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Abstract. This paper gives a detailed overview of the problem of
missing data in parametric and nonparametric regression. Theoreti-
cal basics, properties as well as simulation results may help the reader
to get familiar with the common problem of incomplete data sets. Of
course, not all occurences can be discussed so this paper could be seen
as an introduction to missing data within regression analysis and as
an extension to the early paper of [19].
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80 Toutenburg et al.

1 Introduction

Statistical analysis with missing data is a common problem in prac-
tice. Nonresponse in sample surveys or drop–out in clinical trials may
be two of many examples one could imagine. Apart from the esti-
mation of sample statistics regression analysis as a main tool within
statistical analyses of dependencies therefore often is affected by miss-
ing values, too. Whereas parametric regression has been investigated
extensively, nonparametric methods haven’t been considered within
this context so far. Apart from the standard literature concerning
missing data, i.e., [20] and [26], linear regression (e.g. [19]), logistic
regression (e.g. [40]) and generalized linear models (e.g. [18]) were
considered within the scope of parametric methods. Little emphasis
has been put on nonparametric regression analysis—e.g., [7] or some
simulation experiments by [22].

Before defining the basic terms and relations within the context of
missing data, the parametric as well as the nonparametric regression
model is introduced.

1.1 Linear Regression Models

Assume the linear regression model

Y = X1β1 + . . . + Xpβp + ε (1)

and its sample version

y = Xβ + ε (2)

where y is the (n×1)–vector of observations of the dependent variable,
X is the (n × p)–matrix of the independent regressiors and ε is the
(n×1)–vector of disturbances. We confine ourselves to nonstochastic
X and assume X to be of full column rank. Further let

ε ∼ (σ2, In) (3)

or

ε ∼ N(σ2, In) (4)
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for testing hypothesis. If X is complete, the BLUE of β is given by

b = (X ′X)−1X ′y. (5)

In statistical practice, however, we often have incomplete data—
marked by ‘∗’— in the response y as well as in the data matrix,
i. e.

(yX) =


y1 x11 · · · · · · x1p

y2
... ∗

...
∗ ∗
...

... ∗
...

yn xn1 · · · · · · xnp

 (6)

In general, we may assume the following structure of the data which
is discussed in full detail in [24], Chapter 6, yobs

ymis

y∗obs

 =

 Xobs

X∗
obs

Xmis

 β + ε . (7)

Estimation of ymis corresponds to the prediction problem. Based on
these results, we may confine ourselves to the substructure(

yobs

y∗obs

)
=

(
Xobs

Xmis

)
β + ε (8)

of (7) and change the notation as follows:(
yc

y∗

)
=

(
Xc

X∗

)
β +

(
εc

ε∗

)
,

(
εc

ε∗

)
∼ (0, σ2I). (9)

The submodel
yc = Xcβ + εc (10)

stands for the completely observed data (c : complete), and we have
yc : m × 1, Xc : m × p, and rank(Xc) = p.

The other submodel
y∗ = X∗β + ε∗ (11)

is of dimension (n−m) = J . The vector y∗ is observed completely. In
the matrix X∗ some observations are missing. The notation X∗ will
underline that X∗ is partially incomplete, in contrast to the matrix
Xmis, which is completely missing. Combining both of the submodels
in model (9) corresponds to the so–called mixed model ([32]). There-
fore, it seems to be natural to use the method of mixed estimation.
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82 Toutenburg et al.

1.2 Generalized Additive Models

Generalized Additive Models (GAM) became more and more popular
since the work of [16]. One could consider GAMs as the generalization
of linear as well as generalized linear models and, of course, additive
models. Its flexibility concerning the modelling of the functional re-
lation build the main advantage over linear models and generalized
linear models (GLM) based on the a priori unknown function f(X)
which has, for example, to be specified within polynomial regression
when the purpose is a non–linear relation between y and X.

Before introducing the GAM a short summary is given to generalized
linear models to get familiar with the necessary terms. Following the
notation within the previous section the observations yi are assumed
to be independent identically distributed with µi = E(yi), the mean
given by µi = x′iβ. GLMs may then be described by

1. the distribution assumption which postulates the yi to be con-
ditionally independent of the xi with the conditional distri-
bution of yi belonging to a simple exponential family with
µi = E(yi | xi) and a scaling parameter φ.

2. the structural assumption which relates µi with the linear pre-
dictor ηi = x′iβ according to

µi = h(ηi) = h(x′iβ), resp. ηi = g(µi), (12)

with the one–to–one known function h and g being the inverse
function of h called link function.

Following [12] a generalized linear model is characterized by the type
of the exponential family, the link function, and the design vector xi.

Generalized additive models differ from generalized linear models by
assuming an additive predictor instead of a linear predictor and are
defined by

g(µ) = α +
p∑

j=1

fj(Xj) , (13)

with an appropriate link function. Partition (8) and, especially, the
distribution of the errors noted in (9) are assumed to hold here, too.
The mixed estimator within this context can not be written in such
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a way which forces us to introduce the inference within GAMs just
in general.

Similar to the minimization of the target function within the linear
model we formulate a target function with respect to the smoothness
of f(x) according to

n∑
i=1

{yi − f(xi)}2 + λ

∫
f ′′(x)2dx , (14)

which is to be minimized with respect to the parameters of f(x). f ′

and f ′′ have to be continuous, f ′′ has to be quadratically integrable.
λ controls the trade–off between variance and bias well known from
a simple scatterplot smoother. λ → ∞ equals a straight line, λ = 0
leads to an unsmoothed estimate f̂(xi) = yi meaning a reproduction
of the data, see [39].

The estimation is done by iteratively re–weighted least squares (IRLS)
where each least–squares step is replaced by a penalized one. The cri-
terion is the maximization of the penalized loglikelihood

lβ = λ

n∑
i=1

li(yi, Xiβ)− 1
2

m∑
i=1

θiβ
′Siβ , (15)

where m quadratic penalties are to be applied to the parameter vector
β. The matrix Si contains the penalties which imply each smoothing
parameter θi. β(k) is estimated by Fisher–Scoring Algorithmus, see
Table 1.

β(k+1) = β(k) + E[− δ2lβ

δβ(k)δβ(′k) ]−1 δlβ

δβ(k) respectively,

β(k+1) = β(k) + [X′W (k)Xλ +
∑

θiSi]
−1{X′W (k)Γ(k)(y − µ(k))−

∑
θiSiβ

(k)}

Table 1: Fisher–Scoring.

W
(k)
ii = g′(µ(k)

i )V −1
i is a weighting matrix, Vi is the variance of y

with respect to µ
(k)
i ; Γii = g′(µ(k)

i ). g(µi) is a monotone link function.

Following [43], the determination of β(k+1) within f with E(f(Yi)) =
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1. By the help of β(k) one gets estimates for µ and
the variances Vi for each yi; compute

(i) the diagonal matrix of weights W with
Wii = (g′(µi)2Vi)−1

(ii) the vector
z = Xβ + Γ(y − µ) ,
a vector of pseudo data with the diagonal matrix
Γii = (g′(µi))−1

2’. Compute λi by minimizing
||W

1
2 (z−Xβ)||2

(sp(I−A))2

with β being the solution of minimizing
|| W 1

2 (z −Xβ) ||2 +
∑

λjβ
′Sjβ

with respect to β and A being the hat–matrix with
A = X(X ′WX +

∑
λjβ

′Sjβ)−1X ′W .

Table 2: IRLS with GCV.

f(β) is equivalent to solving the weighted penalized least squares
problem

minλ || W
1
2 (z(k) −Xβ) ||2 +

∑
θiβ

′Siβ (16)

with a pseudo data vector z(k) = Xβ(k) + Γ(k)(y − µ(k)), the global
smoothing parameter λ, the diagonal matrix of weights W and the
nonnegative definite matrix S of coefficients containing the penalty
terms θi for the smoothing parameters. (16) in practice is solved by
minimizing the generalized cross validation (GCV) scores

V =
|| W

1
2 (y −A(λ, θ)y) ||2 /n

[1− tr(A(λ, θ))/n]2
(17)

with respect to θi
λ . µ̂ = Ay holds for the hat–matrix A. Combining

IRLS and GCV represents the algorithm of interest, illustrated in
Table 2 (see [14] or [43]).

Note that the degrees of freedom is an integrative part of the estima-
tion. An extensive description of estimating GAMs can be found in
[39].
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2 Missing Data Pattern and Missing Data
Mechanism

So far, we introduced just methods and assumptions analyzing the
data set as it is. Because of the effects of the missingness, i.e. the
amount of missing values, on the data structure and, therefore, the
amount of information the analyst has to deal with these problems.
The missing data pattern and the missing data mechanism are two
important terms visualizing and characterizing the situation of the
data.

2.1 Missing Data Pattern

As already mentioned above, visualizing the structure of the data
set with respect to the missing values may be a first way to get an
impression of the situation. Also implemented in statistical software,
the missing data pattern do a good job; the observed cases of a vari-
able correspond to one bar—the more missing values, the shorter
the bar of the variable, see Figures 1–4. Figure 1 shows the situation
when one variable is incomplete and all other variables are completely
observed—a special case of the monotone pattern in Figure 2 where
each variable Xj is observed for at least the cases of Xj−1. An exam-
ple for a special pattern is shown in Figure 3 where X2 is observed
for the cases where X1 is missing and vice–versa. This is a common
problem known as double sampling, see [26]. Figure 4 illustrates a
situation with no special structure.

Although the missing data pattern represent an easy way to get a
first impression, more complex dependencies between observed and
incomplete variables or incomplete variables themselves will reduce
this ability strongly. This is one reason why the missing data mech-
anism has to be considered.

2.2 Missing Data Mechanisms (MDM)

The main question within the context of analyzing incomplete data
sets is whether the missing data mechanism can be ‘ignored’—a term
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X1 X2 . . . Xp Y

Figure 1: Univariate Miss-
ing Data Pattern

X1 X2 . . . Xp Y

Figure 2: Monotone Miss-
ing Data Pattern

X1 X2 . . . Xp Y

Figure 3: Special Missing
Data Pattern

X1 X2 . . . Xp Y

Figure 4: General Missing
Data Pattern

which is to be specified—or not. One could make the assumption that
the mechanism is ignorable in the sense described below; the other
possibility consists of including the missing data mechanism—which
still is to define—in the statistical model. Including the MDM means
including the distribution of an indicator variable R indicating if a
component of the data matrix Z is observed or missing. [20] define
the data matrix Z = (Zobs, Zmis) representing the data that would
occur without missing values. The random variable R indicating the
missingness within the data matrix Z is defined according to

rij =
{

1 if zij observed
0 if zij missing

∀ i = 1, . . . , n, j = 1, . . . , p + 1. (18)

The question whether the missing mechanism can be ‘ignored’ for
the estimation of θ equals the question whether statistical inference
is based on the density f(Zobs, R | θ, Φ)—with Φ being an unknown
parameter of the missing mechanism and θ being the parameter of
the density of Zobs, Zmis—or on the simpler density f(Zobs, θ) which
is ‘ignoring’ the missing mechanism. The classification of the missing
data mechanism is based on the density f(R | Zobs, Zmis,Φ) and leads
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to the definition of

1. MCAR (missing completely at random) if

f(R | Z,Φ) = f(R | Φ) ∀Z , (19)

2. MAR (missing at random) if

f(R | Z,Φ) = f(R | Zobs,Φ) ∀Zmis , and (20)

3. MNAR (missing not at random)

f(R | Z,Φ) = f(R | Zobs, Zmis,Φ) . (21)

Following [20], the missing data mechanism is said to be ignorable in
the context of likelihood inference when the distribution of the miss-
ing mechanism is independent of the missing values [(20)] themselves.
This may be more apparent by computing the density of the actual
observed data obtained by integrating Zmis out of the density

f(Zobs, R | θ, Φ) =
∫

f(Zobs, Zmis | θ)f(R | Zobs, Zmis,Φ)dZmis (22)

which by help of (20) leads to

f(Zobs, R, θ, Φ) = f(R | Zobs,Φ)
∫

f(Zobs, Zmis, θ)dZmis

= f(R | Zobs,Φ)f(Zobs | θ) . (23)

The likelihood–based inferences for θ based on f(Zobs, R | θ, Φ) and
for θ based on f(Zobs | θ) are the same if the parameters θ and Φ
concerning the density of Z and the missing mechanism, respectively,
are distinct in the sense of each parameter containing no information
about the other (see for example [26]).

3 Inference and Missing Data

3.1 The Mixed Model with Missing Regressor Values

Following the concept of missing values introduced by [20] leads to a
partition of the sample (y1, . . . , yn) in two samples, the first contains
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88 Toutenburg et al.

all those yi with completely given xi–vectors (say m < n elements of
the sample).

yc = Xcβ + εc (subscript c : complete). (24)

In general we assume Xc to be of full column rank p.

The second sub–sample contains all those yi where the associated
x–rows are partially or fully unknown (say J elements of the sample,
m + J = n).

y∗ = X∗β + ε∗ , ε∗ ∼ (0, σ2IJ). (25)

That is, yc, y∗ and Xc are known, but X∗ is partially or fully unknown.
Combining (24) and (25) gives the mixed model(

yc

y∗

)
=

(
Xc

X∗

)
β +

(
εc

ε∗

)
.

(
εc

ε∗

)
∼ (0, σ2In) . (26)

The optimal but due to the unknown elements of X∗ not operational
estimator (BLUE) of β is given by the mixed estimator (cf. [24],
Ch. 5)

β̂(X∗) = (X
′
cXc + X

′
∗X∗)−1(X

′
cyc + X

′
∗y∗)

= bc + S−1
c X ′

∗(IJ + X∗S
−1
c X ′

∗)
−1(y∗ −X∗bc) (27)

having the covariance matrix

V(β̂(X∗)) = σ2(X
′
cXc + X

′
∗X∗)−1 = σ2(Sc + S∗)−1 (28)

where S∗ = X
′
∗X∗ and Sc = X

′
cXc and bc = (X ′

cXc)−1X ′
cyc is the

OLSE in the complete case submodel (24).

3.2 Common Missing Values Procedures

3.2.1 Complete Case Analysis

The first (and in many situations most obvious) method to obviate
the problem of an incompletely observed design matrix results in
resigning the incomplete model (25). This so–called classical LSE
of β makes use of the completely observed design matrix Xc, only.
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That is, the classical LSE (CLSE) estimates β from the model (1.2)
according to

bc = (X
′
cXc)−1X

′
cyc (29)

having

V(bc) = σ2(X
′
cXc)−1 = σ2S−1

c . (30)

The CLSE discards the partial information contained in y∗ and the
observed elements of X∗ of the incomplete model (25). This may lead
to a loss in efficiency compared with estimators using a “repaired”
version of model (25) whereas repairing means to fill the gaps in X∗
by some substitution method, for example.

3.2.2 Available Case Analysis

These methods estimate β from normal equations (see [15]) according
to

cov(xixj)β̂ = cov(xiy) (i, j = 1, . . . , p) , (31)

where cov(xixj) is the p×p covariance matrix with the (i, j)th element
(i, j = 1, . . . , p) computed from the observations common to both
xi and xj(i 6= j) as well as from all existing measurements on xi

for i = j. Similarly, cov(xiy) is computed from all measurements
common to both xi and y (i = 1, . . . , p).
¿From (31) we arrive at

cov(xixj)E(β̂) = E{(nij/niy)cov(xixj)β + cov(xiε)} (32)

and hence at

E(β̂) = (cov(xixj))−1{(nij/niy)cov(xixj)}β (i, j = 1, . . . , p).
(33)

nij and niy are the numbers of measurements common to both xi

and xj , and xi and y, respectively, minus unity. So β is unbiased
only when all niy’s are equal. Similarly, V(β̂) corresponds to the
CLSE form when nij = niy = njy(i, j = 1, . . . , n). In a Monte–Carlo
experiment for various patterns of missing observations [15] came
to the conclusion that in most cases the complete case estimator is
superior to the available case estimator.
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3.2.3 Imputation by Zero–Order–Regression (ZOR)

By this method ([42]), which is also called unconditional mean im-
putation, missing values xij of the jth regressor Xj are replaced by
the sample (column) mean x̂ij of the observed values of Xj . This
method is expected to be convenient if the span or the range of the
Xj–realizations is moderate. It may fail in cases where the sample
mean is not a satisfactory representative of the missing sample ele-
ments of Xj . This happens for example if trending time series or
growth curves are the laws generating the Xj–values.

The replacement of the missing xij–values in X∗ by x̂ij transforms
the (partially or fully unknown) matrix X∗ into a known matrix X(1).
Thus we are led to the operational model of mixed regression type(

yc

y∗

)
=

(
Xc

X(1)

)
β +

(
εc

ε(1)

)
, (34)

where the error term

ε(1) = (X∗ −X(1))β + ε∗ (35)

has
ε(1) ∼ {(X∗ −X(1))β, σ2IJ}. (36)

[17] describe a version of this method, the so–called modified zero–
order–regression.

3.2.4 Imputation by First–Order–Regression (FOR)

By this notion there is understood a complexity of methods to esti-
mate missing elements of X∗. In principle one constructs an auxiliary
regression

xij = θ0j +
p∑

µ=1
µ6=j

xiµθµj + uij , i 6∈ Φ =
p⋃

j=1

Φj , (37)

(uij : error term), Φj being the index set of missing values in xj , to
estimate the dependence between Xj (j = 1, . . . , p, j fixed) and the
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other regressors X1, . . . , Xj−1, Xj+1, . . . , Xp. The missing value xij

then is estimated by

x̂ij = θ0j +
p∑

µ=1
µ6=j

xiµθ̂µj , (i ∈ Φj). (38)

(For examples compare [35].)

To overcome the difficulty caused by overlapping index sets, there
are proposed certain methods depending on the pattern of missing
values and on perceptible laws in the design matrix. [1] mentioned
some averaging procedures (see also [3]).

Another possibility is to use the auxiliary regression with the high-
est measure of determination whereas remaining missing values are
replaced by other estimates, e.g., the corresponding sample means.

[9] proposed a generalized LSE procedure, where the matrix Xc is
completed by first–order regression approximations.

[38] investigated some different procedures based on the FOR within
a linear regression model with an incomplete binary covariate. The
so–called pi imputation—simply imputing the probabilities based on
the estimates of the logistic regression model—in terms of the empi-
rical mean squared error showed good results.

An extension to the FOR in the context of generalized additive mo-
dels could lead to an auxiliary regression which is also of the GAM
type.

3.2.5 Imputation by Modified First–Order–Regression
(MFOR)

The first order regression doesn’t use the response y for imputing the
missing data which is the idea of the modified first order regression
(MFOR). Within the auxiliary regression model additionally the com-
pletely observed response vector is used to predict the missing values.
[3] considered this situation within the context of estimating µ and
Σ in the normal model of (y, X1, . . . , Xp). [36] did some work on the
asymptotic properties of the MFOR estimates.
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Regression parameters are biased when imputing for missing data
using the MFOR. The early work of [1] provides some bias adjust-
ment for the univariate case. The reason for the biased estimates lies
in the inversion of the regression direction.

In [38] also a MFOR was compared to some alternatives concerning
an incomplete binary variable; the estimates showed the expected
larger variances resulting from the use of y.

3.2.6 Multiple Imputation

In this paragraph we will describe the main ideas of the multiple im-
putation. For details see for example [26] or [25].

So far, we imputed values that are a ‘good’ fitting to the data, ta-
king into account either only the variable where missingness occurs,
or additionally other variables. A problem that will occur is that the
empirical variances of the variables will reduce and in the case of first
order or modified first order regression association will be higher that
they actually are.

Instead of imputing a ‘best’ value, draw values for the missing values,
from conditional distributions that consider the uncertainty due to
the prediction. The uncertainty arises from a distribution assump-
tion and from the fact that parameter estimates themselves have
variances. In contrast to the former methods, we will not only pro-
duce one complete dataset, but draw several ones, that vary in the
imputed values. The variation over the datasets may now reflect the
uncertainty due to imputation.

First, distribution assumptions for the covariates where missing val-
ues may occur have to be made. Together with the error distribution
and the model equation we obtain a common distribution

PΘ(y, Xmis | Xobs), (39)

where Xmis denotes all covariates where missingness may occur, Xobs

denotes completely observed covariates that depend on the parame-
ters Θ, including the variance of the errors ε.
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The method we will use to do multiple imputations is called data
augmentation. As data augmentation is a Bayesian procedure one
has to choose an appropriate prior distribution for the parameters Θ.
For choices see e.g. [2].

Altogether we obtain

P (y, Xmis,Θ | Xobs) = PΘ(y, Xmis | Xobs)P (Θ). (40)

Dependent on the distribution assumptions, we are able to draw data
from the conditional distributions either directly or using sampling
methods like MCMC.

Having chosen the first imputations for the missing values data aug-
mentation consists of two steps that are applied consecutively many
times until we can assume that the joint distributuion of the missing
values and of the parameters Θ converge.

The steps are:

1. Imputation Step: For every row of the data set where missing
values occur, draw from

P (Xmis | y, Xobs,Θ), (41)

and impute the drawn values as new values. Xmis denotes the
covariates where missing values occur and Xobs denotes the ob-
served covariates.

2. Propability Step: Using the completed data set draw from

P (Θ | y, X1, ..., Xk) (42)

and take the drawn values as new parameter values.

Applying this procedure leads to several completed data sets. As-
sume that we have drawn M data sets we now obtain the following
estimators using estimates of the single data sets.

Let q̂t, t = 1, ...,M be point estimates for the M completed datasets,
and Ût be the variance estimate of the estimator q̂t. As new estimates
we obtain:

q̂ =
1
M

M∑
t=1

q̂t, (43)
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see [26].

V̂q̂ =
1
M

M∑
t=1

Ût +
M∑
t=1

(q̂t − q̂)(q̂t − q̂)′ (44)

The formulas above can be applied to scalar as well to multivariate
estimators and will in our context in general be the estimates of our
parameter vector β.

3.2.7 Nearest Neighbor Imputation

The nearest neighbor imputation has a long history but according to
[6] is still not fully investigated although it is used in many surveys.
Assuming the data structure with J missing values for the row indices
i = n− J + 1, . . . , n visualized by

x1, . . . , xn−J︸ ︷︷ ︸
observed

, xn−J+1, . . . , xn︸ ︷︷ ︸
missing

and

(45)
y1, . . . , yn−J , yn−J+1, . . . , yn︸ ︷︷ ︸

observed

, (46)

a missing value xj , j = n− J + 1, . . . , n, is imputed by choosing that
value xi, 1 ≤ i ≤ n − J , which is the nearest neighbor of j. In
this context the distance determining the nearest neighborhood is
measured in y–values such that i satisfies

| yi − yj | = min1≤l≤n−J | yl − yj | . (47)

If the solution is not unique the mean of the corresponding x–values
may be imputed.

The nearest neighbor imputation is a hot deck imputation procedure
which yields values unlikely to be nonsensical. Population means
and quantiles are asymptotically unbiased and consistent (see [5]).
Since it is a nonparamteric method it is expected to be somewhat
more robust against model violations. [6] give a detailed overview
over several possibilities for adjusting the procedure in order to get
asymptotically unbiased and consistent variance estimates.

[22] investigated a simple additive model with missing completely
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at random in the covariate and came to the result that the near-
est neighbor imputation showed results similar to the complete case
analysis—a procedure with best asymptotic properties when the miss-
ingness is independent of y. A forthcoming work considers the situa-
tion when the missingness depends on y; first results showed that the
CCA became worse and the nearest neighbor imputation still shows
good results.

3.2.8 ML Estimation of the Missing Values

Let us now assume that the disturbances are normally distributed,

εc ∼ N(0, σ2Im), ε∗ ∼ N(0, σ2IJ). (48)

Handling the nonobseved regressor values like unknown parameters
which have to be estimated common with β and σ2 leads to the follow-
ing considerations. For reasons of simpler mathematical presentation
we confine ourselves to models without a constant and to the case of
a fully nonobserved regressor matrix X∗ which has to be estimated
from the model(

yc

y∗

)
=

(
Xc

X∗

)
β +

(
εc

ε∗

)
,

(
εc

ε∗

)
∼ N(0, σ2In) (49)

The logarithm of the likelihood is

lnL(β, σ2, X∗) = −n

2
ln(2π)− n

2
(σ2)

− 1
2σ2

(yc −Xcβ, y∗ −X∗β)
′
(

yc −Xcβ

y∗ −X∗β

)
. (50)

Differentiating (50) with respect to β, σ2, andX∗ and equating to zero
results in the normal equations and their solutions

β̂ = bc = S−1
c X

′
cyc , (51)

σ̂2 =
1
n

(yc −Xcbc)
′
(yc −Xcbc) (52)

which are based on the complete observations, only. The maximum
likelihood estimator (MLE) X̂∗ is solution of the relation

y∗ = X̂∗bc (53)
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which is uniquely determined in the case of p = 1, only. In general
we have a (J × (p− 1))–dimensional manifold of admissible solutions
X̂∗. To find a unique solution one may pose an additional criterion
which chooses an X̂∗ such that it fulfills relation (53) and that it is
optimal with respect to the specified criterion.

In the missing value regression the mixed estimation framework may
be understood as a two–step procedure: first, replace X∗ by some X̂∗
and second, estimate β by

β̂(X̂∗) = (Sc + X̂
′
∗X̂∗)−1(X

′
cyc + X̂

′
∗x∗). (54)

Choosing X̂∗ according to the ML–normal equation (53) gives the
result

β̂(X̂∗) = (Sc + X̂
′
∗X̂∗)−1(Scβ + X

′
cεc + X̂

′
∗X̂∗β + X̂

′
∗X̂∗S

−1
c X

′
cεc)

= β + (Sc + X̂
′
∗X̂∗)−1(Sc + X̂

′
∗X̂∗)S−1

c X
′
cεc

= β + S−1
c X

′
cεc

= bc. (55)

That is, whatever the solution X̂∗ of (53), the corresponding mixed
estimator β̂(X̂∗) coincides with the CLSE bc.

Note. The algorithms of [23] and [10] for solving ML–equations may
be used for patterns of missing values which are different from a fully
unknown matrix X̂∗.

For a further discussion of MLE in missing values regression see [41]
and [37].

3.3 The Mixed Regression Framework

3.3.1 Imputation and Biased Mixed Estimation

Let us go back to the completely observed model (24) and to the
model (25) with the incomplete X∗–matrix. Model (25) may be in-
terpreted as J additional observations on the independent variable y
but some of the independent variables are missing.

Certain methods of this section are such that missing observations
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in X∗ are replaced by approximations transforming X∗ into a known
matrix, say XR. Substituting X∗ in (25) by the nonstochastic (J×p)–
matrix XR leads to

y∗ = XRβ + (X∗ −XR)β + ε∗ = XRβ + v∗ , say, (56)

where the disturbance term v∗ has

v∗ = (X∗ −XR)β + ε∗ ∼ (δ, σ2IJ) (57)

with
δ = (X∗ −XR)β . (58)

Combining the completely observed sample (24) with the additional
sample and by the substitution of X∗ by XR now operational infor-
mation leads to the mixed model (see [17])(

yc

y∗

)
=

(
Xc

XR

)
β +

(
εc

v∗

)
(59)

with (
εc

v∗

)
∼

((
0
δ

)
, σ2In

)
. (60)

In the mixed regression framework due to [31] the relation (56) may be
interpreted as J additional linear stochastic restrictions r = Rβ + v∗.
The mixed estimator due to Theil was developed for the case δ = 0.
Investigations on biased stochastic restrictions on β are given in [30].
[34] came to this problem in considering misspecified linear restric-
tions.

The mixed estimator of β in the model (59) is just the OLSE, i.e.,

bR = (Sc + SR)−1(X
′
cyc + X

′
Ry∗) , (61)

where Sc = X
′
cXc and SR = X

′
RXR. This estimator is biased

bias bR = (Sc + SR)−1X
′
Rδ (62)

and has the covariance matrix

V(bR) = σ2(Sc + SR)−1 . (63)

A variance comparison with the unbiased CLSE bc, which discards
the additional information of (56), gives

V(bc)−V(bR) = σ2S−1
c X

′
R(XRS−1

c X
′
R + I)−1XRS−1

c (64)
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which is nonnegative definite. Thus replacing missing values of X∗
by some chosen imputation method results in a biased estimator bR

having smaller variance in the sense of (64) compared with the unbi-
ased OLSE bc. Hence a mean–squared–error–criterion appears to be
a good device to weight the disadvantage of bias and the advantage
of smaller variance.

3.3.2 MSE–Criteria

The mean squared error (MSE) of an estimator β̂ is defined as

MSE(β̂, β) = V(β̂) + (bias β̂, β)(bias β̂, β)
′

(65)

To compare the two estimators bR and bc with respect to their MSE
or related functions of MSE we may apply the following criteria ([24])
to our problem.

3.3.3 MSE I–Criterion (Strong MSE–Superiority)

bR is said to be MSE I–better than bc if

∆(bc, bR) = MSE(bc, β)−MSE(bR, β) n.n.d. (66)

Now we have
MSE(bc, β) = σ2S−1

c (67)

and, using (62) and (63),

MSE(bR, β) = σ2(Sc + SR)−1 + (Sc + SR)−1X
′
Rδδ

′
XR(Sc + SR)−1.

(68)
By standard inversion formulae we get

(Sc + SR)−1 = S−1
c − S−1

c X
′
R(XRS−1

c X
′
R + I)−1XRS−1

c (69)

and, therefore, it holds that

(Sc + SR)−1X
′
R = S−1

c X
′
R(XRS−1

c X
′
R + I)−1 = D . (70)

As XRS−1
c X

′
R + I is p.d., we have the presentation

XRS−1
c X

′
R + I = C

′
C , (71)
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where C is a regular matrix. Then (66) becomes

∆(bc, bR) = σ2D
[
C

′
C − σ−2δδ

′
]
D

′

= σ2DC
′
[
I − σ−2C

′−1δδ
′
C−1

]
CD

′
(72)

which is n.n.d if and only if

I − σ−2C
′−1δδ

′
C−1 n.n.d. (73)

This holds if

κ = σ−2δ
′
C−1C

′−1δ = σ−2δ
′
(XRS−1

c X
′
R + I)−1δ ≤ 1 , (74)

where κ is the non–centrality parameter of the test statistic

F =
n− k

J · s2
(y∗ −XRbc)

′
[
XRS−1

c X
′
R + I

]−1
(y∗ −XRbc) (75)

with s2 = (y∗−XRbc)
′
(y∗−XRbc). F has an FJ,n−K(κ)–distribution

under the null hypothesis H0 : κ ≤ 1. The test statistic F can be
used to provide a uniformly most powerful test which tests whether
the restricted estimator bR is MSE I–better than bc (H0 : κ ≤ 1) or
not (H1 : κ > 1). Tabulation of FJ,n−K(κ) for κ = 1 is given in [33].
Note. From a pre–testing standpoint one could use the PT–estimator

β̂ =
{

bR if H0 : κ ≤ 1 is accepted,
bc otherwise

(see [17]).

3.3.4 MSE II–Criterion (First Weak MSE–Criterion)

bR is said to be MSE II–better than bc if

tr∆(bc, bR) ≥ 0 . (76)

Then (see [24])

κ ≤ κminSc · trS−1
c X

′
R(XRS−1

c X
′
R + I)−1XRS−1

c = κ0 , (77)

would be a sufficient condition. Moreover, testing the MSE II–su-
periority of bR over bc may be realized using the F–statistic (75),
whereas H0 : κ ≤ κ0 [(77)] against H1 : κ > κ0 is tested.

 [
 D

ow
nl

oa
de

d 
fr

om
 ji

rs
s.

ir
st

at
.ir

 o
n 

20
22

-0
8-

23
 ]

 

                            21 / 31

http://jirss.irstat.ir/article-1-87-fa.html


100 Toutenburg et al.

3.3.5 MSE III–Criterion (Second Weak MSE–Criterion)

Another weaker scalar MSE–criterion is derived by changing the pa-
rameter space. If one is interested in estimating Xcβ, the conditional
mean of yc given Xc, instead of estimating β itself, then bR is said to
be MSE III–better than bc if and only if

E(XcbR−Xcβ)
′
(XcbR−Xcβ) ≤ E(Xcbc−Xcβ)

′
(Xcbc−Xcβ) , (78)

i.e. if (see (72))

trSc∆(bc, bR) = σ2trXRS−1
c X

′
R − δ

′
XRS−1

c X
′
Rδ ≥ 0. (79)

By using

δ
′
(XRS−1

c X
′
R)δ ≤ δ

′
(XRS−1

c X
′
R + I)δ = σ−2κ (80)

with κ [(74)] the noncentrality parameter of F (75), a sufficient con-
dition for (79) to hold is

κ ≤ trXRS−1
c X

′
R. (81)

3.4 The Weighted Mixed Regression Framework

3.4.1 The Weighted Mixed Regression Estimator (WMRE)

The mixed estimator bR (64) in the model (62) is the solution to the
minimization problem

minβ{(yc −Xcβ)
′
(yc −Xcβ) + (y∗ −XRβ)

′
(y∗ −XRβ)}. (82)

To give the observed ‘sample’ matrix Xc a different weight than the
nonobserved matrix XR in estimating β, [27] suggested to solve

minβ{(yc −Xcβ)
′
(yc −Xcβ) + λ(y∗ −XRβ)

′
(y∗ −XRβ)} , (83)

where λ is a scalar factor. Differentiating (83) with respect to β and
equating to zero gives the normal equation

(Sc + λSR)β − (X
′
cyc + λX

′
Ry∗) = 0. (84)
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The solution may be called the weighted mixed regression estimator
(WMRE) and is of the form

b(λ) = (Sc + λSR)−1(X
′
cyc + λX

′
Ry∗). (85)

This estimator may be understood as the familiar mixed estimator
in the model (

yc√
λy∗

)
=

(
Xc√
λXR

)
β +

(
εc√
λv∗

)
. (86)

Let
Z(λ) = Z = (Sc + λSR). (87)

Then we have

b(λ) = Z−1(X
′
cXcβ + X

′
cεc + λX

′
RX∗β + λX

′
Rε∗)

= β + λZ−1X
′
R(X∗ −XR)β + Z−1(X

′
cεc + λX

′
Rε∗). (88)

Let again
δ = (X∗ −XR)β. (89)

The WMRE is biased

bias b(λ) = λZ−1X
′
Rδ (90)

and has the covariance matrix

V(b(λ)) = σ2Z−1(Sc + λ2SR)Z−1. (91)

3.4.2 Minimizing the MSEP

A reliable criterion to choose λ is to minimize the mean squared error
of prediction (MSEP) with respect to λ.
Let

ỹ = x̃
′
β + ε̃ , ε̃ ∼ (0, σ2), (92)

a nonobserved (future) realization of the regression model which is
to be predicted by

p = x̃
′
b(λ). (93)

The MSEP of p is

E(p− ỹ)2 = E[x̃
′
(b(λ)− β)− ε̃]2

= [x̃
′
bias b(λ)]2 + x̃

′
V(b(λ))x̃

′
+ σ2. (94)

 [
 D

ow
nl

oa
de

d 
fr

om
 ji

rs
s.

ir
st

at
.ir

 o
n 

20
22

-0
8-

23
 ]

 

                            23 / 31

http://jirss.irstat.ir/article-1-87-fa.html


102 Toutenburg et al.

Minimizing with respect to λ gives the solution

λ =
1

1 + σ−2ρ1(λ)ρ−1
2 (λ)

, 0 ≤ λ ≤ 1, (95)

where
ρ1(λ) = x̃

′
Z−1ScZ

−1XR
′δδ

′
XRZ−1x̃, (96)

ρ2(λ) = x̃
′
Z−1SRZ−1ScZ

−1x̃. (97)

Thus the optimal λ minimizing the MSEP (94) of p = x̃
′
b(λ) is so-

lution of the relation (95). Noting that Z = Z(λ) is a function of λ,
also, solving ((95) for λ results in a procedure iterating the λ–values
whereas σ2 and δ are estimated by some procedure. The problem be-
comes somewhat simpler in the case that only one row of the regressor
matrix is incompletely observed,

y∗
(1, 1)

= x∗
(1, p)

β

(p, 1)
+ ε∗

(1, 1)
, ε∗ ∼ (0, σ2). (98)

Then we have SR = xRx
′
R, δ = (x

′
∗ − x

′
R)β (a scalar) and

ρ1(λ) = (x̃
′
Z−1ScZ

−1xR)(x
′
RZ−1x̃)δ2, (99)

ρ2(λ) = (x̃
′
Z−1xR)(x

′
RZ−1ScZ

−1x̃). (100)

So λ becomes
λ =

1
1 + σ−2δ2

(101)

Interpretation of the result:

(i) We note that 0 ≤ λ ≤ 1, so that λ indeed is a weight given to
the incompletely observed model.

(ii) λ = 1 holds for σ−2δ2 = 0. If σ2 is finite, then the incompletely
observed but (by the replacement of x∗ by xR) ‘repaired’ model
is given the same weight as the completely observed model in
case of δ = 0, only. Now, δ = (x

′
∗ − x

′
R)β = 0 means that the

unknown expectation Ey∗ = x
′
∗β of the dependent variable y∗

is estimated exactly by x
′
Rβ (for all β). Thus δ = 0 is fulfilled

when x∗ = xR, i.e. when missing values in x∗ are re–estimated
exactly (without error ) by xR.

This seems to be an interesting result to be taken in mind
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in general mixed regression framework in the sense, that ad-
ditional linear stochatic restrictions of type r = Rβ + v∗ should
not be incorporated without posing on them a prior weight λ
(and λ < 1 in general).

Furthermore, it may be conjectured that weighted mixed re-
gression becomes equivalent (in a sense to be specified) to the
familiar (unweighted) mixed regression, when the former is re-
lated to a strong MSE–criterion and the latter is related to a
weaker MSE–criterion.

Now, λ = 1 may be caused by σ2 → ∞, also. As σ2 is the
variance common both to yc and y∗, σ

2 → ∞ leads to unreli-
able (imprecise) estimators in the complete model yc = X

′
cβ + ε

as well as in the enlarged mixed model (59).

(iii) In general, an increasing δ decreases the weight λ of the ad-
ditional stochastic relation y∗ = x

′
Rβ + v∗. If δ → ∞, λ → 0

and

lim
λ→0

b(λ) = bc. (102)

3.4.3 The Two–Stage WMRE

To bring the mixed estimator b(λ) with λ from (101) in an operational
form,σ2 and δ have to be estimated by σ̂2 and δ̂ resulting in λ̂ =
1/(1 + σ̂−2δ̂2) and b(λ̂).
Using the consistent estimators

σ̂2 =
1

m− p
(yc −Xcbc)

′
(yc −Xcbc) (103)

and

δ̂ = y∗ − x
′
Rbc, (104)

what are then the properties of the resulting two–stage WMRE b(λ̂).
This will depend on the statistical properties (e.g. mean and variance
) of λ̂ itself. The bootstrap method ([11]) is one of the nonparametric
methods in estimating variance and bias of a statistic of interest.
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4 Regression Diagnostics to Identify Non–
MCAR Processes

The different methods to deal with the design matrix with missing
observations depend on the nature of missing data mechanism. The
assumption that missing values are independent of the observed as
well as unobserved data is more restrictive than the MAR process in
which the missing values depend on the observed data.

Different diagnostic tests are available in the literature to identify the
non–MCAR processes. One simple approach given by [8] is based on
the sample means of observed and unobserved data on response vari-
ables. If the partitionary of y in yc and y∗ , based on missing values
n∗ in x∗, is random then it indicates that the process is MCAR. An-
other way to test the MCAR assumption is to compare the variance
covariance matrices of estimates of β with complete and repaired data
sets.

The “leave–one–out” strategy from sensitivity analysis ([4]) allows to
detect the influential missingness of any particular observation. This
strategy computes some scalar statistic based on complete data set
or after eliminating any particular observation from the data set.

Let β̂R be an estimator of β in the linear regression model

y =
(

Xc

XR

)
+ ε (105)

where XR is the matrix obtained after repairing x∗ through a chosen
imputing technique. Several diagnostic measures have been proposed
based on this model. For example, using Cook’s distance, one can
compute

D =
(β̂R − β̂c)′X ′X(β̂R − β̂c)

ps2
c

≥ 0 (106)

where s2
c is computed from the complete dataset. Another measure

is based on residual sum of squares and requires to compute

DRSS =
(RSSR−RSSc)

J
RSSc

(n−m−p+1)

∈ (0,∞). (107)

Large values of DRSS are indicative of departure from MCAR pro-
cess.
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Based on kernel of Andrews–Pregibon statistics, the small values of
the determinant

DXX =
| X ′

cXc |
| X ′X |

∈ [0, 1] (108)

indicate the violation of MCAR assumption.

The distributions of D, DRSS and DXX are required to test H0:
MCAR vs. H1: non–MCAR, but they depend on x, β and s2

c . One
may obtain the solution through Monte–Carlo simulation with fol-
lowing steps:

• Fill missing values in x∗ by suitable MCAR substitute.

• Using β̂R, s2
c and xc , update y by calculating

ys
∗ = xf β̂c + εs with ε ∼ N(0, s2

c I). (109)

Here “s” stands for simulated values.

• Calculate the diagnostic measure based on this data set.

• Repeat the process N times with an updated εs in each step
and estimate the null distribution to of the required diagnostic
measure.

With thus obtained null distribution, the critical values obtained are
the N(1 − α)th order statistics for D and DRSS and Nαth order
statistics for DXX respectively. The decision rule is reject H0 if D (or
DRSS) ≥ f0,N(1−α) or if DXX ≤ f0,Nα respectively. For more details
see for example [13], [28] or [29].
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