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Abstract

The change point model (CPM) framework introduced in Hawkins, Qiu, and Kang
(2003) and Hawkins and Zamba (2005) provides an effective and computationally efficient
method for sequentially detecting multiple changes points in streams of Gaussian random
variables, when no information is available regarding the parameters of the distribution
in the various segments. It has since been extended in various ways by Hawkins and
Deng (2010), Ross, Adams, Tasoulis, and Hand (2011) and Ross and Adams (2011b)
to allow for fully nonparametric change detection in non-Gaussian sequences, when no
knowledge is available regarding even the distributional form of the sequence. Another
extension comes from Ross and Adams (2011a) which allows change detection in streams
of Bernoulli random variables, again when the values of the parameters are unknown.

This paper describes the R package cpm, which provides a fast implementation of all
the above change point models. Its usage is illustrated through numerous examples.

Keywords: change detection, sequential analysis, R.

1. Introduction

Many statistical problems require change points to be identified in sequences of data. The
usual setting for this is where a sequence of observations x1, x2, . . . is drawn from the random
variables X1, X2, . . . and undergo one or more abrupt changes in distribution at the unknown
change points τ1, τ2, . . . . It is usually assumed that the observations are independent between
every pair of change points, i.e. the distribution of the sequence can be written as:

Xi ∼


F0 if i ≤ τ1
F1 if τ1 < i ≤ τ2
F2 if τ3 < i ≤ τ4,
. . .

(1)

where the Fis describe the distribution in each segment. Some simple examples are given in
Figures 1a and 1b, which show two sequences of Gaussian random variables which undergo
changes in their mean and variance respectively.

Although requiring independence between change-points seems a restrictive assumption, this
is not the case since dependence can typically be handled by first modelling any underlying
dynamics or drift process, and then performing change detection on the model residuals or
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Figure 1: Basic examples of changes to a univariate stream, with the time of the change point
superimposed.

one-step ahead prediction errors, both of which should give i.i.d sequences, provided that the
model has been correctly fit. For more information on this topic, see Gustafsson (2000). In
the remainder of this paper, it is assumed that such modelling has been carried out, and that
we are left with sequences of observations which are i.i.d conditional on the change points.

Change detection problems differ based on what is assumed to be known about the Fi distri-
butions. In most practical situations the parameters of these distributions will be unknown,
and in many cases there may not even be information available about their distributional
form. Recently the change point model (CPM) framework has been developed for change
detection in situations where the available information about the Fi distributions is very lim-
ited. Several different CPMs have been developed, which incorporate different test statistics
to enable changes to be detected in a wide variety of sequences, using both parametric and
nonparametric techniques (Hawkins et al. 2003; Hawkins and Zamba 2005; Hawkins and Deng
2010; Zhou, Zou, Zhang, and Wang 2009; Ross et al. 2011; Ross and Adams 2011b,a).

The purpose of this paper is to describe the cpm R package which implements most of these
published CPM models for detecting changes in the distribution of discrete-time sequences
of univariate random variables. Unlike existing R packages related to change detection, such
as bcp (Erdman and Emerson 2007) and changepoint (Killick and Eckley 2011), the focus
of cpm is Phase II analysis when the parameters and perhaps distributional form of the
observations are unknown. We hope that providing an easy-to-use implementation of the
variety of published change point models will be useful to practitioners.

Section 2 of this paper details how to obtain the cpm package. Section 3 gives a more detailed
overview of the sequential change detection problem. Section 4 provides a general overview
of the CPM framework. Finally, the cpm package is introduced in Section 5 and an overview
of its capabilities is given, along with many examples of use.

2. Package installation

This package can be obtained in two ways. The first is to obtain it from the Comprehensive
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R Archive Network (CRAN), at http://cran.r-project.org/web/packages/cpm/index.html. To
install the package from CRAN simply start an R session at a computer which has an internet
connection, and type: install.packages(’cpm’).

The package should then download and install automatically. Alternatively, the package
can be found on the author’s website at http://gordonjross.co.uk. After downloading the
cpm_<version>.tar.gz file, the package can be installed by loading R and typing:

install.packages("cpm_<version>.tar.gz", repos=NULL, source=TRUE)

where the first argument should be replaced with the package download location, and <version>

should be replaced with the version number of the package. Regardless of how the package
was obtained, it can be loaded after installation by typing:

library("cpm")

3. Background information

The change detection problem described by Equation 1 in the previous section has been a
lively area of research since the 1950s. Because of the very general nature of the problem, the
literature is diverse and spans many fields. In particular, many popular methods have their
origin in the quality control community, where the goal is to monitor the output of industrial
manufacturing processes and detect faults as quickly as possible (Lai 1995) However there
are many other situations where change detection techniques are important, such as identi-
fying copy number variation in genome data (Efron and Zhang 2011), detecting intrusions in
computer networks (Tartakovsky, Rozovskii, Blazek, and Kim; 2006), and fitting the multiple
regime models which are popular in economics and finance (Bai and Perron 1998).

There are two main types of change detection problem, batch and sequential. In the quality
control literature, these are respectively known as Phase I and Phase II detection:

1. Batch detection (Phase I): In this case, there is a fixed length sequence consisting of
n observations from the random variables X1, . . . , Xn, and it is required to test whether
this sequence contains any change points. This type of change detection is retrospective,
meaning that the decision whether a change has occurred at a particular point in the
sequence is made using all the available observations, including those which occur later
in the sequence. These batch methods work well when there are only a small number
of change points, but can be computationally infeasible when larger numbers of change
points are present, unless heuristics are used (Inclan and Tiao 1994; Hawkins 2001).

2. Sequential detection (Phase II): In this case, the sequence does not have a fixed
length. Instead, observations are received and processed sequentially over time. When
each observation has been received, a decision is made about whether a change has oc-
curred based only on the observations which have been received so far. If no change is
flagged, then the next observation in the sequence is processed. The sequential formula-
tion allows sequences containing multiple change points to be easily handled; whenever
a change point is detected, the change detector is simply restarted from the following
observation in the sequence.

Traditionally, the tools used for both of these problems were quite different. For batch de-
tection, the most commonly used approaches are some form of likelihood ratio testing (Hink-
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ley and Hinkley 1970) or Bayesian inference (Stephens 1994), while the sequential detection
problem uses control charts such as the CUSUM (Page 1954), Exponential Weighted Moving
Averages (Roberts 1959), or sequential Bayesian methods (Chib 1998; Fearnhead and Liu
2007).

Recent years have seen the emergence of the CPM framework, which extends the use of
likelihood-based batch detection methods to the problem of sequential monitoring. The orig-
inal work on the CPM was presented by Hawkins et al. (2003) which focuses on the problem
of sequentially detecting a change in the mean of a sequence of Gaussian random variables.
This has since been extended in many directions to allow more complex types of changes to
be detected, including those in streams where the underlying distribution is unknown (Ross
et al. 2011; Hawkins and Zamba 2005; Zou and Tsung 2010).

The cpm R package contains an implementation of several different CPMs, both parametric
and nonparametric, for use on univariate streams. Specifically, it implements the CPM frame-
work using the Student-t, Bartlett, GLR, Fisher’s Exact Test, Mann-Whitney, Mood, Lepage,
Kolmogorov-Smirnov, and Cramer-von-Mises statistics. The first three are intended for de-
tecting changes in sequences which are known to be Gaussian, the third is used for Bernoulli
sequences, while the remainder are nonparametric and can be deployed on any stream of con-
tinuous random variables without requiring any prior knowledge of their distribution. The
package is implemented in R and provides a small number of customisable high-level functions
which allow the user to easily detect changes in a given stream, along with a more flexible S4
object system based representation of CPM objects which allow for greater control over the
change detection procedure.

4. The change point model

The CPM extends techniques for batch detection to the sequential case. We first review the
batch scenario, and then describe the sequential extension.

4.1. Batch change detection (Phase I)

In the batch scenario, there is a fixed length sequence containing the n observations x1, . . . , xn
which may or may not contain any change point. For ease of exposition, assume that at most
one change point can be present. If no change point exists, the observations are independent
and identically distributed according to some distribution f0. If a change point exists at some
time τ , then the observations have a distribution f0 prior to this point, and a distribution f1
afterwards, where f0 6= f1.

First consider the problem of testing whether a change occurs immediately after some specific
observation k. This leads to choosing between the following two hypotheses:

H0 : Xi ∼ f0(x; θ0), i = 1, . . . , n

H1 : Xi ∼
{
f0(x; θ0) i = 1, 2, . . . , k
f1(x; θ1) i = k + 1, k + 2, . . . , n,

where θi represents the potentially unknown parameters of each distribution.
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This is a standard problem which can be solved using a two-sample hypothesis test, where
the choice of test depends on what is assumed to be known about the distribution of the
observations, and the type of change which they may undergo. For example, if the observations
are assumed to be Gaussian, then it would be appropriate to use a two sample Student-t
test to detect a mean shift, and an F test to detect a scale shift. To avoid making such
distributional assumptions, a nonparametric test can be used

”
such as the Mann-Whitney

test for location shifts, the Mood test for scale shifts, and the Lepage, Kolmogorov-Smirnov,
and Cramer-von-Mises tests for more general changes.

After choosing a two sample test statistic Dk,n, its value can be computed and if Dk,n > hk,n
for some appropriately chosen threshold hk,n then the null hypothesis that the two samples
have identical distributions is rejected, and we conclude that a change point has occurred
immediately following observation xk.

Since it is not known in advance where the change point occurs, we do not know which value
of k should be used for testing. Therefore, Dk,n is evaluated at every value 1 < k < n, and
the maximum value is used. In other words, every possible way of splitting the data into two
contiguous subsequences is considered, with a two-sample test applied at every split point.
The test statistic is then:

Dn = max
k

Dk,n.− µDk,n

σDk,n

1 < k < n.

where the Dk,tstatistics have been standardised to have mean 0 and variance 1 by subtracting
their means µDk,n

and dividing by their standard deviations σDk,n
. The null hypothesis of

no change is then rejected if Dn > hn for some appropriately chosen threshold hn. This
threshold is chosen to bound the Type 1 error rate as is standard in statistical hypothesis
testing. However, this requires computing the distribution of Dn, which generally does not
have an analytic finite-sample form. For some choices of the test statistics Dk,n the asymptotic
distribution of Dn can be written; for example, Hawkins (1977) derives the distribution when
Dk,n is the test statistic associated with the Student-t test, and Pettitt (1980) does similar for
Mann-Whitney statistics. However, these asymptotic distributions may not be accurate when
considering finite length sequences, and so numerical simulation may be required in order to
estimate the distribution.

Finally, the best estimate of the change point location will be immediately following the value
of k which maximised Dn, i.e.:

τ̂ = arg max
k

Dk,n. (2)

4.2. Sequential change detection (Phase II)

The two-sample hypothesis test approach used in the batch case can be extended to sequential
change detection where new observations are received over time, and multiple change points
may be present. Let xt denote the tth observation that has been received, where t ∈ {1, 2, . . .}.
Whenever a new observation xt is received, the CPM approach treats x1, . . . , xt as being a
fixed length sequence sample, computes Dt using the above batch methodology, and flags for
a change if Dt > ht for some appropriately chosen threshold. If no change is detected, the
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next observation xt+1 is received, then Dt+1 is compared to ht+1, and on. The procedure
therefore consists of a repeated sequence of hypothesis tests. In general, the Dk,n statistics
will have properties which allow Dt+1 to be computed from Dt without incurring too much
computational overhead; see Hawkins et al. (2003); Ross et al. (2011) for specific examples of
this.

In the sequential setting, ht is chosen so that the probability of incurring a Type 1 error is
constant over time, i.e. so that under the null hypothesis of no change:

P (D1 > h1) = α

P (Dt > ht|Dt−1 ≤ ht−1, . . . , D1 ≤ h1) = α, t > 1, (3)

In this case, assuming that no change occurs, the average number of observations received
before a false positive detection occurs is equal to 1/α. This quantity is referred to as the
Average Run Length, or ARL0. In general, the conditional distribution in Equation 3 is
analytically intractable, and Monte-Carlo simulation is used in order to compute the required
sequences of ht values corresponding to a given choice of α. This is a computationally expen-
sive procedure but it only needs to be carried out a single time, and the values can then be
stored in a look-up table. The cpm package contains pre-computed sequences of thresholds
which correspond to a variety of choices of α.

5. Package overview

The cpm package contains implementations of the CPM framework, for detecting changes in
streaming sequential data (Phase II). The package supports the following CPMs:

� The Student-t, Bartlett and GLR statistics for detecting changes in a Gaussian sequence
of random variables. The first two monitor for changes in either the mean or variance
respectively, while the latter can detect changes in both.(Hawkins et al. 2003; Hawkins
and Zamba 2005; ?).

� The Fisher’s Exact Test (FET) statistic for detecting a change in a sequence of Bernoulli
random variables (Ross and Adams 2011a).

� The Mann-Whitney and Mood statistics for detecting location and scale changes re-
spectively in sequences of random variables, where no assumptions are made about the
distribution (Hawkins and Deng 2010; Ross et al. 2011).

� The Lepage, Kolmogorov-Smirnov, and Cramer-von-Mises statistics for detecting more
general distributional changes where again no assumptions are made about the sequence
distribution. (Ross and Adams 2011b).

These CPMs are implemented in C++ in order to provide fast calculations. The R interface
in the package wraps around this code, and essentially has two parts, which are:

1. A set of utility functions which allow the user to easily detect changes in a sequence
of observations. The core functions here are detectChangePoint, which tests for a
single change point in a sequence of data, and processStream which can detect multiple
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change points in a sequence, by repeatedly restarting the CPM procedure whenever a
change is detected.

2. While the above functions will be sufficient for many basic change detection tasks, many
streaming applications will require more nuanced control of the CPM procedure. The
cpm package therefore provide functions which allow CPM objects to be represented
as S4 objects in R, to allow greater flexibility. Here, the makeChangePointModel
function is used to create a CPM object, and the processObservation function allows
observations to be processed individually, with the CPM statistics being made available
to the user after every observation.

All of these functions allow any of the above test statistics to be used in conjunction with
CPM, and also allow a variety of different values for the ARL0 to be specified. We will first
describe how the utility functions in the package can be used to detect single change points
in a sequence, and then focus on the multiple change point case. Finally, we discuss the S4
section of the package which allows greater flexibility in situations where this is required.

5.1. Detecting a single change point

The detectChangePoint function is used to detect a single change point in a stream of
observations, and estimate its location. The use of this function can be illustrated using
a simple example of a Gaussian stream which undergoes a change in mean from 0 to 1,
occurring after 200 observations while the variance remains unchanged. Change detection
can be performed by using (e.g.) the CPM based on the Student-t test statistic:

x <- c(rnorm(200,0,1), rnorm(200,1,1))

res <- detectChangePoint(x, cpmType = "Student", ARL0 = 500, startup = 20)

plot(x,type='l')

abline(v = res$detectionTime, lty=2)

abline(v = res$changePoint, lty=2, col='red')

Figure 2a shows the plot produced by this code, along with both the time at which the change
was detected (which in this case occurs after the 207th observation) and the estimated location
of the change point, corresponding to the value of k which maximised Dk,207 as in Equation
2. In this case, it is equal to τ̂ = 202.

The arguments taken by the detectChangePoint function are as follows:

� cpmType : determines the type of CPM to be used. The allowable values are “Student”,
“Bartlett”, “GLR”,“FET”, “Mann-Whitney”, “Mood”, “Lepage”, “Kolmogorov-Smirnov”,
and “Cramer-von-Mises”.

� ARL0 : denotes which ARL0 the CPM should have. As discussed in Section 4.2,
computing the thresholds associated with a specific choice of ARL0 can take a large
amount of computation time. Therefore, the package includes precomputed values for
a selection of ARL0’s, Specifically, the allowable values for the ARL0 argument are:
{370, 500, 600, 700, ..., 1000, 2000, 3000, ..., 10000, 20000, ..., 50000}. If this argument is
missing then no change detection will occur, and the Dt statistics will be computed and
returned for the whole sequence.
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Figure 2: The left plot shows the sequence of observations, with the detection time shown in
black, and the estimated change point location shown in red. The right plot shows the values
of the maximized Dt statistics up until the change is detected, with the thresholds ht shown
in red.

� startup: determines how many observations are used for the initialising period. If
startup = 20, then no change detection will be performed until after the first 20 obser-
vations have been received. This is usually necessary since the statistical tests will have
low power for small sample sizes.

� lambda: specifies the amount of smoothing to be used when using the Fisher’s Exact
Test (FET) CPM, as described in Ross and Adams (2011a). This parameter is not used
with any of the other CPM types. The only allowable values for this parameter are 0.1
and 0.3; more information on this is provided later in this section.

The detectChangePoint function processes the sequence up until it detects a change point,
after which it returns. If no change point is detected, or the ARL0 argument is not specified,
the entire sequence will be processed. In either case, the following list of values is returned:

� detectionTime: the observation at which the change point was detected. If no change
is detected, this is equal to 0.

� changePoint : the maximum likelihood estimate of the change point τ , defined as the
value of k which maximises Dk,T , where T is the detection time

� Ds: The sequence of maximized test statistics, from time t = 1 until the detection time.

� hs: The sequence of ht thresholds which correspond to the specified ARL0 value.

The Dt statistics returned by this function can be used for diagnostics. The following code
plots the values of the Dt statistics which were computed in the above example, along with
the corresponding ht thresholds:
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τ δ CPM-Bartlett CPM-Mood CPM-Lepage

τ = 50

1.5 152.4 (282.0) 95.4 (190.1) 143.1 (252.0)
2.0 16.2 (17.5) 18.0 (21.9) 26.8 (45.5)
3.0 5.5 (3.8) 7.8 (5.3) 9.4 (6.9)
0.5 20.3 (15.2) 38.9 (76.6) 63.4 (122.6)
0.3 9.6 (3.7) 15.1 (5.9) 21.0 (7.7)

τ = 300

1.5 30.7 (23.7) 28.0 (24.3) 35.5 (31.8)
2.0 10.6 (7.2) 11.5 (8.3) 14.0 (10.2)
3.0 4.6 (3.0) 6.1 (3.6) 7.5 (4.5)
0.5 16.4 (7.5) 22.5 (27.9) 31.9 (10.7)
0.3 9.2 (3.1) 13.1 (3.2) 18.7 (3.6)

Table 1: Average time taken to detect shifts of magnitude δ in the mean and standard
deviation of a Gaussian N(0, 1) stream, for various change times τ . Standard deviations are
given in brackets.

plot(res$Ds)

abline(res$hs,col='red')

The resulting plot is shown in Figure 2b. The first 20 values of this statistic are zero, since
it is not computed during the initialisation period, defined by the startup argument. Then,
the statistics fluctuates around a relatively flat value, until the change point occurs in which
case they begin to spike. After a few observations, they cross the time varying ht threshold,
denoted by the red line, and a change is flagged.

As a slightly less trivial example, we can use the detectChangePoint function to compare
how different CPMs perform when detecting a certain type of change. In both Hawkins
and Deng (2010) and Ross et al. (2011), several different nonparametric CPMs are proposed
which, as discussed previously, are able to maintain a specified value of the ARL0 regardless
of the true stream distribution. While this is a useful feature, the trade-off is that they will
usually be slower to detect changes on any particular stream than a parametric CPM that
has been designed with knowledge of the true data distribution. In the above-mentioned
papers, many simulations were performed in order to measure how close the performance of
the nonparametric detectors is to their parametric counterparts.

To show how such a comparison can be performed using the cpm package, we compare the
performance of the parametric CPM which uses the Bartlett test for detecting a change in
the variance of a Gaussian stream, to several different nonparametric methods. Specifically
we look at the Mood CPM which is a nonparametric test for changes in scale, and the Lepage
CPM which is intended to detect more general types of distributional change.

The two main factors which affect how long a change takes to be detected are the size of the
change, and the number of observations which are available from the pre-change distribution.
We can investigate the impact of these by considering different sets of values: specifically we
consider the case where the distribution of the stream changes from N(0, 1) to N(0, δ) for
δ ∈ {1.5, 2.0, 3.0, 0.5, 0.3} and where the change occurs at times τ ∈ {50, 300}:
The following code performs the analysis:

cpmTypes <- c("Bartlett","Mood","Lepage")

changeMagnitudes <- c(1.5, 2.0, 3.0, 0.5, 0.3)

changeLocations <- c(50, 300)
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sims <- 1000

ARL0 <- 500

startup <- 20

results <- list()

for (cpmType in cpmTypes) {

results[[cpmType]] <- matrix(numeric(length(changeMagnitudes) *

length(changeLocations)), nrow = length(changeMagnitudes))

for (cm in 1:length(changeMagnitudes)) {

for (cl in 1:length(changeLocations)) {

print(sprintf("cpm:%s magnitude::%s location:%s",

cpmType, changeMagnitudes[cm], changeLocations[cl]))

temp <- numeric(sims)

for (s in 1:sims) {

x <-c(rnorm(changeLocations[cl], 0, 1), rnorm(2000, 0,

changeMagnitudes[cm]))

temp[s] <-detectChangePoint(x, cpmType,

ARL0=ARL0, startup=startup)$detectionTime

}

results[[cpmType]][cm,cl] <- mean(temp[temp > changeLocations[cl]]) -

changeLocations[cl]

}

}

}

Table 1 shows the results of this analysis, when sims = 50000. It can be seen that, as ex-
pected, large changes are easier to detect than smaller changes, and changes which occur
after the 300th observation are easier to detect than those occurring after the 50th, since the
sample size is larger. In general, the parametric CPM outperforms the nonparametric CPMs,
which is understandable since it incorporates knowledge that the observations are Gaussian.
Interestingly, for changes with smaller magnitudes, the nonparametric CPMs actually outper-
form this parametric version. This surprising phenomena is discussed in more detail in both
Hawkins and Deng (2010) and Ross et al. (2011)

As a final example, we consider the CPM which uses the FET statistic for detecting a change
in a Bernoulli sequence This differs slightly from the other CPMs implemented in the package.
As described in Ross and Adams (2011a), the test statistics when using the FET are highly
discrete, moreso than with the other statistics considered. Therefore, a smoothing parameter
λ is used to smooth the Dk,t statistics and make them less discrete

The detectChangePoint function implements this by allowing a parameter to be passed to
control the degree of smoothing. Because each choice of parameter value requires a different
sequences of ht thresholds to be used, we have only included threshold sequences for λ = 0.1
and λ = 0.3, which are the two values used in Ross and Adams (2011a). Note that the authors
show that performance is not particularly sensitive to the choice of λ, and 0.1 can generally
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θ0 Empirical ARL0

λ = 0.1 λ = 0.3

0.01 971 (862) 1039 (765)
0.05 622 (543) 638 (597)
0.10 589 (489) 529 (530)
0.20 512 (461) 516 (491)
0.30 509 (460) 509 (474)
0.40 504 (471) 507 (483)
0.50 500 (493) 500 (494)

Table 2: Empirical ARL0 when the CPM is designed with to have an ARL0 of 500, for several
values of θ0. Standard deviations are shown in brackets.

be used for all sequences. The option to use 0.3 is provided only for completeness.

As an illustration of how this works in practice, we will replicate Table 1 from Ross and Adams
(2011a). Unlike the other test statistics, the FET CPM does not allow ARL0 values to be
achieved exactly, and the desired ARL0 instead acts as a lower bound only. This means that
the CPM is somewhat conservative, with the degree of this conservativeness depending on the
value of the pre-change Bernoulli parameter θ0. To investigate this in detail, the authors ran
simulations for several values of θ0 in order to determine the extent to which the empirical
ARL0s differs from the target value. The following code shows how this can be performed
using the cpm package, with a target ARL0 of 500:

sims <- 100

lambda <- 0.1

thetas <- c(0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01)

ARL0s <- numeric(length(thetas))

for (i in 1:length(thetas)) {

for (s in 1:sims) {

x <- rbinom(10000, 1, thetas[i])

res <- detectChangePoint(x, "FET", ARL0 = 500, startup = 20, lambda = lambda)

ARL0s[i] <- ARL0s[i] + res$detectionTime

}

ARL0s[i] <- ARL0s[i] / sims

print(sprintf("theta: %s, ARL0: %s",thetas[i], ARL0s[i]))

}

Table 2 shows a the resulting values, when sims = 50000. From this, it can be seen that the
CPM is not especially conservative as long as θ0 is greater than around 0.05. However when
it drops below this value, some efficiency will be lost and it may hence take longer to detect
changes than would otherwise be expected.

5.2. Streams with multiple change points

In many applications, the stream of observations may contain multiple change points. The
processStream function can be used to detect these. The basic idea behind this function is
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Figure 3: A sequence of Student-t(5) random variables which undergoes a change in mean
after the .100th and 200th observations. The dotted black lines show the points when the
change was detected, and the dotted red lines show the estimated change point locations.

to run the CPM as described above, processing each observation one-by-one. Suppose that
a change is detected at time T1, with the corresponding change point estimate being τ̂1. In
order to detect further change points, all the observations from before the detected change
point are discarded, and a new CPM is run, beginning with the (τ̂1 + 1)th observation. This
is repeated until all the observations have been processed.

Figure 3 gives an illustration of this. Here, the stream consists of Student-t(5) random
variables which undergo an increase in mean after the 100th observation, followed by a decrease
in mean after the 200th. Since this is not a Gaussian stream, one of the nonparametric CPMs
should be used to detect these changes.

When the CPM using the Mann-Whitney statistic is deployed on this stream, a change is de-
tected immediately following the 105th observation. The corresponding change point estimate
is τ̂1 = 99. After this change point has been detected, a new CPM is created and monitoring
begins from the 106th observation. A second change point is then detected at time t = 205,
with the corresponding change point estimate being τ̂2 = 198.

The parameters of the processStream function are identical to those for the detectChange
function in the previous section. This function returns the following list of values:

� detectionTimes: the observation times at which the changes were detected. If multiple
change points are detected then this will be a vector. If no change points are detected
then it will be a vector of length zero

� changePoints: the maximum likelihood estimate of the change points τi, defined as the
values of k which maximise Dk,Ti , where Ti is the detection time. Again, this will be a
vector if multiple change points are detected, and an empty vector if no change points
are detected.
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Figure 3 above can hence be reproduced by the following code:

x <- c(rt(200,5),rt(200,5)+2,rt(200,5))

res <- processStream(x, cpmType="Mann-Whitney", ARL0=500, startup=20)

plot(x,type='l')

for (dt in res$detectionTimes) {

abline(v=dt, lty=2)

}

for (dt in res$changePoints) {

abline(v=dt, lty=2,col='red')

}

As a less trivial example of how the processStream function can be used for multiple change
point detection, we analyse a real sequence of foreign exchange data. This example also
shows how the CPM framework can be applied to sequences of observations which are not
independent between the change points, by first applying a suitable transformation.

The data consists of a historical sequence of the exchange rates between the Swiss Franc
(CHF) and the British Pound (GBP). The maximum value of the exchange rate was recorded
at three hour intervals running from October 21st 2002 to May 15th 2007. In total, 9273
observations xt were made. and we treat them as being a data stream where observations
are received and processed sequentially. Although the analysis of financial data is often quite
sophisticated, we provide this example to demonstrate the capabilities of our algorithm in a
simplified setting.

This data set is included in the cpm package, and can be loaded with the following command:

data(ForexData)

#The third column is the observed exchange rate

x <- ForexData[,3]

plot(x)

This produces a plot of the financial sequence, as shown in Figure 4a. From this, it is apparent
that there is a high degree of autocorrelation. This is problematic for the CPM framework,
which assumes that observations are independent between change points. In order to deploy
the CPM, the correlation between the observations should be removed. In general, this may
require modelling the time series and deploying the CPM on the residuals rather than the
original data. With this financial data, we make a simple transformation and instead consider
the first differences of the logarithm of the data, defined as ∆xt = log(xt) − log(xt−1). This
transformation is typical when working with financial data, and the resulting sequence is
plotted in Figure 4b, and appears stationary with mean 0. However, these first differences
have very heavy tails, and this high kurtosis suggests that the data is non-Gaussian. A
nonparametric change detector hence seems an appropriate tool to use for analysis.

A typical goal when analysing financial data is to detect changes in the variance (volatility) of
the first differences. We use the Mood CPM for this purpose. Due to the length of the data,
the ARL0 was set to 5000 in order to avoid a large number of false alarms being generated.
Because this stream is likely to contain multiple change points, the processStream function
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Figure 4: The foreign exchange data, its first differences, and the EWMA of the squared first
differences, all with the detected scale change points superimposed.

is used, with the CPM being restarted whenever a change is detected. The following code
performs the analysis:

data(ForexData)

#The third column is the observed exchange rate

x <- ForexData[,3]

diffs <- numeric(length(x)-1)

for (i in 2:length(x)) {

diffs[i] <- log(x[i]) - log(x[i-1])

}

results <- processStream(diffs, cpmType="Mood", ARL0=5000,

startup=200)
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This CPM detects a total of 11 change points. We have superimposed these change points
on Figures 4a and 4b. It is not obvious from these plots whether the discovered change
points correspond to true scale shifts, so to investigate further, we compute the exponentially
weighted average of the stream variance, defined as EWMAt = λEWMAt−1 +(1−λ)(∆xt)

2.
This allows a local estimate of the variance to be formed. This EWMA is plotted iin Figure
4c, with λ = 0.999. It can be seen that the variance is undergoing gradual drift, and that the
discovered change points seem to correspond to abrupt changes in the variance. The following
code reproduces this EWMA analysis:

ewma <- numeric(length(diffs) )

ewma[1] <- diffs[1]

lambda <- 0.995

for (i in 2:length(ewma)) {

ewma[i] <- lambda*ewma[i-1] + (1-lambda)*diffs[i]^2

}

plot(ewma,type='l')

for (i in 1:length(results$changePoints)) {

abline(v=results$changePoints[i],lty=2)

}

5.3. Manipulating CPMs as S4 objects

The detectChangePoint and processStream functions provide a convenient wrapper around
the internals of the CPM implementation, and will hopefully be sufficient for most problems.
However in some situations more control may be required over how sequences are processed –
for example, the user may wish to inspect the individual Dk,t statistics after each observation,
or the user may wish to be able to halt processing part of the way through the sequence in
order to perform some further analysis.

To facilitate this, we have also implemented the CPMs as S4 objects within the cpm package.
After a CPM object is created, it can be passed observations individually for processing. The
object maintains its internal state consisting of all the observations which it has seen so far.
At any point, it can be queried in order to find whether a change has been detected, or to
obtain the latest set of Dk,t statistics.

The makeChangePointModel function is used to create a CPM object. It takes exactly
the same arguments as the detectChangePoint function above. After this has been created,
the processObservation function can be used to process a sequence one observation at a
time, with state being maintained after each one is processed. At any point, the CPM can be
queried by using the changeDetected function to test whether a change has been detected,
or the getStatistics function to gain access to the underlying Dk,t statistics.

To illustrate this, we provide code which replicates the financial data example from the pre-
vious section. We will then explain how it works:

data(ForexData)
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#The third column is the observed exchange rate

x <- ForexData[,3]

diffs <- numeric(length(x)-1)

for (i in 2:length(x)) {

diffs[i] <- log(x[i]) - log(x[i-1])

}

#vectors to hold the results

detectiontimes <- numeric()

changepoints <- numeric()

#use a Lepage CPM

cpm <- makeChangePointModel(cpmType="Mood", ARL0=5000,startup=200)

i<-0

while (i < length(diffs)) {

i <- i + 1

#process each observation in turn

cpm <- processObservation(cpm,diffs[i])

#if a change has been found, log it, and reset the CPM

if (changeDetected(cpm) == TRUE) {

print(sprintf("Change detected at observation %d", i))

detectiontimes <- c(detectiontimes,i)

#the change point estimate is the maximum D_kt statistic

Ds <- getStatistics(cpm)

tau <- which.max(Ds)

if (length(changepoints) > 0) {

tau <- tau + changepoints[length(changepoints)]

}

changepoints <- c(changepoints,tau)

#reset the CPM

cpm <- cpmReset(cpm)

#resume monitoring from the observation following the change point

i <- tau

}

}

After the CPM object has been created, the for loop iterates over the sequence one observation
at a time. For each observation, the processObservation function is used to update the
CPM. After this has been done, the changeDetected function is used to test whether there
has been a change point. This function returns TRUE if the Dt statistic used in the CPM
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has exceeded the ht threshold sequence at any point since monitoring began.

If a change point has been flagged, the getStatistics function is used to return the vector
of Dk,t statistics. From Equation 2, the best estimate of the change point location is the
maximum value of Dk,t, and this can be found by using the built-in R
textbfwhich.max function.

After the change location has been estimated, the cpmReset function is used to clear the
state of the CPM. When this is called, a new CPM is essentially created from scratch. Finally,
the loop index i is set to the observation immediately following the detected change point,
and the monitoring continues.

Note as a slight subtetly that since the CPM is completely reset after each change point, the
CPM only stores the observations which occurred after the previous change point. Therefore,
the following line:

tau <- tau + changepoints[length(changepoints)]

is required to convert the change point location index to an index over the whole sequence.
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