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Parametric Bayesian Filters for Nonlinear Stochastic Dynamical

Systems: A Survey

Paweł Stano*, Zsófia Lendek, Jelmer Braaksma, Robert Babuška, Cees de Keizer and Arnold J. den Dekker

Abstract—Nonlinear stochastic dynamical systems are com-
monly used to model physical processes. For linear and Gaus-
sian systems, the Kalman Filter is optimal in minimum mean
squared error sense. However, for nonlinear or non-Gaussian
systems the estimation of states or parameters is a challenging
problem. Furthermore, it is often required to process data online.
Therefore, apart from being accurate, the feasible estimation
algorithm also needs to be fast. In this paper we review Bayesian
filters which possess the aforementioned properties. Each filter
is presented in an easy to implement algorithmic form. We focus
on parametric methods, among which we distinguish three types
of filters: filters based on analytical approximations (Extended
Kalman Filter, Iterated Extended Kalman Filter), filters based
on statistical approximations (Unscented Kalman Filter, Central
Difference Filter, Gauss-Hermite Filter), and filters based on the
Gaussian Sum Approximation (Gaussian Sum Filter). We discuss
each of these filters, and compare them on illustrative examples.

I. INTRODUCTION

The concept of filtering has been studied for decades in

various engineering problems that require extracting informa-

tion of interest from an uncertain or changing environment. A

filter is a recursive algorithm designed for a case where the

complete knowledge of the relevant signal characteristics is

not available [1]. The main purpose of a filter is to utilize the

available information about the process of interest in order to

obtain an estimate of certain variables that cannot be measured

directly.

In this paper we analyze filters designed for nonlinear

discrete-time continuous-state dynamical systems. These are

used to model, among others, physical [2], chemical [3],

biological [4], or economic [5] processes. Usually, in each of

these cases, one is interested in continuous-time phenomena,

often governed by (partial) differential equations. However,

due to the complexity of these models and the limited com-

putational power available, a number of simplifications are

required in order to obtain an efficient solution. Discrete-time

systems provide such a simplification since in this framework

time is represented by the monotonic set of discrete time

steps that allows recursive filtering of the process of interest.

Since the discretized system is only an approximation of

the original one, there is always a certain degree of uncer-

tainty incorporated into the model, which depends on the

discretization technique that was applied [6]. Other possible

approximation is done by replacing the detailed deterministic
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(dynamical) relations with probabilistic approximations which,

if appropriately chosen, further simplify the system. However,

this comes with the price of increased uncertainty of the model

(see [7] and references therein).

The main objective of this paper is to review and discuss

the filtering methods that are commonly applied to nonlin-

ear stochastic dynamical systems. Among many techniques

dealing with this subject we can distinguish: grid-based meth-

ods [8]–[10] designed for dynamical systems defined on finite

state space, point-mass methods [11]–[13] that are based on

grid approximation of the continuous state space, Beneš-

Daum filters [14]–[16] derived for a specific class of nonlinear

systems with linear observations, parametric methods [17]–

[20], i.e., methods for which the estimation problem has a

solution in a finite dimensional parameter space, nonpara-

metric methods based on numerical integrations via Monte

Carlo approach such as Particle Filters [9], [21]–[23] or En-

semble Kalman Filters [24]–[27] popular in data assimilation

problems, and more [28]–[30]. Throughout the years, each

of these approaches lead to a development of a multitude

of algorithms. Detailed analysis of such a vast number of

estimation techniques is a monumental task. Therefore, in this

article, we focus only on the parametric filters. We present

filtering algorithms and investigate their properties and their

feasibility for online applications.

To help the reader better understand the properties of

the filters discussed we analyze their performance in four

numerical experiments. For these experiments we use popular

systems that have been extensively studied in the literature.

This paper is organized as follows. First, in Section II,

we state the general Bayesian Filtering (BF) problem. Next,

we proceed to the solutions of this problem. We start from

the simplest estimation methods that are applicable to simple

dynamical systems, and step by step continue to advanced

filters suitable for more complex estimation problems. In

Section III we present a class of analytical approximators.

Section IV deals with a class of statistical approximators. In

Section V we discuss filters that are based on Gaussian Sum

approximation. Section VI concludes the paper.

II. GENERAL PROBLEM FORMULATION:

BAYESIAN FILTERING

In this section we formulate the Bayesian filtering (BF)

framework for nonlinear and non-Gaussian dynamical sys-

tems. This will be used as a basis for each filter presented

in the remainder of this paper.

First, let us establish the notation utilized throughout the

paper. For each time instant k = 1, 2, ... we use:

• bold lower case font to denote random



variables (xk,yk,vk,wk), or functions of random

variables (fk,hk),
• bold capital letters to denote matri-

ces
(

Rk,Qk,Pk|k,Fk,Hk

)

• italic font to denote scalars
(

ωi, n, κ, ql, h
)

,

• bold italic lower case font to denote deterministic vec-

tors
(

uk, x̂k, xi
k

)

or the realizations (yk, xk) of the random

variables (yk,xk),
• calligraphic upper case letters to denote deterministic sets,

e.g., Yk = {yi, i = 1, ..., k}.

A. Bayesian Filtering

First, let us define the probabilistic state-space system,

which serves as a framework for the BF problem. The

probabilistic state-space framework relates the process model

describing the evolution of the states in time, the observation

model relating the noisy measurements of the system to the

actual state, and the initial state of the system. In discrete-time,

at each time instant k = 1, 2, ..., the probabilistic state-space

description is given by

the state model

xk+1 = fk(xk,vk), (1)

the observation model

yk = hk(xk,wk), (2)

and the initial condition

x0 ∼ p0, (3)

where xk ∈ R
n and yk ∈ R

p are random variables corre-

sponding to the state model and the measurement model at

time step k, respectively. vk ∈ R
d and wk ∈ R

l are uncorre-

lated random variables, which represent the system noise and

the measurement noise at time step k, and are independent of

the distribution of the initial state p0. Throughout the paper

we assume that fk : Rn × R
d → R

n is a known nonlinear

function that models the evolution of the state xk affected by

the random variable vk, and that hk : Rn×R
l → R

p is known

nonlinear function that relates the observation variable yk to

the state variable xk at time step k under the disturbances

caused by the noise wk. Furthermore, we assume that the

distributions of state and observation noise vk and wk are

known for all k ≥ 1.
Note that in some applications the functions fk or hk

might depend on uncertain parameters [31]. In such cases it is

possible to learn the dynamics of the system online with the

Expectation-Maximization algorithm [31]–[33].
Given the sequence of measurements up to time step k,

i.e., Yk = {yi, i = 1, ..., k}, and the initial knowledge

of the state distribution p0, the objective of the estimation

is to find a certain probability density function (PDF). For

dynamical systems we distinguish three classical estimation

problems [34]–[37]:

1) m-step smoothing: estimation of p(xk−m|Yk),
2) m-step prediction: estimation of p(xk+m|Yk),
3) filtering: estimation of p(xk|Yk).

One can distinguish three types of smoothing algorithms:

fixed-point smoothers, which estimate a state at a fixed point of

time using a growing number of measurements, fixed-interval

smoothers, which estimate states within a fixed time interval

using all the measurements from the same time interval, and

fixed-lag smoothers, which estimate states with a fixed time

delay. The overview of these methods is out of scope of this

paper, instead readers interested in smoothing methods are

referred to [28], [36]–[41].

The prediction problem is closely related to the filtering

problem. In fact, finding the m-step predictor can always be

done by iterating the prediction step of a given filter. Thus, no

specialized algorithms are needed for this.

In this paper we restrict our analysis to BFs, which recur-

sively solve the filtering problem for the system (1)–(3) in two

steps. First, during the prediction step, the state model (1) and

the density p(xk−1|Yk−1) are used to derive the predicted

state density via the Chapman-Kolmogorov equation:

p(xk|Yk−1) =

∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1, (4)

where the transition density p(xk|xk−1) is determined by the

known statistics of vk−1 and the transformation fk−1.

The prediction step is followed by the update step where the

most recent measurement yk is combined with the predicted

state density p(xk|Yk−1) using the observation model (2). The

desired posterior PDF p(xk|Yk) is computed via Bayes’ rule:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

∫

p(yk|xk)p(xk|Yk−1)dxk
. (5)

Note that most real-life applications do not require a PDF

but rather a concrete point estimate of a state. The poste-

rior PDF contains all the information required for computing

an optimal point estimate x̂k of the state with respect to a

predefined criterion. In general, the choice of the criterion is an

important (and non trivial) problem. An incorrectly chosen x̂k
might lead to a significant decrease in the filter’s performance

as, e.g., in multi-target tracking applications [42], [43]. Two

of the most popular estimators [8], [44], [45] are the minimum

mean-square error (MMSE) estimator and the maximum a

posteriori (MAP) estimator. The MMSE estimate is computed

as the conditional mean of xk given Yk

x̂MMSE
k = E(xk|Yk) =

∫

xkp(xk|Yk)dxk.

The MAP estimate is given by the vector that maximizes

the posterior density, i.e., it is a solution of the optimization

problem

x̂MAP
k = argmax

xk

p(xk|Yk).

Note that the MAP estimate is not unique if the posterior PDF

achieves the maximal value in multiple points (e.g., the PDF

of the uniform distribution).

For systems with linear dynamics and additive Gaussian

noises [46]–[49] the posterior PDF is also Gaussian [50]

and is computed in a closed from by the Kalman Filter

(KF) [51]. The KF is an unbiased estimator [52] that is optimal

in the MMSE and the MAP sense (for the KF the MMSE

estimate and the MAP estimate are identical). Despite re-

strictive assumptions the KF continues to be very popular

among practitioners. In particular the problem of tuning the



parameters of the KF in case of model uncertainty has attracted

much attention. In [53] methods for unbiased, consistent

and asymptotically normal estimators of covariances cov (vk)
and cov (wk) have been developed. These algorithms have

been further improved in [54]–[57]. The effect of prefiltering

upon the estimates of covariances has been studied in [58].

It has beed noted that precise knowledge of cov (vk) is more

critical [48], [55], [59] than knowledge of cov (wk), which

often can be derived from sensors specifications.

Unfortunately, for general nonlinear systems there exists

no closed form solution to the filtering problem. Thus, in

most cases we need to rely on approximations of the true

posterior PDF which lead to suboptimal solutions [60], [61].

In the following sections we present suboptimal parametric

filters.

B. Performance Evaluation

It is possible to asses the achievable performance of a given

nonlinear filter by computing the (sampled) variance of the

estimator and comparing it with the Posterior Cramér-Rao

Bound (PCRB). The PCRB gives a lower bound on the mean

squared error (MSE) for any estimator of a random variable,

see Chapter 2.4 of [62]. Thus, it is a generalization of the

classical Cramér-Rao Bound (CRB), see Chapter 32 of [63]

or [64], which bounds the MSE of estimators of deterministic

variables. The PCRB is derived for the system (1)–(3) and it is

independent of the filter applied to the system. Thus, the PCRB

serves as a benchmark for comparing the performance of the

nonlinear filters [65]. Applications of the CRB to continuous-

time nonlinear filtering are discussed in [66] whereas [67]

focuses on discrete-time nonlinear filtering.

In what follows x1:k and y1:k denote random vari-

ables (x1, ...,xk) and (y1, ...,yk), respectively. The PCRB is

a lower bound on the mean squared estimation error defined

by

Ey1:k,x1:k

(

(x̂1:k − x1:k) (x̂1:k − x1:k)
T
)

, (6)

where Ey1:k,x1:k
denotes the expectation taken with respect to

the random variables y1:k and x1:k, and x̂1:k is an estimator

of x1:k which depends on the observation y1:k.

The lower bound on (6) is given by the inverse (J1:k)
−1

,

i.e.,

Ey1:k,x1:k

(

(x̂1:k − x1:k) (x̂1:k − x1:k)
T
)

≥ (J1:k)
−1

, (7)

with the nk × nk information matrix J1:k defined by [67]

J1:k := Ey1:k,x1:k

(

−∆x1:k
x1:k

log p (x1:k,y1:k)
)

, (8)

where ∆y
x = ∇x (∇y)

T
is a second-order derivative op-

erator and p (x1:k,y1:k) is a joint density of the random

variable (x1:k,y1:k).

Equations (7)–(8) give the lowest bound on the MSE of

an estimator of the whole trajectory x̂1:k. However, by (8),

computation of the right-hand side of (7) requires inverting

the large nk × nk matrix J1:k, which is undesirable from the

numerical perspective. Fortunately, it has been shown [67] that

it is possible to compute the PCRB recursively for each single-

step estimator x̂k

Ey1:k,x1:k

(

(x̂k − xk) (x̂k − xk)
T
)

≥ (Jk)
−1

, (9)

where Jk is n × n matrix that can be computed recursively

by solving Riccati-like equations:

Jk+1 = D22
k −

(

D12
k

)T (
Jk +D11

k

)−1
D12

k , (10)

where

D11
k := Ex1:k

(

−∆xk
xk

log p (xk+1|xk)
)

(11a)

D12
k := Ex1:k

(

−∆
xk+1

xk
log p (xk+1|xk)

)

(11b)

D22
k := Ex1:k

(

−∆
xk+1

xk+1
log p (xk+1|xk)

)

+ Ey1:k,x1:k

(

−∆
xk+1

xk+1
log p (yk+1|xk+1)

)

. (11c)

The iteration (10) is initialized with matrix J0, which is

calculated from the initial condition (3)

J0 := Ex0

(

−∆x0

x0
log p0 (x0)

)

.

Thus, dealing with large matrices is avoided.

Note that the PCRB implementation requires the deriva-

tives in (11) to be evaluated in the true state xk and xk+1

[65], [68]. Alternatively, the PCRB can be approximated by

evaluating D11
k ,D12

k and D22
k in the estimate of the state [68].

It has been argued that such an approximated PCRB can also

be used as a performance measure of nonlinear filters [68].

In some online applications the use of the Conditional PCRB,

which depends on the actual realization Yk of the random

variable y1:k, is preferable over the standard PCRB [69].

Another interesting class of PCRB used in target tracking

applications and designed for systems with uncertainty about

measurements origin has been studied in [70]–[72]. Recursive

algorithms for computing the PCRB for prediction, filtering

and smoothing estimation problems are discussed in [40].

The PCRB provides a very useful performance measure for

nonlinear filters. Another important property of the discussed

algorithms is stability. In case of nonlinear filtering the stability

analysis requires an advanced measure theoretic approach that

is out of scope of this paper. A comprehensive overview of

the stability properties and asymptotic analysis of nonlinear

filtering methods is given in [73], [74].

III. ANALYTICAL APPROXIMATIONS: EKF, IEKF

In this section we describe the Extended Kalman Filter

(EKF) and its modification, the Iterated Extended Kalman

Filter (IEKF). Both filters are analytical methods because the

approximations of (4)-(5) are derived using the Taylor series

expansion, a method that exploits the analytical structure of

functions fk and hk.

A. Extended Kalman Filter

The EKF is one of the most popular modifications of the KF

and is designed to estimate the states of a nonlinear system.

The main idea of the EKF algorithm is that at each time

step the nonlinear state (1) and observation (2) models can be

analytically approximated in order to obtain a linear system.



For sufficiently smooth functions fk and hk given the previ-

ous state estimate x̂k−1|k−1 and covariance Pk−1|k−1 the EKF

approximates the right-hand sides of (1)–(2) with the first-

order Taylor series expansion around the points (x̂k−1|k−1,0)
and (fk−1(x̂k−1|k−1,0),0), respectively [48], [75]:

xk ≈ fk−1(x̂k−1|k−1,0) + Fk−1(∆xk−1 − x̂k−1|k−1)

+Vk−1 (∆vk−1) (12a)

yk ≈ hk(fk−1(x̂k−1|k−1,0),0)

+Hk(∆xk − fk−1(x̂k−1|k−1,0)) +Wk (∆wk) (12b)

for every ∆xk−1,∆xk,∆vk−1,∆wk where

1) Fk−1 is the Jacobian matrix of the partial derivatives of

fk−1 with respect to the state variable x, evaluated at

the point (x̂k−1|k−1,0):

Fk−1 =
∂fk−1

∂x
(x̂k−1|k−1,0), (13)

2) Vk−1 is the Jacobian matrix of the partial derivatives of

fk−1 with respect to the noise variable v, evaluated at

the point (x̂k−1|k−1,0):is

Vk−1 =
∂fk−1

∂v
(x̂k−1|k−1,0), (14)

3) Hk is the Jacobian matrix of the partial derivatives of

hk with respect to the state variable x, evaluated at the

point (fk−1(x̂k−1|k−1,0),0):

Hk =
∂hk

∂x
(fk−1(x̂k−1|k−1,0),0), (15)

4) Wk is the Jacobian matrix of the partial derivatives of

hk with respect to the noise variable w, evaluated at the

point (fk−1(x̂k−1|k−1,0),0):

Wk =
∂hk

∂w
(fk−1(x̂k−1|k−1,0),0). (16)

It can be easily seen that the right-hand sides of both (12a)

and (12b) are Gaussian random variables. Therefore, the

predicted state and the posterior state densities are given by

p(xk|Yk−1) = N (xk; x̂k|k−1,Pk|k−1), (17a)

p(xk|Yk) = N (xk; x̂k|k,Pk|k), (17b)

with the means and the covariances as in Algorithm 1.
The approximations (12) are accurate only if the following

three assumptions hold:

I. the noises vk, and wk are lightly tailed, i.e., the norms

of the covariance matrices Vk, and Wk are small, and

II. the estimate x̂k−1|k−1 is approximately equal to the

actual state of the system at time step k − 1,

III. the functions fk and hk do not exhibit severe nonlinear

behavior.

The first two postulates, together with the fact that E [vk] =
0 and E [wk] = 0 justify the Taylor expansions around the

aforementioned points, whereas the third one allows one to

truncate the infinite series after the first derivative term.
Note that as far as real systems are concerned Postulate I

seems reasonable. Indeed, in most applications the process

and the measurement noises are bounded within narrow inter-

vals [8], [76]. Postulate II simply states that the estimator is

Algorithm 1 Extended Kalman Filter

Require: Pk−1|k−1, x̂k−1|k−1, Qk−1, and Rk

Prediction step:

Compute matrices Fk−1, and Vk−1 according to (13)–(14)

Compute the predicted mean x̂k|k−1:

x̂k|k−1 = fk−1(x̂k−1|k−1,0)
Compute the predicted covariance Pk|k−1:

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Vk−1Qk−1V

T
k−1

Update step:

Compute matrices Hk, and Wk according to (15)–(16)

Compute the Kalman gain Kk:

Kk = Pk|k−1H
T
k

(

HkPk|k−1H
T
k +WkRkW

T
k

)−1

Compute the estimated mean x̂k|k:

x̂k|k = x̂k|k−1 +Kk

(

yk − hk(x̂k|k−1,0)
)

Compute the estimated covariance Pk|k:

Pk|k = (I−KkHk)Pk|k−1

accurate, meaning unbiased, and precise, meaning with small

covariance matrix.
Postulate III is more critical. To understand why, recall that

the approximation (12a) models the predicted state as a Gaus-

sian random variable, whereas in reality a variable after the

nonlinear transformation fk is no longer normally distributed.

In case of mild nonlinearities (different measures of nonlinear-

ity are reported in [77], [78]), the transformed variable can be

accurately approximated by a Gaussian distribution. However,

for a system that exhibits a strong nonlinear behavior the

approximation is no longer feasible and might result in an

inconsistent estimator. The influence of the linearization errors

on the final EKF performance has been extensively studied in

the literature [8], [79]–[81].
Note that the EKF requires the covariance matrices Qk

and Rk. They can be derived from stochastic properties of

the noises vk, and wk or, if these are unknown, tuned from

data [82], [83].

B. Iterated Extended Kalman Filter

In order to improve the EKF the Iterated Extended Kalman

Filter (IEKF) has been developed [84], [85]. This algorithm

has a strong resemblance to the conventional EKF. In fact, for

both filters the linearization of the prediction function Fk is

derived in the same manner, and they differ only in the way in

which the updated estimate is computed. The IEKF assumes

that the measurement model is such that for every time step k
the noise variable wk can be explicitly expressed as a function

of yk and xk, i.e., for each k there exists function gk such

that:

wk = gk(yk,xk).

If the observation model has additive linear noises, i.e.,

hk(xk,wk) = hk(xk) +Hkwk,

with an invertible matrix Hk, then

gk(yk,xk) = (Hk)
−1

(yk − hk(xk)) ,

which is the scaled difference between the measured and

the predicted variables. The IEKF linearizes gk around the



updated state estimate x̂k|k rather than around the predicted

state estimate x̂k|k−1 as the EKF does. This is achieved by the

following iteration (hence the name): the algorithm starts with

a linearized model around the predicted estimate x̂k|k−1, and

uses it to compute the updated state estimate x̂1
k|k. Then, the

function gk is linearized around this newly obtained vector,

and the new updated state estimate x̂2
k|k is derived. This

procedure is repeated until the iteration step i0 is reached

such that ‖x̂i0
k|k − x̂i0−1

k|k ‖ < ǫ, where ǫ is a predefined small

number. This iteration, which is equivalent to Gauss-Newton

method [86], is presented in Algorithm 2. For the detailed

derivation of the update algorithm see Section 3.4 of [84].

Algorithm 2 IEKF: Update Iteration

Require: ǫ, Pk|k−1, x̂k|k−1, Rk, yk
Set the initial estimate: x̂0k|k = x̂k|k−1

Set the initial counter: i = 0
repeat

Augment the counter: i = i+ 1

Linearize the error model : Hi
k = ∂gk

∂x

(

yk, x̂i−1

k|k

)

Compute the Kalman gain:

Ki
k = Pk|k−1

(

Hi
k

)T
(

Hi
kPk|k−1

(

Hi
k

)T
+Rk

)−1

Update the estimate:

x̂i
k|k = x̂k|k−1−Ki

k

(

gk

(

yk, x̂i−1

k|k

)

+Hi
k

(

x̂k|k−1 − x̂i−1

k|k

))

until ‖x̂i
k|k − x̂i−1

k|k ‖ < ǫ
Set: i0 = i
Set the updated estimate: x̂k|k = xi0

k|k
Set the covariance of the updated estimate:

Pk|k =
(

I−Ki0
k Hi0

k

)

Pk|k−1

Note that in the case of a linear observation model with

additive noises the IEKF is reduced to the standard EKF. The

disadvantage of the IEKF is that, due to the internal loop, it

is numerically more involved than the EKF. Also, it has been

argued that both the IEKF and the EKF perform similarly if the

state is only partially observable [87]. Informative examples

of applications and comparison of the performance of the two

filters are discussed in [87], [88].

C. Other EKF-like Algorithms

The accuracy of the EKF can be further improved by the

addition of higher-order terms in approximation (12). Better

accuracy comes with the price of increased computational

burden. Furthermore, although the higher-order filters reduce

the bias of the estimators [89], in general they cannot produce

unbiased estimates [79].

Other variations of the EKF have recently been developed

algorithms that avoid gradient computations [90], [91]. Re-

garding these filters, two approaches can be distinguished:

implicit methods, and explicit methods. In the implicit ap-

proach the problem of calculating a Jacobian is replaced

by the one of finding a solution of an analytical equation

(see [90] and references therein). In the explicit approach the

nonlinear operator is linearized by means of Euler or Newmark

expansion [91]. As presented in [90], [91], in certain situations,

e.g. in case of jumps in parameter values, those filters achieve

better performance than the conventional EKF.

D. Example

To illustrate the difference in the performance between

the EKF and the IEKF let us investigate a simple two-

dimensional nonlinear system defined by

xk+1(1) = 0.1 (xk(1))
2 − 2xk(1) + 20 + vk(1), (18a)

xk+1(2) = xk(1) + 0.3xk(2)− 3 + vk(2), (18b)

and

yk(1) = (xk(1))
2
+ (xk(2))

2
+wk(1), (19a)

yk(2) = 3 (xk(2))
2
/xk(1) +wk(2) (19b)

Equations (18)–(19) constitute a system that is a modifi-

cation of the case studied in [87]. The system is nonlinear

in both the state model (the second order term in (18a)) and

the observation model. Furthermore, both the state and the

observation models are influenced by mutually independent

additive Gaussian noises vk and wk with covariance matri-

ces Qk =

[

2 0
0 2

]

and Rk =

[

1 0
0 10

]

respectively.

For the purpose of comparison, starting from the initial

state x0 = [10 10]T , we have generated a random state

trajectory x1:20 = (x1, ..., x20) with the corresponding obser-

vations Y20 according to (18) and (19) respectively. Figure 1

compares the estimates obtained by the EKF and the IEKF

aiming to reproduce the trajectory x1:20 from the generated

measurements Y20. Both filters are initialized from the actual

state of the system, i.e., from x0 = [10 10]
T

each having the

same initial uncertainty about the true state P0 =

[

1 0
0 1

]

.

Furthermore, the parameter ǫ, which is used in Algorithm 2,

is set to ǫ = 0.0001.

From Figure 1 it can be observed that most of the time the

two nonlinear filters behave similarly. However, in some cases

the IEKF tracks the actual state of the system more closely

than the EKF does.

Let us now compute the PCRB for the system (18)–(19). It

can be shown [67], [92] that in the case of additive Gaussian

noises the matrices (11) are given by:

D11
k = Ex1:k

(

(

∇xk
fTk (xk)

)

(Qk)
−1

(

∇xk
fTk (xk)

)T
)

, (20a)

D12
k = −Ex1:k

(

∇xk
fTk (xk)

)

(Qk)
−1

, (20b)

D22
k = (Qk)

−1 +

Ex1:k+1

(

(

∇xk+1
hT
k+1 (xk+1)

)

(Rk+1)
−1

(

∇xk+1
hT
k+1 (xk+1)

)T
)

.

(20c)

The derivatives in (20) are evaluated in the true states

of the system and the expectations are obtained by Monte

Carlo [93] averaging over 10, 000 realizations of the inde-

pendent trajectories of the system, with the initial distribu-

tion p0 = N (x0,P0). The initial information matrix is given

by

J0 = (P0)
−1

=

[

1 0
0 1

]

.
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Fig. 1: The EKF estimate (thin solid line) and the IEKF

estimate (dashed line) vs the sample trajectory x0:20 generated

from the system (18)–(19) (thick solid line).

Figure 2 shows the square roots of the theoretical PCRB

for states x(1) and x(2). Furthermore, the theoretical lower

bounds are compared with the Root Mean Squared Errors

(RMSE) obtained from 10, 000 Monte Carlo runs of the

system (18)–(19) with the same initial distribution and the

same noise levels. From the figure it can be observed that

the IEKF has a lower RMSE than the EKF.

IV. STATISTICAL APPROXIMATIONS: UKF, GHF,

CDF

In this section we discuss an alternative approach to the

nonlinear approximation problem, namely the statistical ap-

proach. Contrary to the methods presented in Section III,

the filters described in the current section do not use the

Taylor series expansion. Instead, we are interested in statistical

information that can be extracted from the system (1)–(3) and

used afterwards to estimate (4)–(5). All the filters discussed

within this section can be considered as a part of a general

class of linear regression Kalman Filters (LRKFs).

LRKFs have been proposed by several authors [17], [81],

[87], [94], [95]. Similarly to the EKF, these filters approximate

the prediction and the posterior density as Gaussian densities,

hence the formulas (17a) and (17b) still hold. However, the

approximations of p(xk|Yk−1) and p(xk|Yk) are obtained by

means of statistical regression rather than through analytical

approximations of the nonlinear functions fk and hk as in

the EKF setting. The motivation for this approach can be

intuitively expressed as follows: With a fixed number of

parameters it is easier to approximate a Gaussian distribution

than it is to approximate an arbitrary nonlinear function [94].

The general idea is to represent the a priori distributions by

a set of deterministically chosen representative points and
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Fig. 2: RMSE of the estimators given by the EKF (dashed line)

and the IEKF (thin solid line) compared with the squared roots

of the theoretical PCRB (thick solid line) for the states x(1)
(above) and x(2) (below).

weights that completely capture the mean and the covariance

of the Gaussian distribution and then use those points in the

prediction and the update steps of the filter. This resembles a

Monte Carlo approach. However, unlike Monte Carlo methods,

the LRKFs are, in general, numerically less expensive since

the samples are not drawn at random and the number of the

required points is relatively small when compared with the

number of samples that are generated by the Monte Carlo

algorithms. LRKFs achieve better accuracy than the EKF since

the representative points propagated through the nonlinear

transformation capture the mean and covariance of the actual

distribution up to the second order of nonlinearity [94].

There are many methods for the choice of the representative

points and their weights, and the three most popular ones are

discussed in Sections [IV-A–IV-C]. However, for a moment,

let us focus on the general framework of the LRKF.

The estimation proceeds as follows. At time step k − 1
the approximation of the posterior distribution is given by

a Gaussian variable N (x̂k−1|k−1,Pk−1|k−1) and the noise

vk−1 is assumed to be distributed according to N (0,Qk−1).
Both xk−1 and vk are assumed to be uncorrelated and

Gaussian. Therefore, the augmented state variable defined

as [xk−1 vk−1]
T

is also Gaussian with the mean µ
a
k−1 and

the covariance Pa
k−1 given by:

µ
a
k−1 =

[

x̂k−1|k−1

0

]

, Pa
k−1 =

[

Pk−1|k−1 0

0 Qk−1

]

.

The probability distribution N
(

µ
a
k−1,P

a
k−1

)

is encoded in

the sequence
{(

xi
k−1, ω

i
k−1

)}N

i=1
that pairs each representative

point xik−1 with its weight ωi
k−1. The predicted state den-

sity p (xk|Yk−1) is approximated by N
(

xk; x̂k|k−1,Pk|k−1

)

,



where the mean and covariance are computed as follows:

x̂k|k−1 =

N
∑

i=1

ω
i
k−1fk−1(x

i
k−1), (21)

Pk|k−1 =

N
∑

i=1

ω
i
k−1

(

fk−1(x
i
k−1)− x̂k|k−1

)(

fk−1(x
i
k−1)− x̂k|k−1

)T

(22)

The distribution of the predicted measurement is obtained in

a similar manner as the distribution of the predicted state.

Namely, the noise wk is assumed to be zero-mean Gaussian

with the covariance matrix Rk, and independent of the state

xk. Therefore, the variable [xk wk]
T

is also Gaussian with

the mean µ
a
k and the covariance Pa

k given by:

µ
a
k =

[

x̂k|k−1

0

]

, Pa
k =

[

Pk|k−1 0

0 Rk

]

.

Next, the set of representative points and weights
{(

xik|k−1
, ωi

k|k−1

)}N

i=1
that approximate the distribution

N (µa
k,P

a
k) is derived. The estimate of the measurement is

then given by:

ŷk|k−1 =

N
∑

i=1

ωi
k|k−1hk(xik|k−1). (23)

Finally the mean and covariance for the normal density that

approximates the posterior p (xk|Yk) are computed as follows:

x̂k|k = x̂k|k−1 +Kk

(

yk − ŷk|k−1

)

, (24)

Pk|k = Pk|k−1 −PxyK
T
k , (25)

where the Kalman gain Kk and the covariances Pxy , and Pyy

are computed as:

Pxy =
N
∑

i=1

ω
i
k|k−1

(

xik|k−1
− x̂k|k−1

)(

hk(x
i
k|k−1

)− ŷk|k−1

)T
,

(26)

Pyy =
N
∑

i=1

ω
i
k|k−1

(

hk(x
i
k|k−1

)− ŷk|k−1

)(

hk(x
i
k|k−1

)− ŷk|k−1

)T
,

(27)

Kk = Pxy (Pyy)
−1

. (28)

The LRKF algorithm can be simplified for systems with

additive noises, i.e., for systems where the functions fk and hk

have the form:

fk(xk,vk) = fk(xk) + Fkvk,

hk(xk,wk) = hk(xk) +Hkwk,

where both Fk and Hk are linear matrices. For such

system one starts from computing the representative

points and weights that approximate the distribution

N
(

x̂k−1|k−1,Pk−1|k−1

)

. Next, the predicted state x̂k|k−1

is computed according to (21). In order to compute the

covariance of the predicted state Pk|k−1 the right-hand side

of (22) is modified by adding the term Fk−1Qk−1F
T
k−1 which

corresponds to the influence of the noise vk−1 [8]:

Pk|k−1 =
N
∑

i=1

ω
i
k−1

(

fk−1(x
i
k−1)− x̂k|k−1

) (

fk−1(x
i
k−1)− x̂k|k−1

)T

+ Fk−1Qk−1F
T
k−1. (29)

The next step is to approximate the distribution

N
(

x̂k|k−1,Pk|k−1

)

by the set of representative points and

weights. The procedure of obtaining the final estimates of x̂k|k
and Pk|k is similar to the one described by equations (23)–

(27). The only difference is that the transformed covariance

of the observation noise wk, i.e., HkRkH
T
k has to be added

to the right-hand side of (27). Therefore, Pyy is given by [8]:

Pyy =

N
∑

i=1

ω
i
k−1

(

hk(x
i
k|k−1

)− ŷk|k−1

)(

hk(x
i
k|k−1

)− ŷk|k−1

)T

+HkRkH
T
k (30)

Note that the dimensions of the Gaussian variables

N
(

x̂k−1|k−1,Pk−1|k−1

)

and N
(

x̂k|k−1,Pk|k−1

)

are lower

than the dimensions of the variables N
(

µ
a
k−1,P

a
k−1

)

and

N (µa
k,P

a
k) approximated within the general algorithm.

Therefore, a smaller number of representative points is re-

quired, and consequently fewer nonlinear transformations have

to be performed. Instead, they are replaced by linear opera-

tions: Fk−1Qk−1F
T
k−1 and HkRkH

T
k .

It has been observed [17] that the performance of a filter

given by (21)–(28) strongly depends on the choice of the

representative points. In what follows we review methods that

have been proposed in the recent years. In order to keep the

algorithms simple, we focus on filters designed for dynamical

systems with additive noises. We motivate this choice by

the fact that LRKF equations for systems with non-additive

noises are conceptually identical. We start by describing the

most popular LRKF, i.e., the Unscented Kalman Filter (UKF)

and its variations. Next, other types of LRKF are discussed,

namely the Gauss-Hermite Filter (GHF), and the Central

Difference Filter (CDF). Finally, all the aforementioned filters

are illustrated with an example.

A. Unscented Kalman Filter

Before we proceed to detailed description of the UKF

framework, we start with explaining the Unscented Transfor-

mation (UT) [81]. This is a method of selecting representative

points and weights that approximate a variable after a nonlin-

ear transformation. The UKF uses UT in a dynamic framework

to obtain the approximations of the predicted state density and

the predicted update density.

The UT is a general method for approximating the dis-

tribution of a Gaussian random variable after a nonlinear

transformation. Let x be such a variable, with the mean x̄
and covariance Px, and let g : R

n → R
p be an arbitrary

nonlinear function. The objective is to compute the statistics

of a random variable y defined as:

y = g(x). (31)

In order to do that, first one has to generate a set Σ = {σi}
of the sigma points, i.e., a set that is of zero sample mean



and the points of this set have sample covariance equal

to Px. For the n-dimensional variable x, 2n sigma points are

computed as rows (or columns) of the matrix ±
√

(n+ λ)Px,

where λ = α2 (n+ κ) − n with a spread parameter α and a

scaling factor κ. The common choice for the spread parameter

is α = 1 [96] in which case λ = κ [81], [94].

The set Σ has the same mean and covariance as a zero mean

Gaussian variable with a covariance matrix Px. Furthermore,

since it is symmetric, all the odd central moments are equal to

zero as is the case with every zero mean Gaussian distribution.

Therefore, the first three sample moments of Σ are equal

to the theoretical moments of the variable x. Hence, the

approximation errors can occur only in fourth and higher

moments. The representative points of a distribution of the

variable x are generated by a translation of each sigma point

by x̄ and an assignment of appropriate weights [81], [96]:

x0 = x̄ ω0 =
λ

n+ λ
,

xi = x̄ + σi ωi =
1− ω0

2n
.

The distribution of the transformed random variable y = g(x)
is then represented by the set {(g(xi), ωi)}2ni=0.

The errors in the calculation of the mean and covariance

of y are of fourth order in case of Gaussian inputs [81]

and of third order in case of non-Gaussian inputs [96]. The

approximation accuracy can be further improved by an appro-

priate choice of a scaling factor κ [81]. The popular choice

is κ = 3 − n [94], [96]. Setting κ = 0 leads to the Cubature

Kalman Filter introduced in [29], [97]. Further improvements

on quality of estimation can be achieved with the adaptive

selection of κ which is done by the Adaptive UKF [98]. If

available, the information on the higher order moments of

the estimated variable can be used to modify the weight ω0,

which reduces the higher-order errors of the UT [19], [20],

[96]. It is also possible to capture higher moments of the

true distribution by augmenting the number of sigma points

used in the approximation [19], [20], [99], [100]. For instance,

2n2 + 1 sigma points are required to match the first four

moments of a Gaussian distribution [19], [20]. The accuracy

of the approximation might further increase if the sigma points

are scaled, so that all the sigma points lay in an appropriate

ellipsoid centered at the mean [19], [20], [99], or on the 1σ, 2σ
and 3σ contours [101]. The kσ contour is the boundary of the

ellipsoid defined by k
√
Px. The latter method requires 6n+1

sigma points. The purpose of the scaling is to concentrate all

the sigma points in the area of the highest probability.

Note that there are infinitely many square roots of the

matrix
√
Px that can be chosen to compute kσ contour [81].

Therefore, the improvement of the computational properties

of UT is possible by the choice of an efficient numerical

method for matrix square root computation. The most popular

algorithm is the Cholesky decomposition, but other techniques,

such as the more robust, but more computationally involved,

singular value decomposition can also be used [102]. The

computational efficiency of the UT can be further increased by

reducing the number of sigma points that need to be generated

in order to capture the desired properties of a distribution of the

investigated random variable [19], [20], [103]. The minimal

number of sigma points that is required to capture the mean

and covariance is n + 1. The computational complexity of

UT grows linearly with the number of dimensions. However,

with increasing dimensions of the state the accuracy of the UT

approximation decreases [104].

The UKF employs the UT at each filtering step following

the procedure described in Algorithm 3.

Algorithm 3 Unscented Kalman Filter

Require: λ, Pk−1|k−1, x̂k−1|k−1

Compute the sigma points σi as the columns of the matrix:
√

(n+ λ)Pk−1|k−1

Prediction step:

Set the central point: x0
k−1 = x̂k−1|k−1

Set the central weight: ω0
k−1 = λ

n+λ
for i = 1, . . . , 2n do

Compute the representative points:

xik−1 = x̂k−1|k−1 ± σi

Assign weights: ωi
k−1 =

1−ω0
k−1

2n
end for

Compute the predicted mean x̂k|k−1 using (21)

Compute the predicted covariance Pk|k−1 using (29)

Update step:

for i = 0, . . . , 2n do

Compute the representative points:

xik|k−1
= fk(xi

k−1)

Assign weights: ωi
k|k−1

= ωi
k−1

end for

Compute the estimated measurement ŷk|k−1 using (23)

Compute the covariance of the predicted observation Pyy

using (30)

Compute the cross-covariance of the predicted observation

and the predicted state Pxy using (26)

Compute the Kalman gain Kk using (28)

Compute the estimated mean x̂k|k using (24)

Compute the estimated covariance Pk|k using (25)

B. Gauss-Hermite Filter

An alternative method of determining the representative

points with their weights is employed in the Gauss-Hermite

Filter (GHF). The GHF is a Gaussian filter that utilizes the

Gaussian-Hermite quadrature rule. This is an approximation

technique used for evaluating an integral I of the form:

I =

∫

Rn

f(x)
1

(2π)
n/2

exp

(

−‖x‖2
2

)

dx, (32)

where f is a given nonlinear function. In other words, I is the

expectation of a standard normal variable propagated through

the nonlinear function f . The integral above is approximated

by the m-th order quadrature rule Im:



Im =
m
∑

i1=1

. . .
m
∑

in=1

ωi1 . . . ωinf(xi1 , . . . , xin)

=

mn

∑

i=1

ωif(xi), (33)

where for each 1 ≤ i ≤ mn the following holds: xi =
(xi1 , . . . , xin)

T
and ωi =

∏n
j=1 ωij . For each 1 ≤ j ≤ n

the one dimensional m-th order quadrature rule {(xl, ωl)}ml=1

is derived by the following method [105]:

Suppose that J is a symmetric tridiagonal matrix with zeros

on the diagonal and the other entries defined by:

Ji,j =

{ √

i/2, j = i+ 1
0, otherwise

The quadrature point xl is defined as the l-th eigenvalue ǫl
of the matrix J, multiplied by

√
2. The corresponding weight

ωl is set to be equal to the square of the first element of the

normalized l-th eigenvector vl of J. To summarize:

xl =
√
2ǫl, (34)

ωl = ((vl)1)
2

(35)

The approximation holds for all polynomials of the form

si11 . . . sinn , with 1 ≤ ik ≤ 2m − 1. It is well known that

the precision of the estimate increases with the order of the

quadrature [106]. However, at the same time the computa-

tional burden grows with the rate mn. Indeed, by (33), the

computation of Im requires mn function evaluations, i.e.,

mn representative points need to be computed. Therefore,

even for moderate state dimensions n, higher-order GHF

(m > 5) requires significant computational load, which makes

it impractical for online applications. Furthermore, for m > 1
and large n the Gauss-Hermite quadrature rule is numerically

more involved than the UT. In the special case of λ = 2 and

n = 1 the UT matches the I3.

Note that this algorithm can easily be generalized for

Gaussian variables with arbitrary mean µ and covariance Σ,

simply by replacing f with f̃ (x) = f
(√

Σ
T

x + µ

)

.

The GHF utilizing the m-th order quadrature rule is pre-

sented in Algorithm 4.

C. Central Difference Filter

To choose the representative points the Central Difference

Filter (CDF) or Divided Difference Filter [18], [87] uses a

different method than the previously discussed UKF and GHF.

The CDF algorithm is based on the central difference approx-

imation of the integral (32). The basic feature of this method

is to approximate the nonlinear function f with a quadratic

function P2 defined by:

P2(x) = f(0) + ax +
1

2
xT Hx,

where the vector a = (ai) and the symmetric matrix H =
(Hi,j) are given by [17]:

Algorithm 4 Gauss-Hermite Filter

Require: Pk−1|k−1, x̂k−1|k−1, m
Compute the one dimensional quadrature rule {(xi, ωi)}mi=1

using (34)–(35).

for 1 ≤ i1, ..., in ≤ m do

Compute the representative points xi = (xi1 , . . . , xin)
T

,

Compute the corresponding weights ωi =
∏n

j=1 ωij

end for

Prediction step:

Factorize the posterior covariance: Pk−1|k−1 = STS

for i = 1, . . . ,m do

Compute the representative points:

xik−1 = ST xi + x̂k−1|k−1

Assign weights: ωi
k−1 = ωi

end for

Compute the predicted mean x̂k|k−1 according to (21)

Compute the predicted covariance Pk|k−1 according to (22)

Update step:

Factorize the predicted covariance: Pk|k−1 = S̃T S̃

for i = 1, . . . ,m do

Compute the representative points:

xik|k−1
= S̃T xi + x̂k|k−1

Assign weights: ωi
k|k−1

= ωi

end for

Compute the estimated measurement ŷk|k−1 using (23)

Compute the covariance of the predicted observation Pyy

using (30)

Compute the cross-covariance of the predicted observation

and the predicted state Pxy using (26)

Compute the Kalman gain Kk using (28)

Compute the estimated mean x̂k|k using (24)

Compute the estimated covariance Pk|k using (25)

ai =
f(hei)− f(−hei)

2h
, 1 ≤ i ≤ n

Hi,i =
f(hei)− 2f(0) + f(−hei)

h2
, 1 ≤ i ≤ n

Hi,j =
f(hei + hej)− f(−hei)− f(−hej) + f(0)

h2
,

1 ≤ i < j ≤ n.

Here h > 0 is a chosen step size and (ei) is a canonical basis

for Rn. Note that the exact value of h is not specified a priori,

hence an additional degree of freedom is added to the filter.

More details concerning the filtering applications of central

difference approximations can be found in [17], [18], [107].

The central difference approximation of a Gaussian variable

with mean x̄ and covariance P = STS is given by 2n + 1
representative points with the corresponding weights:

x0 = x̄ ω0 =
h2 − n

h2
,

xi = x̄ ± SThei ωi =
1

2h2
.

Note that by such a definition the weight of the central

point ω0
k−1 can be negative.



The CDF employs the central difference approximation

in both the prediction and the update steps of the filtering

algorithm. The complete CDF is presented in Algorithm 5.

Algorithm 5 Central Difference Filter

Require: h, Pk−1|k−1, x̂k−1|k−1

Prediction step:

Factorize the posterior covariance: Pk−1|k−1 = STS

Set the central point: x0k−1 = x̂k−1|k−1

Set the central weight: ω0
k−1 = h2−n

h2

for i = 1, . . . , 2n do

Compute the representative points:

xik−1 = x̂k−1|k−1 ± SThei
Assign weights: ωi

k−1 = 1
2h2

end for

Compute the predicted mean x̂k|k−1 according to (21)

Compute the predicted covariance Pk|k−1 according to (22)

Update step:

Factorize the predicted covariance: Pk|k−1 = S̃T S̃

Set the central point: x0k|k−1
= x̂k|k−1

Set the central weight: ω0
k|k−1

= h2−n
h2

for i = 1, . . . , 2n do

Compute the representative points:

xik|k−1
= x̂k|k−1 ± S̃Thei

Assign weights: ωi
k|k−1

= 1
2h2

end for

Compute the estimated measurement ŷk|k−1 using (23)

Compute the covariance of the predicted observation Pyy

using (30)

Compute the cross-covariance of the predicted observation

and the predicted state Pxy using (26)

Compute the Kalman gain Kk using (28)

Compute the estimated mean x̂k|k using (24)

Compute the estimated covariance Pk|k using (25)

When the parameter h is chosen to be small the central-

difference approximation is based on points that are close to

the center (mean). When h is large the approximation accounts

for the points located at the tails of the Gaussian distribution.

D. Example: Prediction step

To illustrate the advantages that the LRKF filters have over

the EKF we will use an example of the nonlinear noise-free

process given by [87]:

xk+1(1) = (xk(1))
2
, (36a)

xk+1(2) = xk(1) + 3xk(2). (36b)

To better see the differences between the EKF, the UKF,

the CDF and the GHF we focus only on a one step ahead

prediction problem. The analysis of the update step follows

the same steps [87].

Assume that at time step k the state xk is nor-

mally distributed with mean xk|k = [10 15]
T

and covari-

ance Pk|k =

[

36 0
0 3, 600

]

. We want to predict the distri-

bution of the state xk+1|k. The linearization method that is

employed by the EKF yields:

x̂EKF
k+1|k =

[

100
55

]

,PEKF
k+1|k =

[

14, 400 720
720 32, 436

]

.

The UKF with parameter λ = 1 approximates the distribution

of xk+1|k with five points:
[

100
55

]

,

[

416
65

]

,

[

0
45

]

,

[

100
367

]

,

[

100
−257

]

weighted 1/3, 1/6, 1/6, 1/6, 1/6 respectively. Thus, the mean

and covariance of the UKF estimate of the state xk+1|k are

given by

x̂UKF
k+1|k =

[

136
55

]

,PUKF
k+1|k =

[

16, 992 720
720 32, 436

]

.

For the CDF there are also five representative points, e.g.,
for h = 2 we have

[

100
55

]

,

[

484
67

]

,

[

4
43

]

,

[

100
415

]

,

[

100
−305

]

weighted 1/2, 1/4, 1/4, 1/4, 1/4 respectively. From these the

mean and variance are computed

x̂CDF
k+1|k =

[

136
55

]

,PCDF
k+1|k =

[

18, 288 720
720 32, 436

]

.

The number of representative points utilized by the GHF

depends on the quadrature order m. The smallest feasible

order is m = 2 which yields the quadrature rule {(xl, ωl)} =
{(1, 1/2), (−1, 1/2)} from which the representative points are

computed:
[

16
−131

]

,

[

16
229

]

,

[

256
−119

]

,

[

256
241

]

weighted 1/4, 1/4, 1/4, 1/4 respectively.

x̂GHF
k+1|k =

[

136
55

]

,PGHF
k+1|k =

[

14, 400 720
720 32, 436

]

.

Instead of analyzing algebraic properties of all the covari-

ance matrices Pk+1|k obtained by each filter it is convenient

to look at the error ellipses that they yield:
(

x− x̂k+1|k

)T (
Pk+1|k

)−1 (

x− x̂k+1|k

)

= 1.

The estimated means and error ellipses obtained by the EKF,

the UKF with λ = 1, the CDF with h = 1/2 and the GHF

with m = 2 are all compared in Figure 3. As a reference,

which is labelled as “true” error set, we use the error ellipse

defined by the sample mean and sample covariance obtained

from 106 Monte Carlo experiments. These are given by

x̂MC
k+1|k =

[

136
55

]

,PMC
k+1|k =

[

17039 757
757 32436

]

.

As can be observed, only the EKF yields an estimated mean

that does not coincide with the “true mean”. The UKF, the

CDF and the GHF all provide accurate estimates of the “true”

mean but the error ellipses that they produce are different.

With such a choice of the parameters (λ = 1 for the UKF,

h = 1/2 for the CDF, m = 2 for the GHF) the error ellipse

obtained by the UKF is the closest to the true one. However,

with different parameter setting we can tune the error ellipses



 

true

initial

−100

−100

−50

−50

0

0

50

50

100

100

150

150

200

200 250 300 350

x(1)

x
(2
)

EKF

UKF

CDF

GHF

Fig. 3: Error ellipses of the EKF (dot-dashed line), the UKF

(solid line), the CDF (crosses) and the GHF (dashed line)

compared with the “true” error ellipse (filled circles) obtained

by 106 Monte Carlo experiments. The shaded area denotes

the initial covariance. The means of the UKF (asterisk), the

CDF (cross) and the GHF (circle) coincide with the true mean

(large x).

to more desirable shapes. In general, by decreasing the value

of the parameter h we will shrink the ellipses PCDF
k+1|k, and by

increasing the quadrature order m we are able to expand the

error ellipses PGHF
k+1|k. Representative points produced by the

UKF, the CDF and the GHF together with the corresponding

error ellipses for two parameter settings are presented in

Figure 4.

V. GAUSSIAN SUM APPROXIMATIONS: GSF

So far the discussion has been restricted to systems with

Gaussian process and measurement noises. Although this type

of stochasticity is most commonly used in modeling real-

life processes, in a number of situations one has to deal

with non-Gaussian random variables that influence the process

or the measurement model [108]. The filters discussed in

Sections III–IV assume Gaussian noises, hence, when this

assumption is violated they no longer perform as expected.

Furthermore, even if the noises are Gaussian, the nonlinearities

of the state model fk and the observation model hk might

produce densities p(xk|Yk−1) or p(xk|Yk) that cannot be

accurately approximated by a single normal variable [109].

A possible solution to these problems is the Gaussian Sum

Filter (GSF) that is described in this section.

A. GSF Algorithm

The GSF is based on the theoretical result that an arbitrary

probability distribution p(x) can be approximated by a den-

sity pNA (x) of a form:

pNA (x) =
N
∑

i=1

aiN (x;µi,Σi),

where for each 1 ≤ i ≤ N , N (x;µi,Σi) is a probability

density of a normal distribution, with the mean µ
i and the

covariance Σi, evaluated at x, and ai are nonnegative weights
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Fig. 4: Representative points of the UKF (x), the CDF

(crosses) and the GHF (circles) and the error ellipses that

correspond to covariance matrices obtained by the UKF (solid

line), the CDF (dashed-dotted line) and the GHF (dashed line)

for λ = 1, h = 2,m = 2 (above) and λ = 1, h = 1/2,m = 3
(below). Regardless of the parameters’ setting all filters yield

the same mean (pentagram).

that sum up to one. The density pNA (x) uniformly converges to

the original density p(x) as the number of terms N increases

and each covariance matrix Σi approaches the zero matrix

(see [102], [110], and the references therein). Before the

Gaussian Sum (GS) approximation can be used, one has to

specify the parameters ai,µi,Σi. These are usually given as

solutions of a certain optimization algorithm. The choice of

the optimization method is not trivial, and in general depends

on the particular estimation problem. Different methods for

parameter selection are discussed in [111]. Another approach

to the problem, which is based on expectation-maximization

algorithms is derived in [112].

As always, there is a tradeoff between computational com-

plexity and the accuracy of the approximation. If one uses too

many terms in the summations, the computational time will

increase and the filter will no longer be feasible for online

applications. On the other hand, if there are too few terms in

the GS, the algorithm will produce a poor approximation of

the true densities.

The main feature of the GSF is the use of the GS ap-

proximation of both the predicted state density p(xk|Yk−1)
and the posterior density p(xk|Yk). At each time step k the



aforementioned densities are assumed to be given by:

p(xk|Yk−1) =

N1
∑

i=1

aik|k−1N
(

xk;µ
i
k|k−1,Σ

i
k|k−1

)

, (37)

p(xk|Yk) =

N2
∑

i=1

aik|kN
(

xk;µ
i
k|k,Σ

i
k|k

)

. (38)

As it was stated before, there is much flexibility in choosing

the weights ai and the Gaussian parameters µ
i and Σi. Note

that in general the number of terms N1 in (37) does not have

to be equal to the number of terms N2 in (38).

One might consider the GSF as a collection of nonlinear

Kalman Filters, such as the ones described in the previous

sections, working in parallel. Indeed, in the original formula-

tion of Alspach and Sorensen [111], the GSF that they derived

is composed of the parallel EKFs. A GSF that exploits UKFs

is presented in [113], whereas a GHF-based GSF can be found

in [102].
The filtering proceeds as follows. Let us assume that at time

step k − 1 the posterior density p(xk−1|Yk−1) is represented
as a sum of Gaussian densities, i.e.,

p(xk−1|Yk−1) =

K
∑

i=1

α
i
k−1|k−1N

(

xk−1; x̂i
k−1|k−1,P

i
k−1|k−1

)

,

where αi
k−1|k−1

are weights that sum up to one, and x̂ik−1|k−1

and Pi
k−1|k−1

are the i-th estimate of the mean and the

covariance, respectively. Furthermore, let us also approximate

the state noise vk by a GS:

p(vk) =

L
∑

j=1

αj
v,kN

(

vk; v̂
j
k,P

j
v,k

)

,

with weights αj
v,k, means v̂

j
k, and covariances P

j
v,k chosen to

match the non-Gaussian random variable vk. Then for each

pair {(i, j), i = 1, ...,K, j = 1, ..., L} the (i, j)-th component

of the predicted state density is computed by the nonlinear KF

of one’s choice. The predicted state density is thus given by:

p (xk|Yk−1) =

K
∑

i=1

L
∑

j=1

αi,j
k|k−1

N
(

xk; x̂i,j
k|k−1

,Pi,j
k|k−1

)

,

where the weights αi,j
k|k−1

are computed as:

αi,j
k|k−1

= αi
k−1|k−1α

j
v,k,

and x̂i,j
k|k−1

and P
i,j
k|k−1

are estimates of the mean and the

covariance, respectively, that are obtained by the application

of one of the filters described in Sections III–IV to the model

with index (i, j). To perform the update step, we again use

the GS to approximate the observation noise wk:

p(wk) =

M
∑

l=1

αl
w,kN

(

wk; ŵ
l
k,P

l
w,k

)

.

Next, for each tuple {(i, j, l), i = 1, ...,K, j = 1, ..., L, l =
1, ...,M} the update step is performed by a nonlinear KF of

one’s choice (EKF, UKF, GHF, etc.). Finally, the separate steps

are combined, resulting in the posterior density:

p (xk|Yk) =

K
∑

i=1

L
∑

j=1

M
∑

l=1

αi,j,l
k|k N

(

xk; x̂i,j,l
k|k ,Pi,j,l

k|k

)

, (39)

where the weights αi,j,l
k|k are given by:

αi,j,l
k|k =

αi,j
k|k−1

αl
w,kpi,j,l (yk|Yk−1)

∑K
i=1

∑L
j=1

∑M
l=1 α

i,j
k|k−1

αl
w,kpi,j,l (yk|Yk−1)

,

and the mean x̂i,j,lk|k and the covariance P
i,j,l
k|k are obtained

from the chosen nonlinear KF applied separately to each

triple (i, j, l). In the above formula the term pi,j,l (yk|Yk−1)
denotes the (i, j, l)-th component of a PDF of observing yk at

time step k given the past observations Yk−1, which can be

approximated by the Gaussian:

pi,j,l (yk|Yk−1) = N
(

yk; ŷi,j,lk|k−1
,Pi,j,l

yy

)

.

Algorithm 6 summarizes the GSF that applies the UKF

(xσ and ωσ are computed according to Algorithm 3) to each

component of the GS approximation in both the prediction and

in the update stage. Note that if one replaces the UKF with

another nonlinear filter, e.g., the EKF, the general structure of

Algorithm 6 remains intact. Indeed, the two algorithms are dif-

ferent only in the formulas for the means: x̂k|k−1, x̂k|k, ŷk|k−1

and the covariances: Pk|k−1,Pk|k,Pyy .

B. Reduction methods

In the general framework presented in Section V-A, at the

beginning of the algorithm there are K components in the

summation, whereas the final number of terms to sum up

is KLM . At the next filtering step the algorithm starts with

KLM initial expressions, and hence it finishes with KL2M2.

After k steps there are KLkMk terms to sum up. This means

that as the filtering proceeds, the number of the expressions

in the summation grows exponentially. Therefore, in its basic

form, the GSF has a very limited practical use.

To overcome this potential drawback of the GSF, several

techniques have been developed to reduce the number of terms

in the GS approximations [17], [102], [114]–[117]. Among the

popular methods are:

1. Pruning: In this approach the mixture components with

negligible weights are discarded from the GS, whereas the

remaining terms have the weights uniformly rescaled so that

the GS forms a probability density function. Depending on the

problem, one might discard every component which has the

weight smaller than a fixed threshold ǫ or terms that have the

cumulative weight smaller than ǫ [102].

2. Merging: When using this method one joins the Gaussian

densities that are close to each other with respect to a certain

distance, namely the Mahalonobis distance [102], [114], [115],

[118]:

d2ij =
αiαj

αi + αj

(

x̂i − x̂j
)T
(

Pi +Pj
)−1

(

x̂i − x̂j
)

.



Algorithm 6 Gaussian Sum Filter as a collection of UKFs

Require:
{(

αi
k−1|k−1

, x̂i
k−1|k−1,P

i
k−1|k−1

)}K

i=1
,

{(

αj
v,k, v̂

j
k,P

j
v,k

)}L

j=1
,
{(

αl
w,k, ŵ

l
k,P

l
w,k

)}M

l=1
,

Prediction step:

for i = 1, . . . ,K, j = 1, . . . , L do

Compute the predicted mean:

x̂i,jk|k−1
=
∑

σ ω
i,j
σ fk

(

xi,jσ
)

Compute the predicted covariance:

P
i,j

k|k−1
=

∑

σ

ω
i,j
σ

(

fk
(

xi,jσ

)

− x̂i,j
k|k−1

)(

fk
(

xi,jσ

)

− x̂i,j
k|k−1

)T

Compute the associated weight:

αi,j
k|k−1

= αi
k−1|k−1

αj
v,k

end for
Approximate the predicted state density with the Gaussian
Sum:

p (xk|Yk−1) =

K
∑

i=1

L
∑

j=1

α
i,j

k|k−1
N

(

xk; x̂i,j

k|k−1
,P

i,j

k|k−1

)

Update step:

for i = 1, . . . ,K, j = 1, . . . , L, l = 1, . . . ,M do

Compute the mean of the predicted observation:

ŷi,j,lk|k−1
=
∑

σ ω
i,j,l
σ hk

(

xi,j,lσ

)

Compute the covariance of the predicted observation:

P
i,j,l
yy =

∑

σ

ω
i,j,l
σ

(

hk

(

xi,j,lσ

)

− ŷi,j
k|k−1

)(

hk

(

xi,j,lσ

)

− ŷi,j,l
k|k−1

)T

Compute the cross-covariance of the predicted observa-
tion and the predicted state:

P
i,j,l
xy =

∑

σ

ω
i,j,l
σ

(

xi,j,l
σ − x̂i,j

k|k−1

)(

hk(x
i,j,l
σ )− ŷi,j,l

k|k−1

)T

Use (24)-(28) to compute the updated mean:

x̂i,j,lk|k = x̂i,j
k|k−1

+K
i,j,l
k (yk − ŷi,j,lk|k−1

)

Use (25)-(28) to compute the updated covariance:

P
i,j,l
k|k = P

i,j
k|k−1

−Pi,j,l
xy

(

K
i,j,l
k

)T

Compute the associated weight:

αi,j,l
k|k =

αi,j

k|k−1
αl

w,kN
(

yk ;̂y
i,j,l

k|k−1
,Pi,j,l

yy

)

∑

K
i=1

∑

L
j=1

∑

M
l=1

αi,j

k|k−1
αl

w,k
N

(

yk ;̂y
i,j,l

k|k−1
,Pi,j,l

yy

)

end for

Approximate the posterior density with the Gaussian Sum:

p (xk|Yk) =

K
∑

i=1

L
∑

j=1

M
∑

l=1

α
i,j,l

k|k N
(

xk; x̂i,j,l

k|k ,P
i,j,l

k|k

)

This algorithm in general merges mixture terms that have

lower weights rather than those that are associated to higher

weights [102].

The GS approximations obtained by pruning or merging

procedure converge weakly to the exact posterior distribu-

tion [117].

3. Integral Squared Error-Based Gaussian Mixture Re-

duction: In this method one obtains the reduced Gaussian

mixture expressions by minimizing the L2 distance between

the original and the reduced densities [17], [102]:

argmin
α,µ,Σ,N

∫

(

p (xk|Yk)−
N
∑

i=1

αiN
(

xk;µ
i,Σi

)

)2

dxk

where p (xk|Yk) is the original Gaussian Sum approximation

defined by (39), N is the desired number of components in

the Gaussian mixture that is usually much smaller than the

number of terms in original GS, and α,µ,Σ are the parameters

with respect to which the optimization is performed. In some

cases instead of the L2 distance other metrics are used as the

optimization criterion [118].

Using one of the aforementioned techniques one has control

over the number of terms in the GS, and hence the growing

memory requirement ceases to be a problem. However, the

reduction procedure, which can be very computationally ex-

pensive, has to be preformed at each filtering step. Therefore,

depending on the problem, an appropriate choice of the

reduction method is crucial to make the GSF an effective

online filter. Note that if both the process and the observation

noises can be accurately approximated by single Gaussians,

no reduction method is necessary because the number of

expressions in the GS is constant over the time.

C. Example: Kinematic Model

Let us consider a second order kinematic model in two-

dimensional space [65], [119], [120]. The model is described

by four states:

xk =
[

px(k) ṗx(k) py(k) ṗy(k)
]T

,

where (px(k), py(k)) is the position of the object at time k
in XY plane and ṗx(k) and ṗy(k) denote the velocity of the

object at time k in X-direction and Y -direction respectively.

The evolution of the object in discrete-time is modeled by:

xk+1 =









1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1









xk (40a)

+











T 2
s

2
0

Ts 0

0
T 2
s

2

0 Ts











(

f (xk)−
[

0
g

])

+ vk, (40b)

where the function f (xk) is given by

f (xk) = −0.5
g

β
ρ (xk(3))

√

(xk(2))
2 + (xk(4))

2

[

xk(2)
xk(4)

]

,

(41)

with parameters being: Ts = 1s the sampling time, g =
9.81m/s2 the gravitational acceleration, β = 100kg/m2 the

ballistic coefficient, ρ (xk(3)) = 1.754 exp(−1.491xk(3)) the

air density (typically modeled as an exponentially decaying

function of height [65]). Furthermore, the variable vk models

random process noise, which is zero-mean Gaussian with the



covariance matrix Qk equal to

Qk =









33 1
3

50 0 0
50 100 0 0
0 0 33 1

3
50

0 0 50 100









. (42)

8.9

8.86

8.82

8.78

8.74

8.7
2.41 2.415 2.42 2.425 2.43 2.435 2.44 2.445 2.45

×105

×104

Y

X

8.9

8.86

8.82

8.78

8.74

8.7
2.41 2.415 2.42 2.425 2.43 2.435 2.44 2.445 2.45

×105

×104

Y

X

Fig. 5: Contour of the initial pdf of the GSF (above) vs

contour of the initial pdf of the UKF (below) both in the XY

position plane. The pentagram denotes the true initial state of

the system.

For the observation model we assume that at each time

step k the range yk(1) and bearing yk(2) measurements are

available [65], [120]. Thus, in the cartesian coordinates the

measurement model is given by:

yk(1) =

√

(xk(1))
2
+ (xk(3))

2
+wk(1), (43a)

yk(2) = arctan

(

xk(3)

xk(1)

)

+wk(2), (43b)

where the zero-mean Gaussian variable wk models

the random measurement noise with covariance

matrix Rk =

[

104 0
0 0.01

]

. With such a choice of Rk the

standard deviation of the range errors is equal to σr = 100m

and the standard deviation in bearing errors is given

by σθ = 0.1rad.

We have simulated a trajectory of the ballistic object

for T = 90s, starting from the initial state x0 =
[243.5km, 1000m/s, 87.9km, 0m/s]

T
. The simulation was re-

peated 1000 times.

We use the Monte Carlo experiment described above to

compare the performance of a five-term GSF with a UKF.

The initial condition xUKF
0 and initial covariance PUKF

0 for the

UKF are given by:

xUKF
0

=







243 · 103

103

88 · 103

0






, PUKF

0
=







106 0 0 0
0 100 0 0
0 0 25 · 104 0
0 0 0 100






.

The initial condition for the GSF is given by five equally

weighted Gaussians with means µi

µ1 =







242, 250
1, 000
87, 750

0






,µ2 =







242, 750
1, 000
88, 250

0






,µ3 =







243, 250
1, 000
88, 250

0






,

µ4 =







243, 750
1, 000
87, 750

0






,µ5 =







243, 000
1, 000
88, 000

0






,

respectively, and the covariances

Σ1 = Σ2 =









3·2502

4
0 250

2

4
0

0 100 0 0
250

2

4
0 3·2502

4
0

0 0 0 100









,

Σ3 = Σ4 =









3·2502

4
0 −

250
2

4
0

0 100 0 0

−
250

2

4
0 3·2502

4
0

0 0 0 100









,

Σ5 =







2502 0 0 0
0 100 0 0
0 0 5002 0
0 0 0 100






.

The contour of the initial distribution of the GSF is vi-

sualized in Figure 5. The initial pdf has been chosen to

resemble the parabolic shape of the trajectory of the ballistic

object. Such a shape cannot be achieved by a single Gaussian

distribution.

Figure 6 presents the simulated XY-trajectory of the ballistic

object together with the estimates obtained by the GSF and

the UKF. In the figure it can be easily observed that the GSF

outperforms a single UKF. This is confirmed by the analysis of

the RMSE of each filter obtained from 1000 Monte Carlo runs

of the system (40)–(43) with the same initial condition and the

same noise levels. In Figure 7 the RMSE of the GSF and the

UKF are compared with the squared root of the theoretical

PCRB that is computed using (20).

VI. CONCLUSIONS AND DISCUSSION

The main objective of this section is to analyze the proper-

ties of the Parametric Filters presented in the previous sections.

For general nonlinear non-Gaussian systems, there exists no

optimal solution to the filtering problem (in the MMSE sense).

This means that there are no results stating that a particular

filter has the lowest possible MMSE error [8].

We have presented three types of nonlinear parametric

filtering methods:

I. Filters based on analytical approximations: EKF, IEKF.

II. Filters based on statistical approximations: UKF, GHF,

CDF.

III. Filters based on Gaussian Sum approximations: GSF.
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(below).

The EKF, the IEKF, the UKF, the GHF, and the CDF ap-

proximate the predicted (4) and the posterior (5) densities

as Gaussians. The EKF and the IEKF utilize the Taylor

series expansion to exploit the analytical structure of nonlinear

functions fk and hk. The UKF, the GHF and the CDF

exploit statistical properties of Gaussian variables that undergo

nonlinear transformations. In contrast to the aforementioned

methods the GSF approximates the densities (4) and (5) with

the sum of Gaussian densities, which are no longer Gaussian.

The Taylor approximation, which is a basic principle of

the EKF and the IEKF, requires functions fk and hk to be

differentiable. The UKF, the GHF and the CDF are derivative-

free filters, i.e., they can be applied to systems with non-

differentiable dynamics. The same applies to the GSF if it

uses one of the derivative-free methods.

The numerical complexity of the UKF and the CDF grows

linearly with the dimension of the state n, the numerical

complexity of the EKF and the IEKF grows quadratically

with n, and the complexity of the GHF grows exponentially

with n. In the case of the GSF there is no straightforward

relation between the dimension of the state space n and the

computational complexity of the filter. The latter depends on

the number of terms K in the GS that are required for an

accurate approximation of the densities (4) and (5). In general,

a larger K is necessary for higher dimensions n [81], but the

exact relation always depends on the particular structure of the

approximated densities.

The Taylor series approximation truncates the higher mo-

ments of nonlinear function. Therefore, filters derived from

this principle, such as the EKF, are better suited for the systems

where functions fk and hk are mildly nonlinear. From this

perspective the strong advantage of the UKF, the GHF and

the CDF over the EKF is that these filters match higher-

order moments and thus, can handle stronger nonlinearities

in the system equations. Among these three filters the UKF

has the simplest form and while being more accurate than

the EKF, it retains its low computational complexity. The CDF,

though similar to the UKF, is able to estimate the state

covariance more precisely. This, however, comes with the

price of increased computational complexity. The GHF, using

sufficiently large quadrature rule, is able to accurately approx-

imate heavy tailed distributions. The disadvantage of the GHF

over the EKF, the CDF and the UKF is its large numerical

complexity which often yields the GHF impractical for high-

frequency online applications.

The performance of the EKF can be improved by using the

measurement to minimize linearization errors. This is achieved

by the IEKF the trade-off being rise of numerical complexity.

The performance of the EKF, the IEKF, the UKF, the GHF

or the CDF can deteriorate if the predicted and the posterior

densities cannot be accurately approximated by a single Gaus-

sian. If the system exhibits severely non-Gaussian character-

istics, the GSF offers a neat alternative to the aforementioned

filters.

The GHF, and to a lesser degree the EKF and the IEKF,

suffers from the curse of dimensionality. Therefore, from

the computational perspective and the GHF, the EKF, and

the IEKF are better suited for small-scale systems, whereas

the UKFs and the CDFs are more suitable for large-scale

applications. Whenever the nonlinear functions fk or hk have

complicated analytical structures, which make it difficult to

compute the Jacobians ∂fk or ∂hk, the derivative-free filters

(UKF, CDF, GHF) are numerically preferable over the EKF.

We would like to conclude the article with a brief overview



of freely available implementations of the algorithms discussed

throughout the paper. Mathworks provides the MatLab codes

for the EKF [121] and the UKF [122]. A very useful overview

of open source MatLab and C++ toolboxes used for nonlinear

filtering, including KF, EKF and UKF, is provided by Greg

Welch and Gary Bishop [123]. A comprehensive collection

of MatLab toolboxes suited for nonlinear filtering, among

others EKF, UKF, CDF, GSF, is provided by the Identification

and Decision Making Research Group at the University of

West Bohemia [124].
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