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Abstract:
This thesis is concerned with parametric classification of non-standard data. Specifically, methods are
developed for classifying two of the most common types of non-Gaussian distributed data: data with
mixed categorical and continuous variables (often called mixed-mode data), and sparse count data.
Both supervised and unsupervised methods are described. First, a promising, recently proposed method
that uses finite mixtures of homogeneous conditional Gaussian distributions (Lawrence and
Krzanowski, 1996) is shown to be non-identifiable. Identifiable finite mixtures of homogeneous
conditional Gaussian distributions are obtained by imposing constraints on some of the model
parameters. Then, in contrast, it is shown that supervised classification of mixed-mode data using the
homogeneous conditional Gaussian model can sometimes be improved by relaxing parameter
constraints in the model; specifically, certain features of the continuous variable covariance matrix —
such as volume, shape or orientation — are allowed to differ between groups. In addition, the use of
latent class and latent profile models in supervised mixed-mode classification is investigated. Finally,
mixtures of over-dispersed Poisson latent variable models are developed for unsupervised classification
of sparse count data. Simulation studies suggest that for non-Gaussian data these methods can
significantly outperform methods based in Gaussian theory. 
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A B S T R A C T

T his thesis is concerned w ith  p aram etric  classification of non-standard  d a ta . 

Specifically, m ethods are developed for classifying two of th e  m ost com m on types of 

non-G aussian  d istrib u ted  da ta : d a ta  w ith  m ixed categorical and  continuous variables 

(often called m ixed-m ode d a ta ) , and  sparse count d a ta . B oth  supervised and unsu

pervised m ethods are described. F irs t, a  prom ising, recently proposed m ethod th a t  

uses finite m ix tures of hom ogeneous conditional G aussian d istribu tion s (Lawrence 

an d  K rzanow ski, 1996) is shown to  be non-identifiable. Identifiable finite m ixtures of 

hom ogeneous conditional G aussian  d istrib u tion s are  ob tained  by im posing constrain ts 

on  some of th e  m odel param eters . T hen , in con trast, it is shown th a t  supervised clas

sification o f m ixed-m ode d a ta  using th e  hom ogeneous conditional G aussian m odel 

can som etim es be im proved by relaxing p a ram eter constrain ts in th e  model; specifi

cally, certa in  features of th e  continuous variable  covariance m a trix  —  such as volum e, 

shape or o rien ta tion  —  are  allowed to  differ between groups. In  addition , th e  use 

of la ten t class and  la ten t profile m odels in supervised m ixed-m ode classification is 

investigated . F inally, m ix tu res of over-dispersed Poisson la ten t variable  m odels are  

developed for unsupervised classification of sparse count d a ta . S im ulation  studies sug

gest th a t  for non-G aussian  d a ta  these m ethods can significantly outperform  m ethods 

based in G aussian  theory.
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C H A P T E R  I

I n t r o d u c t i o n

Classification problem s abound  in th e  n a tu ra l and social sciences. Volumes 

have been w ritten  ab o u t classification w ith  continuous variables, especially variables 

th a t  are  norm ally  d is trib u ted  (see, for exam ple, M cLachlan (1992) or Ripley (1992)). 

M uch less work has been done on non-continuous d a ta  —  for exam ple, d a ta  conta in

ing b o th  categorical and  continuous variables, or vectors of counts —  even though  

such d a ta  are  frequently  encountered in p ractice. In  th is thesis, m ethods are devel

oped to  fill som e of th e  gaps in classification w ith  non-continuous d a ta . Specifically, 

m ethods are developed for m ixed categorical and  continuous d a ta , and  for m ultid i

m ensional count d a ta . T he m ethods use ideas from  d iscrim inant analysis, cluster 

analysis, and  la ten t variable  m odels. T he d istinc tion  between these  m ethods will be 

m ade in th e  rem ainder o f th is  chapter. As will be seen, la ten t variable  m ethods can 

play a  significant role in classification efforts.

T he  basic problem  in classification is to  assign an en tity  (e.g., a  person, docu

m ent) to  one or m ore o f K  groups (e.g., disease class, topic) based on some m easures 

X  =  (X 1, . . . ,  X p)' taken  on th e  entity. A d istinc tion  is m ade betw een supervised and  

unsupervised classification. In  supervised classification (also known as d iscrim inant 

analysis), observations m ade on entities w ith  known group m em bership  are  available. 

These observations are used to  develop a  ru le for classifying fu tu re  observations, or 

observations w ith ou t group labels. For exam ple, suppose th e  variables X 1, . . .  ,X p de

scribe sym ptom s of som e disease, and th a t  th e  tru e  disease s ta tu s  can be determ ined
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only a fte r a  laborious and  costly m edical procedure. To avoid unnecessary m edical 

procedures, th e  disease s ta tu s  of m ost individuals m ust be pred ic ted  from  d a ta  col

lected  from  those few individuals who underw ent th e  m edical procedure. Supervised 

classification m ethods are  routinely  used in m edical settings to  diagnose diseases and 

to  prognose outcom es of risky m edical procedures.

In unsupervised classification (also known as cluster analysis), no group labels 

are  known. In some cases, th ere  is p rior understand ing  of th e  types of groups (for 

exam ple, diseased or n o t diseased). In  th e  absence of a  gold stan d ard  (e.g., for 

em erging diseases) individuals m ay be clustered  and  classified in to  groups based on 

th e ir  observed sym ptom  variables. T he  groups m ight be  given th e  labels diseased and 

not diseased. In  some cases th e  goal of unsupervised classification is to  discover group 

s tru c tu re  in a  d a ta se t. A m ajo r problem  is to  decide how m any groups are in th e  d a ta  

an d  th en  to  characterize th e  groups. For exam ple, we m ight wish to  cluster a  large 

collection of docum ents in to  groups of rela ted  topics. In th is  thesis b o th  supervised 

and  unsupervised m ethods are  considered.

T his thesis focuses on classification of non-continuous d a ta . Specifically, two 

types of d a ta  s tru c tu res a re  considered:

1. D a ta  contain ing  m ix tures of categorical and continuous variables. This ty p e  of 

d a ta  will be  referred to  as m ixed-m ode.

2. Sparse m ultivaria te  count da ta .

D a tase ts  w ith  m ixed categorical and  continuous variables are  often encountered 

in practice. I t  is com m on to  standard ize  these d a tase ts by e ither I)  categorizing 

th e  continuous variables and  applying categorical variable m ethods, or 2) trea tin g  

th e  categorical variables as continuous and  applying continuous variable m ethods. 

Clearly, inform ation  is lost w ith  either approach. As an a lternative , Krzanow ski (1975,
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1980, 1993) developed a  p aram etric  approach  to  analyzing m ixed-m ode d a ta . In  th is 

m odel, known as th e  conditional G aussian m odel, th e  continuous variables have a  

different m u ltiv aria te  norm al d istribu tion  a t  each possible com bination of categorical 

variable  values. R esearch on th e  conditional G aussian  m odel has been driven by th e  

growing in terest in Bayesian Belief Networks, which frequently  em ploy conditional 

G aussian  m odels when m ixed variables are  present. T he conditional G aussian m odel, 

and  a  special case known as th e  location  m odel, will be described in m ore de ta il 

in C hap ters 2 and  3, w here th e  m odels are  exploited in th e  developm ent of b o th  

supervised and  unsupervised m ethods for classifying m ixed-m ode d a ta .

In  C h ap te r 4 unsupervised m ethods are  developed for classification w ith  sparse 

m ultiv aria te  count d a ta . In sparse m ultivaria te  count d a ta , m ultip le  counts are  ob

served for each entity, and  m any of th e  counts a re  very sm all or zero. C hap ter 4 

describes how such sparse count d a ta  a re  routinely  collected in secondary ion m ass 

spectrom etry . In  th e  analysis o f tex tu a l d a ta , a  docum ent is often represented by a  

vector X  =  (X i , . . . ,  X t )', where T  is th e  num ber of unique term s, or words, in some 

collection of docum ents, and  X i is th e  num ber of tim es (i.e. count) th e  ith te rm  occurs 

in th e  docum ent. A given docum ent will contain  only a  fraction  of th e  unique te rm  

in th e  collection, so m any counts will be zero. T he positive counts ten d  to  be very 

low. T hus, tex tu a l d a ta  analysis m ust contend w ith  sparse m ultivaria te  count d a ta . 

If  th e  d a ta  w eren’t  sparse (i.e., if th e  counts w eren’t  so sm all), it m ight be possible to  

apply  continuous variable  m ethods to  th e  count d a ta  following some transform ation . 

For exam ple, th e  Anscom be transform  of a  random  variable X  is given by

Y  = t(X) = 2y/X  +  3 /8 .

If AT ~  Poisson(A) and  A is large, th en  Y  is approxim ately  norm ally  dis

tr ib u te d  w ith  variance I . W hen A is sm all, th e  transform ed variables are  no t ap 

proxim ately  norm al. In th is  case, we p o stu la te  th a t  classification can be im proved
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by m odeling th e  count d a ta  w ith  m ore ap p ro p ria te  m ultivaria te  count d istribu tions. 

T h is is done in C h ap te r 4, w here th e  m ultiv aria te  count d istrib u tio ns are described by 

la ten t variable  m odels. A  la ten t variable  is in troduced  to  “explain” th e  correlations 

am ong observations w ith in  a  cluster. O bservations conform ing to  th e  la ten t variable  

m odel are  clustered using a  fin ite m ix ture  m odel. In a  fin ite m ix tu re  m odel, an  ob

servation ’s group m em bership  is trea te d  as an  unobservable, or la ten t, variable. Thus 

th e  c lustering a lgorithm  contains two levels o f la ten t variables. A brief discussion of 

la ten t variables, and  th e ir  use in th is  thesis, is considered next.

In its  m ost general definition, a  la ten t variable  m odel is any m odel w ith  a  

variable  th a t  is unobservable (or la ten t). If  X  is a  vector o f observable variables, and  

Z  is a  vector of la ten t variables, th en  th e  density  of th e  observable variables m ay be 

w ritten  as

If Z ~  M ult (I; p ) ,  where p  =  ( pi , . . . t hen (1.1) is a  finite m ix ture m odel 

w ith  m ixing p aram eters  p i , . . .  ,p*. Thus, fin ite m ix ture  m odels are  special types of 

la ten t variable  m odels. These types of la ten t variable  m odels are used in C hap ters 2 

an d  4.

M ore comm only, la ten t variable m odels are  defined by th e  notion  of conditional 

independence, so th a t ,  conditional on th e  value of th e  la ten t variable, th e  observable 

variables are  taken  to  be independent. In  th is  sense th e  la ten t variables are said 

to  explain  (the associations am ong) th e  observable variables. In th is  definition th e  

dim ension of th e  la ten t variables Z  is taken  to  be sm aller (usually  m uch sm aller) 

th a n  th e  dim ension of th e  observable variables X . These types of m odels are used in 

C hap ters 3 and  4.

In th e  th ree  m ain  chap ters of th is thesis (C hapters 2, 3 and  4) new m ethods

( 1 . 1 )
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are developed for classifying non-standard  d a ta  types. These th ree  chapters provide 

a  cohesive argum ent th a t  b e tte r  classification can be achieved if th e  d a ta  s tru c tu re  is 

p roperly  accounted for.

C h ap te r 2 considers th e  problem  of unsupervised classification for m ixed-m ode 

d a ta . A fter reviewing existing approaches to  th e  problem , a  prom ising approach 

based on finite m ix tures of conditional G aussian d istribu tions is shown to  be non- 

identifiable. T hen  identifiable fin ite m ix tures of conditional G aussian  d istribu tions 

are  developed.

In C h ap te r 3, conditional G aussian m odels are  developed for supervised clas

sification. Parsim onious m odels which relax  th e  assum ption of com m on within-cell 

dispersion m atrices are  considered.

Finally, unsupervised m ethods for sparse count d a ta  are  developed in C h ap te r 

4. T he  m ethods, based on finite m ix tures of la ten t variable m odels, com pare favor

ab ly  w ith  m ethods th a t  transform  th e  variables (using, for exam ple, th e  Anscom be 

transfo rm ) an d  th en  apply  norm al variable  m ethods.
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C H A P T E R  2

I d e n t i f i a b l e  F i n i t e  M ix t u r e s  o f  L o c a t i o n  M o d e l s  fo r  

C lu s t e r i n g  M ix e d -M o d e  D a t a

F in ite  m ix tu re  m odels have becom e p o p u la r tools for c luster analysis, espe

cially when it  is reasonable to  m ake d istrib u tio n a l assum ptions ab o u t observations 

w ith in  each group. T itte rin g to n , Sm ith  and  Makov (1985) and  M cLachlan and Bas- 

ford (1988) provide com prehensive reviews of finite m ix ture  applications in c luster 

analysis.

Suppose th a t  an observation x  has arisen  from  exactly one of g d istinct groups, 

denoted  G i , . . . ,  G s , w here th e  density  of an  observation from  G* is <%(x; # , ) .  T he 

pa ram eter vector NErj is generally  unknown. If  a ,  is th e  relative size of G , (0 <  <

I; Ef=i CKi =  I ) ,  th en  th e  density  of a  random ly  selected observation is

/ ( 3O =  S a t f i ( x ^ i ) -  ( 2 .1 )
i= l

M odel (2.1) is a  finite m ix tu re  m odel w ith  m ixing param eters Qji (z =  I , . . .  ,g). T he 

m ixing param eters  also are known as p rio r group probabilities. F in ite  m ix ture  m odels 

are  su itab le  for m ultip le  group analysis —  in our case cluster analysis —  when group 

labels are  unknow n. T he  posterior probab ility  th a t  Xft belongs to  Gi is

T i(x ft; # )  =  P r (G j |x ft, V h  a%) =
O tfi(x a ; *«)

E L i  QtfKx ft;

If  m isclassification costs are equal, th en  observation x ft is assigned to  th e  group for 

which th e  posterio r probab ility  is g reatest. T h a t is, th e  classification rule is

assign x ft to  Gi if m ax  T;(xft; \I>) =  Tj(xft; fF).
l<l<g

( 2 . 2 )
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In p ractice, th e  param eters  a% and  — usually  are estim ated  from

th e  sam ple x i , . . . ,  x n which is to  be clustered, and th e  estim ates are  su b stitu ted  

in (2.2) for classification. Before th e  finite m ix tu re  m odel can be used for c luster 

analysis, a  decision m ust be m ade ab o u t th e  form  of th e  group conditional densities 

(x; Vlri). For continuous d a ta  it is often reasonable to  assum e m ultivaria te  norm al 

group conditional densities. M axim um  likelihood estim ates of th e  param eters can be 

ob ta ined  by trea tin g  th e  unobserved group labels as m issing d a ta  and  using th e  EM  

algorithm  (M cLachlan and  K rish n an , 1997; R edner and W alker, 1984).

W hen observations are  m ade on b o th  categorical and  continuous variables —  

in which case we say th e  d a ta  are m ixed-m ode, or m ixed —  th e  m ultivaria te  norm al 

assum ption  is n o t realistic. E v eritt (1988) constructed  finite m ix tu re  m odels for th is  

case by assum ing th a t  each categorical variable  is ob tained  from  an  underlying con

tinuous variable  by threshold ing . T he underly ing (unobserved) continuous variables 

an d  th e  observed continuous variables are  assum ed to  be jo in tly  m ultivariate  norm al 

w ith in  each group, w ith  com m on covariance m atrix . T his m odel will be referred to  

as th e  underlying variable mixture model.

T he categorical variables in th e  underly ing variable m ix ture  m odel are ordinal. 

T h a t  is, th e  levels of each categorical variable  are  determ ined by ordered threshold  

values o f an  underly ing continuous variable. Because th e  categorical variables provide 

no inform ation  ab o u t th e  m eans and variances of th e  underlying continuous variables, 

E v eritt (1988) takes th e  m eans to  be 0 and  th e  variances to  be  I . T he threshold  

values are  allowed to  vary  across variables and  groups. T he category  probabilities are 

determ ined  by th e  th resho ld  values. In  p ractice th e  m ethod is lim ited  to  one or two 

categorical variables (E veritt and  M erette , 1990), because for q categorical variables 

estim atio n  of th e  param eters  requires ^-dim ensional num erical in tegration  a t  each 

ite ra tio n  of th e  EM  algorithm . F ittin g  th e  m odel can be num erically  in tractab le  for
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large q.

Law rence and  K rzanow ski (1996) proposed a  finite m ix tu re  m odel for m ixed

m ode d a ta  th a t  avoids th e  num erical in teg ration  required by th e  underly ing variable 

m ix tu re  m odel. T hey assum ed th a t  th e  group-conditional densities conform  to  th e  

location  m odel for m ixed variables. T he location  m odel has been successfully applied  

in d iscrim inan t analysis problem s (K rzanow ski, 1993). In th e  graphical m odels lit

e ra tu re  it  is called th e  hom ogeneous C onditional G aussian m odel (W hittaker, 1990). 

T he finite m ix tu re  o f location  m odels will be  called th e  location mixture model. In 

add ition  to  g rea ter num erical trac tab ility , th e  location m ix ture  m odel prom ises m ore 

flexibility  th a n  th e  underly ing variable  m ix tu re  m odel because it  doesn’t  im pose any 

orderings o f th e  categories in each categorical variable , and  it doesn’t  im pose stru c tu re  

on th e  conditional m eans.

U nfortunately , th e  g reat flexibility  of th e  location m ix ture  m odel leads to  m ul

tip le  d istin c t sets of pa ram eter values th a t  yield  identical m ix ture  densities; th a t  is, 

th e  m odel in its  un restric ted  form  is no t identifiable. T his is d em onstra ted  in th e  next 

section. T hen  identifiable location m ix tu re  m odels are obtained  by im posing restric

tio ns on th e  conditional m eans of th e  continuous variables. T he  res tric ted  m odels are  

assessed in a  sim ulation  experim ent.

L o c a t i o n  M i x t u r e  M o d e l

T he C onditional G aussian d is trib u tio n  decom poses th e  jo in t d istribu tion  

o f m ixed-m ode d a ta  as th e  p roduct of th e  m arginal d istribu tion  o f th e  categorical 

variables and  th e  conditional d istribu tio n  of th e  continuous variables given th e  c a t

egorical variables. T he la tte r  d istrib u tio n  is assum ed to  be m ultiv aria te  norm al. 

T he  categorical variables can be uniquely transform ed to  a  single discrete variable
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w G {tt ii , . . . ,  wm}, w here m  is th e  num ber of d istinc t com binations (i.e., locations) 

o f th e  categorical variables, and  ws is th e  label for th e  sth location. If there  are 

q categorical variables and  th e  j th variable  has Cj categories (j =  then

m = U U  cj- T he  associations am ong th e  original categorical variables are converted 

in to  relationships am ong th e  discrete probab ilities Pr(ius) =  p s .  Following Lawrence 

and  K rzanow ski (1996), a  sam ple of m ixed-m ode d a ta  will be denoted  by

X  =  ( X 711 . . .  X z1I m  X 21 ' j^ml • * 4 j^mnmy

w here x ^  is a  p  x  I vector of continuous variables for th e  hth observation a t location  

ws, and  ns is th e  num ber of observations a t  ws. W ith in  ws, th e  C onditional G aussian 

m odel s ta te s  th a t  x ^  ~  N(^ts , S s). T he hom ogeneous C onditional G aussian m odel, 

also called th e  location model, is ob tained  by restric ting  th e  covariance m atrix  to  be 

th e  sam e for all locations and  for all groups (if there  is add itional grouping struc tu re).

In th e ir  finite m ix tu re  application , Law rence and  K rzanow ski (1996) assum ed 

th a t  each vector x s/l (Ti =  I , . . .  , n 5; s =  I , . . . , m)  belongs to  one of g  distinct groups, 

Gi , - - - ,Gg, b u t th a t  th e  group labels are unknown. T hey assum ed th a t  observations 

w ith in  each group conform  to  a  location m odel, so th a t  P r(iu  =  ws\Gi) = piS and , in 

Gi, K.sh ~  N ( /L t j s , E ). In  Gi th e  jo in t p robability  th a t  an  observation is from  ws and  

has continuous variable  vector XsZl is

9 i ( x s h ,  w 3\ # )  =  P is h ( X sh ]  V i s ,  2 ) ,

w here SB contains all unknow n param eters and  h(xSh', V, is th e  p d f of a  E )  

random  variable. T he jo in t p robability  th a t  a  random  observation w ith unknow n 

group m em bership  is from  ws and has continuous variable vector X5Z1 is

9 9

f(Xsh, Ws] ai9i(Xsh, Ws] = aiPish(Xsh-, Vis, S )> S  = I, .  .  .  , m .  (2.3)
i=l z=l
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T he on a re  group m ix ing param eters. T he  param eters {(%%} and  {pjs} satisfy the  

constra in ts
9 m

Y^oii = I and  Y p ™ = 1 (2.4)
i= l  s = l

Law rence and  Krzanow ski (1996) describe how th e  unknow n p aram eters in (2.3) 

can be e stim ated  using th e  EM  algorithm . T he  conditional group m eans [iis (i = 

I , . . . ,  g; s = I , . . . ,  m)  a re  un restric ted  in 3?p. If, a t  each location, th e  m eans are  th e  

sam e for each group, then  g — I is sufficient and  th e  m ix ture  m odel is degenerate. 

T his pap er is concerned w ith  non-degenerate m odels. We therefore assum e th a t  any 

two groups have different m eans a t some location  (i.e., for each i ^  i', fiis ^  /Ai,s for 

som e s). T h e  p x p com m on covariance m a trix  S  is assum ed to  be positive definite.

M odel (2.3) is called th e  location m ix tu re  m odel. In th is  p ap er it will some

tim es be called th e  unrestricted location  m ix tu re  m odel to  d istinguish  it from  th e  

res tric ted  location  m ix ture  m odels which are  introduced la te r  in th is  chapter.

I d e n t i f i a b i l i t y

A p aram etric  fam ily of p robab ility  m odels is said to  be  identifiable if dis

t in c t p a ram ete r values determ ine d istin c t m em bers of the  fam ily. T h a t is, a  fam ily  

{p(x; © )}  is identifiable if for ©  and  © ' in th e  fam ily’s p a ram eter space, p(x; © ) =  

p (x ; © ') =4> ©  =  © '. In fin ite m ix ture  m odels, different represen ta tions corresponding 

to  a  sim ple relabeling of group indexes are considered equivalent, so identifiability  is 

required  only up to  a  relabeling of group indexes. In th e  location m ix tu re  m odel th e  

pa ram eter sets $  =  {g^ P m, Aij , E }  and  Tf' =  { a ',p 's, a i(, E '}  a re  considered to  be 

equivalent if they  can be m ade identical by p erm uting  group labels. O therw ise they  

are  d istinc t. For exam ple, th e  p aram eter set #  =  (Ofj jPjs, Al, 2 }  for p =  2 groups 

and  m  locations is equivalent to  th e  p a ram eter set 1J r' ob tained  by =  « 2 , a'2 — Oi , 

S '  =  E , and, for all s, p'ls =  p 2s, p'2s = Pu, / 4 S =  V2s, and pt’2s = Vu- Accordingly,
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th e  location m ix tu re  m odel (2.3) is identifiable if, for each s — I , .. . ,m  and  for all 

x s/l 6

a  a

5 3  ®iPiSh(x.sh', Vis, S )  =  5 3  aiPish(x sh-, Vis, s O => *  and  * 'a r e  equivalent. (2.5)
Z=I Z=I

Yakowitz and  Spragins (1968) provide som e useful results for estab lish ing  the  identi- 

fiability  of finite m ix tu re  m odels.

To exam ine th e  identifiability  of th e  un restric ted  location  m ix ture  m odel in 

(2.3), it  is convenient to  define fiS =  (i = I , . . . ,  y; s =  I , . . .  m; X) 23 /is =  I) . I t 

follows from  (2.4) th a t

m  f ,

= H^fis, Pis = — - (2.6)
s = l  a i

Consider th e  case of m  =  2 locations and  5  =  2 groups. T his m odel defines mg =  4 

clusters of continuous observations w ith  relative frequencies fiS and  associated m eans

Vis-

If  th ere  is an o th er set of param eters S '} ,  d istinc t from  =

{ai,P is,V is,^}, such th a t  (2.5) is satisfied, th en  th e  location m ix ture  m odel is not 

identifiable. Such a  set of param eters can be  ob tained  by p erm uting  group labels a t  

som e locations b u t no t a t  o thers, or by p erm u tin g  group labels differently a t different 

locations. Consider p erm u tin g  (or swapping) group labels for c luster frequencies and  

conditional m eans a t  th e  second location, b u t no t a t th e  first location , so th a t  c luster 

frequencies a fte r pe rm u ta tio n  are (in prim e no ta tion ) / J 1 =  / n  and /^1 =  / 2 1  a t  

location  I , and  f[2 =  / 2 2  and  f'22 =  / 1 2  a t location 2. P a ram e te r values for b o th  

labelings -  denoted  by #  and  -  are  given in Table I.

C learly  E L i  fisH^sh', Vis, 2 )  =  E L i  /»& (*,/.; Vis, s ) for 8 = 1,2 and Vxsh €  

SR?. T hus th e  d istinc t pa ram eter sets #  and  —  b o th  in th e  param eter space for 

th e  location  m ix ture  m odel —  satisfy (2.5). I t  follows th a t  (2.3) is no t identifiable 

for m  =  2 and  g = 2. (It m ay happen th a t  th e  {f-s} are all th e  sam e, which im plies
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O i l

%

/ 1 1  +  / 1 2  / 1 1  +  / 2 2

/ 2 1  +  / 2 2  / 1 2  +  / 2 1

location  I P u  

Pa i 

Mn

M21

/ n  / n
/ l l + / l 2  / l l + / 2 2

/21 721
/2 1 + /2 2  /12 + /2 1

On

@21 021

location  2 P 12

P2 2

/•*12

/* 2 2

/12 /22

/ l l + / l 2  / l l + / 2 2
/22 /12

/2 2 + /2 1  /12 + /2 1

0 1 2  0 2 2

0 2 2  0 1 2

Table I: Two d istin c t sets of param eters th a t  give equivalent expressions for th e  

un res tric ted  location m ix ture  m odel (2.3) for th e  case of m  =  2 locations and  <7 =  2 

groups. T he  pa ram eter set is ob tained  from  #  by perm u tin g  group labels a t th e  

second location  b u t no t a t th e  first location. G ro up /lo ca tion  c luster frequencies are  

represented  by th e  param eters f is =  oy)jS.

th a t  th e  {p^} and  { a '}  are  all th e  sam e. T he  p aram eter sets Tr and  'Sf' will still be 

d istinc t, because th e  /zjs’s are  assum ed in general to  be different). T he m odel can 

be  m ade identifiable by im posing restric tions on as will be shown in th e  nex t

section.

T he  non-identifiability  of th e  un restric ted  location m ix tu re  m odel is due to  in

determ inacy  of group labels a t  each location. T his group indeterm inacy  is illu stra ted  

in F igure I  for m  =  2 locations, g = 2 groups and  p  =  2 continuous variables. T he 

triang les represent c luster m eans a t location I , and  th e  squares represent m eans a t 

location  2. C luster frequencies are  given beside th e  m eans. Locations of th e  clusters 

are  know n and  labeled, b u t group labels w ith in  th e  locations are unknown. G roup 

labels can be assigned in two nonredundan t ways. T he first labeling, in which clusters 

from  th e  sam e group are connected by solid lines, can be described by th e  location 

m ix tu re  m odel w ith  p robab ility  param eters a\ =  .6 ,p n  =  1 /3 , and  P2 1  =  3 /4  (as

sum ing th a t  the  clusters are conditionally  MVN w ith com m on covariance m atrix ). 

T he second labeling, represented  by dashed lines, can be described by th e  location
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.............. ....

y i

F igure I: Four c luster m eans for a  hypothetical 2-group, 2-location m ixture m odel. 

C onditional m eans a t th e  first location are  represented by triangles. C onditional 

m eans a t the  second location are represented by squares. In th e  unrestric ted  location 

m ix ture  m odel group labels can be assigned in two nontrivial ways. T he two respective 

labelings are  represented by connecting clusters by solid lines and  by dashed lines.
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m ix tu re  m odel w ith  p robab ility  param eters Cn1 — .3,pn = 2 /3 , and  p 2i =  3 /7 . These 

two labelings, which provide equivalent expressions for (2.3), offer different views of 

th e  group s tru c tu re  of th e  d a ta . N ot only are  th e  m ixing p aram eters and  th e  location 

p robab ilities different, b u t th e  relationships betw een th e  conditional m eans and th e  

groups and  locations also are  different. In  th e  first labeling, th e  difference between 

th e  group conditional m eans is th e  sam e a t  b o th  locations ( th a t  is, there  is parallel 

s tru c tu re ). In  th e  second labeling, th e  group ordering of conditional m eans depends 

on th e  location ( th a t  is, th e re  is group by location in terac tion ). I t seems th a t  th e  

best we can do w ith  th e  un restric ted  location m ix ture  m odel is to  ob ta in  a  separa te  

c luster analysis w ith in  each location, and th en  use expert knowledge to  assign group 

labels w ith in  locations.

For th e  case m = 2, g = 2 there  are two d istinct p a ram eter sets providing 

equivalent expressions for any m ixture  represen ta tion  (2.3). For th e  general case of 

m  locations and  g groups there  are (p!)m_1 d istin c t p a ram eter sets. Let #  be any 

p a ram eter set in th e  p a ram eter space of m odel (2.3) w ith  g groups, m  locations and  

p continuous variables. C onsider perm uting  group labels w ith in  locations. At each 

location  th ere  are g c lusters, which can be assigned group labels in gl ways. To avoid 

o b ta in ing  pa ram eter sets th a t  result from  th e  sam e p e rm u ta tio n s of group indexes 

a t  all locations, th e  group labels a t  th e  first location are no t perm uted . T here are  

(g\)m~1 different ways to  label th e  groups a t  th e  rem aining m  — I  locations. T hus, 

(2.5) holds for d istin c t sets of param eters and  it  follows th a t  (2.3) is no t identifiable.

Unlike m any non-identifiable m odels which have infinitely m any param eter 

representa tions, th e  u n restric ted  location m ix ture  m odel only has finitely m any repre

sen tations. Given a  m axim um  likelihood so lution of param eter estim ates, (y!)m-1 — I 

o ther d istinc t solutions having equal likelihood can be obtained.
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E x am p le

Law rence and  Krzanow ski (1996) conducted a  sim ulation  study  to  evaluate 

th e  ab ility  of th e  un restric ted  location m ix tu re  m odel to  recover group stru c tu re  and 

to  classify observations. For each rep lication  20 observations were generated  from  

each of tw o 4-varia te  norm al populations, one w ith  m ean ( 0 ,0 ,1 ,1 ) and th e  o ther 

w ith  m ean (0 ,0 ,6 ,6 ) . T he populations h ad  com m on covariance m atrix

T he first tw o variables were dichotom ized by threshold ing  a t  0, giving a  sam ple w ith  

2 b inary  variables (or m  =  4 locations) and  2 continuous variables. An observation 

w ith  b in ary  variables yx and was assigned to  location s = I + yi + 2y2.

T he  unrestric ted  location  m ix tu re  m odel was fit for each of 50 replications. 

Cases were classified to  groups by m atch ing  th e  recovered groups w ith  th e  original 

(known) groups. T he  au tho rs always chose th a t  m atching which yielded fewest m is- 

classifications. T he  average m isclassification ra te  for th e  location  m ixture  m odel in 

th e  Lawrence and  Krzanow ski (1996) sim ulation  was. 31.4%. A baseline ra te , for 

com parison, can be  ob ta ined  as follows. Suppose th a t  group assignm ents are m ade 

randomly w ith  probab ility  1 /2  for each group and  th e  groups are  m atched  to  m inim ize 

m isclassification ra te . T hen  th e  expected m isclassification ra te  for N observations can 

be  shown to  be

w here [ ] is th e  g reatest in teger function. For N  =  40, the  expected  m isclassification 

ra te  under random  assignm ent is 44%. E stim ates of th e  continuous variable  m eans 

(presum ably  th e  group m eans were averaged over th e  four locations so th a t  =  

Z)s=i PisAtZs) were found in th e  Lawrence and  Krzanowski (1996) sim ulation  to  be

/  2 I I  I  \

1 1 2  1 

X I I I 3 /
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(2.52, 2.53) and  (4.47, 4.47) w ith  s tan d ard  errors ab o u t .1. T he au tho rs a ttr ib u te d  

th is  excessive shrinkage o f th e  p aram eter estim ates from  (1,1) and  (6,6) tow ard th e  

overall m ean to  th e  large num ber of m isclassified indiv iduals (which, in tu rn , could 

be  a ttr ib u te d  to  shrinkage of pa ram eter estim ates). T hree a lte rn a tiv e  explanations 

for th e  excessive shrinkage of pa ram eter estim ates are given next.

F irs t, shrinkage o f m ean p aram eter estim ates in m ix ture  m odels is possible 

when th e  assum ed form  of th e  underly ing group densities is incorrect. In th e  sim ula

tio n  study, th e  conditional d istribu tio ns of th e  continuous variables given location and 

group are  not m u ltivaria te  norm al. T he underly ing  variable m ix tu re  m odel of E v eritt 

(1988) —  which assum es th a t  th e  b inary  variables are  ob tained  by dichotom izing 

underly ing norm al variables —  is th e  correct m odel for th is  d a ta .

Second, shrinkage can result from  careless application  of th e  EM  algorithm . I t 

is well known th a t  log-likelihood surfaces for m ix tu re  m odels are  often flat w ith  m any 

local m axim a, so th e  EM  algorithm  should be  applied  m any tim es w ith  different s ta r t 

ing p a ram eter values to  increase th e  chance o f ob tain ing  global m axim a. T he m ost 

com m on approach to  o b ta in  different s ta r tin g  values is to  select each posterior p roba

b ility  Tiiptsh, ws; SB) uniform ly on (0,1), and  th en  standard ize  to  satisfy th e  constrain t 

J2i=i Ti(xs/l, ws; \B) =  I Vs, h. In itia l estim ates for th e  m ean param eters  are ob tained  

using equation  (14) in Lawrence and Krzanow ski (1996). These in itia l estim ates of 

conditional m eans will all ten d  to  be close to  th e  overall m ean ( th a t is, shrinkage will 

be app aren t in th e  in itia l estim ates). If  th e  EM  algorithm  isn’t  allowed to  converge, or 

if th e  algorithm  isn’t  re-run  for enough s ta r tin g  values, shrinkage of m ean param eter 

estim ates m ay resu lt. In th e ir  sim ulation  experim ent, the  au tho rs applied th e  EM  

algorithm  w ith  50 different random  s ta rts  for each replication. Though they  d id n ’t  

s ta te  th e ir EM  convergence criteria, it  is p lausib le th a t  they  ob tained  global m axim a 

for m ost or all replicates.
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A th ird  explanation  for shrinkage is sim ply th a t  th e  loca tion  m ixture m odel 

is no t identifiable. In  fact, we can ob ta in  th e  shrinkage estim ates found by Lawrence 

and  K rzanow ski (1996) by averaging th e  (true) conditional m eans over all (2!)4_1 =  8 

different param eterizations th a t  yield equivalent location m ix tu re  m odels. A lthough 

th e  conditional d istribu tions o f th e  continuous variables are no t MVN and have no 

ap p aren t closed form  expressions, conditional m eans and variances can be found by 

num erical in tegration . In  one group th e  conditional m eans o f continuous variables 

a t  th e  four locations are  (.16, .16), (1.00, 1.00), (1.00, 1.00), and  (1.84, 1.84) for 

locations 1,2,3 and 4. In th e  o ther group th e  conditional m eans are (5.16, 5.16), 

(6.00, 6.00),(6.00, 6.00), and  (6.84, 6.84). T he  group conditional location  probabilities 

are  1 /3 , 1 /6 , 1 /6 , and  1 /3  in b o th  groups. W ith in  each group, overall m eans are  

ob ta ined  as a  weighted average of th e  location  conditional m eans, w here th e  weights 

a re  th e  location  probabilities. T he overall m eans are (1.00, 1.00) and  (6.00, 6.00) 

for th e  tw o groups. T he  tru e  w ith in  lo ca tio n /g ro u p  covariance m a trix  varies slightly 

am ong locations (if th e  d a ta  tru ly  conform ed to  th e  location m odel there  would be 

no differences am ong locations). T he weighted average of th e  tru e  covariance m atrix  

over all locations is

Table 2 lists th e  conditional m ean p aram eters for all (2!)4-1 =  8 perm utations 

of group labels w ith in  locations. P e rm u ta tio ns 2-8 were ob ta ined  by fixing group 

labels a t location I , and perm uting  group labels a t  locations 2-4. In  th is sim plistic 

exam ple th e  g ro up /lo ca tion  cluster frequencies are th e  sam e for all perm utations, so 

it follows from  (2.6) th a t  and  {pjs} are  th e  sam e for all perm utations. In each 

p e rm u ta tio n  th e  group w ith  th e  lowest overall m ean, com puted by £)s=i PisMist is 

labeled  “low” , and  th e  group w ith  th e  highest overall m ean is labeled  “high” . T he
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P erm u ta tio n G roup Loc I Loc 2 Loc 3 Loc 4 Average

I (true) G1 .16 1.00 1.00 1.84 1.00 (low)

Gi 5.15 6.00 6.00 6.85 6.00 (high)

2 G1 .16 6.00 1.00 1.84 1.83 (low)

G% 5.15 1.00 6.00 6.85 5.17 (high)

3 G1 .16 1.00 6.00 1.84 1.83 (low)

G2 5.15 6.00 1.00 6.85 5.17 (high)

4 G1 .16 1.00 1.00 6.85 2.67 (low)

G2 5.15 6.00 6.00 1.84 4.33 (high)

5 G1 .16 6.00 6.00 1.84 2.67 (low)

G2 5.15 1.00 1.00 6.85 4.33 (high)

6 G1 .16 6.00 1.00 6.85 3.50

G2 5.15 1.00 6.00 1.84 3.50

7 G1 .16 1.00 6.00 6.85 3.50

G2 5.15 6.00 1.00 1.84 3.50

8 G1 .16 6.00 6.00 6.85 4.34 (high)

G2 5.15 1.00 1.00 1.84 2.66 (low)

Average low 2.46

high 4.54

Sim ulation low se= . I 2.52

estim ates high se = .I 4.47

T able 2: C ontinuous variable  m ean param eters  for the  eight p erm u ta tio ns in sim ula

tio n  study. For all p e rm u ta tio n s group probabilities are 1 /2 , and  location  probabilities 

are  1 /6 , 1 /3 , 1 /3 , and  1 /6  for locations 1 , 2 , 3  and  4. Sim ulation estim ates are from  

Lawrence and  K rzanow ski (1996).
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average m eans for th e  “low” and  “high” groups over all p e rm u ta tio n s are 2.46 and  

4.54. Law rence and K rzanow ski (1996) estim ated  the  group m eans to  be 2.52 and 

4.47, w ith  s tan d ard  erro r a b o u t .1. Thus, th ey  estim ated  well (w ith in  I  se) th e  group 

m eans averaged over all pe rm uta tions, a lthough  th ey  in tended  to  estim ate  th e  group 

m eans for th e  first pe rm u ta tio n  only. A pparently , th e  excessive shrinkage in th e ir  

p a ram ete r estim ates can be a ttr ib u te d  to  th e  non-identifiability  of th e  model, which 

th e  au th o rs  did  not m ention in th e ir  paper.

In  th e  next section identifiable location  m ix ture  m odels are  obtained  by im 

posing restric tions on th e  conditional m ean param eters p,is. W e m ight expect an 

identifiable m odel to  a tta in  lower m isclassification rates in th e  sim ulation exam ple 

th a n  th e  un restric ted , non-identifiable m odel. T he next section confirm s the  expected 

result.

R e s t r i c t e d  L o c a t i o n  M ix t u r e  M o d e l s

All restric ted  m odels considered in th is  paper are ob tained  by constrain ing 

th e  conditional m ean param eters , so all m odels can be com pletely  specified by 

th e ir  conditional m ean s truc tu re . T he u n restric ted  m odel will be denoted by Ifiis].

A sim ple identifiable m odel can be ob tained  by im posing th e  restriction  f i i s  =  

Vz, s. T h a t m odel is denoted by [/Ltj], T he m odel m ay be to o  restrictive^ however, 

because it  ignores any differences in conditional m eans across locations (i.e., th e  

continuous variables are  taken  to  be independent of th e  categorical variables). T he 

restric tion  is relaxed in th e  additive m odel [^tj +  0 S] where Bi is taken  to  be 0. T he 

p a ram eter /Ltj  is in te rp re ted  as th e  conditional m ean of the  continuous variable vector 

a t  location I of G j , and  Bs is th e  difference in th e  conditional m eans between location 

I and  location s. T he difference, Bs, is assum ed to  be th e  sam e for all groups. T his 

invariance of Bs across groups induces a  parallel structure in th e  conditional m eans,
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w here th e  difference between conditional m eans for any two groups is th e  sam e a t  all 

locations.

N ext consider th e  identifiability  of [̂ ii +  0 S]. T he s tru c tu re  of [/Ltj +  Os] is 

no t preserved under th e  p e rm u ta tion s o f group labels w ith in  locations (the source 

of non-identifiability  of th e  un restric ted  location  m ix ture  m odel). To see th is, let Trs 

be  a  p e rm u ta tio n  of group labels ( I , . . . ,  <7) a t  location s (s ^  I ) , where Trs (z) is th e  

perm uted  value of th e  original group label i a t  ws. No labels are p erm uted  a t location 

I , so Tr1(Z) =  z Vz. T he  s tru c tu re  of th e  m odel [/L tj  +  0S] is preserved only if, for each 

s, th e re  is a  unique 0*s th a t  satisfies

^ t ts (i)  +  +  0 s

for all z. T here  is no unique so lution, because Hi — /Lt7 f a can never be th e  sam e for 

all z (except in th e  degenerate case where th e  conditional m eans are  th e  sam e for 

all groups). T hus th e  s tru c tu re  of [/Aj +  0S\ is no t preserved by th e  perm utations. 

A lthough th is  does no t co n stitu te  a  form al p ro o f of th e  identifiability  of (/Ltj +  Os], it 

does dem o n stra te  th a t  th e  type  of non-identifiability  revealed in th e  previous section 

for th e  un restric ted  m odel is no t possible w ith  th is  restric ted  m odel.

T he  m odel [/Ltj +  0 S] can be w ritten  in th e  form  [/Zj +  B u s] where u s is an  

m  — I d im ensional location covariate conta in ing  all m ain effect and  in teraction  term s 

of th e  categorical variables a t  location s, and  B  is a  p  x  (m  — I)  m a trix  of regression 

coefficients. For exam ple, if there  are th ree  b inary  variables t/i,z/2 and  z/3, th en  th e  

observation (z/i, t/2 , Z/s) is assigned to  location  s =  I +  E j = 1 If  (z/1 , 2/2 , 2/3 ) —
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( 1 ,1 ,0), th en  s =  4 and

Z/2 i

2/3 o

U4 =  2/1% =  I

2/i 2/3 0

2/22/3 0

V 2/12/22/3 /  V0/
T he regression m a trix  B  — [B1, , b m_ x] contains th e  sam e inform ation as 

th e  location param eters  (02 , • • • , O m ) .  For exam ple, using O s  —  B u s , it follows th a t  

0 4 =  t>i +  b 2 +  b 4 in th e  th ree  b inary  variable  case.

A m ore restric tive m odel is ob tained  if th e  location covariate vector contains 

m ain  effects and  possibly som e -  b u t no t all -  in teraction  term s. In  th is m odel, 

th e  location covariate vector u  has length  r  <  m  — I and B  is p  x  r  (the location 

covariate vector con tain ing  all m ain  effects and  all in teraction  term s is called th e  

saturated location covariate vector). A  special case th a t  will be considered in th e  

exam ples is th e  m ain  effects only m odel, denoted  [/Zj +  B y s] . Because th e  m odels [/Z j ] 

and  [/Z j +  B y s] are ob ta ined  from  [/Zj  +  0 S] by im posing constrain ts on th e  regression 

m atrix  B , th e ir  identifiability  follows from  th e  identifiability  of [ /Z j +  0 S].

C ategorical variables w ith  m ore th a n  two levels can be  handled by coding 

th e  category  levels w ith  dum m y binary  variables. Suppose there  are q categorical 

variables and  th e  j th variable  has Cj levels. For j  — I , . . .  ,<? and  I =  I , . . .  ,Cj — I 

define th e  b inary  variable

If all th e  b inary  variables are 0, th e  categorical variable is a t  level Cj. A t m ost

them . T he  saturated location  covariate vector contains ~  I )  m ain effects (of

dum m y binary  variab les),E  52j<k(cj ~  l ) ( cfc - 1) first order in teraction  term s, • • •, and

I if th e  j th variable  is a t  level I 

0 if th e  j th variable  is no t a t  level I.

one of th e  variables , . . . ,  y^3 ^  can be I ,  so there  can be no in teractions am ong
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H j- I  (cj — I) (q — l) th o rder in teractions. So th e  sa tu ra ted  location  vector has

53 (cj _!) + 53 53(cj _ 1)(ĉ  ~ — I- II(cj “ 1)= II cJ - 1 = m _ 1
J = I  j< k  J = I  J = I

b inary  elem ents. If there  are two categorical variables, each w ith  th ree  levels, th en  

( y i \ y i \  y(2 \  y?^) is assigned to  location  s  =  I  +  Y4L1 v f l  E C i  ci- If V?  =  1 

and  =  I th en  s = 8 and

U 8 =

/  y P  

#  

y21} 

y f

2/i1)2/21)

y ^ y ?  

y ^ y ?  

\  y ^ y ?

(  1 

0

0

1

0

1 

0

\ 0

T he location  covariate vector contain ing only m ain  effects te rm s is, a t location 8,

I  I  \  

0 

0

\  I  /

W hatever th e  choice of th e  location  covariate u s, th e  m odel [^tj +  B u s] has 

s tru c tu ra l sim ilarity  to  th e  underly ing variable  m ixture  m odel proposed by E veritt 

(1988). T he  underly ing variable  m ix tu re  m odel assum es th a t  th e  q categorical vari

ables a re  ob ta ined  by threshold ing  q (unobservable) underlying continuous variables 

contained in v , say. T he unobservable variable  v  and th e  observable continuous 

variable  x  are  assum ed to  be jo in tly  m ultivaria te  norm al, w ith  com m on covariance 

m atrix . T he  conditional expecta tion  of x  given v  in Q  has th e  form

£ ( x |v ,  Gi) =  +  B v , (2.7)

which is th e  sam e form  as th e  conditional expecta tion  of x  given location  covariate u  

in Gi for th e  m odel [ ^ + B u s]. A fter v  is categorized the  conditional d istribu tion  of x
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is no  longer norm al in th e  underly ing variable  m odel, and th e  conditional expecta tion  

no longer has form  (2.7). N onetheless, th e  res tric ted  location  m odels [^tj +  B u s] 

m ay still provide good approxim ations to  th e  underly ing variable  m ix ture  m odels. If 

th e  th resho ld  values are  th e  sam e for all groups ( as in th e  Lawrence and  Krzanow ski 

sim ulation), th en  th e  conditional m eans will have parallel s tru c tu re , and  th e  restric ted  

location  m odel should provide an excellent approxim ation  to  E v e ritt’s m odel. I f  th e  

th resho ld  values differ betw een groups, th en  th e  conditional m eans will not have 

paralle l s truc tu re . T here  is a  practical lim it, however, to  th e  range of values th a t  th e  

th resho ld  param eters  can take  if we require th a t  some observations be  m ade a t each 

location . W ith in  th is  p rac tical range (say betw een —1.5 and 1.5) th e  conditional m ean 

s tru c tu re  m ay no t dev ia te  substan tia lly  from  paralle l s tru c tu re , and th e  restric ted  

location  m ix tu re  m odels m ay still provide good approxim ations. An exam ple of th is  

is given la ter. If th e  paralle l s tru c tu re  m odels don’t  provide adequate  approxim ations, 

less restric tive m odels m ay be tried .

An even less restric tive  m odel th a n  [̂ ii +  0 S] can be ob ta ined  by allowing th e  

regression m atrices B  to  vary  across groups, which gives th e  additive plus m ultip lica

tive  m odel [ / J b i  +  B iUs] . If th e  location covariate vector contains all m ain effects and  

all in terac tio n  term s, th en  [/Lti -I-B iUs] is equivalent to  th e  u n restric ted  location m odel, 

and  hence is no t identifiable. If  a t least one in terac tion  te rm  is excluded it can be 

shown th a t  th e  s tru c tu re  [^ti -I-B iUs] is no t, in general, preserved by th e  perm utations 

Trs. B u t th e  s tru c tu re  is preserved for certa in  param eter values, which can lead to  

equivocal results in practice. For exam ple, if differences between group m eans are th e  

sam e a t  all locations (ie, when [/Lti +  B u s] holds), th en  th e  s tru c tu re  of [/Lti +  B iUs] is 

preserved under th e  perm u ta tions discussed in th e  previous section, so th e  m odel is 

n o t identifiable. T his is illu stra ted  in Table 3 for 2 groups, 2 b inary  variables and  I 

continuous variable. In  representation  A th e  difference betw een group m eans is 5 a t
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L ocation

G roup I  (0,0) 2 (1,0) 3 (0,1) 4 (1 ,1 ) .

Label A G 1 0 2 2 4

G 2 5 7 7 9

Label B G 1 0 2 7 9

G 2 5 7 2 4

T able 3: C ontinuous m eans for a  single continuous variable conform ing to  the  m odel 

[/Xi +  Bjy] under two different group labelings. C onditional m eans a t  label B were 

ob ta ined  from  conditional m eans a t label A by sw apping group labels a t  locations 3 

and  4. T he  two labelings yield equivalent m ix ture  densities. Label A also conform s 

to  th e  m odel [/Xi +  Bt/].

all locations. C orresponding m ean pa ram eter values are /Z1 =  0, /z2  =  5, B 1 =  (2 ,2 ) 

and  B 2 =  (2 ,2 ). R epresen tation  B is ob tained  by sw apping group labels a t  locations 

3 and  4. I t  also has s tru c tu re  [/tj +  B^ys] w ith  p aram eters /Z1 =  0, /Z2 =  5, B 1 =  (2 ,7 ) 

and  B 2 =  (2, —3). Because o f these identifiability  problem s, th e  m odel [/Xi +  B iUs] 

will n o t be  pursued  fu rth er in th is  thesis.

E s t im a t io n

Let x  =  ( X z1 1 . . .  x l n i  • • -X1ml ■ --X1mnmY be a  sam ple of p-dim ensional con

tinuous variables a t  m  locations where ns is th e  num ber of observations a t ws and  

N  =  S ^ 1 ns is th e  to ta l num ber of observations. I f  observations are  no t m ade a t each 

location , th en  we require th a t  th e  rank  of {u s}y,segam ple r ’ where u s is r  x I . Let 

Zs/,. =  (ZlsZl, . . . ,  Zgsh) be an  unobservable ^-dim ensional group ind icato r vector for th e  

Jith observation a t  ws, so th a t  ziSh =  I if x sh G Gi and zish =  0 if x sfl £ G ,. M axim um  

likelihood estim ates of th e  param eters in th e  m odel [/Xi +  B u s] can be  com puted by 

tre a tin g  as m issing and  using th e  EM  algorithm .

T he com plete d a ta  log-likelihood is

g m  n $

l C = Y m Y ,  zish{\°gUi +  Iogpis +  lo g ft(x sfc; /Xis, E )}
2—1 s=l h=Y

w here h(xsh] H 1H )  is th e  p d f  of a  iV (/x ,E ) random  variable evaluated  a t X sfi,, and
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His = Hi + B u s. In  th e  E -step, we com pute Q — E f(L c) w here th e  expectation  

is taken  w ith  respect to  th e  conditional d istrib u tio n  of th e  unobserved d a ta  {zs/l} 

given th e  observed d a ta  and  curren t p a ram ete r estim ates Because Lc is linear in 

th e  unobserved d a ta , th e  expecta tion  is easily obtained  by replacing each ZisJl w ith  

Ziah =  7 i(xs/l, tus; 4>), where

. OiPu exp{—| ( x sfe -  H j ' S - ' f a h  ~  H j }  (9 ^

E f= i OiiPis exp{—| ( x s/l -  HisY^-1 (x Sh -  His)}

is th e  posterio r p robab ility  th a t  x s/l belongs to  Gi.

In th e  M -step, Q is m axim ized sub ject to  th e  constrain ts E f= i =  I and

YYfLiPis = I  V i Using th e  m ethod  of L agrange m ultipliers we m axim ize w ithou t

constra in t th e  expression

/ g  \  a f  m
Q' = Q — ^ [ ^ O ii — l )  — T l  % f T l  Pis — I

Xi=I J i=l Xs=I

w here A and  {7 ^} are  L agrange m ultipliers. T h is yields u pdated  p robab ility  param eter

estim ates
1 m n5

=  Iyr 1 3  îsh
iv s=l/i=l

(2.9)

and
2  nS

(2 .1 0 )

E stim a tin g  equations for th e  param eters Hi and  B  are

m n3
NOiiHi — XZ X l Zish(x Sh B u s), i — I , . . . , TTZ

s=l Zi=I
(2 .1 1 )

and
g m ns g m ns

b E E E  =  E E E  ZiShix Sh -  HiWs-
i—Y s=l /i=l i=l s=l/i=l

(2 .1 2 )

M -step estim ates for /Ltj (z =  I , . . .  ,y ) and  B  can be found by solving (2.11) and (2.12)

sim ultaneously.
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T he so lution o f e stim atin g  equations (2.11) and  (2.12) is

and

where

B  =  ( A  -  1 g ) ( E

N o ^ 0i B d i ) ’
i  =  I , . . . ,  ^f,

m  n s

Q  —  ^  ^  Z ishx -Shi i  —  I ) • •  • ,  5

s = l  Z i=I 

m  n 8

d j  —  ' y . ' y . Z ish H s ■>

s= l h = l

i  —  I , . . . ,  g

Q m n a

a  =  J 2 J 2 J 2  Z is h W s
I = I  S = I  / l = l

g m na
E  =  £  £  £  Z i s h U s U rs

z=l s=l h = l

F = S i r wi 

G  =  S i c i d i -

(2.13)

(2.14)

(2.15)

T he covariance m a trix  is estim ated  as

I 9 m n5

^  =  T? £  £  £  Z i s h ( x S h  - A i -  B u s) ( x sft -  Al -  B u s )'.
i = l  s = l  /1=1

(2.16)

P aram ete r estim ates for th e  m odels [ ^ + S s] and  [/Ai + B y s] can be obtained  by 

ap p ro p ria te  choice of th e  location covariates U s . P aram eter estim ates for th e  m odel 

Ifjbi] can be  obtained  by se ttin g  B  =  0 in (2.14).

T he EM  algorithm  a lterna te ly  u p d a tes (2.8) (E -step) and  (2.9)-(2.16) (M- 

step). T he procedure requires s ta rtin g  values for th e  iterations. S ta rtin g  values can 

be ob ta ined  by random ly  selecting posterior probabilities uniform ly on (0 ,1 ), and 

th en  standard iz ing  to  satisfy  53f=i Ti(Xs)l, ws; SB) =  I  Vs, h. A lternatively , the  sam ple 

can be  pa rtitio n ed  in to  g groups and in itia l param eter estim ates com puted using
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(2.9)-(2.16) assum ing group labels are  known (ie, z^h E {0 ,1}). Ideally, th is in itia l 

p a rtitio n  would be found by an o th er cluster analysis m ethod, p erhaps using only 

observations on th e  continuous variables. B ecause of th e  possib ility  of m ultip le local 

m axim a, th e  EM  algorithm  should be applied  several tim es from  different s ta rtin g  

values.

T he  developm ent and  estim ation  of th e  restric ted  location  m ix ture  m odels 

assum es th a t  th e  num ber of groups, g, is known. In  practice g is often unknown and  

a  s ta tis tica l heuristic  such as Bayes In form ation  C riterion (BIC) can be employed to  

a id  th e  choice of g. T his heuristic  suggests selecting the  m odel for which

BIC  =  —2 (m axim ized log-likelihood) +  2  Iog(N) (num ber o f free param eters)

is a  m inim um . In  applications, use of BIC  should be balanced w ith  expert judgem ent. 

T he  difficult problem  of choosing th e  num ber of clusters is no t pursued  here. In th e  

following exam ples, th e  num ber of groups is assum ed known.

E x a m p l e s

Two sim ulation  experim ents were run  to  assess th e  perform ance of th e  new 

m ethods. T he  experim ents are described next.

S im u la t i o n  I

T he sim ulation  exam ple of Law rence and  Krzanowski (1996) was revisited 

to  com pare th e  perform ance of th e  th ree  nested  m odels [/LtJ C [ H i  +  B y J  C [/Xi  +  

0 J  in p a ram eter recovery and classification. For each of 50 replications, th e  EM  

a lgorithm  was applied  1 1  tim es: 1 0  tim es w ith  random ly selected s ta rtin g  values 

and  once w ith  s ta r tin g  values determ ined by classification assignm ents from  an in itial 

fc-means c luster analysis of th e  continuous variables. T he solution w ith  th e  largest log-
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Im* +  B y] [ /X j +  0 S] [MVN2]

m ean 1.82 (4.55%) .64 (1.6%) .79 (2.03%) 1.36 (3.4%)

m edian I  (2.5%) I  (2.5%) I  (2.56%) I  (2.5%)

m inim um 0 0 0 0

m axim um 9 (22.5%) 3 (7 .5 % ) 3 (7.69%) 6 (1 5 % )

T able 4: M iscIassifications for S im ulation E xperim ent I  (n i =Uz = 20). R esults for 

[Hi +  0 S] are based on 49 replications (see tex t) .

likelihood value was re ta ined . One sim ulated  d a ta se t (of Tix + nz = 40 observations) 

contained  no observations from  location 3. T h is did  not affect th e  estim ation  of [^tj] 

o r [/Xi + B y s], b u t it  did  affect th e  estim ation  of [/Xj + 0 S]. Infinite p aram eter estim ates 

were ob tained , because th e  d a ta  were silent ab o u t 0 3. T his rep licate  is om itted  in 

th e  sum m ary  s ta tis tics  repo rted  for [/X j  +  O s ].

A m ix ture  m odel w ith  m ultivaria te  norm al com ponent densities and hom oge

neous variance was fit for th e  two continuous variables for com parison. T his m odel 

is denoted  [MVN2]. W hen only th e  two continuous variables are  used, th e  tru e  m is- 

classihcation ra te  is 2.6%. If th e  two la ten t continuous variables were observable, 

and  param eters known, th en  th e  tru e  m isclassification ra te  would be .62% (the first 

tw o variables, though  m arginally  d istrib u ted  th e  sam e in b o th  groups, enhance group 

separa tion  due to  th e ir  correlations w ith  th e  last two variables). T he  tru e  m isclassi

fication ra te  under E v e ritt’s (1988) m odel was estim ated  by M onte C arlo  sim ulation  

to  be 1 .1 %.

M isclassification ra tes for the  sim ulations are com pared in Table 4. All m eth 

ods perform ed well. T he  m odels [/X j  +  B y s] and  [/X j  +  0 S] perform ed slightly b e tte r  

th a n  th e  others.

Tables 5  and 6  com pare average estim ates of the  p aram eters { /X jS }  and {piS}. 

T rue pa ram eter values are also given (though we should not forget th a t  th e  location 

m odel is no t th e  correct m odel for these d a ta  -  th e  continuous variables are not
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M odel G roup location I 

(0 , 0 )

location  2  

(1 , 0 )

location 3 

(0 , 1 )

location 4 

(1 , 1 )

W G1 (5.96, 5.97) (5.96, 5.97) (5.96, 5.97) (5.96, 5.97)

G2 (1.00, .98) 

sety . 1 0

(1.00, .98) (1.00, .98) (1.00, .98)

[/Z j +  B y] G1 (5.22, 5.21) (5.99, 6.03) (6.06, 6 .0 0 ) (6.83, 6.83)

G2 (.17, .15) 

se% . 1 0

(.93, .97) (1.01, .94) (1.77, 1.76)

[/Z j +  0 S] G1 (5.26, 5.22) (6.03, 6.16) (6.04, 6.10) (6 .8 8 , 6.85)

G2 (.17, .10) 

se% . 1 0

(.94, 1.05) (.95, .98) (1.78, 1.73)

tru e  values G1 (5.16, 5.16) (6 .0 0 , 6 .0 0 ) (6 .0 0 , 6 .0 0 ) (6.84, 6.84)

G2 (.16, .16) (1 .0 0 , 1 .0 0 ) (1 .0 0 , 1 .0 0 ) (1.84, 1.84)

T able 5: Average estim ates (and  th e ir  s ta n d ard  errors) and tru e  values of conditional 

m eans for S im ulation  E xperim ent I (rii = ri2 = 20).

conditionally  M VN). T he  m odels [/Ltj +  B y s] and  [/Zj +  0 S] recover th e  param eters 

well. T hey also recover th e  w ith in  g ro u p / location covariance m a trix  b e tte r  th a n  th e  

m odel [/L tj ] does. T he tru e  value of th e  covariance m atrix  is

1.5 .5 \

.5 2.5 /  ‘

T he  average estim ate  for m odel [/Ij +  B y s] was

(  1.46 .47 \

\  .47 2.21 J

w ith  s ta n d ard  error a b o u t .05 for all entries. T he  average estim ate  for m odel [/Zj  +  0 S] 

was

/  1.41 .46 \

\  .46 2.16 /

w ith  s tan d ard  error ab o u t .05 for all entries.

S im u la t io n  2

A second sim ulation  experim ent was perform ed to  assess th e  m odels on less 

well separa ted  groups. O bservations were generated  from  one of tw o 4-varia te  norm al
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M odel G roup location I 

(0 , 0 )

location  2  

(1 , 0 )

location  3 

(0 , 1 )

location  4 

(1 , 1 )

[/**] Gi .31 .18 .17 .35

G 2 .37

se% . 0 2

.19 .16 .28

[/A +  B y] Gi .34 .18 .17 .31

G2 .33

se% .1 0

.18 .16 .32

+  Os] Gi .34 .18 .17 .31

G2 .33

se^y.lO

.18 .17 .32

tru e  values Gi .33 .17 .17 .33

G2 .33 .17 .17 .33

Table 6 : Average estim ates (and th e ir s ta n d ard  errors) and tru e  values of location 

probabilities {pjS} for S im ulation E xperim ent I  (ni — n2 = 20).

populations, one w ith  m ean (1,0,5,5) and one w ith  m ean (0,1,2,2). T he populations 

had  com m on covariance m atrix

S  =

/  2 I I I \  

1 2  1 1  

1 1 2  1 

V I  I I  3 /

As in th e  first experim ent, th e  first two b inary  variables were dichotom ized by th resh 

olding a t 0 .

T his is equivalent (using E v e ritt’s convention) to  sam pling from  m ultivariate

norm al popu lations w ith  m eans (0 ,0 ,5,5) and  (0 ,0 ,2 ,2 ) and com m on covariance m atrix

/  1 2 72 T l  ^

2  1  T I  T l

, i i : ;

and  th resho ld ing  a t —1/V2 and 0  for th e  tw o underlying variables in th e  first group, 

and  a t 0 and  —1 /V 2  in th e  second group. T h is in te rp re ta tion  em phasizes th a t  th e  

threshold  values are  different for th e  two groups.

For each of 50 replications, sam ples of size Ti1 =  n 2  =  100 were draw n from  

th e  two populations. M isclassification ra te s are  com pared in Table 7. T he m odels
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[Md [ V i  +  B y ] Ifli + 0S] [MVN2]
m ean

m edian

m inim um

m axim um

42.9 (21.45%) 

37.5 (18.75%) 

16 (8.0% ) 

8 2 (4 1% )

18.38 (9.15%) 

18 (9.00%)

7  (3.5% )

36  (18% )

19 .84  (9.92% ) 

17 .5  (8.75% )

7  (3.5% )

64 (32.0%)

28.62 (14.31%) 

27.5 (13.75%) 

13 (6 .5% )

5 7  (28.5% )

Table 7: M isclassificatibns for S im ulation  E xperim ent 2 (n i = ri2 = 100).

IfXi +  B y s] and [ / J t i  + Os] perform ed best. T h eir respective m ean m isclassification 

ra tes of 9.15% and  9.92% are lower th a n  th e  tru e  (or optim al) m isclassification ra te  

for [MVN2], which is 12.26%. T he realized m ean m isclassification ra te  for [MVN2] 

was 14.31%. T he  tru e  m isclassification ra te  under E v e ritt’s (1988) m odel (assum ing 

param eters  are known) was estim ated  by M onte C arlo  sim ulation  to  be 7.2%.

D i s c u s s i o n

T he unrestric ted  location  m ix ture  m odel proposed by Lawrence and K rza- 

nowski (1996) is no t identifiable. T he identifiable m odels proposed in th is pap er can 

be  useful if  th e  additive a ssum ption  (ie, fjtis = ^ i + 0S) is reasonable. T his assum ption 

is o ften approx im ately  tru e  when th e  categorical variables are derived from  underlying 

continuous variables. C om puta tion  in th e  restric ted  m odels is m ore trac tab le  th a n  

com pu ta tion  in E v e ritt’s (1988) underlying variable  m odel, which in p ractice is lim ited  

to  one or two categorical variables. E stim a tio n  of th e  param eters  in the  restric ted  

m odels does not require num erical in tegration , so there  is no com putational lim it to  

th e  num ber of categorical variables th a t  th e  m odel can hand le  (though there  is th e  

p rac tical lim it of sam ple size).

T he  restric ted  location m ixture m odels can be profitably  extended in two direc

tions. F irs t, th e  categorical variables can be m ore parsim oniously m odeled, perhaps 

w ith  loglinear or la ten t class m odels. T his is particu larly  im p o rtan t when the  sam ple 

is sm all or boundary  value solutions for pis are obtained. Second, th e  hom ogeneous



variance assum ption  can be relaxed by allowing th e  g ro u p / location  dispersion m atrix  

to  vary  across groups, locations, or b o th . Parsim onious represen ta tions can be ob

ta in ed  by im posing s tru c tu re  on th e  d ispersion m atrices. Celeux and  G ovaert (1995) 

describe a  parsim onious param eterization  o f m ultivaria te  norm al m ix tu re  m odels w ith  

unequal group dispersion m atrices based on eigenvalue decom position of the  group 

dispersion m atrices. T his approach can be extended to  location  m ix ture  models.

3 2
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C H A P T E R  3

C o n d i t i o n a l  G a u s s i a n  D i s c r im in a n t  A n a ly s i s  w i t h  

C o n s t r a in t s  o n  t h e  C o v a r ia n c e  M a t r i c e s

Krzanow ski (1975, 1980, 1993) developed param etric  m ethods for discrim inant 

analysis w ith  m ixed categorical and  continuous variables. He assum ed th a t  w ith in  

each group, observations conform  to  a  conditional G aussian d istribu tion . In the  con

d itional G aussian  m odel, th e  continuous variables have a  different m ultivariate  norm al 

d istrib u tio n  a t  each possible com bination of categorical variable  values. This m odel 

has received m uch a tten tio n  recently in th e  graphical m odels lite ra tu re  (W hittaker, 

1990).

Suppose we wish to  d iscrim inate  betw een K  groups, G i , . . . ,  Gk , based on th e  

vector w ' =  (y ', x ') , w here y ' =  (2/1 , ■ • •, Vq) is a  vector of q categorical variables, and  

x ' =  ( z i , . . .  ,Xp) is a  vector of p continuous variables. T he categorical variables can 

be  uniquely transform ed  to  an  m -sta te  discrete variable w E {w i,. . . ,w m}, w here 

m  is th e  num ber of d istin c t com binations (i.e., locations) of th e  categorical variable  

values, and  ws is th e  label for th e  sth location. If th e  j th variable  has Cj categories 

(j = th en  m  =  H j= IcJ- Let piS =  Pr(w = Ws\Gi). In Gi, th e  jo in t

probab ility  of observing location  ws and  continuous vector x  is

a ( w „ x )  =  PiSh(-x; E is),

w here h(x;yii, E )  is th e  p d f of a  N (n , E ) random  variable. An observation (tus,x )  is 

assigned to  a  group according to  Bayes R ule (Anderson, 1984). If  m isclassification 

costs are equal and  prior group probabilities a re  given by a i , . . . ,  q k , th en  Bayes R ule
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is:

assign (ws,x) to Gi if  m ax  atgt(ws,x) = a ^ ( n ; s,x ) . (3.1)

T aking th e  log of o%%(ta,,x), th e  classification region for group Gi can  be w ritten  as 

R i =  {w G {wi, • • • , wm}, x  E BZp : qiS(x) > f ts(x) Vt =  I , , K }  

w here th e  classification functions (x) are  given by

qis(x) =  x 'A isx  +  b 'sx  +  Cis

T he classification rule depends on th e  param eters Pis^ is an d  E is, which usu

ally are unknow n. In p rac tical app lications, param eter estim ates obtained  from  a  

tra in in g  sam ple of classified observations are  su b stitu ted  in (3.1). Because these esti

m ates a re  sub jec t to  sam pling  error, th e  classification rule (i.e., plug-in  Bayes Rule) 

is no longer op tim al. T he  perform ance of th e  classification rule depends on th e  preci

sion of th e  estim ates (Flury, Schm id and  N arayanan , 1994). M ore efficient p aram eter 

estim ates can be  obtained  by im posing constra in ts on the  p a ram ete r space. For ex

am ple, in norm al theo ry  (G aussian) d iscrim inan t analysis, th e  covariance m atrices 

often are  assum ed to  be th e  sam e for all groups. In  th e  conditional G aussian setting , 

K rzanow ski (1975, 1980, 1993) took  th e  covariance m atrices to  be th e  sam e across all 

groups and  locations (i.e., His = E  Vz, s), so th a t

w ith

x) =  Iii,, E ). (3.2)

M odel (3.2) is called th e  homogeneous conditional G aussian m odel in th e  graphical 

m odels lite ra tu re , and  th e  location m odel in th e  sta tistics lite ra tu re .
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For a  tra in in g  sam ple, let th e  p d im ensional vector XjsZl denote th e  Kth con

tinuous observation a t  location ws of group Gi, and  let nis denote th e  num ber of 

observations m ade a t location  ws of G j . T he  to ta l num ber of observations from  G j 

is given by Tii, and  th e  to ta l num ber of observations over all groups is TV. M axim um  

likelihood estim ates of th e  param eters in (3.2) a re  given by

7%' I
P is  =  ~ ~ i  Azs =  — 5 3  Xis/i (3 .3 )

•H f&zs Zi=I

and
i 9 m Ui3

^  Z  E ( X z s / z  -  A z s ) ( x « fe -  A z s ) '-

z = l  s = l  h — 1

A n unbiased estim ate  of th e  covariance m atrix ,

often is used in place of S .

Som etim es add ition al constrain ts on th e  p aram eter space are  necessary. W hen 

th e  sam ple size is sm all com pared to  th e  num ber of locations, there  will likely be 

locations for which no d a ta  are present in th e  tra in in g  sets. Also, th ere  will be som e 

locations w ith  very few individuals present in th e  tra in in g  sam ple; th e  param eters for 

these locations will be poorly  estim ated . To o b ta in  reasonable p a ram eter estim ates a t 

all locations in th is  case, Krzanow ski (1975, 1980) proposed th a t  th e  categorical d a ta  

be  m odeled w ith  a  reduced-order loglinear m odel. In his applications he used e ith er 

first-order (m ain-effects only) or second-order (m ain  effects and first-order in teraction) 

m odels. I f  th e  categorical d a ta  consists of q b inary  variables, th en  th e  second-order 

loglinear m odel for probab ility  of location ws in  group G j is

I°gPzs —

w here u P)S is a  location covariate vector for p js contain ing an  in tercep t term  and  th e  

values o f all m ain  effects and  first order in teractions of th e  b inary  variables a t th e  sth
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location . T he subscrip t p i s  a  rem inder th a t  th e  location covariate vector is for pis. 

For exam ple, if th ere  a re  th ree  b inary  variables p i ,p 2 and  y3, th en  th e  observation 

{Vii V2, Vs) =  ( 1 ,1, 0) is assigned to  location s =  4 using th e  location  assignm ent rule 

s =  l  +  VjZj-1 , and

(  1 ^
{ I )

Vi I

V2 I

2/3 = 0

2/12/2 I

2/12/3 0

2/22/3 )

T he param eters  {#%} can be  estim ated  using N ew ton-R aphson m ethods. Categorical 

variables w ith  m ore th a n  two levels can be sim ilarly  handled by coding the  category 

levels w ith  dum m y binary  variables (Krzanowski, 1980).

Likewise, th e  continuous m ean vector can be m odeled as a  linear function of 

th e  location  covariate vector u ^ s:

Pis = .

T he  param eters  ( B i )  can be estim ated  independently  of Bi using m ultivariate  regres

sion results of A nderson (1984, chap ter 8). D etails are given in Krzanow ski (1975). 

T he  location  covariate vector used in th e  m odel for pis need n o t be th e  sam e as th a t  

used in th e  m odel for ^tis. For exam ple, U7m could code for m ain  effects only whereas 

U71iS could code for m ain  effects as well as first o rder in teractions.

Because of th e  hom ogeneous variance assum ption S is =  S  in (3.2), a  separa te  

linear d iscrim inant analysis is conducted a t  each location. T hus, discrim inant analysis 

based on m odel (3.2) shall be  referred to  as L-LDA (for linear location  discrim inant 

analysis). L-LDA has been shown to  ou tperform  com peting m ethods when there  is 

in terac tion  betw een th e  groups and  th e  categorical variables (Krzanow ski, 1993).

In  applications, th e  hom ogeneous variance assum ption, though  parsim onious,
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m ay n o t be realistic. Krzanow ski (1993) suggested th a t  m odels w ith  heterogeneous 

variances be developed to  ca te r to  various types of dispersion heterogeneity. L ater, 

K rzanow ski (1994) considered th e  consequences o f allowing th e  dispersion m atrices 

to  differ betw een groups, b u t no t between locations w ithin  a  group (i.e .,E js =  S i). In 

KrzanowskLs (1994) m odel, a  separa te  quadratic d iscrim inant analysis is perform ed 

a t each location. In an  exam ple w ith  a  relatively  sm all sam ple and  heterogeneous 

variances, K rzanow ski (1994) found th a t  th e  q uad ra tic  location d iscrim inant analysis 

(Q-LDA) perform ed only slightly b e tte r  th a n  L-LDA, reflecting th e  tradeoff between 

fittin g  a  m ore ap p ro p ria te  m odel b u t estim atin g  m any m ore param eters.

T h is is a  fam iliar problem  in G aussian d iscrim inant analysis. L inear discrim i

n an t analysis (LDA) outperform s quad ra tic  d iscrim inant analysis (QDA) when group 

covariance m atrices are identical (i.e., when th e  m odel assum ptions for LDA are cor

rect). B u t even when group covariance m atrices are not identical, LDA m ay still 

ou tperform  QDA, especially when sam ple sizes are  m odest. T h is suggests th a t , for 

sm all sam ples, th e  b ias in troduced by im posing theoretically  w rong constrain ts m ay 

be offset by th e  gain  in precision from  reducing th e  num ber of param eters (Flury, 

Schm id and  N arayanan , 1994).

Several au tho rs have proposed in term ed iate  m ethods th a t  avoid bo th  th e  over- 

param eteriza tion  of QD A and th e  oversim plification of LDA. Such m ethods a tte m p t 

to  cap tu re  th e  heterogeneity  of th e  covariance m atrices using as few param eters as 

possible. F riedm an (1989) designed an  in term ed iate  classifier betw een LDA, QDA, 

and  th e  nearest neighbor classifier by in troducing  regularization  param eters. Flury, 

Schm id and  N arayanan  (1994) considered com m on principal com ponents and pro

portional covariance m odels. M ore recently, B ensm ail and  Celeux (1996) developed 

in term ed iate  m odels by param eteriz ing  th e  covariance m atrix  for Gi in term s of its  

eigenvalue decom position S i =  PiTiA iT1i, w here Pi =  [S i I1Zp, F i is th e  orthogonal
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m atrix  of eigenvalues of S i , an d  A j is th e  diagonal m atrix  such th a t  IAjJ =  I , w ith  

th e  norm alized eigenvalues of S j on th e  diagonal in decreasing order. T he p a ram 

e te r pi determ ines th e  volum e of th e  p robab ility  contours of G j , F j determ ines its  

o rien ta tion  and  A j determ ines its  shape. In term ediate , o r regularized, m odels are 

ob ta ined  by allow ing some b u t no t all of these quan tities to  vary  between groups. 

C om m on principal com ponents ( S j =  /OjF A jF ')  and p roportional covariance m odels 

( S j =  piTAT') a re  special cases o f th is approach. Bensm ail and  Celeux (1996) found 

th a t  such in term ed iate  m odels often ou tperform  b o th  LDA and QDA. Flury, Schm id 

an d  N arayanan  (1994) found th a t  p roportional covariance d iscrim ination  perform ed 

well in a  variety  of situations. Even when th e  assum ptions for LDA were correct, 

p ropo rtio na l covariance d iscrim ination  d id n ’t  do m uch worse th a t  LD A .

In th is  paper we extend th e  singular value decom position approach to  regular

ization  to  th e  conditional G aussian  m odel for d iscrim inant analysis w ith  m ixed-m ode 

d a ta . O ur goals are  I)  to  discover th e  ex ten t to  which regularized m odels can o u tp e r

form  L-LDA and  Q-LDA and 2) to  explore parsim onious m odels th a t  allow dispersion 

m atrices to  differ betw een locations. We will express th e  w ithin-cell dispersion m a tr i

ces as S js =  pjsF js A jsF (s, and  we will hold som e of th e  geom etric quan tities invariant 

across locations a n d /o r  groups. For exam ple, in th e  m odel S js =  PjF A sF ', th e  volum e 

p a ram eter p, varies betw een groups b u t no t between locations, th e  shape param eter 

A s varies betw een locations b u t no t groups, and  th e  orien tation  F  is invariant to  bo th  

location  and  group. T his m odel will be denoted  by [PjF A sF']. W e will also consider 

th e  d iagonal fam ily of covariance m atrices, w here S js =  pjsA js, w ith  F js =  I, and th e  

spherical family, where S js =  pjsI.

These th ree  fam ilies of m odels are  described m ore fully in th e  next section. In 

add ition , two parsim onious m odels th a t  allow covariance m atrices to  differ between 

locations are  derived. In  th e  first m odel, loglinear constrain ts are placed on th e
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geom etric p a ram eters  piS and  A is. In th e  second m odel, a  d iscrete la ten t variable 

(which defines la ten t classes) is in troduced  to  sim plify th e  conditional s tru c tu re  of 

th e  m odel. M axim um  likelihood estim ates of th e  param eters for these m odels are  

derived. T he  regularized m odels are  com pared w ith  L-LDA and Q-LDA. Finally, 

o th er possible approaches to  regularized d iscrim inant analysis a re  discussed.

M o d e l s

By allowing each of th e  geom etric quan tities to  vary, by group, location, 

neither, or b o th , we can ob ta in  64 m odels from  th e  general SVD fam ily S is =  

PisF isA isF ^ ,  16 m odels from  th e  d iagonal fam ily S is =  pisA is, and  4 m odels from  

th e  spherical fam ily  S is =  pisI. A to ta l of 84 m odels are possible. For a  given d a ta  

set, we m igh t select th e  m odel th a t  m inim izes th e  sam ple-based estim ate  of fu tu re  

m isclassification risk. T hus, to  avoid excessive com putation , it  m ay be desirable to  

reduce th e  num ber of m odels under consideration. To ob tain  parsim onious m odels, it 

is reasonable to  om it from  consideration  those  m odels involving th e  greatest num ber 

of param eters . T he  o rien ta tion  F is of a  p robab ility  contour is described by p ( p - 1 ) / 2  

functionally  independen t param eters, th e  shape A is is described by p  — I  functionally  

independen t param eters , and  th e  size is described by a  single p a ram eter pis. T he 

m ost parsim onious m odels are ob tained  by holding F is, and  possibly A is, invariant 

across locations and  groups.

O ne s tra teg y  is to  consider only those m odels th a t  satisfy  th e  following condi

tions.

I . A t least one geom etric feature is invarian t to  bo th  location and  group.

2. O nly th e  size pa ram eter is allowed to  vary  across b o th  locations and groups.
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3. If  o rien ta tion  varies by location or group, then  shape m ust be invariant to  

location  and  group.

T he  first two conditions app ly  to  all th ree  fam ilies; the  th ird  condition  applies only 

to  th e  general fam ily  S js =  pjsr jsA jsF js. T his s tra tegy  reduces th e  num ber of m od

els under consideration  to  30. Table 8 lists all 30 m odels, and  gives th e  num ber 

o f functionally  independen t covariance param eters  for K  groups, m  locations and  p  

continuous variables. T he  first m odel, [pFA F'], is th e  trad itio n a l (hom ogeneous co- 

variance) location  m odel, which leads to  L-LDA . In  th e  next five m odels (M 2-M 6), th e  

dispersion m atrices are  invarian t to  location. These m odels represent com prom ises 

betw een L-LDA and Q-LDA.

T he nex t five m odels (M 7-M 11) are  identical to  m odels M 2-M 6, except th e ir  

geom etric features differ betw een locations b u t n o t groups. These m odels result in 

sep ara te  linear d iscrim inan t analysis a t each location. In m odels M 12-M 20 th e  d isper

sion m atrices differ betw een locations and  groups. Models in which th e  orien tation  F js 

differs betw een locations and  groups generally  involve a  large num ber of param eters. 

P ro p o rtio n a l covariance m odels (where only pjs varies) are generally th e  m ost parsi

m onious. In th e  diagonal m odels, th e  o rien ta tions F js are  iden tity  m atrices, which 

do n ’t  require estim ation . In  th e  spherical m odels, th e  o rien tations are  no t identified 

and  can be assum ed to  be iden tity  m atrices w ithou t loss of generality. Hence, th e  

d iagonal and  spherical m odels contain  fewer param eters th a n  th e  SVD models.

In th is  chap ter we give special a tten tio n  to  th e  following geom etric shapes th a t  

have shown prom ise in G aussian  discrim inant analysis.

o (hom ogeneous covariance) [pFA F'] and  [pA].

o (proportional covariance) [PjFA F '] and  [PjA ]. Flury, Schm id, and  N arayanan 

(1994) recom m ended th a t  p roportional d iscrim ination be tried  whenever th e
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M odel N um ber of param eters

m =  4 

K  =  2 

p =  5 C om m ents

M l.)  [p T A r '] p (p+ l) /2 15 L-LDA

M2.) [PiTA T'] K - I  + p ( p  +  l ) / 2 16 p roportional cov.

M 3.) [PiT iA T '] K  +  Kp(p — l ) / 2  +  p  -  I 26

M 4 .)  [ A r A iI"]

m s .) [ ^ r i A r ' ]

Kp +  p{p -  l ) / 2 2 0 C P C

p  +  Kp{p -  l ) / 2 25

M6.) [PTAiT'] l + p ( p - l ) / 2  +  K ( p - l ) 19

MT .) [P5TA T'] m —  1  + p ( p  +  l ) / 2 18 propo rtion a l cov.

M8.) [P5T sA T '] m  +  m p(p — l ) / 2  +  p  — I 48

M 9.) [P5T A 5T'] 

M10.) [PTsA T ']

m p +  p ( p -  l ) / 2 30 C PC

p +  m p (p -  l ) / 2 45

M il . )  [pTA .T 'l I  +  m(p -  I)  +  pip -  l ) / 2 2T

M 1 2 .)  I f t r j A T J K  +  m p(p— l ) / 2  +  p — I 46

M13.) [PiT A sT'] K  +  p(p  — l ) / 2  +  m (p  — I) 28

M14.) [PsT iAT^] m  +  p  — I  +  Kp(p — l ) / 2 28

M15.) [PsT A iD '] 

M16.) [PisTA T '] 

M IT.) [PisT iA T '] 

M18.) [PisT 5A T ']

m  +  K(p — I )  + p ( p  — l ) / 2 22

m K  — I  +  p(p  +  l ) / 2 22 propo rtion a l cov.

m K  +  p  — I  +  Kp(p — l ) / 2 32

m K  +  p  -  I  +  m p(p — l ) / 2 52

M19.) [PisT A iT'] m K  + K(p -  I)  + p ( p  -  l ) / 2 26

M20.) EpisT A 5T'] m K  + m{p — I) +  pip — l ) / 2 3 4

M21.) [piA] K  + p —l 6 p roportional cov.

M22.) [psA] m  +  p  — I 8 propo rtion a l cov.

M23.) [pisA] m K  +  p — l 12 propo rtion a l cov.

M 24.) [pAj] I +  TV (p — I) 9

M25.) [pAs] I  +  m (p  -  I ) IT

M26.) [pA] P 5

M 2T .) [p i] I I

M28.) [PiI] K 2 propo rtion a l cov.

M29.) [p5I] m 4 p roportional cov.

M30.) [pisI] m K 8 propo rtion a l cov.

o th er m odels: 

M31.) [S is] mKp{p+ I) /2 120

M32.) [E s] mp{p+ I) /2 60

M 33.) [S i] Kpip + l ) / 2 30 Q-LDA

T able 8: Som e constrained  covariance m odels, and  th e  num ber of functionally  inde

penden t covariance param eters for m  locations, K  groups, and  p continuous variables. 

T h e  th ird  colum n gives th e  num ber of covariance param eters for m — A,K = 2 and 

p  =  5 .
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assum ption  of equality  of covariance m atrices seems questionable. In  th e  worst 

case -  if th e  covariance m atrices a re  equal -  p roportional discrim ination m ay 

perform  slightly  worse th a n  linear discrim ination. W hen covariance m atrices 

a re  unequal, p roportional d iscrim ination  often outperform s b o th  linear discrim 

ina tion  and  m ore theoretically  correct q uad ra tic  d iscrim ination  m ethods w ith  

m odera te  sam ple sizes.

o (com m on principal com ponents) A ,F'].

o (general heterogeneous covariance) [S i]. T h is results in th e  q uad ra tic  location  

d iscrim inan t analysis (Q-LDA) considered by Krzanow ski (1994).

These m odels can be extended to  allow th e  geom etric features to  vary between loca

tions.

o (p roportional covariance) [p^FA F '] and  IftsA]. These m odels allow for a  group 

by location  in terac tion  in th e  volum e of th e  covariance m atrix .

o (com m on principal com ponents-like) If tF A sF ']. C luster volum es differ between 

groups, and  cluster shapes differ betw een locations.

O ther m odels from  th e  th ree  fam ilies a re  possible, b u t they  will generally  

include m ore param eters th a n  those m odels listed  in Table 8. If  sam ple sizes are  

large, th en  we should try  to  find th e  m odel th a t  best fits th e  d a ta  (because th is  will 

generally  lead to  b e tte r  d iscrim ination). B u t if sam ples are  sm all or m oderate , a  

prem ium  should be placed on parsim onious m odels.

M o r e  P a r s i m o n i o u s  C o v a r i a n c e  M o d e l s  f o r  L o c a t i o n

W hen th e  num ber of locations is large (this is com m on in practice —  5 

b inary  variables define 32 locations), m odels which allow geom etric features to  vary
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betw een locations can contain  an  exho rb itan t num ber of param eters . In  th is section 

we consider m odels which allow a  m ore parsim onious representa tion . Two approaches 

will be  considered.

1. (R educed M odels) Loglinear restric tions can be im posed on th e  geom etric pa

ram eters.

2. (L aten t Class M odels) T he  locations can be clustered using la ten t class m odels, 

w ith  th e  geom etric featu res hom ogeneous w ith in  la ten t classes.

R e d u c e d  M o d e l s

T he first approach  is an extension o f th e  reduced location m odel, where 

location  p robabilities and  conditional m eans are m odeled as functions of location 

covariates. W e also can place loglinear restric tions on th e  geom etric param eters. 

T hese m odels resu lt in sm oothed  estim ates for th e  geom etric param eters, in m uch 

th e  sam e way th a t  loglinear m odels produce sm ooth  estim ates of th e  probability  

param eters . We will consider loglinear restric tions for th e  volum e param eter, pjs, and  

th e  shape param eter, Ais.

If  Uj0iS is a  known r  x  I  location covariate vector contain ing  an  in tercept te rm , 

m ain  effects and possibly some in teraction  term s of the  categorical variables a t  loca

tio n  s, th en  a  reduced m odel for pis is

pis = ex p (a> p ,s) 

or

logpis =  ^U p iS, (3.4)

w here a* (i =  I , . . . ,  RT) are unknow n regression coefficients. T he  exponentia l p a ram 

eterization  ensures th a t  th e  volum e p a ram eter pis is positive.
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A res tric ted  m odel for th e  d iagonal m a trix  A js is

A js =  d iag{exp(b j:,.ux,s)}^=1, (3.5)

w here b y  (z =  I , . . . ,  AT; j  =  I , . . .  ,p ) a re  unknow n regression coefficients. T he ex

ponen tia l p a ram eteriza tion  ensures th a t  th e  diagonal elem ents o f A js are positive 

(which is required  because th e  covariance m a trix  S js is positive definite). To satisfy 

th e  constra in t |A js| =  I , th e  param eters b y  (z =  — I , . . .  ,p ) m ust satisfy

th e  constra in t
p

^  ] ^ijU-Xjs =  0 (z =  I ,  . . . , K] s =  l , . . . ,  vtz).
J = I

T his co nstra in t is no t required in th e  com m on principal com ponents m odel [PjsF A jsF'] 

if we define, for com putational convenience, A js =  pjsA js, and  im pose th e  loglinear 

restric tion  on A js:

A js =  d iag{exp(b 'i u /,;S)}^=1.

T he  perform ance of th e  loglinear restric ted  C P C  m odel will be  stud ied  in Section 4.

T hese reduced m odels can lead to  significant p aram eter savings. Consider, for 

exam ple, th e  p ropo rtiona l covariance m odel [PjsF A F ']. For AT =  3 groups, q = 5 

b inary  variables (hence m  =  32 locations), and  p  =  5 continuous variables, th e  m odel 

requires estim ation  of HO covariance param eters . T he first-order reduced m odel 

(3.5) requires estim ation  of only 32 covariance param eters. T he second-order reduced 

m odel (3.5) requires estim ation  of 62 covariance param eters.

L a t e n t  C la s s  M o d e l s

W hen th ere  are m any locations, it  m ay be prudent to  reduce th e ir num ber. 

L aten t class analysis (LCA) is one way to  do th is. An extensive review of LCA, 

including an  exhaustive b ibliography and  a  review of software can be found a t  John  

U bersax ' hom e page (h ttp ://m em b ers .x o o m .co m /X O O M /ju b ersax ).

http://members.xoom.com/XOOM/jubersax
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L aten t class analysis is a  s ta tis tica l m ethod  for analyzing m ultivariate  ca te 

gorical d a ta . I t has been widely used in psychiatry, sociology, and  m edical diagnosis 

applications. LCA was m otivated  by th e  desire to  find subtypes of related  cases (i.e., 

la ten t classes) in a  set o f observations. For exam ple, if th e  observations are vectors of 

b inary  variables, w here all variables are  considered to  be ind icato rs of some disease, 

a  la ten t class analysis m ight p a rtitio n  th e  observations in to  tw o classes: diseased and  

undiseased. Thus, LCA can be considered a  m ethod  for c lustering categorical d a ta . 

T he  c lustering is perform ed using finite m ix ture  m odels (T itte rin g ton , Sm ith and  

M akov, 1985). In  th e  location  m odel, we can use LCA  to  reduce m any locations to  a  

few new locations, defined by th e  la ten t classes.

In LCA, la ten t classes are defined by th e  criterion of conditional independence. 

T he  observed variables a re  taken  to  be independent w ith in  la ten t classes. C onditional 

independence m odels have fared well in com parative studies of d iscrim inant analysis 

m ethods for categorical d a ta . In naive Bayes d iscrim inant analysis, variables a re  

taken  to  be  s ta tis tica lly  independent w ith in  each group. C hang (1980) found naive 

Bayes d iscrim inan t analysis to  perform  as well as or b e tte r  th a n  several o ther m ethods 

for classifying m ultivaria te  b inary  observations. An advantage of th is  approach is its  

sim plicity, and  th e  relatively  sm all num ber of param eters th a t  need to  be estim ated . 

Naive Bayes is still th e  preferred m ethod  for supervised classification of tex tu a l d a ta  

(D um ais, e t. ah , 1998).

In some applications, th e  assum ptions of naive Bayes m ay be so unrealistic  

th a t  th e  m odel doesn’t  perform  well. In  a  com parative stu dy  of m ethods for clas

sifying head in jury  pa tien ts  based on categorical observations, T itte ring to n , e t. al. 

(1981) found th a t  classification by naive Bayes could be im proved if groups were 

pa rtitio n ed  in to  subclasses (la ten t classes) so th a t  th e  variables are  sta tistica lly  inde

penden t w ith in  each subclass. T his LCA approach perform ed b e tte r  th an  all o ther
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m ethods for th is  p a rticu la r da tase t. L a ten t class d iscrim inant analysis has not been 

pursued  m uch in th e  lite ra tu re . Dillon and  M ulani (1989) developed la ten t class dis

c rim inan t analysis m odels for m arket research applications, w here th e  prim ary  goal 

is to  u n d ers tan d  th e  relationships betw een th e  subtypes of consum ers (la ten t classes) 

and  th e  p ro d u c ts  th ey  bought (groups). T heir m odel allowed for b o th  categorical and 

continuous variables and  all variables were taken  to  be m utually  independent w ith in  

a  la ten t class. In th e  following, we will exploit la ten t class m odels in several differ

ent ways. In  some special cases th e  resu lting  discrim inant analysis m ethod will be 

equivalent to  th a t  o f Dillon and  M ulani (1989), b u t in general th ey  will be different.

Before describing th e  d iscrim ination  m ethods, we first describe m ultip le group 

la ten t class analysis. For sim plicity  of n o ta tion , we take all categorical variables to  

be binary. T he  generalization  to  polytom ous variables is straightforw ard . For b inary  

variables y , =  (%i, • • •, Uiq)' from  group Gi, a  la ten t class m odel w ith  T  la ten t classes, 

C l , . . . ,  C r ,  is given by

Ii ( y )  =  5 ]  %  n  nTt ( I  “  7L i ) 1" 2̂ '  ( 3 - 6 )
t=i j=i

w here Tjit = Pr(CtIGi), YtJ=I Vu = I ,  and  Trjt = Pr(Yj — l\Ct). T he  num ber of la ten t 

classes T  is generally  m uch sm aller th a n  q. In  th is  m odel, th e  conditional response 

probab ilities, defined by tt#, a re  th e  sam e for all groups, b u t th e  class sizes, defined by 

rjit, are different betw een groups. O th er op tions are possible for th is  m ultiple group 

la ten t class m odel (see Clogg, 1993, for deta ils). In  our m odel, th e  T  la ten t classes 

are  com m on to  all groups. N ote th a t  m odel (3.6) is a  finite m ix tu re  m odel, where th e  

variables in each m ix tu re  com ponent a re  independent.

T here  are  several ways th a t  LCA can be  incorporated  in to  th e  m ixed-m ode 

d iscrim ination  problem . We will consider four of them  here.

I . S ubstan tive  LCA. In  some LCA applications, th e  la ten t classes have real, phys-
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ical m eaning. For exam ple, in m edical diagnostics, often th ere  is no gold s ta n 

d a rd  for p a tien t diagnosis. T he p a tien t m ust be diagnosed based on im perfect 

ind icato rs of disease. LCA is a  n a tu ra l m odel for diagnosis when th e  disease 

ind icato rs are  independen t w ith in  a  diagnostic group. T he la ten t classes are lit

erally  in te rp re ted  as diseased or undiseased groups. In  add ition  to  classification, 

th e  la ten t class m odel provides estim ates of diagnostic accuracy (e.g., sensitiv

ity, specificity, positive predictive value). If, in th e  m ixed-m ode discrim ination 

problem , th e  categorical variables are  indeed im perfect ind icators of diagnostic 

s ta tu s  (and th e  groups G\ , . . . ,  Gk  are  no t diagnostic groups b u t correspond 

to  som e o th er classification), th en  LCA is a  n a tu ra l m odel for th e  categorical 

d a ta . In th is  case, th e  num ber of la ten t classes m ight be  known in advance. 

T he  la ten t classes m ight be considered new locations. T he  continuous variables 

-  n o t necessarily ind icators of disease s ta tu s  -  m ay or m ay no t be indepen

dent of th e  categorical variables conditional on disease s ta tu s  (i.e., la ten t class 

m em bership). We shall keep th a t  op tion  open.

W ith in  Gj , th e  m odel is

9 i(y> x )  =  5 3  rHt n  -Kfi C1 -  7rJ t ) 1 viiHxlPisti s ^ ) -  (3 .7 )
t=i j= i

T he conditional d istribu tio n  of th e  continuous variables is allowed, in general, to  

depend on group, location, and  la ten t class. In  m ost app lications it is probably  

unnecessary to  condition  th e  continuous variables on b o th  la ten t class and  lo

cation , since la ten t classes and locations contain  m uch of th e  sam e inform ation. 

If  we take f i i s t  =  /L tj t , and S jst =  S jt, th en  we are  assum ing th a t  x  and  y  are 

conditionally  independent, given la ten t class m em bership. If  we take ^tjst =  /zjs, 

and  S jst =  S js, th en  th e  conditional density  h can be pulled outside of th e  sum 

m ation  and  estim ated  independently  o f th e  categorical d a ta . In  th is case, th e
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la ten t class m odel can be considered an  a lterna tive  to  th e  loglinear m odel for 

th e  categorical d a ta . T h is is considered next.

2. LC A  as an  a lte rna tive  to  loglinear m odel. In  th e  reduced location  m odels log- 

linear restric tions are  placed on th e  location  probabilities

log P is =

prim arily  to  reduce th e  num ber of param eters  th a t  need to  be estim ated. In 

som e cases -  for exam ple, if th e  categorical variables are  all ind icato rs of disease 

s ta tu s  -  it  m ight be  m ore reasonable to  m odel th e  location  probabilities w ith  

la ten t class m odels. W hen th e  la ten t classes are  com m on to  all groups, th is  

LCA  approach can resu lt in significant reduction of param eters . Consider, for 

exam ple, th e  case of <? =  5 b inary  variables, all ind icators of a  p articu la r disease, 

so th a t  th ere  are  T  =  2 la ten t classes. For K  = 2 groups, th e  first o rder 

loglinear m odel requires estim ation  o f 10 param eters, th e  second order loglinear 

m odel requires estim ation  of 20 param eters , and th e  la ten t class m odel requires 

estim ation  of 11 param eters . For Ff =  4 groups, th e  first o rder loglinear m odel 

requires estim ation  of 20 param eters , th e  second order loglinear m odel requires 

estim ation  o f 40 param eters , and th e  la ten t class m odel requires estim ation  of 

ju s t  13 param eters.

3. LC A  as a  tool for dim ension reduction. LCA is som etim es used as a  m ethod 

for d a ta  reduction  -  th a t  is, for reducing a  large num ber of categorical variables 

to  a  m ore m anageable  num ber. Using th is  approach, we perform  m ixed-m ode 

d iscrim inan t analysis in two steps. In  th e  first step, m ultip le  group LCA is per

form ed on th e  categorical variables, and  th e  observation from  G{ is allocated  

to  th e  la ten t class for which it has g rea test posterior probability ,
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f r (Q |y A ,(% )  = Uqj=InT i 1 -  7rJ-Q1

E L % w = i 7 r y ( i - ^ r ^ '

N ote th a t  locations m ay be allocated  to  la ten t classes differently across groups 

because la ten t class p robabilities a re  different between groups. In  th e  second 

step , we apply  th e  d iscrim inant analysis procedures previously  described, using 

la ten t class assignm ents as new “locations” . In th is approach, LCA is used as 

a  pre-processing step  prio r to  m ixed-m ode discrim inant analysis.

4. LCA and  LPA for nonparam etric  density  estim ation . M ixture m odels have 

been used as nonparam etric  density  estim ators. In a  d iscrim inant analysis ap

p lication  w ith  continuous d a ta , H astie, T ibsh iran i, and B u ja  (1997) m odeled 

group-conditional densities w ith  m ultiv aria te  norm al finite m ix tu re  models. T he  

ra tion ale  of th e  m ethod  is th a t  in m any cases, a  single p ro to ty p e  (i.e., m ean 

value) is n o t sufficient to  describe th e  d a ta  w ithin  a  group.

W e can tak e  a  rela ted  approach for m ixed-m ode d a ta . W e m odel th e  group- 

conditional density  of th e  m ixed-m ode d a ta  w ith  a  finite m ix tu re  m odel. We 

tak e  variables w ith in  each m ix tu re  com ponent to  be s ta tis tica lly  independent. 

T h is resu lts in a  la ten t class m odel for th e  categorical d a ta  and  a  la ten t profile 

m odel for th e  continuous d a ta . In general, our m odel is a  la ten t struc tu re  m odel. 

T he  conditional independence assum ption  m ay seem severe, b u t we assum e th a t  

any s ta tis tica l dependence between th e  variables can still b e  cap tu red  a t the  cost 

of a  p o ten tia l large num ber of com ponents. T he num ber of com ponents will be 

chosen by cross-validation. W ith in  group Gi th e  density  is

W hen  (T̂ it = a?t, th is m odel reduces to  th e  m odel of Dillon and  M ulani (1989).

t=i j= i
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T his section is divided in to  th ree  p arts . In th e  first p a rt, m axim um  likeli

hood estim ates for covariance param eters in th e  full conditional G aussian  m odel are  

derived. In th e  second p a rt, pa ram eter estim ation  is described for reduced condi

tion a l G aussian  m odels. In  th e  th ird  p a rt, e stim ation  details are  given for la ten t class 

location  m odels.

E s t i m a t i o n

F u ll  M o d e ls

In th e  full m odel, m axim um  likelihood estim ates for th e  location probabilities 

and  conditional m ean param eters  are given by (3.3). M axim um  likelihood estim ates 

for th e  covariance param eters  are  ob tained  -  independently  of th e  probability  and 

conditional m ean pa ram eter estim ates -  by m inim izing th e  objective function

K m

F  =  Y t Y t n *  loS Is l̂ +  Y Y  tr^ 1Wis).
K m

E E
i=l s=l i=X s=l

In  te rm s of th e  geom etric features PiS,T is, and  A js, th e  objective function is

K m  «. m I

F  = P Y Y n* log Pis + Y Y  " T t r ( F jsA - 1F ^ W js),
i=l s=l i=l s=l Pis

K m

w here

W js =  £ ( x js/l -  ftis)(xish -  Ajs)'
k=l

is th e  w ith in  lo ca tio n /g ro u p  sca tte r  m atrix . Sim ilarly, define th e  location, group, and 

overall sc a tte r  m atrices as

w s = E w js,
i=l
m

W t  =  ^ w ill
S = I

K m

w  =  E E w i«-
i=l s=l

and



51

W e first ou tline  a  general ite ra tive  procedure for estim ating  th e  geom etric 

p a ram eters  Pia, F is and  in th e  SVD family. T he procedure reduces to  closed form  

solutions in special cases. In  o ther cases th e  procedure can be sim plified. A ppendix  

B describes estim ation  details for some com m on models.

o For fixed F js and  A js,

Pis = ^ t r ( F jsA r 1F L W js).

If  pis — pi, th en
i  m

A = - E tr(1N A ll r LW i l).
P n I'- 6 = 1

If  pis =  P s,  then

A  =  ^  E  tr^ A - 1O V j,).
P n -S 1 = 1

If  pis — p, then
K  m

p =  ^ E E M r i,  A S 1F L w i,) .
P 1^  2 = 1  6 = 1

o For fixed pjs and  F js, th e  m le of A js m inim izes th e  function

/ ( A j,)  =  - ( X t r jjA i 1VtoW i,)  =F — tr ( A - 1r ( , w j, r j,) .
Pis Pis

B y C orollary I  of A ppendix  A,

t d i a g ( r i ,w tor to)

“  Idiag(VtoW toF to)I'

If  A js =  A j , then
m  i

/ ( A j) =  tr fA T 1 £ - V toW toF to),

5 = 1  Pis

and  by C orollary I of A ppendix  A,

,  £ s . i i : V tow tor to

‘ I E ^ i j 7F L W toF toIVp'
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Sim ilarly, if A is — A s, th en

If Ais =  A , th en

" I S£., ^ r - , w tir ti IV,'

K m - i
/ ( A )  =  t r f A - 1 E  E  - F J j W tiF t i ),

i = l s = l  Pm

and  by C orollary I  of A ppendix  A,

I s £ i  S 5 i  A7FLW tiF ti

I Efei S il A-FJjW tiF t i IVp'

o For fixed /%s and  A is, th e  m le of F is m inim izes the  function

/ ( F is) — t r ( F isA is F isW is) — t r (LisF isA is F isL isO is),

w here W is =  L isO isL is is the  eigenvalue decom position of W is. I t  follows from  

T heorem  3 of A ppendix  A th a t  F is =  L is, which doesn’t  depend on A is or pis. 

If F is =  F i , th en
m

/ ( F i) =  E t r ( F iA r 1F )W tiZt o ),
S =  I

and  F i can be ob ta ined  using T heorem  4, which is described in A ppendix A. 

Sim ilarly, if F is =  F s, then

/ ( F a) =  E t r ( F j A r 1F ) W tiZt o ),
Z=I

and  F s can be ob ta ined  using T heorem  4. If F is =  F , th en

K  TO

/ (F )  =  E E  Ir(FAti1F1W tiZt o ),
1=1 S=I

and F  can be ob tained  using Theorem  4.



53

R e d u c e d  M o d e ls

In  th is  section we consider th e  estim ation  of m odels w ith  restric tions on one 

or m ore of th e  param eters  pis, fj,is or His. T he  estim ation  d e ta ils  presented in th is  

section are  valid  for any choice of location  covariates uP)S, Upj5, ux,s and  Upi5.

T he  log-likelihood function  is

w here S j5 also m ay be m odeled as a  function of location covariates. T he  log-likelihood 

is m axim ized sub ject to  th e  constra in t on th e  probab ility  p aram eters , P is =

T h e  location  p robab ility  regression coefficients Oi can b e  estim ated  indepen

den tly  of th e  o ther param eters using N ew ton-R aphson m ethods (M cCullagh and  

N elder, 1989, C h ap te r 6).

T he  conditional m ean an d  covariance param eters can be estim ated  using th e  

following ite ra tive  procedure, which successively estim ates B j conditional on S js, and  

th en  estim ates S js conditional on B j. T he procedure yields closed-form  solutions in 

special cases.

(U pdating  B j given S js) C onditional on S js, the  m axim um  likelihood estim ate  

of B j is th e  solution of th e  equation

i= l s=l h= l

ex p (0 -u s) =  I  V i

m m

Y ,  S islx is-up,s =  ^ n jsS js1B jUpiX is.
S = I

A pplying th e  vec op era to r to  b o th  sides of th e  equation, it follows th a t

where
Tlis

x js. =  'y ] x js/%.
h=l

T his expression can be sim plified for special cases.
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o If  th e  covariance m a trix  does n o t differ betw een locations (i.e., if S is =  S i or 

S is =  S ) ,  o r if Ujtlj5 is sa tu ra ted , th en  th e  unconditional m axim um  likelihood 

estim ate  of B i is

B i =

m

>5=1

TO

5 3  n Z sU ilj5  U jti s

. S = I

- I

o In  th e  p ropo rtion a l covariance m odel [AisD A D '] =  [AisC],

6 < = ( S ^ u i i x i )  •

(U pd ating  S is given B i) T he general approach outlined earlier applies to  th e  

conditional estim ation  of S is, where th e  sca tte r  m atrices W is are  com puted using 

cu rren t estim ates of B i . M odifications are  needed for geom etric features w ith  loglin- 

ear restric tions. T his will be  illu stra ted  for tw o com m on m odels -  th e  p roportional 

covariance m odel and th e  com m on principal com ponents m odel.

o In  th e  p roportional covariance m odel [pisC ], where Iogpis =  UiU sj5, th e  objective 

function is

K m  K m
F  =  p  5 3  5 3  n M (a i u s , s )  +  5 3  5 3  exp (“ a iu s , s ) t r ( c - 1w is).

Z = I  S = I  Z = I  S = I

M axim um  likelihood estim ates o f Ui (for fixed C ) can be  ob ta ined  using th e  

N ew ton-R aphson procedure

5  new
a Z H f 1gi )

w ith
m

gz = 53 [Pn ^  ~  exp(-a(upjS)tr(C"1Wis)J uPjS,
5= 1

TO

H i =  5 3  e x p ( - a 'u p jS) tr (C ~ 1W is)upjSu PjS.
S = I

and
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o In  th e  com m on principal com ponents m odel [F A isI v], where A is is th e  diagonal 

m a trix  w ith  j th d iagonal en try  ex p (b^-U^s), th e  objective function to  m inim ize 

is
K m  p  K m p

F  b t 7U P ,s  +  e x P ( - h i j U P , s ) C i s j ,

i = l s = l  j = l  i = l s = l j = l

w here Cis j - is th e  j th d iagonal en try  of th e  m atrix  F zW isF . E stim ates of b y  (for 

fixed F ) can be  ob ta ined  using th e  N ew ton-R aphson procedure

,n e w =  b g ld  _  H - I g , ,

where

and

r i
S i j  =  5 3  [ ^ i s  e x P  ( — b j j  u p ,s )  c i s j

s=l

H ij — -  ^ e x p ( - b ^ u S)S)cis ju S)Su zS)S.

6 = 1

L a te n t  C la s s  L o c a t io n  M o d e ls

T he tw o basic approaches to  la ten t class location m odels shall be referred to  

as th e  tw o-step approach  and  th e  sim ultaneous approach. In th e  tw o-step approach, 

la ten t classes (the new locations) are  assigned to  observations following la ten t class 

analysis of th e  categorical d a ta , and th en  locations m odels applied. T he sim ultaneous 

approach  is given by (3.23).

In th e  tw o-step la ten t class reduction approach, param eters  in the  m ultip le  

group la ten t class m odel (3.6) m ust be e stim ated  so th a t  response p a tte rn s  (locations) 

can be assigned to  la ten t classes (the  “new” locations). M axim um  likelihood estim ates 

can be ob ta ined  using th e  EM  algorithm .

T he com plete d a ta  log-likelihood is

K  Tii T  9

L C =  5 Z  5 3  5 3  W l o S 7I it  +  Y X y j i h  I o g T T j t  + ( I -  V j i h )  l ° g ( l  -  T T jt)]}

j = l  Z i=I t = l  j = l
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where Zm  =  I  if  y a  G Ct- In  th e  E -step , we com pute Q =  E;f (Lc), where th e  

expecta tion  is taken  w ith  respect to  th e  conditional d istribu tion  o f th e  unobserved 

d a ta  {zuh} given th e  observed d a ta  and  cu rren t param eter estim ates Because Lc 

is linear in th e  unobserved d a ta , th e  expecta tion  is easily ob ta ined  by replacing each

Zm w ith  Ziht =  rt{yih] 4>), where

Tt{Yih\ =
rgt IIj= I T^jih (I ~  Kjt)1 Viih

is th e  posterio r p robab ility  th a t  belongs to  Ct.

In th e  M -step, Q is m axim ized sub ject to  th e  constrain ts X ^ 1 %  =  I V i Using 

th e  m ethod  of Lagrange m ultip liers, we m axim ize w ithout constra in t th e  expression

<9'= < 9 - l )
<=i Xt=I /

w here th e  y, are Lagrange m ultipliers. Q' is m axim ized by

ni h=l

and

Lvz=I Ẑ h= I Zith

T he EM  algorithm  a lte rn a te ly  perform s th e  E -step  and M -step un til param eter esti

m ates have converged. T he procedure requires s ta rtin g  values. S ta rtin g  values can be 

ob ta ined  by random ly  in itializing posterior probabilities Zm on (0 ,1) and  then  s tan 

dard izing  th e  uniform  variates to  satisfy XZ&Li Zm = I VL Because th e  algorithm  m ay 

converge to  local m axim a, it should be rerun  several tim es using different s ta rtin g  

values to  increase th e  chance th a t  global m ax im a are obtained.

P aram eters  in th e  sim ultaneous m odel w ith  augm ented location  covariate vec

to rs  also can be estim ated  using th e  EM  algorithm . In th is  case th e  com plete d a ta  

log-likelihood is

K  m  n i s  T

Lc =  'y ] X ] V  ̂ ^  log Pzst 4" log /l(Xzs/i, I îsti ^ is t)  }
z = l  s = l  Zz=I i = l
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w here Zisht — I if x isk E  Ct .

As before, in th e  E -step  we replace Zisht w ith  Zisht =  Pr'*(CtIxish, ws). In  th e  

M -step, Q is m axim ized sub ject to  th e  constra in ts E<=i P is t =  I V i

T he p robab ility  coefficients 0i(i = can be u p d a ted  using N ew ton-

R aphson m ethods. Let Tjist =  E%=i Zisht- T hen

- n e w  - o ld  
Oi =Oi H T 1R

w here

and

m T

S i  =  5 3  5 3  [^ * s _  6 X p  ( O1i U p jS( )  ] U p )S<

s = l  i = l

m T

=  — 5 3  ^  exP ( ̂ iu P1Si ) u P1StUpjSt ■
S = I  t = l

T he conditional m ean coefficients B i can be  estim ated  as in th e  previous sec

tion , w ith  slight m odification. Let x i s t . = E£=i Z i s h t X i s h  and nist =  YJhI i  îsht■ T hen

v e c B i  =  ( 5 3 5 3  (nistu^,Stu^st O  S ist1) )  vec
X s = I  t = l  /

m T

5 3  5 2  S z7S ^ is t-u St
_ s = l t = l

T he coefficients for th e  covariance m a trix  can be u p d a ted  as in th e  previous 

section, w ith  slight m odification.

0  In  t h e  p r o p o r t io n a l  c o v a r ia n c e  m o d e l  [pitC\, w h e r e  I o g p ii =  a ^ u s ,t ,  t h e  M - s t e p  

o b j e c t iv e  f u n c t io n  is

K T  K m T

5 3 1 2  f^t lo g  P i t +  1 3  5 3  5 3  e x p ( - a ' u s , ^ t r ( C - 1 W it)
i = l  t = l  i = l  s = l  t = l

w h e r e
m riis

"^fist = 'y \ y ) ftisi(Xisil /j,ist)(xish Mist) •
s = l  A = I

T h e  N e w t o n - R a p h s o n  p r o c e d u r e  is

Sjlew =  S f ld -  H - 1S
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w here
T

Si =  ^Zlpnit -  e x p ( - a - u S)t) t r (C _1W ^ )]u E),t
t=i

and

= e x p ( - a 'u S)t) t r ( C _1W it)]uS)tU£)i
t=i

o In  th e  com m on principal com ponents m odel (T R jtI v], where R jt is th e  diagonal 

m a trix  w ith  j th d iagonal en try  e x p (b ^ u E)<), th e  M -step objective function is

E  b iju s,t +  E E E  e x p ( - b 'i u S;t)cjtJ-
i=l t=l j = l  i=l t = l  j = l

w here Cuj is th e  j ttl d iagonal en try  of th e  m atrix  D W jtD '. T he  N ew ton-R aphson 

procedure is

b ” ew  =  6 g ld  -  H - -1S ij

w here
T

Sij = E f c i  ~  exP (“ b ijUS,i)Citj]uS)t
t = l

and
T

H y  =  -  E  e x p ( - b 'i u S)t)cjtiu Situ's>t. 
t = l

E x a m p l e s

In  th is  section we illu stra te  th e  po ten tia l value of some of th e  models. To do 

so, we com pare th e  m ethods in th ree  sm all sim ulation studies. Because of th e  large 

num ber of possible m odels, only a  sm all subset of m odels were evaluated. Included 

are  th e  full and  reduced versions of [pTAT'], [S j], [PjsT A T '], [PjT A jT'], and th e  

sim ultaneous and  tw o-step versions of th e  la ten t class location m odel.



59

S i m u l a t i o n  3

In  th is  sim ulation , observations of five b inary  variables and  two continuous 

variables were generated  from  each of two groups conform ing to  a  la ten t class location 

m odel. We take th e  variables to  be independen t of group m em bership  conditional 

on la ten t class m em bership; th e  la ten t classes, however, are  d istrib u ted  differently 

betw een th e  groups. W e tak e  P r(C iJG 1) =  .3, P r ( C i JG2) =  .7, P r ( C 2JGi ) =  .7, and  

P r ( C 2JG2) =  .3. T he  response probabilities of th e  b inary  variables, conditional on 

la ten t class, are, in la ten t class I , Trii  =  .!,Tr2i =  .2, TTg1 =  .3, T^i =  .4, and  Tr51 =  .6. 

In  la ten t class 2 th e  conditional response probab ilities are Tri2 =  .9,Tr22 =  .8, Trs2 =  -7, 

Tr-I2 =  .6, and  Trs2 =  -5. T he  conditional m eans of th e  continuous variables are (15,20) 

in class I  and  (20,15) in class 2. T he conditional covariances are

For each o f 100 replications, n , observations from  group i were used to  construct 

a  classifier (n* was varied from  50 to  1000). T he  classifiers were assessed by applying 

them  on 100 independently  generated observations (test set). Average error rates 

over th e  100 replications are given in tab le  9. As should be expected, th e  la ten t class 

location  m odel perform ed best, because th e  d a ta  were generated  from  th a t  m odel. 

A t rii = 50, th e  LCLM  had an  average erro r ra te  of 29%. T he  2-step LCLM  had 

an  average error ra te  of 32%. T he next best m ethod  had  an  error ra te  of 36%. 

T his exam ple dem onstra tes th a t  th e  la ten t class location m odel can be useful for 

certa in  d a ta  sets, especially if in te rp re ta tion  of la ten t classes is im p ortan t. Sim ilar 

results were ob tained  in sim ulations w ith  b e tte r  separated  groups, as dem onstra ted

and
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M odel rii — 50 rii =  250 Tii =  1000

full [p T A r7] .42 .36 .32

reduced [p F A r'] .36 .32 .32

full [S i] .43 .36 .32

reduced [S i] .36 .32 .32

full [PisF A F '] .42 .35 .31

reduced [pisF A r '] .36 .32 .31

sim ultaneous LCLM .29 .29 .29

2-step LCLM .32 .31 .29

T able 9: Average percent m isclassifications for Sim ulation E xperim ent 3. D a ta  were 

generated  from  th e  la ten t class location m odel (LC LM ).

M odel Tiji — 50 Tij = 250 rii =  1000

full [pFA F'] .23 .15 .13

reduced [pFA F'] .14 .12 .12

full [S i] .23 .15 .12

reduced [S i] .15 .13 .12

full (PisF A F '] .23 .13 .12

reduced [PisF A F '] .15 .32 .31

sim ultaneous LCLM .11 .11 .11

2-step LCLM .13 .12 .12

T able 10: Average percent m isclassifications for Sim ulation E xperim ent 4. D a ta  were 

generated  from  th e  la ten t class location m odel (LCLM ).

in S im ulation  4.

S i m u l a t i o n  4

C onditions for S im ulation 4 were identical to  those for Sim ulation 3, except 

th e  conditional la ten t class d istribu tions are  given by P r(C iIG i)  =  .1, P r (C iIC 2) =  

.9, P r ( C 2|C i)  =  .9 and  P r (C21G 2) =  .1, which leads to  b e tte r  separated  groups. 

Average m isclassification ra tes are  given in T able 10. Again th e  la ten t class m odels 

perform  best. T here is n o t m uch difference betw een th e  different covariance m odels, 

p robab ly  because th ere  were only two continuous variables in these  exam ples. U sing 

reduced m odels can im prove classification perform ance for sm all d a tase ts .



61

S i m u l a t i o n  5

In  th e  next sim ulation , a  different type  of d a ta  s tru c tu re  was exam ined. 

O ne hundred  observations of two b inary  an d  five continuous variables were generated  

from  each o f tw o groups, as follows. F irs t, observations were generated  from  two 

m ultivaria te  norm al populations w ith  m eans (0 ,1 ,4 ,4 ,4 ,4 ,4 )  and (1 ,0 ,6 ,6 ,6 ,6 ,6 ) ,  

and  covariance m atrices

S 1

/ 2 1 1 1 1 1 l \  

1 2  1 1 1 1 1  

1 1 1 1 1 1 1  

1 1 1 2  1 1 1  

1 1 1 1 3  1 1  

1 1 1 1 1 4  1 

\  i  i  i  i  i  i  5  y

a nd

S 2

/ 2 1 1 1 1  I l \

1 2  1 1 1 1  I

1 1 3 3 3 3 3

1 1 3 6 3 3 3

1 1 3 3 9 3 3

I  I  3 3 3 12 3

 ̂ I  I  3 3 3 3 15 j

As expected, th e  p roportional covariance m odel (bo th  full and  reduced form s)

perform ed best. Its  average error ra te  over 100 replications was 19%. T he average

error ra te  for th e  location m odel was 28%. T he  quadra tic  location  m odel had an 

error ra te  of 24%, and  th e  C PC  m odel had  an average error ra te  o f 23%. T he full

and  reduced m odels had  nearly  identical perform ance, probably  because there  were

only two b inary  variables.

D i s c u s s i o n

In previous research, th e  location  m odel has been shown to  be  a  powerful ap 

proach to  classification w ith  m ixed-m ode d a ta . Som etim es, however, im provem ents



can be  m ade if th e  hom ogeneous covariance assum ption  is relaxed. T his chap ter 

described approaches to  relaxing th e  hom ogeneous covariance assum ption  while esti

m a tin g  as few p a ram eters  as possible. In  add ition , la ten t class location  m odels were 

considered as a lterna tives to  th e  usual la ten t class form ulation.

6 2
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C H A P T E R  4

M i x t u r e  M o d e l  C l u s t e r i n g  o f  C o r r e l a t e d  

H i g h - D i m e n s i o n a l  C o u n t  D a t a

R outine  collection of high-dim ensional d a ta  has been fac ilita ted  by im prove

m ents in analy tical in strum en ta tio n . For exam ple, au to m ated  m ass spectrom eters 

now allow analy tical chem ists to  rapidly  collect m ass spectra  w ith  hundreds of vari

ables. Such in stru m en ta tio n  has spurred  th e  developm ent of m ethods for analyzing 

high-dim ensional da ta .

O ften , th e  analysis is concerned w ith  p artition ing  th e  d a ta  in to  n a tu ra l group

ings. A p aram etric  approach to  th is  p a tte rn  recognition problem  requires th a t  d istri

b u tio na l assum ptions be m ade ab ou t observations w ith in  each group. Suppose th a t  

an  observation x  has arisen from  exactly  one of g d is tinc t groups, denoted Gi, .. .  ,Gg, 

where th e  density  of an observation from  Gi is ^ ( x ;  VPj). T he p a ram eter vector is 

generally  unknow n. If  no th ing  is known a  priori ab o u t group stru c tu re , th en  inference 

ab o u t m ust be m ade ind irectly  by reference to  th e  density  of a  random ly selected 

observation, which is given by th e  m ix ture  m odel

9

/ ( x ) =  %
i—1

w here th e  % are m ixing param eters which give th e  relative size of Gi (0 <  % <

I; E L i *  =  I) .

L et Xft denote th e  hth observation. T he  posterior probab ility  th a t  x ft belongs

T j ( x f t ; * )  =  Pr(G < |xft, * )  =
£ ? = i * 0 z(xft; » z ) ’

to  Gi is
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w here #  =  (771, i t ' i , . . . ,  ^ rfl) contains all unknown param eters.

If m isclasification costs are equal, th e  o p tim al classification rule assigns X& to  

th e  group for which th e  posterio r p robab ility  is g reatest. T h a t is, th e  classification 

rule is

In practice, th e  p a ram eters  Tji and  ( i  =  can be estim ated  from  th e

sam ple X i , . . .  ,Xra which is to  be clustered, and  th e  estim ates su b s titu ted  in (4.1) for 

classification.

For continuous d a ta , often it is reasonable to  assum e m ultivaria te  norm al group 

conditional densities. W hen th e  d a ta  are high-dim ensional, restric tions on th e  covari

ance m atrices often are  necessary to  ob ta in  efficient p aram eter estim ates. A com m on 

approach  is to  take  th e  variables to  be independen t w ith in  groups (i.e., restric t th e  

covariance m atrices to  be diagonal).

In  m any app lications th e  d a ta  are counts. If th e  counts are no t too  sm all, 

th en  it m ay be possible to  transform  th e  variables so th a t  th ey  are approxim ately  

norm ally  d is tribu ted , and  th en  use G aussian  m ix ture  m odels or o ther continuous 

variable  m ethods. For exam ple, th e  Anscom be transform  of a  random  variable X  is 

given by

If Ar ~  Poisson (A), and  A is large, th en  Y  is approxim ately  norm ally  d istribu ted  w ith  

variance I  (S tarck, M urtagh , and B ijaoui, 1998, p. 49). W hen A is sm all th e  tra n s 

form ed variables are  no t approxim ately  norm al, and  the  group conditional densities 

should be based on count d istribu tions (e.g., Poisson, negative binom ial). M ulti

varia te  count d istribu tion s are com plicated. Fortunately , in m any applications in th e  

physical sciences -  for exam ple, secondary ion m ass spectrom etry  (SIMS) - th eo re tica l 

and  em pirical evidence suggests th a t  th e  variables (i.e., counts) are  independent and

assign x h to  Gi if m ax  Ti (Xh; SEr) =  Ti (xh; # ) . (4.1)



6 5

Poisson d is trib u ted  under “ideal conditions.” Thus, th e  independence m odel, also 

called th e  la ten t profile m odel in th e  la ten t variable  m odels lite ra tu re , is a  good 

s ta r tin g  p o in t for analyzing sparse count d a ta .

In real d a ta  sets, however, th e  independence assum ption often is no t plausible, 

because d a ta  are collected sub ject to  m easurem ent error. For exam ple, if th e  sensitiv

ity  o f th e  count de tecto r varies from  run  to  run , then  th e  m ultiv aria te  counts will ten d  

to  vary  together, depending  on th e  sensitiv ity  of th e  count detector. T he sensitiv ity  

o f th e  count de tecto r can be th o u gh t of as an  unobservable, or la ten t, variable, which 

induces a  correlation  betw een th e  variables. T his varia tion  in th e  d a ta  generation or 

d a ta  recording m echanism  is known as instrumental interference.

T h e  idea of a  la ten t variable  inducing correlations betw een observable variables 

is applicable  to  o ther fields as well. For exam ple, in m edical applications, a  la ten t 

variable  representing  severity o f illness m ay induce correlations in variables describing 

sym ptom s of p a tien ts  from  th e  sam e diagnostic class. In th e  absence of a gold s ta n 

d a rd  for p a tien t diagnosis, la ten t class m odels have been used to  classify pa tien ts in to  

d iagnostic  groups. W ith in  a  la ten t class (or d iagnostic group), variables describing 

sym ptom s are  assum ed to  be independent. B u t sym ptom  variables for pa tien ts in 

th e  sam e diagnostic group often are correlated  (thus v io lating  th e  la ten t class m odel 

assum ptions), and frequently  th is  correlation  can be “explained” by a  unidim ensional 

la te n t variab le  (which m ight be  in terp reted  as “severity of illness” ). To classify pa

tien ts  in to  one of two groups -  diseased or no t diseased -  for som e p articu la r disease, 

U bersax  (1993, 1999) m odified th e  two-class la ten t class m odel by in troducing  a  con

tinuous la ten t variable z, nom inally  in terp reted  as “severity of disease,” so th a t  th e  

sym ptom  ind icato rs are assum ed independent conditional on b o th  th e  la ten t class 

and  th e  continuous la ten t variable. T he  continuous la ten t variable  is no t d istribu ted  

th e  sam e in b o th  groups —  th e  m ean of th e  la ten t variable in th e  diseased group
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will be larger because pa tien ts  in th e  diseased group are  assum ed to  be m ore severely 

ill th a n  those  in th e  undiseased group. T he  m odified la ten t class m odel, known as 

th e  loca ted  la ten t class m odel, is a  special case of th e  underly ing variable m ix ture  

m odel proposed by E v eritt (E veritt, 1988; E v eritt and  M erette, 1990; Ubersax, 1999). 

U bersax (1993) showed th a t  pa tien ts  can be m ore accurately  classified by using th e  

located  la ten t class m odel th a n  by using th e  conventional two-class la ten t class m odel.

In  th is  chap ter we take  a  related  approach  for clustering low count d a ta . We 

m odify th e  Poisson la ten t profile m odel to  ad ju s t for v iolations of th e  independence 

assum ption  by in troducing  a  la ten t variable  to  “explain” th e  w ithin-class correlations. 

We m otivate  th e  m odel w ith  a  SIMS app lication , which is described in th e  nex t sec

tion . For th e  m odels described in th is  chap ter, unlike th e  located  la ten t class m odels, 

it is assum ed th a t  th e  la ten t variable has th e  sam e d istribu tion  in all groups. T hen  

th e  resu lting  la ten t variable  m ix tu re  m odels are  described, and  estim ation  details 

given. T he  chap ter concludes w ith  sim ulated  exam ples, and suggestions for fu tu re  

research.

A n  E x a m p l e  f r o m  S e c o n d a r y  I o n  M a s s  S p e c t r o m e t r y

Secondary ion m ass spectrom etry  (SIMS) has found w idespread use in th e  

physical and  biological sciences. I t is a  p articu la rly  powerful technique for chem ical 

analysis of surfaces and  for identifying chem ical constituents in unknow n sam ples. 

M any recent advances in SIMS have been driven by dem ands o f th e  sem iconductor 

industry . In  th e  1996 O lym pic G am es, SIMS was used to  de tec t anabolic steroids 

and  o th er illegal substances in th e  urine of Olympic ath letes. SIMS is so widely 

used because it provides detailed  m olecular inform ation  ab o u t surfaces and  unknown 

sam ples. In  principle, it  provides unam biguous identification of unknow n chem ical
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species. T he goal is to  provide a  “fingerprin t” profile of unknow n species. For species 

identification , th e  profile m ight be m atched against a  lib ra ry  o f “fingerprint” profiles 

for known species. O ther techniques, by com parison, d o n ’t  provide as m uch de ta il 

a t  th e  m olecular level, and  usually  don’t  lead to  unam biguous identification. N ext 

we describe, briefly, th e  fundam entals of SIMS, giving ju s t enough deta il to  explain  

how sparse count d a ta  m ight be obtained. Benninghoven (1994) and Benninghoven, 

H agenhoff and Niehuis (1993) provide excellent reviews of SIMS capabilities and 

applications.

SIMS is a  destructive  technique, though  th e  destruction  is usually  slight —  

typically  only th e  to p  m onolayer (i.e., th e  to p  layer of m olecules) is destroyed. A 

sam ple is processed as follows. T he sam ple is m ounted under an ion gun, which 

bom bards th e  sam ple w ith  pulses of ions, called p rim ary  ions. T his bom bardm ent 

creates a  “collision cascade,” in which th e  m olecules in th e  sam ple are  decom posed 

in to  n eu tra l particles, positively charged ions, and  negatively charged ions. T he vast 

m ajo rity  of th e  particles a re  neu tra l: typically  only IO-6 — IO-2 of th em  are em itted  as 

ions. T he  em itted  ions are  called secondary ions. T he neu tra l particles sp u tte r away, 

b u t th e  secondary ions are  counted, using an  ion detecto r designed to  a ttra c t  e ith er 

th e  positively charged ions or th e  negatively charged ions. F u rther, th e  secondary 

ions are  separa ted  according to  th e ir  a tom ic m ass. T he result of th e  analysis is a  

vector o f secondary ion counts, one count for each atom ic m ass u n it (or am u). T he 

vector of counts —  often graphically  displayed as a  spectrum  of peaks —  provides 

a  “fingerprin t” profile of th e  unknown sam ple. T he dim ension of th e  secondary ion 

count vector depends on th e  com plexity of th e  sam ple. For exam ple, for a sam ple of 

pure  w ater (H2O), positive ion counts will be observed only a t  I  am u (H+), 16 am u 

(O + ), 17 am u (OH + ) and  18 am u (H2O + ). For m ore com plex sam ples, a  larger vector 

is required  to  cap tu re  th e  “fingerprin t” of th e  sam ple.
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In surface science applications, th e  analy st usually is in terested  only in th e  

upperm ost m onolayer of a  surface. T his lim its th e  num ber of surface m olecules th a t  

can be analyzed if th e  surface a rea  of th e  sam ple is sm all (for exam ple, in SIMS 

im aging app lications -  w here a  separa te  spectrum  is collected for each pixel -  th e  

surface a rea  is frequently  less th a n  one square m icron if high la te ra l resolution is 

required). T he  sm all num ber o f m olecules available for analysis, com bined w ith  th e  

relative scarcity  of secondary ions em itted  p er m olecule, m ay lead to  “fingerprin t” 

profiles w ith  very low counts (Schweiters, et. al., 1991). W hen th e  counts are sm all, 

it  often is n o t possible to  transform  th e  variables to  approx im ate  norm ality  (using, 

for exam ple, th e  Anscom be transfo rm ation ). D iscrete d istribu tions should be used 

instead.

A driaens and  A dam s (1991) found th a t  in re p e a t applications o f SIMS to  th e  

sam e sam ple, ion counts are approxim ately  Poisson d istrib u ted  and  independent. 

Thus, th e  Poisson la ten t profile m odel is a  reasonable s ta rtin g  po in t for c lustering a  

set o f SIMS spectra . Let x h = (Xyl , . . . ,  Xptl)' denote th e  collection of ion counts (i.e., 

th e  m ass spectrum ) for th e  hth observation. In  Gi, we take Xjfl ~  Poisson(Ajj). For g 

groups, th e  Poisson la ten t profile m odel is given by

/ ( X1) (4. 2)
i= l j = l  x jh -

T he Poisson param eters Aj =  (AjI , . . . ,  Ajp)' represent th e  pure spectrum  for th e  ith 

chem ical class. For a  sam ple of n independent observations, X 1 , . . .  , x n , th e  unknown 

m odel param eters  {%} and  {A y} can be estim ated  by th e  m ethod  of m axim um  like

lihood using th e  FM  algorithm  (M cLachlan and  K rishnan, 1997; W illse and Tyler, 

1998).

T h is m odel works well when th ere  is no interference. In a  SIMS im aging 

application , however, W illse and  Tyler (1998) found th a t  topograph ic  differences 

over th e  a rea  analyzed m ay induce a  correlation  am ong counts from  th e  sam e pixel.
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Typically, sam ples closer to  th e  p rim ary  ion gun (i.e., sam ples a t a  “high topographic 

level” ) reg ister larger counts th a n  sam ples fa rth e r away from  th e  p rim ary  beam  gun 

(i.e., sam ples a t  a  “low topograph ic  level” ), because th e  p rim ary  ions strike th e  closer 

sam ples w ith  m ore velocity, em ittin g  m ore secondary ions.

If  to pograph ic  varia tion  is no t accounted for, chem ical effects m ay be con

founded w ith  topograph ic  effects, and  th e  tru e  chem ical classes m ay be poorly  sepa

ra ted . W e can account for th e  topograph ic  varia tion  by in troducing  a  la ten t variable  

z, which serves as a  proxy for th e  unobserved “topograph ic  level.” We assum e th a t  th e  

Poisson pa ram eter Ay depends on th e  la ten t variable  z  th rough  th e  log link (M oustaki 

and  K n o tt, 1997)

log Ay =  Qfy +  fiz. (4.3)

Because th e  la ten t variable  is m easured on an  a rb itra ry  scale w ith  a rb itra ry  location, 

we take z\Gi ~  N (0 ,1). In itially , we assum e th a t  z  has th e  sam e log-additive effect 

on all p variables -  th a t  is, th a t  z  is a  random  baseline. T hus, th e  coefficient on z 

does n o t depend on variable  or group. M odel (4.3) shall be referred to  as th e  random  

baseline m odel. In th e  nex t section we will consider m ore general m odels, which allow 

th e  slope of th e  conditional response to  vary betw een variables a n d /o r  groups.

U nder m odel (4.3), we can remove, or annih ilate, th e  effect of unobserved 

topography  by s tand ard iz ing  th e  d a ta  p rio r to  clustering. Let Mfl =  ^ = i  Xjh be th e  

to ta l  count for observation h. Then, conditioning on yields

XfcIGi , z, M h = m h ~  M ultinomial(mfc, Tri)

w here Tri =  (TriI, • • •, Trip)' is th e  vector of m ultinom ial probabilities, which represent 

th e  standard ized  pure spectrum  for th e  ith chem ical class, w ith

_  Ay _  e x p ( Q y  +  p z )  _  e x p  ( Q y )

7î  ~  E f= I X i  ~  ELi ex p (Qii + pz) ELl Sxp(Qii) ‘
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N ote th a t  th e  conditional d is trib u tio n  does n o t depend on z, so c luster analysis cor

rected  for random  baseline can be accom plished by fitting  a  m ix tu re  of m ultinom ial 

d istribu tion s, which do n o t depend on th e  la ten t variable z. For exam ple, if  we take 

P r(G j|M /l =  rrih) = P r(G j) =  ?%, th en  th e  m ix tu re  m odel would be

9 TM. t P
f(xh \Mh = m h) = J2 Vi— ]— f t  (4-4)

Z=I x Ih- - - - -Eph- j=i

T his approach  was successfully applied by W illse and  Tyler (1998) to  a  SIMS im age 

w ith  known chem ical com ponents (w ith  m odification for spa tia l correlation).

T he  m ultinom ial approach  successfully removes th e  topograph ic  effect in th e  

random  baseline m odel (4.3), b u t in fo rm ation  is lost in th e  approach. In  m any ap 

p lications w ith  no interference, different chem ical com ponents can be distinguished 

based solely on th e ir  to ta l SIMS ion counts. In  th a t  case the  assum ption  Pr(Gi\Mh — 

rrih) = Pr(Gi) is unrealistic . In form ation  ab o u t to ta l counts is lost, and  th e  com po

nents m ay be m ore difficult to  distinguish . If  z is d istribu ted  th e  sam e in all groups, 

can b e tte r  group separa tion  be  a tta in ed  by using m odel (4.3) d irectly  ? T his question 

is em pirically  investigated  la te r  in th is  chapter.

Som etim es th e  form  of interference is m ore com plicated th a n  th e  random  base

line m odel. A lthough there  m ay be ju s t one source of interference, different variables 

m ay respond differently to  th a t  interference. In  th e  next section we extend m odel 

(4.3) to  hand le  th is  m ore general case.

M i x t u r e s  o f  P o i s s o n  L a t e n t  V a r i a b le  M o d e l s

Suppose th a t  th e  correlations betw een th e  Poisson variables in Gi are induced 

by a  single la ten t variable z, so th a t ,  conditional on z, th e  variables are  independent. 

T he  la ten t variable  z is taken  to  be s tan d ard  norm al in all groups. Following th e  

developm ent of generalized linear m odels (M cCullagh and Nelder, 1989) and  th e
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general theo ry  o f la ten t variable  m odels (B artholom ew , 1987), for th e  response on 

th e  j th variable  in th e  ith group, th e  la ten t variable  is re la ted  to  th e  Poisson m ean 

p a ram ete r Xij th rough  th e  (canonical) log link:

m odel w here th e  conditional responses of th e  m anifest variables {xj}  given th e  la ten t 

variable  z  conform  to  th e  Poisson d istribu tion , w ith  m ean p a ram eter Ajj- given by 

(4.5). M oustaki and  K n o tt (1997) review a  m ore general class o f la ten t variable 

m odels for conditional responses conform ing to  th e  exponential fam ily. T hey call th e ir  

class of m odels generalized la ten t t ra i t  m odels. These m odels are  generalizations of 

fac to r m odels for continuous observed d a ta  and  o f la ten t t r a i t  m odels for categorical 

observed d a ta .

N ote th a t  z  is m easured w ith  a rb itra ry  direction: in th e  SIMS exam ple z  

could increase w ith  increasing topograph ic  level or w ith  decreasing topograph ic  level 

-  th e  substan tive  conclusion would be th e  sam e. If we replace z  w ith  —z, th en  

log Xij (z) = ctij — Pijz. T hus, changing th e  sign of all the  yields a  substantively  

equivalent m odel.

T he  overall density  for a  random ly selected observation w ith  unknown group 

m em bership  is

log Aij (z) =  Q y  +  f i i j Z . (4.6)

T hen , in Gi

(4.6)

w here <f)(z) is th e  s tan d ard  norm al density. T he  density  in Gi is a  la ten t variable

9 z*oo P

/ ( x ) = £ % /  n
exp(-Xij (z))Xlj( z p

(4.7)
i=l J~00 j= l

which is a  m ix ture  of Poisson la ten t variable  m odels. F in ite  m ix tures of factor analysis 

m odels have been developed for continuous (MVN) observable d a ta  (Yung, 1997).
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T he located  la ten t class m odel (U bersax, 1993) is a  special ty p e  of m ix ture m odel 

for b inary  and  ordinal observed variables. F in ite  m ix tures o f la ten t t ra i t  m odels have 

n o t previously  been developed.

O th e r m odels can be constructed  by holding th e  slope p a ram eter faj invariant 

across variables a n d /o r  groups. We will consider th e  following m odels.

o [a.ij+Pijz] T his is th e  un restric ted  la ten t t r a i t  m odel, w here th e  slope p aram eter 

is free to  vary across variables and  groups.

o [aij + pj z] In  th is  m odel th e  slope p a ram eter of th e  conditional response is 

invarian t to  group. .

o [aij + Piz] In  th is  m odel th e  slope p a ram eter of th e  conditional response is th e  

sam e for all variables w ith in  a  group, b u t th e  p aram eter varies between groups. 

T h is is a  type  of random  baseline m odel, w here all variables w ith in  a  group are 

affected equally  by th e  interference.

o [a^ +  Pz] R andom  baseline m odel. T he  conditional responses on all variables 

in all groups are  affected equally by th e  interference.

o [a^] L a ten t profile m odel. T he variables are independent w ith in  groups.

I t  is useful to  recognize th e  hierarchical relationships betw een these classes of 

m ix tu re  m odels. W hen  m odels are nested for a  fixed num ber of groups <?, they  can 

be  com pared using likelihood ra tio  tests. Table 11 gives th e  degrees of freedom  in th e  

likelihood ra tio  te s ts  (where applicable) for com parison of these  five models. If L 1 

and  L 2 are  m axim ized log-likelihoods for m odels M 1 and M 2, w ith  M 1 C M 2, then  

th e  likelihood-ratio  te s t s ta tis tic , given by

T  =  —2(L 1 — L 2)

is asym pto tically  d is trib u ted  as X2 (df) under th e  null hypothesis th a t  M 1 is true.
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M odel \(Xij] [(Xij "f" Pz] [aij +  PiZ] [(Xij “H Pjz] [Ojj 4" Pij z]

K-]
[Oiij +  pz] 

Iaij +  piz] 

[a^ +  Pjz] 

Iaij +  Pij z]

-  I g p pg
-  g — I p — I pp — I

NA p(g -  I)

5 ( P -  I)

T able 11: Degrees of freedom  in likelihood ra tio  tes t com parisons of some nested  

m odels, w ith  p response variables and g groups.

Because we take z\Gi ~  N (0 ,1) Vi, th e  slope param eter in th e  random  baseline 

m odel can be in te rp re ted  as a  variance com ponent param eter. T h a t is,

so th e  m odel [o-y +  /3z\ could be w ritten  as +  z], where z\Gi ~  N (0,/?2). T he 

m odel [aij + faz] has a  sim ilar random  effects in terp re ta tio n . T he  la ten t profile m odel 

[(Xij] also has a  random  effects in te rp re ta tio n , w here the  variance o f th e  la ten t variable 

is tak en  to  be 0.

In  th e  previous section it  was shown th a t  in the  random  baseline m odel [a^ + 

f3z] th e  effect o f th e  la ten t variable z can be an n ih ila ted  by condition ing  on sum s of 

th e  count vectors. T h is type  of ann ih ila tion  also is possible for th e  m odel [ay +  faz], 

b u t not for th e  m odels [tty +  fyz] and  [a^ +  Pij z].

M o m e n t s

T he first and  second m om ents of th e  observed variables can be obtained  as 

follows. W ith in  group Gi,

E (X i IGi) =

= B[Ay(Z)|Gi]

— E[exp(aij +  Pij z) \ Gi\ 

=  exp (tty  +  Zfj /2 ) ,
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— M^yG2O + (̂ ) 2Î z]

=  5  [exp (tty  +  Pij z) +  exp(2tty  +  2 Pij z)\G ̂ E (X j IGl)

=  exp (tty + P̂ j / 2 )  + exp(2tty + 2/?J)

=  E (X , |G , )  +  E (X y IQ )^  e x p % ) ,

E ( X j X t I Q )  =  E [ E ( X j X t |Q , z ) ]

=  E[A y(z)A it ( z ) |Q ]

= E[exp(tty + Pijz )  exp(ttjfc +  Afc^)|Q ]

=  exp (tty  +  aik +  (Pij + Pik)2/2)

=  E ( X jI Q ) E ( X fcIQ ) Bxp(PijPik).

T hen

V o r (X j IQ )  =  JS(JTjfIOi) -  E ( X j I Q ) 2

= exp (tty + #j/2) + exp(2tty + /%)[exp(/%) -  1]

=  E (X jIO i)  +  E ( X j |O i) " [ e x p % .)  -  1]

and

C o n (X j ,X fc |O i)  =  E ( X j X f c |O i ) - E ( X j |O i ) E ( X f c |O i )

=  E (X j|O i)E (X fc |O i)[ex p (A jA t) -  I].

T he Poisson la ten t variab le  m odel is a  ty p e  of overdispersed Poisson m odel. T he  

dependencies betw een th e  variables are controlled by th e  A / s .  T he  variables X j and  

Xfc are independent in Oj if  and  only if A j =  O or A t =  0. N ote th a t  X j and X k w ill be 

negatively correlated  in Gi if A j and  Afc have different signs. In  th e  random  baseline 

m odels, A j and  Afc are forced to  have th e  sam e sign by th e  restric tion  A j =  Afc =  A  

(or P). In th e  un restric ted  m odel [Oij +  A jz] we m ight wish to  force th e  A j’s to  have
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th e  sam e sign w ithou t forcing them  to  be  equal. As previously discussed, changing 

th e  signs of all th e  /% /s yields a  substan tively  equivalent m odel, so w ithou t loss of 

generality  we consider how to  force th e  /% /s to  all be positive. A  straightforw ard 

approach  is to  reparam eterize  /%j as /%, =  exp(oy), thus forcing it  to  be positive. 

T h is m odel will no t be pursued  here, b u t a  m ethod  for e stim atin g  th e  param eters 

m ight be derived by paralle ling  th e  approach  to  estim ating  [<% +  (3ijz\.

T he unconditional m om ents are

E (X 1) = ' Z i hE (X j )Gi)
i=l

9

= Y ,  rIi e x p (a i:/ +  /3§/2),
t=i

Var(X1) = ■£ Th(Var(Xj )Gi) + (E(X1)G1) -  E (X j ))2]
i=l

Cov(Xl t X k) =  ^  ^ [ ^ ( X , , X tIG i) +  (E (X j IGi) -  E (X j)H E (X tIG i) -  E (X fc))].
1 = 1

A l t e r n a t i v e  P a r a m e t e r i z a t i o n  o f  R a n d o m  B a s e l i n e  M o d e l s

If  th e  random  baseline m odel +  /3z] is reparam eterized  by tak ing  a*j =  

Bxp(CKy) and  z* =  exp(/3z), th en  th e  Poisson p aram eter is a  linear function of th e  

transfo rm ed  la ten t variable  z*: Ay(z*) =  ck^-z *, where z*\G{ ~  lognorm al(0, ^ 2). A 

sim ilar in te rp re ta tio n  can be given to  th e  m odel [tty +  /%z], w ith  z* =  e x p (^ z ) , b u t 

n o t to  th e  m odels [cKy +  /%-z] and  [cKy +  /3z], because in these m odels th e  d istribu tion  

o f z* depends on th e  variable  indicator.

T h is param eterization  doesn’t  necessarily simplify th e  random  baseline m odels, 

because th e  in tegration  over th e  la ten t variable  in (4.6) is still analy tically  in tractab le . 

B u t, because th e  choice of la ten t d istribu tion  is largely arb itra ry , it  m otivates th e  

search for a  positive valued la ten t d istrib u tio n  which simplifies th e  in tegration .
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If we choose a  gam m a prior d istribu tio n  for th e  la ten t variable  instead  o f a 

lognorm al d istribu tion , th en  th e  in tegral over th e  la ten t variable  can be analy tically  

evaluated . Suppose \ j { z )  =  o-y-z, where, w ith in  Gi, z  has a  gam m a d istrib u tion  w ith  

m ean I and  variance 1/9:

Qe
h(z\Gi) =  exp(—0z), z  >  0.

I 6

T hen  th e  density  of th e  observed variables in Gi is

/•00 P
f t(x )  =  /  h(z\Gi)\[gi{xj\z)dz

j= i

=  r  p - '  e x P ( - f e )  f t (aiizYi e^ - ^ z )dz
I 0 J=I

/3̂  P foo __

=  F  I I t t  /  z  + m _ 1  e x P K 5  +  Z  < * > ] < * *
1 y j= i xr  JQ j

e> r » +ro * a g

r ,  (»  +  T  I , !  '
(4.8)

w here m  =  Y?j=\Xj and  o%. =  E j= i ^ y . T he  in tegration  in th e  last step can be 

perform ed by recognizing th a t  th e  in tegrand  is th e  kernel of a  gam m a d istribu tion . 

T he  density  (4.8) is a  negative multinomial d istribu tion , a  m ultivaria te  generalization 

o f th e  negative binom ial d istribu tion , w ith  m om ents given by

E (X j IGi) = ElE(Xj IGh Z)] = E(OijZlGi) =  Oij,

Var(Xj IGi) = E[Var(Xj IGh z)] +  Var[E(Xj \Gh z)]

= E(OijZlGi) + Var(OijZlGi)

2  1
=  O i i j + O i j - ,

E (X jX kIGi) = E lE(XjXklGh Z)] =  E ( ^ y a ifcZ2IGi) =  OijOik ^  +  I j  ,

and

G ou (X j,X fcIGi ) =  E (X jX fcIGi) -  E (X jjG i) E ( X fcIGi)
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=  ctijOCik

=  CHijaik
e'

Ciij a ik

T he p a ram eter 1/6 plays th e  sam e role as exp(/?2) - l  in th e  m odel [Oii+Qz]. M ixtures 

of negative m ultinom ial d istribu tions will n o t be considered in th is  paper, though they  

m ight be considered as an a lterna tive  to  th e  random  baseline m odels +  (3z\ and  

[oi%j +  Pjz\. We expect th e  two approaches to  yield sim ilar results.

C o m p a r i s o n  w i t h  N o r m a l  M o d e l s

I t is useful to  review norm al theo ry  m ethods th a t  have been developed for 

c lustering  d a ta  which have been d isto rted  by interference. In  fact, if  th e  counts are  

large, th e  d a ta  (perhaps following transfo rm ation ) m ight be adequate ly  m odeled w ith  

norm al m odels.

Suppose th a t  th e  observed variables X u . . . , X p are continuous, and  norm ally  

d is trib u ted  w ith in  a  group. T hen , in Gi, th e  one-dim ensional (i.e., one la ten t variable) 

random  baseline m odel can be  w ritten  as

x  =  a ,  +  I p P z  +  e  

z \G i^N {Q , l )

e\Gi ~  iV(0, # j ) ,  diagonal, C o v (z ,e |G ,)  =  0.

I t follows th a t

X IG i - ^ ( « * , / 3 %  +  ^ ) ,

w here J p =  I pI p. In th is  m odel, a  com m on approach to  ann ih ila tin g  th e  random  

baseline effect is to  center each observation, th a t  is, to  replace each observed w ith  

Xil — l p5;ft, where X ft =  ^ Yfj=i Xjh (Ge and  Sim pson, 1998). C entering  is analogous



7 8

to  condition ing  on to ta l counts in th e  Poisson m odel. T he m ean-centered variables 

are  norm ally  d is trib u ted  b u t no t independent, so a  finite m ix tu re  of independence 

m odels m ay n o t be adequate  for clustering.

A n a lte rna tive  approach  is to  fit a  finite  m ix ture  of fac to r m odels conform ing 

to  th e  (assum ed) interference p a tte rn . T his approach  allows for a  m ore general class 

of m odels th a n  th e  m ean-centering approach , which is som ew hat successful in ann ih i

la ting  th e  effect of th e  la ten t variable only when th e  slope p a ram eter @ is th e  sam e for 

all p variables. T he  fac to r analysis m ix tu re  m odel allows for a  variety  of assum ptions 

ab o u t th e  slope param eter, and  is easily generalized to  m ultiple la te n t variables. T h is 

approach  has m any sim ilarities w ith  th e  Poisson la ten t variable m ix tu re  m odel. T he  

general fac to r analysis m ix tu re  m odel is given by

9

2=1

where, w ith in  Q ,

x  =  Cxi +  B iZ +  e,

X is a  p  x  I vector of observed variables

Z is a  r  x  I vector of la ten t variables

O i i is a  p  x  I  vector o f unknown in tercep t param eters

B i is a  p  x  r  m atrix  o f unknow n factor loadings

ZjGri N (Zzi , $ i)

e\Gi N(O5^ ri), diagonal

Cov ( z ,  CjGri) - 0 .

T he w ith in-group density  of th e  observed variables is

X |G j ~  N (a i  +  B ji/,,
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T he m ix tu re  m odel (4.9) is no t identifiable w ith ou t im posing add itional re

stric tions. Yung (1997) considered th ree  types of restric tions which lead to  th ree  

classes of identifiable m odels.

1. In  th e  first class o f m odels, th e  “factor-to-variab le  tran sfo rm ation  m echanism ,” 

defined by and  B i , is taken  to  be th e  sam e for all groups. All group dif

ferences are  assum ed to  be generated  by differences in th e  la ten t d istribu tion . 

T hese assum ptions are  com m only m ade in regular m ultip le-group factor analy 

sis. In  th e  SIMS app lica tion  it is reasonable to  assum e th a t  th e  la ten t variable 

is d is trib u ted  th e  sam e for all groups, so th is  m odel is no t pursued  in th is paper.

2. In  th e  second class of m odels, th e  la ten t d istribu tions and  th e  factor loadings 

B i are taken  to  be th e  sam e for all groups. Only a*, and  possibly Tfi , vary 

betw een groups. T he  Poisson analog of th is  m odel is th e  m odel [oy +  f3jz\. If, 

in  th e  one la ten t dim ension case we m ake th e  restric tion  B  =  I j,/?, we ob ta in  

a  m odel sim ilar to  [otij +  f3z]. A nnih ila tion  by m ean-centering (in th e  norm al 

m odel) or conditioning on to ta l (in th e  Poisson m odel) is possible for [a^ +  pz] 

b u t not for [oiy +  j3jz\.

3. In  th e  th ird  class of m odels, th e  la ten t d istribu tion  is th e  sam e in all groups, b u t 

th e  factor-to-variab le  transfo rm ation  m echanism  is u n restric ted . The groups 

are  characterized by th e ir  factor-to-variable  transfo rm ation  m echanism s. T he  

Poisson analog is [o-y +  Pijz].

Yung described an  EM  algorithm  for estim ating  th e  p a ram eters  in these th ree  

classes o f m odels. He did no t consider th e  random  baseline restric tions ([ozy +  faz] 

and  [ozy + Pz]).
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In  th is  section, a lgorithm s are derived for m axim um  likelihood estim ation  of 

p a ram eters  for th e  Poisson la ten t profile m odel, th e  m ultinom ial m ix tu re  m odel, and 

th e  Poisson la ten t variable  m ix tu re  m odel.

E s t i m a t i o n

P o is s o n  M o d e l  =  [Xij]

M axim um  likelihood estim ates of th e  m ix ture  m odel param eters  can be ob

ta in ed  by tre a tin g  th e  unobserved group labels as m issing d a ta  and  applying th e  

EM  a lgorithm  (M cLachlan and  K rishnan , 1997). Let yh =  ( t / ^ , . .  .,Vgh)' be th e  g- 

d im ensional group ind icato r vector for th e  hth observation, so th a t  =  I if th e  Kth 

individual belongs to  Q .  T he vector is no t observed.

T he  com plete-data  log-likelihood for th e  sam ple X 1 , . . .  , X n  from  th e  Poisson 

independence m odel (4.2) is

n  g  (  P

+  Xih IogAy -  IogXjhI]
Ii=I i = l  (  j = l

T he EM  algorithm  is a  tw o-step procedure. In  th e  E -step  (E xpecta tion  step) we 

com pute Q = E f ( L c), where th e  expecta tion  is taken  w ith  respect to  th e  conditional 

d istrib u tio n  o f th e  unobserved d a ta  y h (h =  I , • ■ •, n) given th e  observed d a ta  and  

cu rren t p a ram eter estim ate  Because Lc is linear in th e  unobserved d a ta , th e  

expecta tion  is easily ob tained  by replacing each yih w ith  hi\h =  Tj (Xzl; # ) ,  where

is th e  posterio r probab ility  th a t  individual h belongs to  Gi.

In th e  M -step (M axim ization step), Q is m axim ized sub ject to  th e  constrain t

Z)f=i Vi = I- T he  resu lt is

I n - - I  71 -
Vi — ~  ^2, ^i|/i and  Ay =  — ^  hi\hXih. 

n h=i nrIi /1 = 1

(4.11)
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T he EM  algorithm  a lte rn a te ly  u p d a tes (4.10) and  (4.11). T he  procedure re

quires s ta r tin g  values for th e  ite ra tions. S ta rtin g  values can be ob ta ined  by random ly 

in itia liz ing  posterio r probab ilities r^x/j,; # )  uniform ly on (0,1), and  then  stan d ard iz 

ing th e  uniform  variates to  satisfy  Bf= i Ti (Xzl; # )  =  I for all h. I t is well known th a t  

log-likelihood surfaces for m ix tu re  m odels are often flat w ith  m any local m axim a, so 

th e  EM  algorithm  should be applied several tim es w ith  different s ta r tin g  p aram eter 

values to  increase th e  chance of ob ta in ing  global m axim a. C lassifications are  m ade 

on th e  basis of ^ (x ^ ; 4f).

M u l t i n o m i a l  M o d e l

In  th e  m ultinom ial m ix ture  m odel (4.4), th e  com plete-data  log-likelihood for 

th e  sam ple X 1, . . .  , X ti is

T he  E -step  is accom plished by replacing each w ith  ZziIti =  Ti (Xti) ’$ '), where

(4.12)

In  th e  M -step, we ob ta in

U n r e s t r i c t e d  L a t e n t  V a r i a b le  M o d e l  [(% +  /Sij-z]

E stim ation  of th e  m odel + /% z], described by (4.5) and  (4.6), is problem 

a tic  because in tegration  over th e  la ten t variable  z is required. Using G auss-H erm ite
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qu ad ra tu re , we approx im ate  th e  (stan d ard  norm al) d istrib u tio n  of th e  la ten t variable 

by a  finite d iscrete d istribu tio n

(  ^

y  ? f̂ K  J

w here Zk is th e  kth m ass po in t and  Wk is th e  corresponding probability . A particu larly  

elegant descrip tion  of G auss-H erm ite q u ad ra tu re  applied to  la ten t variable  m odels can 

be  found in Sam m el et. al. (1997). Using G auss-H erm ite q uad ra tu re , th e  m ix ture  

density  (4.7) is approx im ated  by th e  density

9  K

/ ( x )  =  5 3  5 3  Zk, * ) ,
2= 1 A =  I

where

g(xh\Gh * )  =  n
J = I  rcJ 1

M odel (4.13) is a  finite m ix ture  m odel w ith  gK  com ponents and  m ixing proportions

ViWk-

Let Vyl =  (vih,. . . ,  Vkh)1 be a  la ten t variable  ind icator vector for th e  hth obser

vation, so th a t  Ufcyl =  I if z =  Zk (i.e., if  sub ject h belongs to  th e  kth la ten t level). 

Sim ilarly, le t =  (yih,. . . ,  Vgh)' be th e  group ind icato r vector, so th a t  ^yl =  I if sub

jec t h is from  Gy. T he  unknow n param eters in (4.13) can be estim ated  by trea tin g  

th e  Vyl and  as m issing d a ta  and  using th e  EM  algorithm .

T h e  con tribu tion  of th e  hth observation to  th e  com plete d a ta  log likelihood is

lo g /(Xyl, Vy^yyl) =  Mg f ( y h) + log / ( x ft, Vfc|yA)

9 9  K  p

=  5 3  Vihiog% +  5 3 5 3 5 3  [ ^ ( ^  +  ^ z k) -  ex p ( ^ -  +  A j% )] .
2= 1 2 = 1  A = I j = I

T he com plete d a ta  log-likelihood is

n  g  n  g  K  p

L c =  5 3  5 3  m  lo g  ^  +  5 3  5 3 5 3  5 3  K a (^ -  +  A m )  -  e x p ( ^ i  +  PijZk) ] .
A = I  2 = 1  A = I  2=1 A = I  J = I

(4.15)

(4.13)

(4.14)
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In th e  E -step , we com pute Q = E^y(Lc), where th e  expecta tion  is taken  w ith  

respect to  th e  d is trib u tio n  of th e  unobserved d a ta  {v^, y ft} conditional on th e  observed 

d a ta  and  cu rren t p a ram eter estim ates In  th e  second term  in (4.15), we replace 

VkhVih w ith

hi\h  =  P r ( ^ j G i I x fc)
TOfefl(xfclgj ,Zfc,$)

Ef=i Ef=i fjiWkg(xh\Gi, zk, &) ’
(4.16)

w here 5 (XfcIGj j Zfc, * )  is defined in (4.14). In  th e  first te rm  in (4.15) we replace ?/jfc 

w ith  AiJfc =  P r(G j Ixfc) =  T i ( x fc; 4>) =  E fcL i h fcj|fc. T he  result is

n  9 ^ n  9  K  p ^

Q = J 2 1 2  h i \ h  ^ o g T J i  + Y j  J 2 Y .  Y l  h k i \ h [ x J h i a i j  +  PijZk) -  ex p (Qijj  +  PijZk)].
h=l 2=1 h=l 2=1 k=l j = l

n  n  n

~  ^ki  — 5 3  k̂i\h-i %kij = 5 3  %jhhki\h'
h=l / i = l  / i = l

A j is th e  expected  num ber of indiv iduals in G j , IVfcj is the  expected num ber of in

dividuals a t la ten t level z fc of G j , and  X fcjj- is average response of th e  j th variable a t  

la ten t level Zfc of group G j . T hen

9 9  K  p

Q  = Y  Ylogrj i + Y Y  Y f i k i j i a ij + PijZk) -  A fcj e x p ( Q j j  +  PijZk)].
i—l i = l  A;=I  j = l

In  th e  M -step, Q is m axim ized sub ject to  th e  constrain t E jLi % =  I- T his 

yields u p d a te d  m ixing pa ram eter estim ates

fji
Ni

n

T he param eters  Q j j  and Pij can be  u p d a ted  independently  of all o ther p a ram 

eters using th e  following N ew ton-R aphson procedure. Define Oij =  ( Q j j , /%)% and  

u fc =  ( l , z fc)'. T hen , for z =  I , . . .  , 5  and j  =  I , . . .  ,p,

C f =  C - H - 1ij Sij
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w h e r e

a n d

Sij = = YX xkij -  Nki e x p ( 0 'J.u fe)]u *
OV ij A = I

H 7;,- =
d2Q

d & M

-fv ^

-  =  -  J ^ N k i  G x p ( O i j U k ) U k U rk .  '

i j O U  ̂  A = I

R a n d o m  B a s e l i n e  M o d e l  Iaij +  fiz]

In  t h e  u n r e s t r ic t e d  m o d e l  Iaij + faz],  t h e  p a r a m e te r s  Ceij a n d  c a n  b e  

e s t im a t e d  w it h in  t h e  M - s t e p  in  g  s e p a r a t e  t w o - d im e n s io n a l  N e w t o n - R a p h s o n  o p t i 

m iz a t io n s .  T h e  E M  a lg o r i t h m  is  t h u s  c o m p u t a t io n a l ly  f e a s ib le  fo r  h ig h - d im e n s io n a l  

d a t a .  In  t h e  m o d e ls  w i t h  r e s t r ic t io n s  o n  /% , t h e  E - s t e p  is  p e r fo r m e d  j u s t  lik e  in  

t h e  u n r e s t r ic t e d  m o d e l ,  b u t  in  t h e  M - s t e p  t h e  N e w t o n - R a p h s o n  o p t im iz a t io n s  a r e  a  

l i t t l e  m o r e  c o m p l ic a t e d  b e c a u s e  t h e  H e s s ia n  m a t r ix  H  is  n o  lo n g e r  r a n k  tw o . T h e  

a lg o r i t h m s  a r e  s t i l l  c o m p u t a t io n a l ly  f e a s ib le ,  h o w e v e r ,  b e c a u s e  H  w i l l  b e  sh o w n  t o  b e  

“m o s t ly  d ia g o n a l .”

In  t h e  r a n d o m  b a s e l in e  m o d e l  [ctij+fHz], t h e  gp + l  p a r a m e t e r  v e c t o r  0 d e f in e d  

b y

0  —  ( / 3 ,  a n , . .  • ,  a i p , . . . ,  a ^ i , . . . ,  (Xgp)

is  u p d a t e d  in  t h e  N e w t o n - R a p h s o n  s t e p s

- n e w  =  6 o l d  _  H _ l g

w h e r e

dQ , „  
g  =  —^  a n d  H  =  

d0

d2Q

OOdO''

T h e  g r a d ie n t  v e c t o r  g  c o n t a in s  t h e  d e r iv a t iv e s

Q Q  K

«—  =  Y l xkij ~  Nki e x p (o ! ij +  Qzk)] (« =  I , . . . ,  <7 ; .7
OOij k=1

! ) • • • )  p)
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a n d

Q Q  9 K  p

=  I T  I T  5Z z^Xkij -  Nki exp (tty +  /3zfc)].
°P Z=IkZ=Ij=I I

I t is convenient to  p a rtitio n  th e  H essian m atrix  as

H = (  0,11 321 
V a 21 A 22

where an  is th e  scalar

d2Q 9 K p ~
M 2 N kiZ2k exp (Qfij- +  fjzk),
uP i=i k=i j=i

& 21  is th e  vector of cross derivatives

O2Q K

=  _  g  exp (a< ’ +

and  A 2 2  is th e  gp x  gp d iagonal m atrix  w ith  d iagonal entries

QpQ K
= - Y z ^ k i  e x p ( Q ; ij  +  p z k ).

k=l

N ote th a t ,  for z ^ z '  or j  7  ̂f ,

0,
BoiijdaiIj'

so th e  off-diagonal elem ents of A 2 2  are  all 0. T hus H  is a lm ost d iagonal, and can be 

inexpensively inverted  using th e  following well-known result for p a rtitio n ed  m atrices 

(see M orrison, 1990, p.67). Let

A  =
A u  A 1 2

A 21  A 2 2

T hen

A ” 1 =

/  ( A u  —  A 1 2 A 2 2  A 2 l ) " ^  — ( A n  —  A i 2 A 2 2 1 A 2 l ) _ 1 A i 2 A 2 2 1 \

V  —  A 2 2 1 A 2 l ( A i i  —  A i 2 A 2 2 1 A 2 l ) - 1  A 2 2 ^  +  A 2 2  A 2 l ( A n  —  A i 2 A 2 2 ^ A 2 l ) " ^ A i 2 A 2 2  /

provided th a t  th e  required inverses exist. For th e  random  baseline m odel [Qfij +  (3z\ 

we only have to  com pute th e  inverse of th e  diagonal m atrix  A 2 2 - We also need th e  . 

inverse of (A u  — A i 2 A ^ 1A 2 I), which in th is  case is th e  scaler an  — A ^ a 2 I-
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W i t h i n - g r o u p  R a n d o m  B a s e l i n e  M o d e l  [o^  +  Pi z]

A  s im ila r  N e w t o n - R a p h s o n  p r o c e d u r e  c a n  b e  a p p l ie d  t o  t h e  w it h in - g r o u p  

r a n d o m  b a s e l in e  m o d e l  [tty  +  Piz\, w h e r e  t h e  gp + g p a r a m e te r  v e c t o r  0 is

0 (Pli ■ • • j Pgi • • •) • • • i Qgp) -

In  th e  N ew ton-R aphson step

9 neW =  S0ld -  H -1 g ,

t h e  g r a d ie n t  v e c t o r  g  c o n t a in s  t h e  d e r iv a t iv e s

Q Q  K

5 Z \^kij -Nfci e x p (Oy +  (z =  I , . . . ,  p; j  =  I , . . . ,  p)

a n d

*=i

5Q  -RT P

Qpl = J l H  Zkftkij ~  Nhi e x p ( o y  +  PiZh)], (i = l , . . . , g ) .
k = l j = l

A s  b e fo r e , w e  p a r t i t io n  t h e  H e s s ia n  m a t r ix  a s

H  =
A n  A 12

\  Agi A 2 2  J ’

w h e r e  A u  is  t h e  <7 x  g d ia g o n a l  m a t r ix  w i t h  d ia g o n a l  e n tr ie s

qPq  k p ^
~ M 2  =  - H H  N k i 4  e x p ( o ! y  +  PiZk), 
° P i  Jfc=I j = l

A 1 2  i s  t h e  g x gp m a t r ix  o f  c r o ss  d e r iv a t iv e s

Q 2 Q  K

= ~ H  NkiZk ex p (o y  +  PiZh),
d pidaij &_i

w h e r e  3 ^ % -  =  O fo r  i' ± i,

A 2I =  A z12,

a n d  A 2 2  i s  t h e  gp x  gp d ia g o n a l  m a t r ix  w i t h  d ia g o n a l  e n tr ie s

q 2q  k

-E-T = - H ^ k i  e x p  ( t t y  +  PiZk).
aoiV jfc=i
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T he m atrix  inversion form ula for p a rtitio n ed  m atrices given in th e  previous 

section requires inverses for th e  m atrices A 22 and  A n - A 12A a21A 2I. A 22 is diagonal, 

and  inexpensively invertible. A 11 is d iagonal, and A 12A 221A 21 can be  shown to  be 

d iagonal, as follows. We can w rite  A 12 as

A 12 = .

Z a ;  O' . . .  OM

o ' a 2 0 '

< 0 ' O' • "  a g )

w here a , =  (an , ■ • •, aipY is a  p  vector con tain ing  th e  derivatives

d2Q

OpiOaij ’
U  =  I ,  ■■• , ? ) •

Let d  =  ((I1, , dg)' be th e  gp vector of d iagonal entries of A 221, w ith  d ; =  (da , • • •,

dipy  corresponding to  th e  p a rtia l derivatives for th e  ith group. T h en  A 12A 221A 21 is a  

g x g d iagonal m atrix  w ith  diagonal entries given by

p

5 3  dijaiji (* =  I) ■ • • j 51)-
J = I

T hus A 11 — A 12A 221A 21 is diagonal and  inexpensively invertible.

G r o u p  I n v a r i a n t  M o d e l  I a i j  +  / 3 j z ]

In  th e  group invariant m odel Iaij + Pj z], th e  gp + p p a ram ete r vector is

O  ( P h  ? P p i  ^ l l 1 • • •  i  ^ l p i  * * * 5 • j ^ g p )  ‘

T he grad ien t vector g  in th e  N ew ton-R aphson algorithm  contains th e  derivatives 

OQ K
o "  5 3 Ip'kij ~  Nki exp (Cty- +  PjZkYi (i — I , , g'i j  = I , . . .  ,p)
oaV k=i

OQ K 9
=  5 3  5 3  zk{xhij -  Nki exp(tty  +  PjZk)].

0Pj k=l 2=1

and
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T he Hessian m a trix  is

H  =  f  A n  A l2  }
V A 2i A 22 )  ’

w here A 11 is th e  p  x  p  diagonal m atrix  w ith  diagonal entries

d2Q K 9 ~
3 3 2  =  -  E I Z  N kA  exp (a y  +  Pj Zk),
°Pj k=i i=i

A 12 is th e  p x gp diagonal m atrix  w ith  d iagonal entries

d2Q K

a p 3  =  -  g  ^  e x p (a i i  +

A 21 =  A 12,

and  A 22 is th e  gp x  gp diagonal m atrix  w ith  d iagonal entries

q 2 q  k

3 -0 -  = - Y l jVki exp (tty  +  PjZk). 
cf0iV  fc=l

As in th e  m odel [Oij + PiZ], th e  m a trix  A 22 -  A 21A^11A 12 is diagonal. Hence 

H  is inexpensively inverted  using th e  inversion form ula for p a rtitio n ed  m atrices.

F a c t o r  S c o r e s

In th e  SIMS application , we are prim arily  in terested  in partition ing  th e  

observations in to  d istin c t chem ical classes. T he  factor scores are  of secondary interest. 

T here  m ay be occasions, however, when fac to r scores also are of in terest. For exam ple, 

in SIMS im age segm entation , th e  interference o r random  baseline m ay be caused by 

variations in topography. W e m ay be in terested  in creating separa te  topographic and 

chem ical m aps. T he  topograph ic  m ap would consist of predicted  fac to r scores a t each 

pixel. We will use, as fac to r score for th e  hth observation,

K  g

Zh = E(^zl )Xzl) =  ^  ] Zkhk\hi w here hk\k =  Y l
f c = l  i = l
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E x a m p l e s

Several sim ulations were run  to  com pare th e  perform ance of th e  Poisson la ten t 

profile m odel, th e  m ultinom ial m odel, and  th e  Poisson la ten t variable  m ixture m odels 

on p a ram eter recovery and  classification. T he  following discussion will consider th e  

perform ance of th e  m ethods on d a ta  generated  from  th e  random  baseline m odel +  

Pz]-> and  th e  un restric ted  la ten t variable  m odel [<% +  Pijz\. W e focus on differences 

betw een th e  m ethods in classification perform ance.

S i m u l a t i o n  6

In  Sim ulation  6 , 2000 observations were generated from  a  m ixture  o f two 

Poisson random  baseline m odels [tty +  f3z\ w ith  p  =  10 variables for various choices 

o f p. In all sim ulations th e  m ixing param eters were 771 =  p2  =  1 /2 , and  th e  in tercept 

p a ram eters  OLi — (c%, • ■ •, aip) were

« 1  =  (—3, —2, —1 ,0 ,1, —3, —2, —1 ,0 ,1), a.2 — (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) .

For each value of ft, 100 replications of th e  experim ent were perform ed. In  each 

rep lication , m isclassihcation ra tes were com puted for th e  Poisson la ten t profile m odel, 

th e  m ultinom ial m ix ture  m odel, th e  Poisson random  baseline m ix tu re  m odel [ct!y+/3z], 

and  th e  un restric ted  Poisson la ten t variable  m ix ture  m odel [tty +  /3yz]. In addition , 

th ree  continuous variable clustering m ethods were applied to  th e  da ta :

0  Mi'. K -m eans c luster analysis applied to  th e  raw  count d a ta .

0  M 2: K -m eans c luster analysis applied to  Anscom be transform ed d a ta .
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o M 3: T he  raw  count d a ta  are  A nscom be transform ed, th en  m ean-centered, th en  

K -m eans c luster analysis applied.

Cases were classified to  groups by m atch ing  th e  recovered groups (determ ined 

by posterio r p robabilities) w ith  known groups. Because of th e  a rb itra ry  labeling of 

th e  recovered groups, two m atchings are  possible (i.e., identify recovered group I w ith  

tru e  group I , o r identify  recovered group 2  w ith  tru e  group I). We always chose th a t  

m atch ing  which yielded fewest m isclassifications. T his in troduced  an op tim istic  bias 

in reported  error ra tes, b u t th e  bias decreases rap id ly  w ith  increasing sam ple size.

Average m isclassification ra tes are  repo rted  in Table 1 2 .

O bservations:

1. T he  Poisson la ten t profile m odel perform ed well for sm all /3 b u t broke down 

w ith  increasing /?.

2 . T he  th ree  m odels, +  f3z\, [o^- +  fcjz] and  th e  m ultinom ial, perform ed well 

for all values of /5, though  [a^ + (3z\, which is th e  correct m odel for these d a ta , 

perform ed slightly b e tte r  th a n  [o-y +  Pijz] and  th e  m ultinom ial m odel. These 

th ree  m ethods also perform ed significantly b e tte r  th an  th e  continuous variable 

m ethods, p robab ly  because th e  observed counts were so low.

3. O f th e  th ree  continuous variable m ethods, th e  A nscom be-transform , m ean- 

centered approach  perform ed best.

4. For all m ethods, m isclassification ra tes increased w ith  /?. For th e  m ultinom ial, 

[ofy +  fiz] and  [ozy +  Pijz), the  increase was very slight.
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/5 Poisson [Otii] M ultinom ial [<%,' +  Pz] ™"h PijZ M i M 2 M 3
0 10.2 10.7 10.3 10.2 26.6 15.4 15.7
.1 10.5 11.0 10.6 10.6 27.3 15.5 15.8
.3 11.3 11.4 10.7 10.7 35.1 17.2 16.3
.5 13.9 11.9 11.0 11.2 38.4 28.8 19.2
.6 23.2 11.9 11.0 11.2 40.6 38.3 19.5
.65 37.0 12.3 11.3 11.4 43.0 44.6 20.0
.7 43.3 12.3 11.3 11.4 43.2 46.9 21.7
1.0 47.0 13.5 12.6 12.7 47.3 48.9 30.4
1.1 48.6 13.7 12.7 13.0 47.8 49.1 32.5

T able 12: Average percent m isclassifications for S im ulation E xperim ent 6. D a ta  were 

generated  from  random  baseline m odel +  j3z\ for various (3. T he  m ethods M 1 ,M 2 

and  M 3 correspond to  K -m eans, Anscom be transform ed K -m eans, and Anscom be 

transform ed-m ean  centered K m eans.

S im u la t io n  7

C onditions for S im ulation  7 were identical to  those for th e  first experim ent, 

except th e  in tercep t param eters  a 2  =  ( a 21, . . . ,  Qflp) in G2 are now

cx-2 — (~~3, —3, —3, —3, —3, —3, —3, —3, —3, —3).

T he  groups are m ore separa ted  th a n  in Sim ulation  5, b u t d a ta  generated  from G2 are 

extrem ely  sparse. For /3 =  0 th e  m ean response is e x p (-3 )  =  .0498. For /3 = 1, th e  

m ean response is exp (—2.5) =  .0821. T he expected num ber of observations w ith  all 

zero counts is 61 % (/? =  0 ) and  55 % (/3 =  I) . Average m isclassification rates a re  

given in Table 13.

T he  Poisson la ten t variable  m ix ture  m odels [a^ +  f3z] and  [a^ +  f3ijz\ signif

ican tly  outperform ed all o th er m ethods. N ote th a t  th e  m ultinom ial m ixture m odel 

com pletely  breaks down for all /3. To see why, consider th e  expression for th e  pos

te rio r p robab ility  (4.12) in th e  m ultinom ial m odel. If Xft =  0, th en  h*|ft =  ^ j - ,  so 

th e  hth observation is classified to  th e  m ost prevalent group, regardless of th e  g roup’s 

response profile. T his is a  result of the  assum ption  Pr(Gi\Mh =  m ft) =  Pr(Gi) in 

(4.4). T he la ten t variable  m ix ture  m odel, by contrast, considers th e  sum  of m ean
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P Poisson [onj] M ultinom ial Wij +fiz] [CXij +  Pij z] M 1 M2 Ms
0 4.4 48.0 4.4 4.4 19.6 8.7 13.5
.3 5.9 48.0 5.3 5.3 22.4 10.4 14.4
.5 9.0 48.0 7.1 7.1 28.6 16.6 16.5
.7 15.7 47.3 8.5 8 . 6 36.0 2 1 . 2 19.3
1 . 0 29.4 46.5 1 2 . 2 1 2 . 6 43.5 31.6 28.3
1 . 1 32.4 45.5 13.4 13.7 44.9 33.7 30.2

Table 13: Average percent m isclassifications for Sim ulation E xperim en t 7. D a ta  were 

generated  from  random  baseline m odel [<% +  f3z] for various /?. T he  m ethods M 1, 

M2 and  Ms correspond to  K -m eans, A nscom be transform ed K -m eans, an d  Anscom be 

transform ed-m ean  centered K m eans.

Poisson [CKi7-] M ultinom ial [CKi 7  +  pz\
a i j  +  P i j z M1 M2 Ms

28.5 17.8 16.6 10.3 47.5 27.2 21.3

T able 14: Average percent m isclassifications for Sim ulation E xperim ent 8 . T he m eth 

ods M1, M2 and  Ms correspond to  K -m eans, Anscom be transform ed  K-m eans, and  

A nscom be transform ed-m ean  centered K  m eans.

responses, A y(z), in assigning Xzl =  O to  a  group. T his can be seen in equations 

(4.14) an d  (4.16).

S i m u l a t i o n  8

In  S im ulation  8 , observations were generated  from  th e  un restric ted  Poisson 

la ten t variab le  m odel [cty +  Pijz] w ith  Tj1 = t]2 = 1 / 2 . T he  in te rcep t and  slope 

param eters  a ,  =  (<%i,. . . ,  aip) and Pi = (/Iil, . . . ,  (3ip) are

a i  =  ( — 3 ,  — 2 ,  — 1 , 0 , 1 ) ,  Oc2 —  ( 0 , 0 , 0 , 0 , 0 ) ,

and

&  =  (0 , 0 , 0 , 0 , 0 ), /32 =  (0 , 0 , 0 , 1 , 1).

In  each of 1 0 0 0  replications of th e  experim ent, 2 0 0 0  observations were generated 

from  th e  m ix tu re  d istribu tion , and th e  m ethods applied. M isclassification rates are 

reported  in Table 1 4 .  As expected, th e  m odel [ceij +  Pijz] perform ed best.
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D i s c u s s i o n

T he results o f th e  th ree  sim ulation  experim ents reported  in th is chap ter 

suggest th a t  c luster analysis of low count d a ta  can be im proved if  I )  m ore realistic  

count d is trib u tio n  m odels are used instead  of G aussian or o ther continuous variable  

m ethods, and  2) th e  correlation  stru c tu re  of th e  variables is p roperly  accounted for.

m ethods m ight be useful. As w ith  all sta tis tica l m ethods, th e  real value of the  m ethods 

described in th is  pap er depends on th e ir  applicab ility  to  real problem s.

In th e  m ix tu re  m odels discussed in th is  chapter, th e  conditional d istribu tion  

o f th e  observed variables, gij(xj\z), are  taken  to  be Poisson. T he m odels are readily  

extended to  allow conditional d istribu tions to  be any m em ber of th e  exponentia l 

fam ily. In  th e  extended m odel,

M ore work needs to  be  done to  determ ine th e  conditions under which these new

9 ij(xj\z) = exp +  C i j  ( x j , > ,

w here th e  canonical p a ram eter Oij is linear in th e  la ten t variable z

(z) — Oiij T  PijZ.

In  th e  Poisson response m odel (described by (4.5) and  (4.6))

=  exp {[xj log Xij (z) -  Xij(z)] -  log re,-!}.

Thus,

Oij (z) =  log Ay (z)

bij(0ij(z)) = ex p (% (z ))  =  exp (ay- +  /% z),

and

Pij = I-
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N orm al, gam m a, and  m ultinom ial d istrib u tio ns can sim ilarly  be shown to  be m em bers 

o f th e  exponential family. For th e  general case, th e  conditional expectation  of th e  

com plete d a ta  log-likelihood Q = E^y(Lc) is

<3 =  lo S ^  +  £  £  'EftkijOij(Zk) -  NkibijiOij(Zk))].
i = l  z = l  k = \  J = I

Unknow n papam eters can be estim ated  using N ew ton-R aphson m ethods.

T his chap ter was m otivated  by a  problem  in SIMS im age segm entation , where 

it was noticed  th a t  w ithou t baseline correction  chem ical classes m ay be confounded 

w ith  topograph ic  classes. In  an  application , W illse and  Tyler (1998) adap ted  Pois

son and m ultinom ial m odels to  handle th e  sp a tia l correlations am ong the  pixels by 

in troducing  a  locally dependent M arkov random  field as th e  p robab ility  d istribu tion  

for class assignm ents. A sim ilar approach  could by applied to  la ten t variable m ixture  

m odels, w ith  th e  goal of separa ting  chem ical effects (defined by th e  factor-to-variable 

tran sfo rm atio n  m echanism ) from  topograph ic  effects (defined by th e  la ten t variable).
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C H A P T E R  5

C o n c lu s i o n

T he research presented  in th is thesis was m otivated  by th e  observation th a t  

non-stan dard  d a ta  types are  com m on in p ractice, b u t th a t  th ere  is a  shortage of 

m ethods for analyzing these types of d a ta . In practice, norm al-based m ethods are  

often th e  m ethod  of choice. Indeed, m any p rac titioners m ay be unfam iliar w ith  o ther 

approaches. O ften  these m ethods are  sufficient. B u t if the  d a ta  have special, non

norm al s tru c tu re , we often can im prove classification by m ore carefully m odeling th e  

d a ta . T h a t, in  fact, is th e  m ain  conclusion of th is thesis: we can often im prove 

classification by carefully m odeling th e  d a ta . Classification procedures for m ixed

m ode and  m ultivaria te  count d a ta  were developed in C hapters 2, 3 and  4, and were 

shown to  give b e tte r  resu lts th a n  s tan d ard  m ethods under special circum stances.

M ore work needs to  be done to  determ ine th e  conditions under which these 

m ethods will be  expected  to  significantly outperform  trad itio n a l m ethods. It would 

be  useful to  develop guidelines for th e  p rac titioner. T his fu tu re  research will likely 

be  driven by th e  dem ands o f applications, such as tex t analysis, which should spur 

th e  developm ent of m ore specialized algorithm s for analysis of m ixed m ode and m ul

tiv a ria te  count d a ta .
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A P P E N D I X  A

S o m e  U s e f u l  T h e o r e m s  f o r  C o v a r ia n c e  M o d e l  E s t i m a t i o n
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Proofs of Theorem s 1-3 and  Corollaries 1-2 are  given in Celeux and Govaert 

(1995). Theorem  4 is an ad ap ta tio n  o f th e  FG  algorithm  of F lu ry  and  G autschi 

(1986). T he  a d ap ta tio n  is given in B ensm ail and  Celeux (1996).

T h e o r e m  I  The minimum of t r ( Q M -1 ) with respect to the p x p symmetric matrix 

M  where Q  is positive definite and |M | =  I is p |Q |1/,p. The minimizer is

C o r o l la r y  I  The minimum of t r ( Q M _1) with respect to the p x p diagonal matrix 

M  where Q  is positive definite and |M | =  I is P ld ioy(Q )I1Zp. The minimizer is

diagjQt)

Idm y(Q )I1Zp'

T h e o r e m  2 The minimizer o / t r ( Q M -1 ) + o log]M j with respect to t h e p x p  sym

metric matrix M  where Q  is positive definite and a is a positive real number is

M  =  Jq .

C o r o l la r y  2 The minimizer of tr{QM.~l ) +  a  log |M | with respect to the p x  p di

agonal matrix M  where Q  is positive definite and a is a positive real number is 

M  =  J d m y (Q ) .

T h e o r e m  3 The minimum of ^ r(Q A Q -1 B )  with respect to the orthogonal matrix 

Q , where A  and B  are diagonal matrices with diagonal terms c tj and (3j such that 

Oii > Cx2 > • • • >  ap and fii < fi2 <■■■< fip is Zr(AB) =  ^  cxjfij, and the minimizer 

is the identity matrix.

T h e o r e m  4 The p x p orthogonal matrix D  minimizing

/ ( D ) = X X D A - 1D 1W ,)
Z=I
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where A i , • • • , A k  are fixed diagonal matrices and W i are symmetric matrices can be 

obtained iteratively as follows.

Step I. Start with an initial solution D  =  (d i ,  ■ • • , d p).

Step 2. For any I and m  G { 1 , . .  . ,p } , I ^  m, the pair (d ;, d m) is replaced with 

(Si, Sm), where Si and Sm are orthonormal vectors, linear combinations o /d ;  and dm, 

such that

Si - (dt,  d m)q i  and Sm - (d tj d m) q 2

where q i  and q 2 are orthonormal vectors in U2. The vector q i  is the eigenvector 

associated with the smallest eigenvalue of the matrix E zC i t(V o i) -  ( l / a ^ ) ] Z z, where 

Z i =  ( d z, d m) ,W i (d / ,  d m), and a\ and a™ are the Ith and mth diagonal entries of A f 1.

Step 3. Repeat Step 2 until the change in the estimate D  between successive 

iterations is sufficiently small.
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E s t i m a t i o n  o f  S o m e  C o m m o n  C o v a r ia n c e  M o d e l s
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In th e  hom ogeneous covariance m odel [pFA F '] the  objective function reduces 

to

F  = Ar Iog |£ |  +  t r ( E -1 W ),

which is m inim ized by S  =  ^ .

In th e  hom ogeneous covariance diagonal m odel [pA],

F  =  pN  log p +  ~ t r (A  1W ),

which is m inim ized by

and

A  =
d iag (W )

Idiag(W ) | Vp

P = -^ Id ia g (W )I1ZP.

In th e  p roportional covariance m odel S ia =  PiaF A F ',  it  is convenient to  w rite 

C  =  F A F  T hen th e  objective function to  m inim ize is

K m  K m

îs Iogpis +
Z = I  S = I

T he param eters  can be estim ated  iteratively.

K m  K m - t

F  = p ' m 2 nis log Pz5 + J 2 1 2  - M C - 1W is).
z = l  S= 1  P i s

o For fixed C ,

Pis = — M C - 1W is). 
pnis

o For fixed pis, m inim ize w ith  respect to  C  th e  function

K  m

/ ( C )  = I r t C " 1 5 3
2 = 1  5 = 1

C  =
&  E r= i ± w is

I ^ W ia| VP"

B y C orollary I ,
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S ta rtin g  values for pis can be obtained  by

Pis
T̂ is

Vp

E stim a tio n  of th e  p roportional covariance m odel [p jE A r'] =  [p^C] is sim ilar:

o F or fixed pis, by Theorem  I

C  E S i  j r W ,

o For fixed C ,

Pi

E S i i r W i.!1* '

t r ( C - 1 W i .) .
P n i -

S ta rtin g  values for p, can be  obtained  by

Pi =

i / p

Sim ilarly, th e  m odels [p^A] and [p^A] can be ob tained  as above by se ttin g  F  =  I.

In  th e  com m on principal com ponents m odel [PiF A iF '], it  is convenient to  w rite 

S is =  F A iF ' w here A i =  PiA i . T hen th e  objective function to  m inim ize is

F  = Y t Tii. log IAi I +  Y M F A - 1F 7W i.).
i= l

K

E
i= l

o For fixed F , by C orollary 2,

A i =  ^ - d i a g ( r W i .F ') .

o For fixed A i, F  can be ob tained  using T heorem  4.

In th e  m odel [P i s F A s F ' ] ,  the  objective function is

K  K m

Tli. I O g p i  +

i = l

P aram e te r estim ates can be ob tained  ite ra tively  as follows.

K  K  m  -I

F = p Y n i . \ o g  P i +  Y Y  - M F A r 1F ') .
2=1 S=I
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o For fixed #  and  F , m inim ize w ith  respect to  A s th e  function

/ ( A s) =  ^ a s- 1F  f ; ( w is/ A ) r ) .
*=i

B y C orollary I,

A  E ^ 1 T ( W isM ) F  

5 I E E i T ( W isM ) F IV P -

o For fixed F  and  A s,
-I  TTl

A =  — E ‘ r ( r  A 1 1F W ti).
S = I

o For fixed pi and  A s, m inim ize w ith  respect to  F  th e  function

K  m  -t

/ ( r ) =  E E - tr(rA f*l r 'w “ )-
J = I  S = I  M

which can be  done using Theorem  4.
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