Parametric Bilinear
 Generalized Approximate Message Passing

Phil Schniter and Jason Parker

The Ohio State University

With support from NSF CCF-1218754 and an AFOSR Lab Task (under Dr. Arje Nachman).

ITA - Feb 6, 2015

Approximate Message Passing (AMP) \& Generalizations

Previously, AMP algorithms have been proposed ...

- for the linear model:

Infer $\boldsymbol{x} \sim \prod_{n} p_{\times}\left(x_{n}\right)$ from $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{w}$
with AWGN \boldsymbol{w} and known $\boldsymbol{\Phi}$.
[Donoho/Maleki/Montanari'09]

- for the generalized linear model:

Infer $\boldsymbol{x} \sim \prod_{n} p_{\mathrm{x}}\left(x_{n}\right)$ from $\boldsymbol{y} \sim \prod_{m} p_{\mathrm{y} \mid \mathrm{z}}\left(y_{m} \mid z_{m}\right)$
with hidden $\boldsymbol{z}=\boldsymbol{\Phi} \mathbf{x}$ and known $\boldsymbol{\Phi}$.

- and for the generalized bilinear model:

Infer $\boldsymbol{A} \sim \prod_{m, n} p_{\mathbf{a}}\left(a_{m n}\right)$ and $\boldsymbol{X} \sim \prod_{n, l} p_{\mathrm{x}}\left(x_{n l}\right)$ from $\boldsymbol{Y} \sim \prod_{m, l} p_{\mathbf{y} \mid \mathbf{z}}\left(y_{m l} \mid z_{m l}\right)$
with hidden $\boldsymbol{Z}=\boldsymbol{A} \boldsymbol{X}$.
[Schniter/Cevher/Parker'11]
In this talk, we describe recent work extending AMP ...
■ to the parametric generalized bilinear model:
Infer $\boldsymbol{b} \sim \prod_{i} p_{\mathbf{b}}\left(b_{i}\right)$ and $\boldsymbol{c} \sim \prod_{j} p_{\mathbf{c}}\left(c_{j}\right)$ from $\boldsymbol{Y} \sim \prod_{m, l} p_{\mathbf{y} \mid \mathbf{z}}\left(y_{m l} \mid z_{m l}\right)$ with hidden
$\boldsymbol{Z}=\boldsymbol{A}(\boldsymbol{b}) \boldsymbol{X}(\boldsymbol{c})$ and known matrix-valued linear $\boldsymbol{A}(\cdot), \boldsymbol{X}(\cdot)$. [Parker/Schniter'14]

Example Applications of BiG-AMP

1 Matrix Completion:
Recover low-rank matrix $\boldsymbol{A X}$
from noise-corrupted incomplete observations $\boldsymbol{Y}=\mathcal{P}_{\Omega}(\boldsymbol{A X}+\boldsymbol{W})$.
$\boxed{2}$ Robust PCA:
Recover low-rank matrix $\boldsymbol{A X}$ and sparse matrix \boldsymbol{S}

3 Dictionary Learning:
Recover dictionary \boldsymbol{A} and sparse matrix \boldsymbol{X}
from noise-corrupted observations $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X}+\boldsymbol{W}$.
4 Non-negative Matrix Factorization:
Recover non-negative matrices \boldsymbol{A} and \boldsymbol{X} from noise-corrupted observations $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X}+\boldsymbol{W}$.

A detailed numerical comparison ${ }^{1}$ against state-of-the-art algorithms suggests
■ BiG-AMP gives best-in-class phase transitions,

- BiG-AMP gives competitive runtimes.

[^0]
Example Applications of Parametric BiG-AMP

1 Nonlinear Compressed Sensing with Structured Matrix Uncertainty
Observe $\boldsymbol{y}=f\left(\left(\sum_{i} b_{i} \boldsymbol{\Phi}_{i}\right) \boldsymbol{c}+\boldsymbol{w}\right)$ with known $\boldsymbol{\Phi}_{i}$.
Recover sparse vector \boldsymbol{c}.
2. Generalized Matrix Recovery:

Observe $\boldsymbol{Y}=f(\boldsymbol{\Phi} \boldsymbol{B} \boldsymbol{C}+\boldsymbol{W})$ with known $\boldsymbol{\Phi}$ and separable nonlinearity $f(\cdot)$. Recover low-rank matrix $B C$.
3 Array Calibration:
Observe $\boldsymbol{Y}=\operatorname{Diag}(\boldsymbol{b} \otimes \mathbf{1}) \boldsymbol{\Phi} \boldsymbol{C}+\boldsymbol{W}$ with known $\boldsymbol{\Phi}$.
Recover calibration parameters \boldsymbol{b} and signal matrix \boldsymbol{C}.
4 Blind Deconvolution:
Observe $\boldsymbol{Y}=\boldsymbol{\Phi} \operatorname{Conv}(\boldsymbol{b}) \boldsymbol{\Psi} \boldsymbol{C}+\boldsymbol{W}$ with known $\boldsymbol{\Phi}$ and dictionary $\boldsymbol{\Psi}$. Recover filter \boldsymbol{b} and sparse signal coefficients \boldsymbol{C}.
5 Data Fusion:
Observe $\boldsymbol{Y}_{i}=\boldsymbol{\Phi}_{i} \boldsymbol{B C} \boldsymbol{\Omega}_{i}+\boldsymbol{W}_{i}$ for $i=1,2, \ldots, T$, with known $\boldsymbol{\Phi}_{i}$ and $\boldsymbol{\Omega}_{i}$.
Estimate tall \boldsymbol{B} and wide/sparse \boldsymbol{C}
6 and many more...

Parametric BiG-AMP: Derivation

- The functions $\boldsymbol{A}(\cdot)$ and $\boldsymbol{X}(\cdot)$ are treated as random affine transformations.
- In particular, if $\boldsymbol{b} \in \mathbb{R}^{N_{b}}$ and $\boldsymbol{c} \in \mathbb{R}^{N_{c}}$, then

$$
\begin{aligned}
a_{m n}(\boldsymbol{b}) & =\frac{1}{\sqrt{N_{b}}} a_{m n}^{(0)}+\sum_{i=1}^{N_{b}} b_{i} a_{m n}^{(i)}=\sum_{i=0}^{N_{b}} b_{i} a_{m n}^{(i)} \\
x_{n l}(\boldsymbol{c}) & =\frac{1}{\sqrt{N_{c}}} x_{n l}^{(0)}+\sum_{j=1}^{N_{c}} c_{j} x_{n l}^{(j)}=\sum_{j=0}^{N_{c}} c_{j} x_{n l}^{(j)},
\end{aligned}
$$

where $a_{m n}^{(i)}$ and $x_{n l}^{(j)}$ are realizations of independent zero-mean r.v.s.

- We then consider the large-system limit where $N, M, L, N_{b}, N_{c} \rightarrow \infty$ such that $M / N, L / N, N_{b} / N^{2}$, and N_{c} / N^{2} converge to fixed positive constants.
- The remainder of the derivation follows along the lines of BiG-AMP, ${ }^{2}$ but is more involved/tedious.
- In practice, we also consider smooth, non-linear $\boldsymbol{A}(\cdot)$ and $\boldsymbol{X}(\cdot)$ with partial derivatives $a_{m n}^{(i)}(\boldsymbol{b})$ and $x_{n l}^{(j)}(\boldsymbol{c})$, although without rigorous justification.

[^1]
Parametric BiG-AMP: Features \& Extensions

- The P-BiG-AMP algorithm exploits fast implementations of $\boldsymbol{A}(\cdot)$ and $\boldsymbol{X}(\cdot)$ (e.g., FFT-based).
- Although P-BiG-AMP requires knowledge of the priors on \boldsymbol{b} and \boldsymbol{c} and the likelihood function $p_{\boldsymbol{Y} \mid \boldsymbol{Z}}(\boldsymbol{y} \mid \cdot)$, the hyper-parameters can be learned from the data using the expectation maximization approach proposed for AMP in [Schniter/Vila'11].
- Although P-BiG-AMP assumes independent $\left\{\mathrm{b}_{i}\right\}$, independent $\left\{\mathrm{c}_{j}\right\}$, and conditionally independent $\left\{\mathrm{y}_{m, n} \mid \mathrm{z}_{m, n}\right\}$, more general models can be handled using the turbo-AMP approach proposed in [Schniter'10].

Example 1: CS with Structured Matrix Uncertainty

- Measure: $\boldsymbol{y}=\left(\boldsymbol{A}_{0}+\sum_{i=1}^{N_{b}} b_{i} \boldsymbol{A}_{i}\right) \boldsymbol{c}+\boldsymbol{w},\left(N=256, N_{b}=10, \mathrm{SNR}=40 \mathrm{~dB}\right)$

■ Unknown (all iid): $\mathrm{w}_{m} \sim \mathcal{N}\left(0, \nu^{w}\right), \mathrm{b}_{i} \sim \mathcal{N}(0,1), \mathrm{c}_{j} \sim \mathcal{B G}(0.04,0,1)$

- Known (drawn iid): $\left[\boldsymbol{A}_{0}\right]_{m n} \sim \mathcal{N}\left(0, N_{b}\right),\left[\boldsymbol{A}_{i}\right]_{m n} \sim \mathcal{N}(0,1)$
- EM-P-BiG-AMP outperforms oracle-tuned WSS-TLS [Zhu/Leus/Giannakis'11]

Example 2: Random 2D Fourier Measurements of a Sparse Image with Row-Wise Phase Errors

GAMP: Phase errors ignored

P-BiG-AMP recovery

- Randomly sample 10% of the AWGN-corrupted (@40dB SNR) 2D Fourier measurements of a 128×128 image with 30 non-zero pixels
- An unknown random phase (uniformly distributed on $\left[-90^{\circ},+90^{\circ}\right]$) is added to all the measurements from each row of the observations
- P-BiG-AMP jointly estimates phase errors and sparse image to -50dB NMSE.
- Surrogate for simultaneous sparse imaging and autofocus [Önhon/Çetin'12]

Summary

- Presented preliminary work on an algorithm for parametric, bilinear, generalized inference based on AMP principles.
- Assumes unknown independent random vectors \boldsymbol{b} and \boldsymbol{c} are related to observations \boldsymbol{Y} through a conditionally independent likelihood of the form

$$
p(\boldsymbol{Y} \mid \boldsymbol{A}(\boldsymbol{b}) \boldsymbol{X}(\boldsymbol{c})) \text { with known affine } \boldsymbol{A}(\cdot) \text { and } \boldsymbol{X}(\cdot) .
$$

- Builds on previous Bilinear Generalized AMP work.
- Can be combined with EM and turbo AMP methods.

■ Numerical experiments demonstrate performance near oracle bounds.

References

1 D.L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," PNAS, 2009.
2 S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," ISIT, 2011. (See also arXiv:1010.5141).
3 P. Schniter and V. Cevher, "Approximate message passing for bilinear models," SPARS, 2011.
4 J. T. Parker, P. Schniter, and V. Cevher, "Bilinear Generalized Message Passing—Part 1: Derivation," IEEE Trans. Signal Process., 2014.
5 J. T. Parker, P. Schniter, and V. Cevher, "Bilinear Generalized Message Passing—Part 2: Applications," IEEE Trans. Signal Process., 2014.
6 J. T. Parker, Approximate Message Passing Algorithms for Generalized Bilinear Inference, Ph.D. Dissertation, Dept. ECE, The Ohio State University, Columbus OH, 2014.
7 J. P. Vila and P. Schniter, "Expectation-Maximization Gaussian-Mixture Approximate Message Passing," IEEE Trans. Signal Process., 2013.
8 P. Schniter, "Turbo reconstruction of structured sparse signals," Proc. Conf. Inform. Science \& Syst., 2010.

9 H. Zhu, G. Leus, and G. Giannakis, "Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling," IEEE Trans. Signal Process., 2011.
10 N. Önhon and M. Çetin, "A Sparsity-Driven Approach for Joint SAR Imaging and Phase Error Correction," IEEE Trans. Image Process., 2012.

Thanks for listening!

Matrix Completion: Phase Transitions

The following plots show empirical probability that NMSE $<-100 \mathrm{~dB}$ (over 10 realizations) for noiseless completion of an $M \times L$ matrix with $M=L=1000$.

LMaFit

VSBL

BiG-AMP Lite

GROUSE

EM-BiG-AMP

Note that BiG-AMP-Lite and EM-BiG-AMP have the best phase transitions.

Matrix Completion: Runtime to NMSE=-100 dB

- Although LMaFit is the fastest algorithm at small rank N, BiG-AMP-Lite's superior complexity-scaling-with- N eventually wins out.
- BiG-AMP runs 1 to 2 orders-of-magnitude faster than IALM and VSBL.

Robust PCA: Phase Transitions

Empirical probability of NMSE $<-80 \mathrm{~dB}$ over 10 realizations for noiseless recovery of the low-rank component of a 200×200 outlier-corrupted matrix.

As before, the BiG-AMP methods yield the best phase transitions.

Overcomplete Dictionary Recovery: Phase Transitions

Mean NMSE over 50 realizations for recovery of an $M \times(2 M)$ dictionary from $L=10 M \log (2 M)$ examples with sparsity K :

As before, the BiG-AMP methods yield the best phase transitions.

[^0]: ${ }^{1}$ Parker,Schniter, Cevher, IEEE-TSP'14

[^1]: ${ }^{2}$ Parker,Schniter, Cevher, IEEE-TSP'14

