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Introduction

Relativistic electron-positron plasmas have received much attention because they are relevant

in several environments, either of astrophysical or laboratory nature. Examples of this are ac-

cretion disks, models of early universe, ultra-intense lasers, laboratory and tokamak plasmas,

pulsar magnetospheres or hypothetical quark stars. Several effects in these plasmas relate to

wave propagation, such as the proposed pulsar radio emission processes, bulk acceleration of

relativistic jets, quasar relativistic jets, or electron-positron pair annihilation into one-photon in

the presence of a strong magnetic field.

In several of the environments mentioned above, relativistic effects and temperature play an

important role, thus it is fundamental to understand wave propagation modes in relativistic plas-

mas with temperature. Recently, a finite amplitude nonlinear solution for relativistic electron-

positron plasmas has been found for relativistic temperatures [1], using an approach based on

the magnetofluid field unification formalism of Ref. [2].

In this work we will consider the parametric perturbations of finite amplitude circularly polar-

ized electromagnetic waves in a relativistic electron-positron thermal plasma, which was solved

in Ref. [1]. Although simple, this analysis will allow us to study in detail the effect of relativistic

temperatures on wave propagation, and its decay, in relativistic hot plasmas.

Exact Solution

The relativistic plasma, for each species j (e for electrons and p for positrons), obeys the fluid

equation

(

∂
∂ t

+v j · ∇
)

(

f jγjv j

)

=
q j

m j

(

E+
1

c
v jB
)

−
1

m jn j
∇ p j , (1)

where n j is the density in the laboratory frame, γj is the relativistic factor, and f j is a relativistic

thermal factor which is related to the enthalpy density and depends on the thermodynamical

properties of the plasma. For instance, if the system follows a Maxwell-Jüttner equilibrium
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Figure 1: Dispersion relation of the pump wave, Eq. (3). Normalized wave number y0 = k0c/Ωc

vs. normalized frequency x0 = ω0/Ωc for ωp/Ωc = 1, 1/µ = 0.01. (a) α = 0. (b) α = 0.1,

α = 0.2, α = 0.3.

distribution, then f j = f (µ j) = K3(µ j)/K2(µ j) , where µ j = m jc
2/kBTj; K2 and K3 are the

modified Bessel functions of order 2 and 3, respectively; and kB is the Boltzmann constant.

As shown in [1] we can find an exact nonlinear transverse solution to these equations, which

will be our zeroth order quantities in our approach, with the EM fields written as

E0(z, t) = E0 [sin(k0z−ω0t)x̂− cos(k0z−ω0t)ŷ] ,

B0(z, t) = B0 [cos(k0z−ω0t)x̂+ sin(k0z−ω0t)ŷ]+B0zẑ .

We represent the transverse quantities as D⊥ = Dx + iDy = Dei(k0z−ω0t). Thus, from Eq. (1) we

find the exact transverse velocity for each fluid as [1]

v0 j =

(

ω0

f0 jγ0 jω0 −Ωc j

)

q jB0

mck0
, α =

e|B0|

mc2k0
=

e|A0|

mc
, (2)

where Ωcp = −Ωce = Ωc = eB0z/mc is the positron gyrofrequency and γ0 j = (1− v2
0 j/c2)−1/2

is the relativistic factor.

The dispersion relation for circularly polarized EM wave to zeroth order, is given by [1]

ω2
0 − c2k2

0 = ∑
j

ω2
p

(

ω0

f0 jγ0 jω0 −Ωc j

)

, (3)

where ωp is the plasma frequency in the laboratory frame.

Parametric decays

Now, considering the finite amplitude transverse circularly polarized wave propagating in our

electron-positron plasma system, with the dispersion relation (3), we introduce perturbations

(represented by the δ symbol in front of the variables) for every quantity in the dynamical
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equation (1):

f0
∂
∂ t

(

γ0 jδv+δγjv0 j

)

+ f0

(

δv j · ∇
)(

γ0 jv0 j

)

+γ0 j
∂
∂ t

(

v0 jδ f j

)

=
q j

m

(

δE+
1

c
v0 jδB

)

+
q j

mc
δv jB0 −

1

mn0
∇ δ p j , (4)

where v0 j is the zeroth order transverse velocity, given by (2); n0 j is the zeroth order density in

the laboratory frame; and f0 is the unperturbed part of the function f j.

We separate Eq. (4) in a longitudinal and transverse part and we assume that every longitudi-

nal and transverse perturbation has the form

δDz = Re
[

D̃ei(kz−ωt)
]

=
1

2

(

D̃ei(kz−ωt) + D̃∗e−i(k∗z−ω∗t)
)

, (5)

δD = d+ei(k+z−ω+t) +d−ei(k−z−ω−t) , (6)

respectively, where k+ = k0 + k, k− = k0 − k∗, ω+ = ω0 + ω and ω− = ω0 −ω∗. Now we get

a system of equations for the quantities x = (v+e,v+p,v
∗
−e,v

∗
−p, ṽe, ṽp,b+,b∗−). The dispersion

relation can be found through the determinant of the set formed by these equations, Ax = 0, so

the dispersion relation will be,

F(k,ω) = det(A) = 0 . (7)

We study the dispersion relation (7) for various pump waves. As we see in Fig. 1, we have

three cases: Case I: the pump wave is on the Alfvén branch. Case II: the pump wave is on the

electromagnetic branch. Case III: the pump wave is in the anomalous dispersion zone on the

Alfvén branch. For each case, we choose y0 = 1, y0 = 1, and y0 = 4.632, respectively.

In Fig. 2, we shown the dispersion relation (7) for the case I and II. We can see from Fig. 2

that there are several possible crossings between solutions of the dispersion relation. At these

crossings, complex solutions can appear when α 6= 0. Since the polynomial being solved has

real coefficients, these solutions always occur as complex conjugate pairs, thus one of them has a

positive imaginary frequency. Therefore, the disappearance of real solutions when α 6= 0 implies

the presence of unstable waves, corresponding to the parametric decays of the pump wave.

When we turn the pump wave on by considering α 6= 0. In Fig. 2, α = 0.1, we notice that some

crossings become gaps. This means that at these crossings we have complex solutions whose

real parts are indicated as dotted lines, while the real solutions correspond to the continuous

lines. Hence, we now have instabilities, indicating wave coupling.

Now in Fig. 3 we show the results for case III (anomalous dispersion, dω/dk < 0 for ω > 0).

It is interesting to note the instability that occurs for large y values, close to x ≈ 0, due to the

(p−, p+) coupling, which can be considered as an electromagnetic modulational instability.
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Figure 2: Solution of the dispersion relation Eq. (7). Normalized wave number y = kc/Ωc vs.

normalized frequency x = ω/Ωc for y0 = 1, ωp/Ωc = 1, 1/µ = 0.01. The dotted lines corre-

spond to complex conjugate pair solutions.
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Figure 3: Dispersion relation Eq. (7). Normalized wave number vs. normalized frequency for

y0 = 4.632, ωp/Ωc = 1, 1/µ = 0.01. Left: α = 0. Right: α = 0.04. Dotted lines represent the

real part of the complex solution.
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