-independent approaches predict a χ2 < χ2
ΛCDM < N where χ2

ΛCDM

is the corresponding value from the best fit ΛCDM model. In terms of relative sizes of

χ2, we find that for the quadratic method, χ2
P18 < χ2

TRGB < χ2
R21 < N , while for both

the cubic method and the GP, χ2
R21 < χ2

TRGB < χ2
P18 < N . It is also worth noting that

the χ2 for the quadratic method is generally larger than those of the cubic method and

the GP which are coincidentally of comparable sizes to within a few percent. It should

be further noted that as far as the χ2 values can be trusted, the results with the cubic

parametrized DE and the GP are less sensitive to the choice of the H0 prior. Extremely

exemplifying this, the |∆χ2| = 22.4 between the P18 and R21 H0 priors within ΛCDM

while the corresponding values are ∆χ2 = 1.70 and 1.00 for the cubic method and the

GP, respectively.

Now, for the statistic D, the general result is that D < 0, implying that the mean of

the data points is larger than the mean of the reconstructions for most of the redshifts

in the data set. Another way of saying this is that most of the data points can be found

above the best fit line. Furthermore, it can be seen that |D| is the smallest for the GP

while the cubic method closely trails behind. The results for γ2 also turn out to be

interesting, suggesting that the quadratic method, the visually less flexible of all three,

performs better than the cubic method and the GP. A more consistent trend for each

method can be observed for γ2, that γ2
quad < γ2

cubic < γ2
GP < γ2

ΛCDM. We remind that γ2

considers the uncertainty of the reconstruction and the data on an equal footing. This

explains the general edge of the parametrized implementations compared to the GP since

most of the data points can be found at the low redshifts where the posteriors of both

quadratic and cubic methods shrink inevitably by design (recall the insets of Figure 5

embodying this feature). Comparing the parametrized methods, the slight edge turned

out to favor the quadratic method which had smaller uncertainties at low redshifts than

the cubic method.

In all this, the highlight is that all of the methods perform better than the ΛCDM

model (Table 1), and that all hint at DE evolution (Figure 5). This is further supported

by reconstructions of a diagnostic function X ′(z) in Appendix C.
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3.2. The compactified dark energy equation of state

Another commonly used measure of DE is its equation of state w(z) = P (z)/ρ(z)

where ρ and P are the density and pressure of DE, respectively. However, one of the

significant challenges pertaining to its reconstruction at higher redshifts is due to the

fact that the DE density ρ(z) changes sign [110], or rather crosses the zero mark, at a

certain redshift z ∼ 1. Consequently, w → ∞ at some point. This physically corre-

sponds to a loss of predictability, blocking our knowledge of DE a few redshifts away.

Computationally, it means that the error bars diverge in the vicinity of a critical redshift

regardless of available computational resources. The compactified DE equation of state

arctan (1 + w(z)) introduced in Ref. [69] was considered to overcome this challenge for

studying DE.

In contrast with the bare w(z), its compactified version arctan (1 + w(z)) easily con-

verges for any redshift and the posteriors can be defined even beyond the region earlier

than when the DE density vanishes. Needless to say, the convergence of a distribu-

tion is very important in order for a computed quantity to have physical meaning. Its

usage in the previous work highlighted the important result that the DE equation of

state tilts further away from a Gaussian posterior for higher redshifts; but most im-

portantly, it points to the fact that the distribution can even be bimodal particularly

within the temporal vicinity of the singularity of w(z). Understandably, this comes with

some statistical quirks, a crucial one being that since the distributions evolve from being

Gaussian at lower redshifts to generally bimodal at higher ones. This is illustrated in

Figure 6 where the distribution themselves are taken from the GP reconstructed com-

pactified DE equation of state at z = 0 and at z ∼ 2.3 with the HP18
0 prior. Taking

in this insight, it was argued in Ref. [69] that the median surrounded by 34.1% of its

probability mass from above and below can be considered as a reasonable generalization

to the Gaussian-anchored mean and sigma statistics.

Figure 6 illustrates this. When the posteriors are reliably Gaussian (e.g., Figure 6(a)),

the median together with 34.1% of the probability mass surrounding it effectively reduces

to the one-sigma probability density. However, when the distribution is bimodal (e.g.,

Figure 6(b)), as is generally the case for the DE equation of state, it can be seen that the

one-sigma region no longer captures the essence of the actual posterior, and even misleads
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(a) (b)

Figure 6: Histograms of the compactified DE equation of state arctan (1 + w(z)) (a) at z = 0 when it

is nearly Gaussian-distributed and (b) at z ∼ 2.3 when it is bimodal. The HP18
0 prior is used for this

reconstruction. The red dashed and black dash-dotted vertical lines show the median and the mean,

respectively. The red ′−′-hatched region shows the 34.1% probability mass surrounding the median

above and below while the blue ′×′-hatched region shows the 1σ confidence interval from the mean

where σ is the standard deviation, or the second moment, of the distribution.

to values outside of the range of the random variable. On the other hand, the median

and its surrounding 34.1% of the probability mass always capture the place in probability

space where the density is localized regardless of the true shape of the distribution and the

domain of the random variable. The standard Gaussian distribution is undoubtably an

excellent approximation to true posteriors in light of the central limit theorem. However,

it may also happen to be an oversimplification in special cases, including the case of the

DE equation of state, where the distribution cannot be accurately described any longer

by only the first two moments. Thus, we rely instead on the generalized statistic of the

median and its surrounding mass in presenting our reconstructed DE equation of state

for each of the methods considered in this work. The results are shown in Figure 7 for

each of the methods and prior H0 values. The ΛCDM curves arise as horizontal dotted

lines.

We find again that the cubic method and the GP more or less share the same shape

in terms of arctan (1 + w(z)) while the quadratic method follows a stiffer trend. This is

likely due to the quadratic method having one less parameter than the cubic case, and so

is naturally the more rigid parametric method. On the other hand, the GP is inherently
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(a) HP18
0 = 67.4± 0.5 km s−1Mpc−1 (b) HTRGB

0 = 69.8± 1.9 km s−1Mpc−1

(c) HA21
0 = 71.5± 1.8 km s−1Mpc−1 (d) HR21

0 = 73.04± 1.04 km s−1Mpc−1

Figure 7: The reconstructed compactified DE equation of state per method derived from the base Hubble

data (CC + BAO) for each H0 prior: (a) P18, (b) TRGB, (c) A21, and (d) R21. Legends: “quad”

and “cubic” stands for the quadratic and cubic parametrized DE, respectively; “GP” for the Gaussian

processes. The colored-hatched regions show the median and the surrounding 34.1% probability mass

above and below. Hatches: (quad: “−”), (cubic: “|”), (GP: “/”).

flexible owing to its roots in machine learning. Most importantly, all of the method

agree about deviating from the ΛCDM model, suggesting a dynamical DE. When using

the HP18
0 prior (Figure 7(a)), this deviation can be seen at low, intermediate, and high

redshifts. However, it becomes particularly noticeable at the higher redshifts close to

the singularity of w(z) when the median of arctan(1 + w(z)) is near zero. Calling this

redshift ztr > 0 corresponding to the transition of the DE density from a positive to a

negative value, i.e., w(ztr) = −1 or arctan (1 + w(ztr)) = 0, the following can be observed

consistently: zquad
tr < zcubic

tr < zGP
tr where zitr is the transition redshift for method i. It
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should be noted that ztr is additionally marked by the largest uncertainty. The trend

extends to the other H0 priors, suggesting that the deviation from ΛCDM goes beyond

the methodology.

The deviation from the ΛCDM model becomes even stronger with an H0 prior further

away from the Planck H0 prior. Figures 7(b-d) show this at the higher redshifts (z & 2)

when the ΛCDM model line is just far away from the mass of the distribution. Interest-

ingly, a deviation is also reflected at redshifts close to z = 0, suggesting that the ΛCDM

model is disfavored by the analyses for the largest HR21
0 prior (Figure 7(d)) for generally

any method. The reason for witnessing this low redshift deviation from ΛCDM for the

larger H0 priors could be due to the use of a common matter fraction prior ΩP18
m0 for

all of the methods. We remind that ΩP18
m0 h

2 was considered in order to make a sensible

assessment that works for both parametric and nonparametric approaches. Without such

a prior, it is not possible to obtain X(z) from the GP which only directly reconstructs

the data set it is given, in this case H(z) data. However, while this may be true, there is

a clear deviation from even within the Planck H0 prior that transcends this reasoning,

e.g., Figure 6(b), the actual distribution of the samples at z ∼ 2.3 for the GP with HP18
0 ,

supports this deviation from the concordance model.

In this analysis, all three approaches agree that there is some deviation from the

standard model which is an intriguing result. This appears for all priors on H0 despite

the reliance on the Planck value of Ωm0h
2 which is obtained from the cosmic microwave

background ΛCDM constraint. As already discussed, these priors have a compromising

impact on the analysis since they may have been obtained in conjunction with some

reliance on ΛCDM cosmology. Nonetheless, the analysis in each case points to a possible

deviation from ΛCDM. More data may reveal further deviations as what may happen as

more prior values are reported in the literature.

4. Extended analysis with supernovae and Horndeski priors

In Sections 3.1 and 3.2, we considered the base Hubble data alone in order to make an

assessment of parametric and nonparametric methods. We now examine the robustness

of the previous results by including supernovae observations in the analysis. This is

done using the full Pantheon sample [12] for the parametric methods and through the
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CANDELS and CLASH Multi-Cycle Treasury (MCT) data [95] for the GP.

In practice, as mentioned in Section 2.1, for the parametric methods, we consider

the 1048 SNe observations from Pantheon [12] and sum up the log-likelihoods for the

Hubble data and SNe in the Bayesian analysis. On the other hand, for the GP, we take

the compressed E(z) measurements from the CANDELS and CLASH MCT [95] and

use the H0 priors to convert this into H(z) = H0E(z) measurements, which are then

subsequently used together with the base Hubble data [59, 65].

The reconstructed normalized DE and compactified DE equation of state are shown

in Figures 8 and 9, respectively, together with the ΛCDM curves being horizontal dotted

lines.

This can be seen to be more or less similar to the reconstructions obtained with only

the base Hubble data, especially for the normalized DE posteriors shown in Figure 8. A

possible explanation to this is that the supernovae apparent brightness are related to the

Hubble function (and by extension to the DE density) by means of an integration. The

same observations made with theX(z) posteriors with the base Hubble data (CC + BAO)

therefore holds in this case including information from supernovae (Pantheon/MCT).

That is, there is a striking deviation from the ΛCDM model of more than 2σ at high

redshifts z & 2.3 for any method and H0 prior, while when using TRGB, A21, and R21

H0 priors, there are also resolvable deviations from the concordance model of about 2σ at

low redshifts z ∼ 0.3. On the other hand, the compactified DE equation of state (Figure

9) turns out to be more sensitive to the addition of supernovae presumably because it

is a functional of both X(z) and X ′(z) (or alternatively, H(z) and H ′(z)). The main

difference can be seen with respect to the cubic method and the GP posteriors. Whereas

both methods generally agreed in the shape, this time with the inclusion of the SNe data

set, part of the cubic method posteriors can be seen fall within the corresponding GP

posteriors. This again holds independent of the choice of the H0 prior and also preserves

the order zquad
tr < zcubic

tr < zGP
tr of the transition redshift.

The overall picture from this is that the deductions that were made in the previous

sections about the dynamical nature of DE still hold, or even strengthened, with the

inclusion of supernovae observations. Corresponding plots of a diagnostic function X ′(z)

supporting the same results are shown in Appendix C.
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(a) HP18
0 = 67.4± 0.5 km s−1Mpc−1 (b) HTRGB

0 = 69.8± 1.9 km s−1Mpc−1

(c) HA21
0 = 71.5± 1.8 km s−1Mpc−1 (d) HR21

0 = 73.04± 1.04 km s−1Mpc−1

Figure 8: The reconstructed normalized DE density per method derived from the base Hubble data

(CC + BAO) and supernovae observations (Pantheon/MCT) for each H0 prior: (a) P18, (b) TRGB, (c)

A21, and (d) R21. Legends: “quad” and “cubic” stands for the quadratic and cubic parametrized DE,

respectively; “GP” for the Gaussian processes. The colored-hatched regions show the 2σ-region of the

reconstructions while the insets reveal a magnified view of the low redshift region z ∈ (0, 0.3). Hatches:

(quad: “−”), (cubic: “|”), (GP: “/”).

Now, we consider for further insight the inclusion of a Horndeski model that is com-

plemented by the GP and by design constructed to match the late-time data [69]. The

gravitational action of theory is given by [22]

SH =

∫
d4x
√
−g
(
K(φ,X)−G(φ,X)2φ+

M2
Pl

2
R+ · · ·

)
, (12)

where gab is the metric, g is its determinant, R is the Ricci scalar, M2
Pl = c4/ (8πG), and

φ is the scalar field. We refer to the functions K and G as the k-essence and braiding po-

25



(a) HP18
0 = 67.4± 0.5 km s−1Mpc−1 (b) HTRGB

0 = 69.8± 1.9 km s−1Mpc−1

(c) HA21
0 = 71.5± 1.8 km s−1Mpc−1 (d) HR21

0 = 73.04± 1.04 km s−1Mpc−1

Figure 9: The reconstructed compactified DE equation of state per method derived from the base Hubble

data (CC + BAO) and supernovae observations (Pantheon/MCT) for each H0 prior: (a) P18, (b) TRGB,

(c) A21, and (d) R21. Legends: “quad” and “cubic” stands for the quadratic and cubic parametrized

DE, respectively; “GP” for the Gaussian processes. The colored-hatched regions show the median and

the surrounding 34.1% probability mass above and below. Hatches: (quad: “−”), (cubic: “|”), (GP:

“/”).

tentials, respectively. The terms in the ellipses corresponds to conformal coupling terms

and those that change the speed of gravitational waves. This action (12) describes the

most-general curvature-based, scalar-tensor theory with only second-order field equations

[22, 111]. Its teleparallel generalization is also worth noting due to a richer phenomeno-

logical space allowed by a relaxed Lovelock theorem in torsion-based gravity [112–114].

The natural way to proceed from Eq. (12) is to specify the free potentials of the scalar

field, leading to various well studied gravity models, derive the field equations by func-
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tional differentiation, and then study its phenomenological implications. Many progress

have been made in this direction which is making the reasonable trade of functions for

a finite number of parameters to be constrained. Alternatively, in Ref. [69], a different

route was proposed in which the potentials are themselves reconstructed by inverting the

Friedmann equations and utilizing the GP with late-time data sets. We shall see this in

action for the “designer Horndeski” (HDES) model [115].

We briefly describe the details of the HDES model. The reader uninterested in the

derivation may skip ahead. We go about by starting with the modified Friedmann equa-

tions of kinetic gravity braiding2,

3H2 = ρ−K(X) + 2XKX + 3Hφ̇2GX , (13)

2Ḣ + 3H2 = −P −K(X) + 2Xφ̈GX , (14)

and the scalar field equation,

φ̈
(
−φ̇
(

3H
(
GXX φ̇

2 + 2GX

)
+KXX φ̇

)
−KX

)
−3φ̇

(
GXḢφ̇+ 3GXH

2φ̇+HKX

)
= 0 ,

(15)

where the subscripts in the potentials K(X) and G(X) denote differentiation with respect

to X. It is most noteworthy for our purposes that the scalar field equation (Eq. (15))

can be written in terms of a conserved shift current J such that

J̇ + 3HJ = 0 , (16)

where J is explicitly

J = φ̇KX + 3Hφ̇2GX . (17)

In this way, its solution can be written as

φ̇KX + 3Hφ̇2GX =
J
a3
, (18)

where J is an integration constant which we refer to as the shift charge. When the

potentials K and G are provided a priori, as it usually is in the canon approach, the

2KGB is the limit of Horndeski theory (Eq. (12)) when all of the terms in the ellipsis are ignored.

This is a conservative choice nowadays due to the very tight constraint on the speed of gravitational

waves.
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dynamics of the scalar field can therefore be fully identified with the intersection of this

hypersurface (Eq. (18)) with the Hamiltonian constraint (Eq. (13)). However, when

the potentials are unknown, the system can instead be closed by providing the explicit

functional dependence between the Hubble function and the scalar field though a choice

of H(X). This leads to HDES in which the k-essence and braiding potentials can be

shown to be

K(X) = −3H2
0 ΩΛ +

J
√

2XH(X)2

H2
0 Ωm0

− J
√

2XΩΛ

Ωm0
, (19)

and

GX(X) = −2JH ′(X)

3H2
0 Ωm0

, (20)

respectively. This is where an improvement can be made using the GP as the right

hand sides of Eqs. (19) and (20) contain the Hubble function and its derivatives. By

complementing Eqs. (19) and (20) with the GP reconstructed Hubble function, we can

then predict the data-driven shapes of the k-essence and braiding potentials rather than

putting them in beforehand. We refer the reader to Refs. [69, 115] for further details.

We consider as a prior the tracker ansatz X = c0/H(X)n which is motivated in Ref.

[115]. In this functional relation of the scalar field and Hubble function, c0 and n are

constants, with c0 being in units of Hn+2
0 . We proceed in this work with the choices

c0 = Hn+2
0 , n = 1, and J = H0 of the theory constants scaling with local Universe

values. Figure 10 then shows the shape of the scalar field potentials reconstructed with

GP and late-time data.

This shows that the resulting Horndeski model is describing modified gravity since

neither of the potentials are flat (the ΛCDM limit of Horndeski gravity). The potentials

instead monotonically evolve in redshift to a point when both are significantly larger

than their low z values. We should also point out that the reconstructions presented

in Figure 10 reflect only a mild influence of the Hubble constant prior, i.e., the mean

value of one reconstruction is within reasonable confidence intervals of the others. But,

this is due to the potentials being expressed in units of H0 (for numerical convenience).

With this said, obviously, when the units are resumed, the influence of the H0 priors will

become transparent, either pushing the contours up or down depending on the size of

the tension between two H0 values.

To get to the point of this theoretical excursion, the DE equation of state in HDES
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(a) k-essence potential (b) braiding potential

Figure 10: The reconstructed k-essence and braiding potentials of the designer Horndeski model(
c0 = Hn+2

0 , n = 1,J = H0

)
derived from the base Hubble data (CC + BAO) and SNe (Pan-

theon/MCT) for each H0 prior. The colored and hatched regions show the 2σ confidence interval

of the reconstructions. Hatches: (P18: “−”), (TRGB: “/”), (A21: “—”), (R21: “\”).

can also be calculated in the following way. In kinetic gravity braiding, this is given by

wφ =
−K +

√
2XẊGX

K − 2X
(
KX + 3

√
2XH(X)GX

) . (21)

Substituting the HDES solution to Eq. (21) leads to

wφ = −1 +
J
√

2X
(
H(z)2 −H2

0 ΩΛ

)
3H4

0 Ωm0ΩΛ
− 2J

√
2X(1 + z)H(z)H ′(z)

9H4
0 Ωm0ΩΛ

. (22)

Using Eq. (22), we can then see how our reconstructed scalar field potentials can be

used to predict the shape of the DE equation of state within this data-driven Horndeski

model. We compare the result with our previous reconstructions using GP and the cubic

method in Figure 11.

There are several interesting results that can be drawn from these plots. First is

that within HDES, the DE equation of state turns out to be approximately Gaussian

distributed for most redshifts, unlike its theory-agnostic counterparts. Second, the DE

equation of state with HDES does not contain a singularity which threatens its conver-

gence for any redshift. Third, and most importantly, the w(z) for HDES can be seen

to be almost entirely different in shape from the ones constructed without a Horndeski

model. This sounds counter-intuitive taking into consideration that the DE equation of

state should represent the macrophysical state of DE, and not whichever microphysical
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(a) HP18
0 = 67.4± 0.5 km s−1Mpc−1 (b) HTRGB

0 = 69.8± 1.9 km s−1Mpc−1

(c) HA21
0 = 71.5± 1.8 km s−1Mpc−1 (d) HR21

0 = 73.04± 1.04 km s−1Mpc−1

Figure 11: The reconstructed compactified DE equation of state for the GP, GP with designer Horndeski,

and cubic parametric method using the Hubble data (CC + BAO) for each H0 prior: (a) P18, (b)

TRGB, (c) A21, and (d) R21. The colored-hatched regions show the median and the surrounding 34.1%

probability mass above and below. Hatches: (GP: “−”), (GP + HDES: “|”), (cubic: “/”).

paradigm underlies the observation. This is instead unique in HDES due to how its

equations were formulated beginning with a prior functional relation H(X). The same

cannot be said for other Horndeski inversion methods such as in quintessence and the

tailoring Horndeski model where the exact DE equation of state emerges as in the lone

GP reconstruction [69]. This is the also reason why HDES was singled out in this work.

We must also remind that the reconstruction of the HDES potentials and DE equation

of state depends on prior values of its internal theory parameters c0, n, and J . While

there is reason to take these constants to scale with the late Universe, as we did above,

different values of these constants are expected to lead to different results.
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We emphasize that the GP-assisted HDES results were obtained with the same ex-

pansion data considered as the other approaches. The difference is that now this has

input from field theory. This naturally leads to incompatibility with the ΛCDM model

(as underscored by the nontrivial scalar potentials in Figure 10), but it is anchored on

background cosmological observations. However, its disagreement with the reconstructed

DE EoS from the purely data-driven approaches (as well as ΛCDM) which is shown in

Figure 11 could potentially be a reason to frown upon it. Of course, what this does not

mean is that Horndeski gravity (which contains a vast phenomenology) is ruled out since

HDES is only one of possible scalar-tensor reconstruction methods [69].

To sum up this section, we have strengthened the results of the previous ones by

including supernovae observations. We have also constructed the DE equation of state

in a GP-assisted Horndeski model. In this way, we were able to see the results of an

inherently dynamical DE model from the compromised theory-agnostic ones.

5. Constraints on the dark energy equation of state

We summarize our constraints on the DE equation of state w0 at z = 0 in Table 2.

This parameter is useful in constraining DE as w(z) being anything other than w = −1

at any time or redshift guarantees DE evolution.

Several observations can be made. The first one related to the influence of an H0

prior is that w0 tends to an increasingly negative direction for increasing H0 regardless

of the method, i.e., wR21
0 < wA21

0 < wTRGB
0 < wP18

0 which is reverse to the average

order of the Hubble constant, HP18
0 < HTRGB

0 < HA21
0 < HR21

0 . This is with the

exception of GP-designer Horndeski (HDES) model which we have also included in Table

2 for completeness. Another observation, this time related to the method, is that the

supernovae data has the most effect on the cubic method together with the TRGB, A21,

and R21 H0 priors. This enhanced sensitivity to the addition of data may be due the

cubic method being arguably the most flexible among the three, having a total of five

parameters (including the H0 and Ωm0 priors) to be statistically determined. Obviously,

the cubic method has more parameters than the quadratic method, while the GP has only

two hyperparameters to be optimized. Lastly, we note that the GP and HDES results

are the only ones among all the rows in Table 2 which includes w0 = −1 within 1σ in
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Table 2: Constraints on the DE equation of state at z = 0. H(Z) comprises of the Hubble function

measurements from cosmic chronometers and baryon acoustic oscillations. The columns HP18
0 , HTRGB

0 ,

HA21
0 , and HR21

0 stand for the analysis using the corresponding H0 priors P18, TRGB, A21, and R21.

The Planck prior Ωm0h2 = 0.1430± 0.0011 was considered throughout [10]. For the designer Horndeski

model, c0 = Hn+2
0 , n = 1, and J = H0 were considered.

w0

Method + data set P18 TRGB A21 R21

quad + H(Z) −0.91± 0.04 −0.97± 0.06 −1.03± 0.05 −1.09± 0.04

cubic + H(Z) −1.1± 0.1 −1.3± 0.1 −1.4± 0.1 −1.4± 0.1

GP + H(Z) −0.99± 0.09 −1.1± 0.1 −1.2± 0.1 −1.2± 0.1

quad + H(Z) + SNe −0.92± 0.04 −0.96± 0.05 −0.98± 0.05 −1.04± 0.04

cubic + H(Z) + SNe −1.10± 0.09 −1.13± 0.09 −1.14± 0.09 −1.19± 0.08

GP + H(Z) + SNe −0.99± 0.08 −1.1± 0.1 −1.1± 0.1 −1.2± 0.1

GP/HDES + H(Z) + SNe −1.0± 0.1 −0.9± 0.3 −0.7± 0.3 −0.6± 0.2

ΛCDM −1

w0CDM −1.03± 0.03 [10]

w0waCDM −0.96± 0.08 [10]

three of four of the H0 priors. In the case of HDES, it can be seen that the trend toward

positive w0 for increasing H0 is compensated by larger uncertainties when it comes to

HTRGB
0 and HA21

0 . The closest to this is the GP in which w0 = −1 is included within

1σ for P18, TRGB, and A21 H0 priors. In the quadratic method, w0 = −1 is within 1σ

only for the TRGB and A21 H0 priors, while for the cubic method w0 = −1 is within

1σ only for the P18 H0 prior without supernovae data. The cubic method disfavors a

constant Λ to support the late-time cosmic acceleration.

The trend of decreasing w0 for increasing H0 was also shown to be the case in wCDM

and w0waCDM (CPL) models as well as quintessence [116]. This points to a potential

problematic regime for quintessence models as this implies that it always make the Hubble

tension worse. Nonetheless, this analysis remains to be extended to broader sectors of

scalar-tensor gravity.
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6. Conclusions

DE remains elusive of a theoretical understanding despite decades since its discovery.

Nonetheless, there is optimism that with the abundance of available, and forthcoming,

data at various distances [117–121] together with progress in fundamental physics, then

it should be possible to illuminate this longstanding puzzle. Meanwhile, in this work, we

explored the interplay between fundamental physics in cosmology and the late Universe in

a theory agnostic approach. In this way, by taking in the features that survive regardless

of the choice of the reconstruction method and of the H0 priors (reflective of the current

Hubble tension), we were lead to the conclusion that DE evolves, or rather is dynamical.

The use of priors admittedly compromise the notion of model-independence, as we

have reiterated a few times in this paper. Model-independence is a tricky concept in

the first place and this work does not claim to be faithful to this theme. Priors depend

on how they were obtained and what assumptions entered their measurements. Our

analysis involving various H0 priors reflecting the Hubble tension and the Planck prior

on Ωm0h
2 instead lead to a compromised model-independent approach. We found that

even with the Planck priors on the Hubble constant and the matter density, depending on

the ΛCDM model, the parametric and nonparametric approaches employed in this work

supported a deviation from standard cosmology through an evolving DE component.

We have shown that other H0 priors obtained via the distance-ladder, regardless of their

principled differences, also supported the existence of an evolving dark energy component

(recall Figures 2 and 3 where the dark energy parameters xi can be seen to be consistent

regardless of H0 choice).

An important observation is that the strongest hints of dark energy evolution come at

the high redshifts (z ∼ 2.3) near the Lyman alpha BAO measurements. These could be

more influenced by the systematics and were reportedly in tension with ΛCDM. So it is

reasonable to ask whether the conclusion of this paper holds when these high redshift data

points are dropped. Our investigation answers affirmative, but with a weaker evidence

for dark energy evolution, or rather a stronger support for the standard cosmological

model. But there are other caveats, the first being that the shapes of the reconstructions

with the parametric methods and Gaussian processes do not agree. Another is that the

reconstructions have much larger uncertainties as expected since the BAO were the most
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precise among the Hubble function observations. We take these as motivation to include

the BAO in the analysis. The stringent data set considered in this work lead to the best

agreement between the different reconstruction methods and priors. The departures from

a constant dark energy that were obtained in this work reinforces previous reports of the

BAO measurements being in tension with the ΛCDM model [71, 82, 85, 86, 93].

The evolving dark energy feature which is revealed for all the methods and H0 pri-

ors considered is the highlight of this paper. If this feature appeared with only either

parametric or nonparametric approaches, it may easily questioned as an artefact of the

methodology. This time, however, we have shown that despite the stark contrast be-

tween how parametric and nonparametric methods treat the data, dark energy evolution

continues to be generally supported.

Granted, the methods employed in our paper have their issues, e.g., the parametric

methods are often criticized for the unavoidable arbitrariness by which the phenomeno-

logical functions can be parametrized [122] while the GP, among other machine learning

methods, is known to underestimate uncertainties, among other quirks [70, 104, 106].

A natural extension of this work which overcomes this is to incorporate various more

approaches [50, 109, 123, 124] and see whether the same features of DE can still be

observed.

It should be emphasized as well that dynamical DE does not necessarily imply mod-

ified gravity as alluded in Ref. [41]. Particularly, it may just so happen that a better fit

can be obtained with data even if the underlying physical model is standard cosmology,

or unmodified gravity. To make robust conclusions about modified gravity, for exam-

ple, one can instead extend this work to accommodate observations of redshift space

distorsions. Relevant progress in this direction are Refs. [125, 126].

On the data sets themselves, we should mention that there potentially may be added

complications due to the impact of potential systematics in the data, which may have a

greater impact for higher redshift data points [82, 85, 86, 93]. While the specific amount

of tension changes, the main conclusions of our work do not alter drastically when these

high redshift points are removed.

We also wanted to draw more attention to the compactified DE equation of state which

was introduced in Ref. [69]. This simple phenomenological tool overcomes challenges in
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reconstructing the canon DE equation state and allows us to look more deeply into

DE evolution, particularly near and beyond the redshift at which DE becomes singular.

This can be realized to become even more useful with future distance indicators and

cosmological data sets such as gamma ray bursts and standard sirens which probe the

Universe at much higher redshifts. Improvements to this are welcome future work.

As a concluding note, we mention that DE not only affects the expansion but also

the perturbations that grow on top of this background. It would be interesting to see

how the methods employed in this paper perform when dealing with linear observables

such as the growth data, among others.
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Appendix A. Hubble expansion data

We present the Hubble expansion data used in this paper in Table A.3.

Appendix B. Marginalized posteriors for the matter density and Hubble

constant

We present the marginalized, one-dimensional posteriors for the combination Ωm0h
2

of the matter density Ωm0 and the Hubble constant H0. This is obtained by the full

covariance matrix coming from the Bayesian analysis in the parametric methods. The

results are presented in Figure B.12.

In all cases, the best fit value Ωm0h
2 = 0.143± 0.001 was obtained. This is of course

confirming that the Planck prior on Ωm0h
2 was completely respected in the analysis,

and supporting the behavior of the Hubble constant and the matter density presented in

Figures 2 and 3.
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Table A.3: Expansion data from cosmic chronometers (31 points, left column) and baryon acoustic

oscillations (26 points, right column).

z H [km s−1 Mpc−1] Ref. z H [km s−1 Mpc−1] Ref.

0.07 69± 19.6 [45] 0.24 79.69± 2.99 [87]

0.09 69± 12 [79] 0.3 81.7± 6.22 [88]

0.12 68.6± 26.2 [45] 0.31 78.18± 4.74 [89]

0.17 83± 8 [79] 0.34 83.8± 3.66 [87]

0.1791 75± 4 [80] 0.35 82.7± 9.1 [90]

0.1993 75± 5 [80] 0.36 79.94± 3.38 [89]

0.2 72.9± 29.6 [45] 0.38 81.5± 1.9 [91]

0.27 77± 14 [79] 0.4 82.04± 2.03 [89]

0.28 88.8± 36.6 [45] 0.43 86.45± 3.97 [87]

0.3519 83± 14 [80] 0.44 84.81± 1.83 [89]

0.3802 83± 13.5 [77] 0.44 82.6± 7.8 [83]

0.4 95± 17 [79] 0.48 87.79± 2.03 [89]

0.4004 77± 10.2 [77] 0.51 90.4± 1.9 [91]

0.4247 87.1± 11.2 [77] 0.52 94.35± 2.64 [89]

0.4497 92.8± 12.9 [77] 0.56 93.34± 2.3 [89]

0.47 89± 34 [81] 0.57 87.6± 7.8 [84]

0.4783 80.9± 9 [77] 0.57 96.8± 3.4 [92]

0.48 97± 62 [79] 0.59 98.48± 3.18 [89]

0.5929 104± 13 [80] 0.6 87.9± 6.1 [83]

0.6797 92± 8 [80] 0.61 97.3± 2.1 [91]

0.7812 105± 12 [80] 0.64 98.82± 2.98 [89]

0.8754 125± 17 [80] 0.73 97.3± 7.0 [83]

0.88 90± 40 [79] 2.3 224± 8.6 [93]

0.9 117± 23 [79] 2.33 224± 8 [86]

1.037 154± 20 [80] 2.34 222± 8.5 [82]

1.3 168± 17 [79] 2.36 226± 9.3 [85]

1.363 160± 33.6 [78]

1.43 177± 18 [79]

1.53 140± 14 [79]

1.75 202± 40 [79]

1.965 186.5± 50.4 [78]
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(a) quad : best fit Ωm0h2 = 0.143± 0.001 (b) cubic : best fit Ωm0h2 = 0.143± 0.001

Figure B.12: Marginalized, one-dimensional posteriors of Ωm0h2 obtained using the quadratic (Figure

2) and cubic (Figure 3) methods.

Appendix C. A dark energy diagnostic function

We present reconstructions of a diagnostic function X ′(z) which probes further the

redshift dependence of Λ, i.e., X ′(z) = 0 for ΛCDM. This can be obtained within the

parametric analysis by differentiating Eqs. (4) and (5), and then using the resulting

expression together with the best fit values and associated covariances. On the other

hand, by means of the GP, one can reconstruct X ′(z) by differentiating the Friedmann

constraint to obtain a functional X ′ [H(z), H ′(z)] where H(z), the first derivative H ′(z),

and their covariance C (H(z), H ′(z)) are produced by the usual optimization of the GP

marginal likelihood.

The X ′(z) diagnostic obtained with the base Hubble data (CC + BAO) is shown in

Figure C.13. The ΛCDM curves are shown as the horizontal dotted line at X ′ = 0.

A careful inspection shows that the quadratic approach excludes the ΛCDM model (at

2σ) for the majority of the redshifts. The deviation also remains consistent throughout

regardless of the H0 priors, but subtle changes could be attributed to the use of the

Planck matter fraction prior. The GP and cubic approach posteriors generally are in

agreement in the overall shape throughout as can be seen. A notable difference is that

at very low redshifts (z � 1), the cubic method nearly excludes ΛCDM at 2σ, and in the

case of the higher ones (z = O(1)), the ΛCDM limit starts to be excluded from within

the 2σ posterior at a lower redshift in the cubic method than in the GP. The trend
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(a) HP18
0 = 67.4± 0.5 km s−1Mpc−1 (b) HTRGB

0 = 69.8± 1.9 km s−1Mpc−1

(c) HR21
0 = 71.5± 1.8 km s−1Mpc−1 (d) HR21

0 = 73.04± 1.04 km s−1Mpc−1

Figure C.13: The X′(z) diagnostic function per method derived from the base Hubble data (CC + BAO)

for each H0 prior: (a) P18, (b) TRGB, (c) A21, and (d) R21. Legends: “quad” and “cubic” stands for

the quadratic and cubic parametrized DE, respectively; “GP” for the Gaussian processes. The colored

and hatched regions show the 2σ confidence interval of the reconstructions. Hatches: (quad: “−”),

(cubic: “|”), (GP: “/”).

of increasing deviation from ΛCDM with increasing H0 priors can also be numerically

inspected. Echoing the theme of the present paper, the observation to takeaway from

this is that regardless of the methodology and the H0 prior, there is a clear deviation

from the standard model that is supported by the present Hubble data sets. As will be

shown, this conclusion by using the X ′(z) diagnostic holds even with the inclusion of the

supernovae in the analysis.

The X ′(z) reconstructions with the base Hubble data and supernovae observations

from Pantheon are shown in Figure C.14 with the ΛCDM expectation appearing as the
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horizontal dotted line.

(a) HP18
0 = 67.4± 0.5 km s−1Mpc−1 (b) HTRGB

0 = 69.8± 1.9 km s−1Mpc−1

(c) HA21
0 = 71.5± 1.8 km s−1Mpc−1 (d) HR21

0 = 73.04± 1.04 km s−1Mpc−1

Figure C.14: The X′(z) diagnostic function per method derived from the base Hubble data (CC + BAO)

and SNe for each H0 prior: (a) P18, (b) TRGB, (c) A21, and (d) R21. Legends: “quad” and “cubic”

stands for the quadratic and cubic parametrized DE, respectively; “GP” for the Gaussian processes.

The colored and hatched regions show the 2σ confidence interval of the reconstructions. Hatches: (quad:

“−”), (cubic: “|”), (GP: “/”).

Visually, the results look identical to the ones constructed with only the base Hubble

data. The subtle differences can in fact be observed only at the extreme redshifts in

the figures and by numerical inspection. For example, with the supernovae, the cubic

method can be seen to find itself in better agreement with the ΛCDM model at z � 1.

Outside these fine details and based on the similarities with previous plot, this supports

a departure from the standard model that is anchored on cosmological data.
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