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SUMMARY

This paper compares the familiar probit model with three semiparametric estimators of binary response
models in an application to labour market participation of married women. This exercise is performed
using two different cross-section data sets from Switzerland and Germany. For the Swiss data the probit
specification cannot be rejected and the models yield similar results. In the German case the probit model
is rejected, but the coefficient estimates do not vary substantially across the models. The predicted choice
probabilities, however, differ systematically for a subset of the sample. The results of this paper indicate
that more work is necessary on specification tests of semiparametric models and on simulations using
these models.

1. INTRODUCTION

Binary response models are of major importance in applied microeconometrics. Examples
include labour market participation, union membership, choice of transportation mode for
travel to work, the choice to seek medical care, or the choice to participate in welfare programs.
Apart from being interesting in their own right, binary response models are also often used to
correct for selectivity bias in censoring models. The most frequently used form of binary
response models is given by

y:‘: xnﬂ + ufl
Ya=1if 720 )
¥, =0 otherwise

where y, is the indicator of the nth individual’s response determined by the underlying latent
variable y’, x, is a 1 x g vector of explanatory variables, f is a ¢ x 1 vector of parameters, u, is
arandom error term, and n=1, ..., N.

Let F(u| x) denote the cumulative distribution function of u conditional on the event x,= x.
Then

P(y,=1|x, B)=F(x,B|x,) @

In most applications, it is assumed that F is either the cumulative normal (probit model) or the
cumulative logistic distribution function (logit model).
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In practice, there usually is no prior knowledge to justify this distributional assumption.
Hence it is necessary to test whether it is consistent with the data. In the past years a number of
specification tests for binary response models have been developed (see Blundell, 1987).
However, these tests are still not standard practice in applied work although they are easily
computed. This is unfortunate, because several Monte Carlo studies have shown that both the
probit and the logit estimators can be severely biased when the distribution of u is
heteroscedastic or asymmetric (see e.g. Manski and Thompson, 1986; Powell et al., 1989; Klein
and Spady, 1993; Horowitz, 1992). Ruud (1983) has shown that under specific assumptions
about the distribution of x the estimates of S can be consistent up to location and scale even
when the parametric model is incorrect. However, as Ruud (1983) states, these assumptions are
too restrictive to be generally applicable. Furthermore, Ruud’s ‘robustness result’ does not carry
over to choice probabilities and probability changes. But exactly these are of major interest in
most applied work.

In principle, the probability P(y,=1]x,) could be estimated by nonparametric regression
without making any distributional assumptions. However, this estimation will suffer from the
‘curse of dimensionality’ when x is multidimensional (Stone, 1980). Furthermore, in applied
work we are usually interested in 8 and F(x,8]| x,) which are not identified by nonparametric
regression. If y is determined by utility maximization B contains important behavioural
information. Second, if § and F(-) are known it is possible to predict y at values of x outside
the support of x.

These problems have motivated the development of semiparametric models of binary
response that allow f to be estimated consistently without specifying the distribution of u. In
this paper I consider three semiparametric estimators that have recently been proposed in the
literature. The paper provides nothing new from a theoretical point of view, but aims at
illustrating the performance of these estimators in an application to real data. The first estimator
is based on the semi-nonparametric approach of Gallant and Nychka (1987), adapted for the
binary response case by Gabler et al. (1993). The second estimator has been proposed by Klein
and Spady (1993) and belongs to the class of single-index models. Finally, the smoothed
maximum score estimator proposed by Horowitz (1992) is applied.

These semiparametric estimators differ in several respects. First, the restrictions imposed by
the underlying distributional assumptions vary considerably across the models. The models also
differ in their ability to predict y. For the probit and the semi-nonparametric models F(x,8 ]| x,)
is identified for any value of x. In the single-index model and the smoothed maximum score
model, F(x,B|x,) can be estimated by nonparametric regression in the support of x,f.
However, for the smoothed maximum score model this estimate will not be very precise if x is
multidimensional (Horowitz, 1993). The usefulness of the Klein—Spady and especially of the
smoothed maximum score model for simulations is limited for this reason.

Semiparametric methods for binary response models have not yet been used much in
applications. To my knowledge the only study that systematically compares different
semiparametric estimators is Horowitz (1993). He estimated a fixed coefficient probit model, a
random coefficient probit model, a single-index model, and two versions of maximum score
models of the choice of the transportation mode to work. Specification tests rejected the fixed
coefficient probit model and the single-index model. The random coefficient and the smoothed
maximum score model could not be rejected. The coefficient estimates and predicted choice
probabilities varied considerably across models. Newey et al. (1990) estimated a probit and a
semiparametric single-index model of labour market participation. The estimates of the
parameters of both models turned out to be quite close. A similar result was obtained by
Melenberg and van Soest (1991), who estimated the probability to go on vacation using a probit
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and a semiparametric single-index model. Das (1991) estimated logit and maximum score
models of the decision whether to idle a cement kiln. An informal examination of the
estimation results suggested that the logit model may have been misspecified, but no formal test
was carried out.

In this paper I estimate a reduced-form labour force participation model of married women
employing the four models mentioned above using data from Germany and Switzerland. In
Section 2 I describe the different models. Section 3 describes the data. In Section 4 I present the
results, specification tests and the choice probabilities implied by the different models. Section 5
concludes.

2. THE MODELS

The first three models are estimated by Maximum Likelihood. The general likelihood function
for these models can be written as

N
InL(B) Z Yo In[F (x,B|x,)] + (1 = y)In[l - F(x,B|x,)] 3

n-1

where F(x,8| x,) is defined by equation (2). The models below differ only by the specification
of F(x,B] x,).

2.1. Probit

Assuming a normal distribution for » independent of x yields the familiar probit specific-
ation. The probit ML estimator of B, b, is obtained by maximizing the likelihood function (3)
with

F(x,8|x,) = F(x,8) = ®(x,b:/ 0.) C))

where @ is the cumulative normal distribution function and o, the standard deviation of u. The
model is identified only up to a constant scale factor. Usually, scale normalization is achieved
by setting o, equal to 1. The probit results and specification tests will be presented based on the
this normalization. In order to compare the probit estimates with the semiparametric estimates
another normalization is preferable, since for the latter estimates it would be cumbersome to
restrict the variance to 1. I choose to set the coefficient of one of the components of x, non-
labour income, equal to —1.

2.2. The Semi-nonparametric Model (Gabler, Laisney, and Lechner, 1993)
In the semi-nonparametric model, based on an approach by Gallant and Nychka (1987), the
density underlying the distribution function F(x,8) is given by the Hermite form

K
h*w) = Z a,-a,-u"”' exp(—(u/6%) o)
ij=0
which approximates any smooth density that has a moment generating function with tails at
most as fat as the ¢-distribution.
Following Gabler et al. scale normalization is achieved by setting J equal to V2. Furthermore,
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we have to ensure that the density of u, h(u), integrates to unity. This is achieved by defining
h(u) as h*(u)/S, where

§=[" n*wdu (6)

Since this is invariant through multiplication of a by a scalar, a further normalization is
necessary. Hence a, is set to (27r) "', which leads to the standard normal for K=0. The
seminonparametric model nests the probit model and provides a test for the normality
assumption.

The semi-nonparametric estimator by, of B is obtained by maximizing the likelihood
function (2) with

oo

)

'snp

Fltubay | %) = 87 7, W) du ™
conditional on a given value of K.

Finally, a location normalization is necessary. Following again Gabler et al. this is achieved
by imposing E(u)=0 (see Melenberg and van Soest, 1993, for an alternative normalization).
Gabler et al. show that this restriction leads to a branching problem with different sets of
restrictions that have to be imposed on either a, or a,. They propose to estimate under either
assumptions separately and compare the values of the objective function obtained at the
optimum (cf. Gabler et al. for details).

The proposed quasi-maximum likelihood estimator is asymptotically normal and allows for
the familiar testing techniques. The assumption of homoscedasticity of u is not relaxed in this
specification.

2.3. The Single-index Model of Klein and Spady (1993)
The single-index specification of the binary response model is given by

P(y,=1|x,)=F(x,8]x,)=G(x,B) ®

where G is an unknown function (not necessarily a distribution function) whose range is
contained in [0,1]. Root-N consistent, asymptotically normal estimators of f in single-index
models have been developed by Ichimura (1993), Klein and Spady (1993) and Powell et al.
(1989). The estimator of Klein and Spady achieves the asymptotic efficiency bound of
Chamberlain (1986) and Cosslett (1987) if G is a continuous distribution function and certain
other regularity conditions are satisfied. Klein and Spady assume that the model satisfies the
index restriction E(y| x) = E(y| xB).

The intercept component of S is subsumed in G and is not identified. Klein and Spady
propose an estimator of B, b, that is obtained by maximizing the (quasi) log-likelihood
function (2), where F(x,8]x,) is defined as Gy(x,B), a nonparametric estimate of G(x,5).
Klein and Spady present the asymptotic theory of the quasi-maximum likelihood estimator and
methods for estimating asymptotic standard errors. N'/* times the centered estimator of B is
asymptotically normal. The index restriction permits multiplicative heteroscedasticity of a
general but known form and heteroscedasticity of an unknown form if it depends only on the
index (cf. Klein and Spady).

As proposed by Klein and Spady, Gy is calculated from nonparametric kernel estimates of
the density of xb,, conditional on y. Define Py=N"'E)_y,, ie. Py is the sample proportion of
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women who participate in the labour market. Then for any real v

G, (v) = PNgN(va =1) )

Pugn(]y =1+ (1-B)gv(v|y=0)

where gy(- | y) is a kernel estimate of g(- |y), the conditional density of xf. This estimate is
given by

N
av@ly = 1) = WVBAY" D 5, KI(® = x,b,)/hn] (10)

n=1

and

N
an(@ly = 0) = V(1 = Bym)™ D (1 = 3)KIw - 1,5 )] ()

n=1

where K is the kernel function and {4,} is a sequence of bandwidths satisfying Nh$ — e and
Nh§—o000as N oo,

In establishing the asymptotic distributional properties of the estimator a trimming function is
necessary that downweights observations near the boundary of the support of xB. However,
because trimming appears to have little effect on the numerical results obtained in applications I
do not consider trimming in this paper (see also Klein and Spady, 1993, p. 406).

I use the normal density function as the kernel function. In determining the smoothing
parameter Ay I follow Newey et al. (1990) and use the method of generalized cross-validation
(Craven and Wahba, 1979), taking into account the restrictions on the bandwidth. With this
method, the smoothing parameter is chosen to minimize the residual sum of squares divided by
the square of the ‘degrees of freedom’ of the residual, which is defined as the sample size
minus the trace of the matrix (depending upon the regressors and smoothing parameters) that
transforms the dependent variables into their nonparametrically fitted values. Generalized cross-
validation appears to work reasonally well in this setting. The results do not vary substantially
when bandwidths close to the optimal bandwidth are used. The bandwidth selection method used
by Horowitz (1993) yields very similar values for the bandwidths.

The Klein—Spady estimator is computationally costly because of the nonparametric kernel
estimation to be conducted at each iteration. However, it is well known that there are methods to
speed up kernel estimation, e.g. the fast Fourier transform (FFT). In this paper I employ the
FFT version of the Klein—Spady estimator. In Gerfin (1993b) I show that the FFT version can
be more than two hundred times faster than the direct method and yields very accurate results.

2.4. Smoothed Maximum Score (Horowitz, 1992)

The maximum score model consists of equation (1) with the auxiliary assumptions that
median(u|x) =0 and that the distribution of u satisfies certain regularity conditions. In other
respects the distribution of u is assumed to be unknown, i.e. u is allowed to have virtually
arbitrary heteroscedasticity of unknown form. With respect to choice probabilities all we know
is that P(y=1|x)=0-5 if xf=0 and that P(y =1|x)—0-5 has the same sign as xf if x8#0.
The maximum score estimator was proposed by Manski (1975, 1985). Horowitz (1992)
developed a smoothed maximum score estimator that avoids the discontinuity of the objective
function of the original maximum score estimator. Smoothed maximum score estimation
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consists of selecting the estimator b, to maximize
N
Sy(Ban) = N7 D~ 2105, = 1) = 1109, B /) (12)
n-1

where 1(-) denotes an indicator function, i.e. 1(-) =1 if the expression in parentheses is true.
The cumulative normal distribution function ® is the smoothing function, and {hy} is a
sequence of bandwidths that converge to zero at the rate N~'". Horowitz (1992) gives the
asymptotic theory of the estimator, methods for removing its asymptotic bias and for estimating
asymptotic standard errors, and a plug-in method for selecting the bandwidth.! N** times the
centred, bias-corrected estimator obtained from equation (12) is asymptotically normal.

The objective function §, has many local maxima and requires a global optimization
algorithm. I follow Horowitz (1993) and use the simulated annealing algorithm proposed by Szu
and Hartley (1987). Simulated annealing yields a value of b, that is sufficiently near the global
maximum of S to enable the maximum to be found by the Newton—Raphson algorithm.?

3. DATA

The models described in Section 2 are applied to the problem of the labour market participation
of married women. This exercise is performed using cross-section data from two countries,
Switzerland and Germany. The Swiss data consist of a sample of 873 married women drawn
from the first representative health survey for Switzerland (SOMIPOPS) for 1981. The German
data consist of a sample of 1564 married women drawn from the first wave of the German
Socioeconomic Panel. Descriptive statistics are presented in the Appendix. The data are
described in detail in Gerfin (1993a) and Wagenhals (1989). I use the same explanatory
variables in both cases, namely AGE (age in years divided by 10), AGESQ (age squared divided
by 1000), EDUC (years of formal education), NYC (Number of young children), NOC
(number of older children), and NLINC (log of yearly non-labour income). In the case of
Switzerland I also included a dummy variable FOREIGN, taking the value one if the woman is
a permanent foreign resident. The age categories for children differ somewhat: the cutoff age is
five in the case of Switzerland and six for the German data. Based on preliminary experiments I
decided not to include interaction terms.

This specification represents a reduced form of the labour market participation equation
because wages are not observed for non-participants. The estimation of the wage equation
requires a selectivity correction term which is computed using the reduced-from participation
equation. Therefore, in a first step the reduced form has to be examined carefully.

4. RESULTS

4.1. Estimation and Test Results

Table I displays estimation and test results for the probit model (with normalization o, = 1). For
both data sets the estimated coefficients are as expected. In the Swiss case all explanatory

! The plug-in method provides an estimate of the asymptotically optimal bandwidth based on an initial bandwidth. The
estimated bandwidth was in a small interval for a wide range of initial bandwidths, and all bandwidths within that
interval yielded almost identical results.

* I experimented with the number of annealing iterations: 500 and 750 iterations yielded the same results for a variety
of starting values.
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variables except education have a significant effect on the participation probability. The strong
positive effect of nationality on the participation probability is worth noting. In the German case
all coefficients except the intercept are significant.

The lower half of Table I presents the parametric specification tests for the probit model. The
diagnostic tests considered here are versions of Lagrange Multiplier tests suggested by White
(1982) and are based on the theory of quasi-maximum likelihood. In the Monte Carlo results
reported in Lechner (1991) the corresponding quasi-Lagrange Multiplier (QLM) version was
found to have superior small sample properties in comparison with the standard LM tests. The
specific formulas for the probit model are given in Blundell et al. (1993).

The first three QLM statistics concern the distributional assumption of the probit model.
Normality is accepted for the Swiss data, but clearly rejected for the German data. The test
statistics indicate that the distribution is asymmetric and leptokurtic in the German case.

The next QLM test statistics relate to heteroscedasticity. I test whether the elements of x are
correlated with u individually as well as simultaneously. In the Swiss case homoscedasticity
cannot be rejected for individual elements of x. However, homoscedasticity is rejected when all
elements of x are considered simultaneously. For the German data homoscedasticity is rejected
for the two children variables as well as for all elements of x simultaneously.

Table 1. Probit estimation results (asymptotic standard errors in parentheses)

Switzerland (N = 873) Germany (N = 1564)
Variable Coefficient Standard error Coefficient Standard error
Intercept 3.75 (1-41) 1-02 (1-13)
AGE 2-08 0-41) 1-.21 (0-35)
AGESQ -0-29 (0-05) -0-19 (0-04)
EDUC 0-02 (0-02) 0-08 (0-02)
NYC -0-71 (0-10) -0-72 0-07)
NOC -0-15 (0-05) -0-29 (0-04)
NLINC -0-67 (0-13) -0-30 (0-10)
FOREIGN 0-71 0-12)
—Log Likelihood 509-4 968-1

QLM specification tests ~ Test statistic ~ dof  Significance Test statistic ~ dof  Significance

Skewness 1-52 1 21-76 6-51 1 1-08
Kurtosis 0-26 1 61-08 5-74 1 1-66
Normality 4.01 2 10-03 7-00 2 3.09
Heteroscedasticity
AGE 3.70 1 5-43 0-00 1 97-48
AGESQ 3-11 1 7-74 0-00 1 97-40
EDUC 0-01 1 91-65 0-41 1 52-15
NYC 1-88 1 17-06 7-42 1 0-64
NOC 0-37 1 54-14 5-48 1 193
NLINC 0-04 1 83-76 0-14 1 70-63
FOREIGN 0-21 1 64-68 - -
All 15-38 7 3-14 13-39 6 3.73

Note: Scale normalization achieved by setting s, equal to 1.
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I also computed the version of the information matrix test proposed by Orme (1988) which
can be interpreted as an overall specification test. According to this test the probit cannot be
rejected for the Swiss data (the test statistic has a significance level of 25%), but is severely
rejected for the German data (a significance level of 0-5%). Furthermore, I computed the Chi-
square specification test proposed by Andrews (1988). This test accepted the probit as well as
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Figure 1. Nonparametric specification test, probit. (a) Switzerland; (b) Germany
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the semi-nonparametric and the Klein—Spady models at significance levels between 65% and
75%, so the power of this test appears to be small in the present context.’

Summarizing, the specification tests indicate that the assumptions underlying the probit
specification cannot be rejected for the Swiss data (with one exception), but for the German
data they are rejected (cf. Lechner, 1991 who obtained very similar results for the logit model
using the same data). This result is confirmed by the non-parametric specification test of
Horowitz (1993). This test is based on a 95% uniform confidence band around the non-
parametric regression of y on xb,, (see Horowitz, 1993, p. 60). The probit specification cannot
be rejected when the normal distribution function lies within the confidence band. Figure 1
shows the results of this test. In the case of the Swiss data the normal distribution function lies
within the uniform confidence band. For the German data sets this is not the case. The
bandwidths are chosen by generalized cross-validation.

Table II presents the estimation results for the semi-nonparametric model. For the Swiss data
the distribution parameters a are not significantly different from zero. Consequently a likelihood
ratio test does not reject the probit specification which is nested in the semi-nonparametric
specification. Taking the different scaling into account the estimates of S are similar to the
probit estimates.

In the German case the branching problem mentioned above leads to a different normalization
than in the Swiss case. Only a, is estimated and turns out to be highly significant. A likelihood
ratio test rejects the probit specification. I also estimated the semi-nonparametric model with
K=4 and K=5. In the former case none of the estimated coefficients is significant and the

Table II. SNP estimation results (asymptotic standard errors in parentheses)

Switzerland (N = 873) Germany (N = 1564)

Variable Coefficient Standard error Coefficient Standard error
Intercept 6-26 (2:50) 1-12 0-99)
AGE 3.37 (0-85) 1-21 (0-34)
AGESQ -0-49 0-12) -0-19 (0-04)
EDUC 0-02 (0-03) 0-07 (0-02)
NYC -1.31 ©0-27) -0-77 0-12)
NOC -0-27 (0-10) -0-30 (0-05)
NLINC -1.04 (0-26) -0-27 (0-09)
FOREIGN 1-02 (0-25)
a, -0-21 0-12) -0-36 (0-08)
a, 0-19 0-11) -0-21 —_
a, 0-05 (0-03) 0 —
Distribution

Standard deviation 1-52 1-29

Skewness 0-43 1-08

Kurtosis -0-62 0-50

—Log Likelihood 506-8 961-2

Note: The Swiss results are based on a different restriction on the distribution parameters o from the German results. K
is set equal to 3 in both cases.

3 The test is based on the two cells defined by the value of y.
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likelihood ratio test does not reject the specification with K=3. In the latter case the
maximization algorithm did not converge. This is in line with Gabler et al. (1993), who found
that very large sample sizes seem to be necessary to identify orders of K higher than 3. Score
tests still indicate heteroscedasticity with respect to the variables NYC (significance level 3:12)
and NOC (significance level 4-67), i.e. the flexible distribution does not solve this problem.
Tables III and IV present the estimation results for the Klein—Spady and the maximum score
models as well as the rescaled estimates of the two previously discussed models. For the Swiss
data (Table III) the estimated coefficients do not vary much across models when their standard
errors are taken into account. Note that in the smoothed maximum score model only AGE and
AGESQ are significant at the 5% level. But this should be interpreted with caution because

Table III. Estimation results, Switzerland (N =873)

Smoothed
Klein—Spady* maximum score® Probit® SNP®

Variable Coeff. Std.err Coeff. Std.err Coeff. Std.err Coeff. Std.err
Intercept — — 5-83 (1-78) 5-62 (1-35) 5-99 (2-20)
AGE 2-98 (0-90) 2-84 (0-98) 3-11 ©-77) 3.23 0-87)
AGESQ -0-44 0-12) -0-40 0-13) 0-44 (0-10) -0-47 0-12)
EDUC 0-02 (0-03) 0-03 (0-05) 0-03 (0-03) 0-02 (0-03)
NYC -1-32 (0-33) -0-80 (0-43) -1-07 (0-26) -1-26 (0-24)
NOC -0-25 (0-11) -0-16 (0-20) -0-22 (0-09) -0-26 (0-10)
NLINC -1.0 — -1-0 — -1.0 —_ -1.0

FOREIGN 1-06 (0-32) 0-91 0-57) 1-07 (0-29) 0-98 (0-26)
Bandwidth 0-40°¢ 0-70

* Results based on scale normalization by e = —1.

® Obtained by dividing the respective coefficients by the absolute value of the coefficient of NLINC. Standard errors
computed by Delta method.

¢ Multiplied by the standard deviation of the index xb,,.

Table IV. Estimation results, Germany (N = 1564)

Smoothed
Klein—Spady* maximum score® Probit® SNP®

Variable Coeff. Std.err Coeff. Std.err Coeff. Std.err Coeff. Std.err
Intercept — — 4.59 (2-25) 3.42 (3:10) 4:11 (3-29)
AGE 3-19 (1-28) 291 (1-:34) 4.03 (1-72) 4.44 (1-11)
AGESQ -0-53 (0-18) -0-42 (0-16) -0-64 (0-25) -0-70 (0-13)
EDUC 0-25 (0-08) 0-15 (0-08) 0-28 (0-10) 0-26 (0-06)
NYC -2-54 ©-77) -1.32 (0-19) -2-39 (0-90) -2-82 (0-48)
NOC -0-89 (0-28) -0-64 (0-20) -0-97 (0-39) -1-09 ©-17)
NLINC -1.0 — -1.0 — -1.0 —_ -1.0

Bandwidth 0-30°¢ 0-60

** As Table II
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Monte Carlo simulations by Horowitz (1992) show that very large samples are needed to make
the approximations of the asymptotic theory accurate. However, in contrast to the German data
(see below) there is no obvious bias of the estimated standard errors. Overall, for the Swiss data
the four models seem to yield very similar information on the individual behaviour that is
governed by the index xf.

The coefficient estimates vary to some extent in the German case (Table IV). Apart from the
intercept the estimates are largest in the semi-nonparametric model and smallest in the smoothed
maximum score model (in absolute values). The difference is most pronounced for the
coefficient of NYC. The differences between the estimates of the probit, the semi-nonparametric
and the Klein—Spady estimators are not substantial. The smoothed maximum score standard
errors seem to be biased, since they are smaller than the probit standard errors despite the slower
convergence rate of the smoothed maximum score estimator. In this paper I do not correct for
this by using bootstrap methods, as has been proposed by Horowitz.

Before turning to the predicted choice probabilities according to the different models I present
some specification tests. It should be noted that these tests have an informal character because
their asymptotic properties have only been derived for the fully parametric case. The semi-
nonparametric and the Klein—Spady model are estimated within a quasi-maximum likelihood
framework and can be tested with the information matrix test. However, due to numerical
problems I was only able to compute the OPG version of the test. According to this test both
models have to be rejected in both samples (the statistics have significance levels of 2:6 and 3-4
for the Swiss data and 3-1 and 2-9 for the German data in the Klein—Spady and the SNP model,
respectively). This result is perhaps not too surprising given the known sensitivity of the OPG
version of the IM test. Furthermore, because of the nonparametric estimation involved it is
possible that the sample sizes are too small in the case of the Klein—Spady estimator.

Another possibility to discrimate between the likelihood-based models is Vuong’s (1989) test
for non-nested models. This is a special form of the likelihood ratio test to test the hypothesis
that two specified models are equally distant from the true model against the alternative that one
model is closer to the true model. According to this test the Klein—Spady estimator is in both
cases preferred over the probit and the semi-nonparametric estimators, but the test is significant
at the 5% level for the comparison with probit in the German case only. Finally, the estimated
smoothed maximum score models pass the specification test for this kind of model suggested in
Horowitz (1993).

4.2. Predicted Choice Probabilities

It is difficult to evaluate the parameter estimates in terms of their effects on choice probabilities.
For illustration purposes I plot the predicted choice probabilities for the probit, the semi-
nonparametric, and the Klein—Spady estimators in Figure 2. For the Swiss data the three curves
are close. The plots for the German data show that the predicted choice probabilities from the
Klein—Spady estimator are not a monotonic function of xb for low values of xb, but for greater
xb values it resembles closely the cumulative normal distribution. The choice probabilities
according to the semi-nonparametric model lie between the two others in the problematic region,
but almost coincide for larger values of xb. This problematic region is created by a number of
women with low values of xb who are working.

It is difficult to compare the smoothed maximum score model with the other models because it
does not accurately provide choice probabilities, when x is multidimensional. One way of
comparison is to compute the probit and Klein—Spady choice probabilities at values of x where
xbg, equals 0. However, it turns out that this experiment is not informative. The computed
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choice probabilities are close to 0-5 at these points for all models in both samples. This is in
contrast to Horowitz (1993), who found large differences in choice probabilities in this
experiment. One possible explanation for this might be that in the samples analysed in this paper
the sample proportion of observations with y= 1 is close to 0-5, whereas in Horowitz’s sample
this proportion is 0.84.

One possibility to examine the fit of the estimators is computing within sample predictions.
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Two prediction methods are considered. The first is based on the assumption that y=1 if
P(y=1]|x) is greater than 0-5, otherwise y = 0. This yields the predicted number of participants
for each model which can be compared to the actual number of participants. The second method
simply sums the predicted choice probabilities, yielding the predicted sample proportion of
working women. This second method cannot be applied with the smoothed maximum score
estimator.

Table V presents the results of both prediction methods. In the first case the probit model
performs best in predicting the number of participants. The semi-nonparametric and the
smoothed maximum score estimators do not perform too well in this prediction. This is
especially the case for the smoothed maximum score estimator with the German data. Since this
is the only possible prediction with the smoothed maximum score model, it raises some doubts
about the usefulness of this estimator in applied work. According to the second method the
aggregate choice probabilities are very close to the sample proportion of participants for all
considered models.

In a final prediction I only consider observations with xb, < -1 for the German data,
i.e. observations in the problematic region. With the first method each of the models
predicts zero participants. In the second method the Klein—Spady model performs very well in
predicting the expected number of participants. This prediction reveals that the number of
observations that cause the problems is surprisingly small (there are 80 observations, 17 of
which participate).

The next question is to what extent simulations based on the different models will yield
different results. I do not consider a full-scale simulation in this paper, but rather a
demonstration of how the choice probability of a base case individual changes when her
characteristics are changed. For space reason I only present one interesting example in which the
number of children of this base case woman is altered. The other characteristics remain
unchanged (they are given at the bottom of Table VI). This is the only case in which the
different models yield different results. In all other cases I examined the models predict very

Table V. Within-sample prediction

Swiss data German data
(N=873) (N =1564) German data (xby, < —1)
number of number of (N=80)
participants participants number of participants
Actual 401 686 17
1. Method
Z1(P,,>0-5) 389 575 0
Z1(P,,>0-5) 338 540 0
X1(P,>0-5) 382 560 0
Z1(xbgy,,>0) 355 423 0
2. Method
Z(P,) 401-7 687-7 87
Z(Pyp) 401-0 685-8 14-8
(P, 399.3 683-5 17.0

Notes: 1 indicates the indicator function. P, denotes the predicted choice probabilities according to the probit model.
P,,, is defined analogously for the semi-nonparametric model and P, for the Klein-Spady estimator. xb,,,, denotes the
smoothed maximum score estimate of the index xb.
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similar changes of the participation probabilities.* In the first four rows of Table VI the
direction of the change in choice probabilities is the same, but the size of the changes differs to
some extent (especially between the first and second rows). When the total number of children
exceeds two the models predict different patterns of probability changes. The choice probability
remains almost constant using the semi-nonparametric estimator, whereas the Klein—Spady
estimator predicts an increase of the participation probability when the number of children
exceeds two. Since the participation probability of the Klein—Spady model is a nonparametric
estimate I also compute its standard error. These standard errors suggest that the estimate of the
participation probability becomes more imprecise as the number of children increases because
of the sparsity of observations.

The last column of Table VI presents the predicted choice probabilities according to a
heteroscedastic probit (see next section). This model also predicts an increase in the
participation probability when the number of children exceeds two. The heteroscedastic probit
also picks up the peculiar feature of this data set that the participation rate of women with more
than two children is relatively high.

4.3. Parametric Extensions

Another way to take account of detected misspecifications of the probit model is to extend it
parametrically. Heteroscedasticity can be modelled explicitly by a parametric specification of
the variance of u, V(u), e.g V(u)=o02[exp(z8)]>. z is a vector of variables assumed to
influence the variance of u and ¢ is the corresponding parameter vector. z could either be equal
to x or a subset of x consisting of those variables that were detected by the score tests against
heteroscedasticity. I estimated this kind of model for the German data. Estimation results are
presented in the Appendix (Table A.II). z is defined to include the variables NYC and NOC,
which were detected as the sources of heteroscedasticity by the score tests. The d-coefficients
are significant and the homoscedastic probit is rejected against this specification by a likelihood
ratio test. The heteroscedastic probit model seems to describe the data much better than the
simple probit (see Horowitz, 1993, for a similar result). This is confirmed by the nonparametric

Table VI. Participation probabilities, German data

Participation probability

Klein—Spady Heteroscedastic
Probit SNP (Standard error) probit
NYC=0 NOC=0 0-73 0-78 0-75 (0-03) 0-79
NYC=1 NOC=0 0-46 0-41 0-41 (0-02) 0-36
NYC=1 NOC=1 0-35 0-29 0-31 (0-02) 0-31
NYC=2 NOC=0 0-21 0-20 0-18 (0-03) 0-20
NYC=2 NOC=1 0-13 0-19 0-23 (0-05) 021
NYC=2 NOC=2 0-08 0-18 0-39 (0-09) 0-23

Note: The base case woman has the following characteristics: AGE =40, EDUC = 10, NLINC = 10. The children
variables vary as given above. The standard error of the Klein—Spady participation probability is computed by the
formula given in Hardle (1990, p. 100) for pointwise confidence intervals.

* A full set of results is available on request.
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specification test (Figure Al in the Appendix). This test does not reject the heteroscedastic
probit. However, it is still rejected by the information matrix test (significance level 3-7%).

A possibility to correct for non-normality is to include polynomials and interactions of the
original elements of x. This makes the index xf a more flexible function of the explanatory
variables. In the present case, however, it turns out that including third-order polynomials of
age and education and interactions with the children variables does not solve the problems
according to score tests. On the other hand, Klein (1993) gives an example where a probit model
without polynomials is rejected, whereas the probit model including the polynomials is not
rejected by the specification test proposed in this paper by Klein. This test appears to be more
powerful in order to detect departures from normality than the usual score tests. An exploration
of Klein’s test is left for future research.

Overall, the results of this section suggest that parametric extensions of the probit are a
promising alternative to semiparametric models.

4.4. Computational Issues

Computation time is an important issue in the present context. For the German sample (1564
observations, seven parameters) the SNP estimation took about 7 minutes on a 486 66 MHz PC.
The FFT version of the Klein—Spady with 2048 Fourier points took about 5 minutes (only five
parameters due to the necessary normalization and the excluded intercept). The final iteration
using the direct method (i.e. no FFT), which seems to yield a better estimate of the covariance
matrix, took about 6 minutes. The estimation of the smoothed maximum-score model (six
parameters) took about 8 minutes. These numbers clearly show that at least in the present case
computation time is not a restriction for the semiparametric models.

5. CONCLUSIONS

In this paper I compared a parametric and three semiparametric estimates of a binary choice
model of labour market participation. The parametric model is the familiar probit specification.
The semiparametric models are the semi-nonparametric estimator proposed by Gabler et al.
(1993), the single-index estimator proposed by Klein and Spady (1993), and the smoothed
maximum score estimator proposed by Horowitz (1992). This exercise was performed with two
different cross-section data sets from Switzerland and Germany. Specification tests rejected the
probit specification for the German data. For the Swiss data the probit model passed the
specification tests.

The coefficient estimates do not differ substantially across models for both samples. The
resulting predicted choice probabilities in the Swiss case are also similar. For the German data
the differences are large for small values of the index xf, but for values larger than —1 the
predicted choice probabilities almost coincide.

Several formal and informal tests gave mixed results. According to the Information matrix
test the Klein—Spady and the semi-nonparametric models are rejected for both samples. The
Vuong (1989) test for non-nested models indicated that the Klein—Spady model performed best
compared to the probit and the semi-nonparametric models, but the test statistic was only
significant for the comparison of probit and Klein—Spady with the German data. The smoothed
maximum score model is accepted by a test designed for this model. In general, more work is
necessary on the performance of existing specification tests within semiparametric models and
on the development of specific tests for these models.

In order to examine the fit of the models I performed two different sets of within-sample
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predictions. The semiparametric models did not perform too well in the first method, which was
based on the assumption that y=1 if P(y=1]|x) is greater than 0-5. In the second prediction
method I aggregated predicted choice probabilities to get an estimate of the sample proportion
of participants. In this simulation all considered models performed equally well.

Finally, I examined the differences in predicted participation probabilities when the
characteristics of a base case woman are altered. Only for the German data and only with
respect to the number of children do the models predict substantially different probabilities. The
probit model predicts continuously decreasing probabilities as the number of children increases,
whereas the Klein—Spady model predicts probabilities that increase again when the total number
of children exceeds two. The semi-nonparametric model predicts almost constant probabilities
for these cases. Interestingly, a heteroscedastic probit also predicts increasing probabilities when
the number of children exceeds two. So this feature of the data can also be captured by a
modified probit model.

What recommendations for applied research follow from the results of this paper? First,
testing parametric binary response models should become standard practice. If the parametric
model is rejected the recommendations depend on the objective of the analysis. When the
behavioural information contained in B is the only required result the smoothed maximum score
estimator seems to be an attractive choice because it is the least restrictive estimator. When the
estimation of the binary response model is the first step in the estimation of a censored model
the Klein—Spady estimator seems to be a good solution. It is relatively easy to compute and has
the required property of root-N consistency. On the other hand, when the simulation of sample
expectations and changes thereof is the aim of the analysis it seems to be more promising to
specify parametric extensions of the probit or possibly of the semi-nonparametric model. A
systematic simulation analysis as well as an analysis of the effects of a misspecified binary
response model in censoring models is left for future research.

APPENDIX

Table A.I. Descriptive statistics

Switzerland (N = 873) Germany (N = 1564)
Variable Mean Standard deviation Mean Standard deviation
Y 0-46 0-51 0-44 0-48
AGE 4-00 1.05 4-14 0-98
AGESQ 1-71 0-87 1-81 0-83
EDUC 9:30 3.09 9.61 2-07
NYC 0-31 0-61 0-31 0-62
NOC 0-98 1.09 0-74 0-87
NLINC 10-67 0-55 6-30 0-35
FOREIGN 0-25 0-43 — —

Notes: Y is the indicator of labour market participation. AGE is age in years divided by 10, AGESQ is age squared
divided by 1000, EDUC is years of formal education, NYC is number of young children, NOC is number of older
children, and NLINC is the log of yearly non-labour income. In the case of Switzerland I also included a dummy
variable FOREIGN, taking the value one if the woman is a permanent foreign resident. The age categories for children
differ somewhat: the cutoff age is five in the case of Switzerland and six for the German data.

Source for Swiss data: SOMIPOPS, the first representative health survey for Switzerland (1981)

Source for German data: German Socioeconomic Panel (GSOEP), first wave (1984)
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Table A.II. Estimation results for heteroscedastic

probit, German data

Variable Coefficient Standard error
Intercept 4-62 3-13
AGE 3.55 1-66
AGESQ -0-61 0-25
EDUC 0-34 0-13
NYC -4-02 1-61
NOC -1-47 0-61
NLINC -1.0 —
T, 3-09 1-14
o, (NYC) 0-37 0-14
o, (NOC) 0-29 0-11
—Log Likelihood 9587

Note: Scale normalization through setting the coefficient of
NLINC equal to —1. The vector z includes the elements
(NYC NOC).
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