ANL-91/36

Received by GSTL

FEB 0 5 1992

Parametric Effects on Glass Reaction in the Unsaturated Test Method

by Alan B. Woodland, John K. Bates, and Thomas J. Gerding

Chemical Technology Division Chemical Technology Division Chemical Technology Division

1

Argonne National Laboratory, Argonne, Illinois 60439 operated by The University of Chicago for the United States Department of Energy under Contract W-31-109-Eng-38

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

....

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Department of Energy.

DISCLAIMER-

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Reproduced from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Prices available from (615) 576-8401, FTS 626-8401

> Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

Distribution Category: High-Level Radioactive Waste Disposal in Tuff (UC-814)

ANL-91/36

ANL--91/36

DE92 007578

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, IL 60439

PARAMETRIC EFFECTS ON GLASS REACTION IN THE UNSATURATED TEST METHOD

by

Alan B. Woodland, John K. Bates, and Thomas J. Gerding

Chemical Technology Division

December 1991

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TABLE OF CONTENTS

		Page
ABST	RACT	xi
I.	INTRODUCTION	1
II.	EXPERIMENTAL	5
	 A. Overview B. Starting Components 1. Glass Composition and Homogeneity 2. Water	5 7 7 8 8
III.	RESULTS AND DISCUSSION	8
	 A. P-II Experiments	$\begin{array}{c} 10\\ 14\\ 18\\ 22\\ 25\\ 41\\ 46\\ 46\\ 51\\ 55\\ 55\\ 66\\ 69\\ 69\\ 70\\ 83\\ 86\end{array}$
IV.	DISCUSSION AND CONCLUSIONS	86
	A. Parametric EffectsB. The Surface Layer and Secondary Phases	86 89

operation and the paper

10.00

TABLE OF CONTENTS - Cont'd

V. ACKNOWLEDGMENTS	94
VI. REFERENCES	95
ADDENUM	97
APPENDIX I	100

LIST OF TABLES

No.	Title	Page
1.	Test Matrix for Unsaturated Tests	4
2.	Description, Purpose, and Status of Parametric Experiments and N2 Unsaturated Test	6
3.	Composition of Glasses Used in the Parametric Experiments	9
4.	Composition of J-13 and EJ-13 Water Used in the Parametric Experiments	11
5.	Composition of 304L Stainless Steel Used in the Parametric Experiments and N2 Unsaturated Test	12
6.	Experimental Matrix and Weight Change Results from the P-II Series	13
7.	Normalized Release in the P-II Series	21
8.	Experimental Matrix and Weight Change Results for the P-III Series	23
9.	Normalized Release in P-III Series	44
10.	Experimental Matrix and Weight Change Results for the P-IV Series	47
11.	Normalized Elemental Release for the P-IV Series	54
12.	Experimental Matrix and Weight Change Results for the P-V Series	56
13.	Normalized Elemental Release for the P-V Series	68
14.	Experimental Matrix and Weight Change Results for the P-VIII Series	71
15.	Normalized Elemental Release for the P-VIII Series	84
16.	Summary of Phases Tentative Identified in the Parametric Tests	90
17.	Comparison of Normalized Release of B, Li, and U between the Leaching Experiments of Ebert and the Parametric Experiments	93

No.

LIST OF FIGURES

\mathbf{Title}

gen wenne

1.	Schematic Drawing of the Unsaturated Test Apparatus and Side and Top Views of the Waste Package Assemblage	2
2.	EDS Spectra of Unreacted Glass and 304L Stainless Steel	10
3.	SEM Micrographs and EDS Spectra of Reaction Products Formed on the Top Surface of Experiment P-II-5	16
4.	SEM Micrographs and EDS Spectra of Reaction Products Formed on the Bottom Surface of Experiment P-II-5	17
5.	SEM Micrographs of Reaction Products Formed on the Top Surface of Experiment P-II-7	18
6.	SEM Micrographs and EDS Spectra of Reaction Products Formed on the Bottom Surface of Experiment P-II-7	19
7.	Cumulative Release for Selected Elements from the P-II-1 and P-II-2 Continuous Experiments	2 0
8.	SEM Micrograph and EDS Spectrum of the Metal Surface in Contact with Glass from the Top Section of the Waste Form Holder in Experiment P-III-4; Clumps of the Mat Materials that Formed on the Top and Bottom Metal Sections from Experiment P-III-4; Reaction Products Observed on the Bottom Metal Section from Experiment P-III-4	26
9.	SEM Micrographs and EDS Spectra of Reaction Products on the Bottom Surface of the Glass from Experiment P-III-4	28
10.	SIMS Spectra Showing the Profiles of Li, Mg, and B Relative to Si for Sample P-III-3	31
11.	SEM Micrographs and EDS Spectra of Reaction Products on the Metal Components of P-III-6	32
12.	SEM Micrographs and Associated EDS Spectra from the Bottom Glass Section from Experiment P-III-6	33

LIST OF FIGURES - Cont'd

No.	Title	Page
13.	SEM Micrographs and EDS Spectra of Features from the Top Metal Component of Experiment P-III-8	35
14.	SEM Micrographs and EDS Spectra of the Side Glass of P-III-8	37
15.	SEM Micrographs and EDS Spectrum from the Top Glass Surface of P-III-9	39
16.	Optical Photographs of the Bottom Glass Surface of P-III-9	40
17.	SIMS Profiles of the Bottom Glass Section from Experiment P-III-9 in a Region of Glass-Metal Contact	40
18.	SEM Micrographs Showing the Coarse-Grained Appearance of the Surface Layer, Exposed Etched Glass, and a Cross Section of the Bottom Glass Surface from P-III-10	41
19.	SIMS Profiles of the Reacted Bottom and Side Surfaces of the Glass from Experiment P-III-10	42
20.	Cumulative Release of Selected Elements from the P-III-1 and P-III-2 Continuous Experiments	43
21.	SEM Photomicrographs of the Bottom Glass Surface from Experiment P-IV-3	50
22.	SEM Photomicrographs of the Top Glass Surface from Experiment P-IV-3	50
23.	SEM Micrographs of the Bottom Glass from P-IV-5	50
24.	SEM Micrographs and EDS Spectra of Reaction Products on the Top Surface of P-IV-5	52
25.	Cumulative Release of Selected Elements from the P-IV-1 and P-IV-2 Continuous Experiments	53
26.	SEM Micrographs of the Surface Layer and Reaction Products on the Top Surface of P-V-3	59

LIST OF FIGURES - Cont'd

No.	Title	Page
27.	SEM Micrographs and EDS Spectrum of Reaction Products on the Top Glass Surface of P-V-4	61
28.	SEM Micrographs of the Bottom Surface of P-V-4	62
29.	SEM Micrographs Showing the General Surface Features on the Top of P-V-6	63
30.	SEM Micrographs of the Surface Layer and Other Reaction Products on the Top of P-V-7	64
31.	SEM Micrographs of Surface Layer Features on the Bottom of P-V-7	66
32.	Cumulative Releases of Selected Elements from the P-V-1 Continuous Experiment	67
33.	SEM Micrographs and EDS Spectra from the Top of P-VIII-4	74
34.	SEM Micrographs and EDS Spectra from the Top of P-VIII-6	75
35.	SEM Micrographs and EDS Spectrum of Surface Layer Features from the Bottom of P-VIII-6	78
36.	SEM Micrograph and EDS Spectrum of Fe- and Cr-Rich Deposit on the Bottom Surface of the Metal Component on P-VIII-6	79
37.	SEM Micrograph and EDS Spectra of Reaction Products on the Top Glass of P-VIII-7	80
38.	SEM Micrographs of Surface Layer Features on the Bottom of P-VIII-7	82
39.	EDS Spectra of Precipitates on the Top Metal Component of P-VIII-7	84

LIST OF FIGURES - Cont'd

No.	Title	Page
40.	Cumulative Release of Selected Elements from the P-VIII-1 and P-VIII-2 Continuous Experiments	85
41.	Normalized Releases of B, Li, and U for the Parametric and "Standardized" N2 Unsaturated Experiments	87
42.	TEM Micrograph of the Layer from the Bottom of P-VIII-7	98
43.	TEM Micrograph of the Side of P-III-10	99

5109

х

PARAMETRIC EFFECTS ON GLASS REACTION IN THE UNSATURATED TEST METHOD

by

Alan B. Woodland, John K. Bates, and Thomas J. Gerding

ABSTRACT

The Unsaturated Test Method has been applied to study glass reaction under conditions that may be present at the potential Yucca Mountain site, currently under evaluation for storage of reprocessed high-level nuclear waste. The results from five separate sets of parametric experiments are presented wherein test parameters ranging from water contact volume to sensitization of metal in contact with the glass were examined. The most significant effect was observed when the volume of water, as controlled by the water inject volume and interval period, was such to allow exfoliation of reacted glass to occur. The extent of reaction was also influenced to a lesser extent by the degree of sensitization of the 304L stainless steel. For each experiment, the release of cations from the glass and alteration of the glass were examined. The major alteration product is a smectite clay that forms both from precipitation from solution and from in-situ alteration of the glass itself. It is this clay that undergoes exfoliation as water drips from the glass. A comparison is made between the results of the parametric experiments with those of static leach tests. In the static tests the rates of release become progressively reduced through 39 weeks while, in contrast, they remain relatively constant in the parametric experiments for at least 300 weeks. This differing behavior may be attributable to the dripping water environment where fresh water is periodically added and where evaporation can occur.

PARAMETRIC EFFECTS ON GLASS REACTION IN THE UNSATURATED TEST METHOD

I INTRODUCTION

ada aktar

The Unsaturated Test method has been developed^{1,2} as a procedure to monitor the reaction of glass with water under conditions that are relevant to the potential repository at Yucca Mountain, Nevada. The Yucca Mountain site is located in the unsaturated zone and the repository horizon is composed of beds of welded and devitrified tuff. During the waste containment period (300/1000 years), heat generated by the radioactive waste is expected to maintain the temperature of the near-field environment above 100° C.³ In addition, the metal containers which surround the waste are anticipated to retain their integrity during this period. Thus, for the initial 300/1000-year period, the glass waste form is unlikely to contact liquid water. However, once the temperature has cooled to below 96°C, the local boiling point of groundwater at the Yucca Mountain Site, and the container is breach 4, liquid water will have access to the waste form.

Water contact is likely to occur in several modes: (1) continuous contact between the waste form and water vapor, (2) slow ingress and accumulation of water in the container, and (3) intermittent contact between water and glass as water periodically flows into and passes through the container. The Unsaturated Test method was developed to study glass-water reaction where a number of glass/water contact modes exist so that site-relevant data can be generated to assess the importance of interactive effects between waste package components. The data provide a release rate or glass reaction progress for a specific set of conditions and, if the physical parameters incorporated into the test are chosen judiciously, may be able to provide information to bound releases expected to occur in the repository. The release data can also be used in the validation of geochemical modeling methods that are being developed to project glass

To facilitate performance of the Unsaturated Test, a rigorous procedure and set of test parameters have been employed. The test is designed to study the three types of interactions that affect the reaction of the glass and that are anticipated to occur under unsaturated conditions. These include (1) contact between the glass and moist air, followed by periodic rinsing of the glass surface with flowing water; (2) contact between the glass and standing water; and (3) contact between the glass and standing water in close contact with partially sensitized 304L stainless steel. The Unsaturated Test provides for the possibility that these interactions will occur and specifies analyses to be performed that are designed to judge the importance of each one.

The apparatus used in the Unsaturated Test has been described previously^{1,2} and a schematic diagram of the system is shown in Fig. 1. The components of the test apparatus are the test vessel, which provides for collection and containment of liquid and support of the waste package; the waste package assemblage (WPA), which consists of the waste form and presensitized metallic components representing the canister (Fig. 1b); and a solution feed system to inject water.

304L Stainless Steel

Fig. 1. (a) Schematic Drawing of Unsaturated Test Apparatus. (b) Schematic Drawing of the Side and Top Views of the Waste Package Assemblage

Steel

The WPA is contacted every 3.5 days by 0.075 mL (drops) of water from the J-13 well that was preequilibrated with Topopah Spring tuff at 90°C. The tests are conducted at 90°C and the fluid injection system is configured so that the water attains a temperature of ~90°C before contacting the glass. Elemental release is determined by chemical analysis of the water that contacted the WPA and by surface analysis of the assemblage components. Solution samples are collected immediately upon termination of the experiment and after the vessel has been acid stripped to remove any material that may have precipitated or adsorbed onto the vessel walls. Although the solution is sampled at ambient temperature, it dripped from the WPA and collected in the vessel bottom at 90°C. Material interactions are noted and secondary phases, which may influence elemental release, are identified.

The test procedure incorporates batch and continuous tests (Table 1). In the batch mode, tests are terminated at 13-week intervals through 52 weeks. In the batch mode, the apparatus is disassembled, and analyses of both the solution and components are performed. In the continuous mode, the WPA (including liquid associated with $t_{\rm He}$ WPA) is transferred to a new vessel, and the test is continued. For the first 52 weeks the continuous tests are sampled at 6.5-week intervals. After 52 weeks, 13- or 26-week intervals are used. Analyses are done on the solution in the old vessel. In addition, visual investigation of the components is possible at the termination points, and yet the test can continue for an unspecified period or until information most useful to repository evaluation is obtained.

One key to the applicability of the data generated by the Unsaturated Test is the relationship between the set conditions used in the test, e.g., temperature, water contact interval, water composition, drop volume, condition of the stainless steel in contact with the glass, and surface area of the glass, and the eventual conditions encountered in the repository. Since it is likely that many of the conditions listed above may vary between individual waste packages, and will certainly vary with time, the conditions were set using reasonable values at the time the test procedure was developed (1984). At that time, it was recognized that the set conditions chosen may not have been the best possible, based on refinement of the description of the waste package environment and on parametric effects not yet identified. Thus, a series of parametric experiments were initiated to determine to what degree each parameter affected the glass reaction.

The parameters chosen to study were:

- (1) exclusion of stainless steel contact with the glass;
- (2) the surface area of the glass;
- (3) the volume of water contacting the glass;
- (4) the interval of water injection; and
- (5) the effect of stainless steel composition and extent of sensitization.

Table 1. Test Matrix for Unsaturated Tests

3

:

ţ

and the second

ų,

. U a

				Test	Duration, v	veeks				
Test No.	Components	0 6.5	13	19.5	- 26	32.5	39	45.5	52	65 ^a
#1 Batch	glass, 304L ss holder		 T	i I				v = per	riodic chan	ge
#2 Batch	glass, 304L ss holder		T					= terr	mination	
#3 Batch	glass, 304L ss holder				Т					,
#4 Batch	glass, 304L ss holder				-					
#5 Batch	glass, 304L ss holder						Т			
#6 Batch	glass, 304L ss holder						T			
#7 Batch	glass, 304L ss holder					-			• [
#8 Batch	glass, 304L ss holder								T	
#9,10,12 Continuous	glass, 304L ss holder	>	>	>	>	}	>	>	>	>
#11 Continuous	blank	>	>	>	>	>	>	}	}	>
ANALYSES REQUIRED ^b										
Total radionuclide (solution	and metal)	~~~	~~~~	~~~	11111	~~	~~~~	~~~	~~~~	~~~
Total matrix element (solut	tion Li, B)	~~~	~~~~	33	~~~~	~~~	~~~~	~~~	~~~~	~~~

Total radionuclide (solution and metal)	~~~	~~~~	~~~	~~~~	~~	~~~~	~~~	~~~~	
Total matrix element (solution Li, B)	~~~	~~~~	~~	~~~~	~~~	~~~~	~~~	~~~~	3
Wt loss and surface analyses		¥		3	.e	3		Ķ	
Interaction of stainless streel		3		Ş		3		~~	
^{&} The continuous tests are sampled every 13 wooks after the 59-we	sk interva	-							

ie continuous tests are sampled every 13 weeks after the 52-week interval.

-

 $^{\mathrm{b}}\mathrm{A}$ check means this analysis is required; the number of checks indicate replicate analyses possible. The wt loss and surface analyses for the continuous test will be done when the tests are terminated.

4

These parametric experiments have now been in progress for up to four years. In this report the details of each experiment are described, the results are presented, and a comparison is made between the results from the various parametric experiments and the N2 Unsaturated Test series⁶ to determine the relative importance of each parameter in affecting glass reaction.

II. EXPERIMENTAL PROCEDURE

A. Overview

The apparatus used in the parametric experiments is the same as used in the Unsaturated Test except for the containment vessel and gasket (items 1, 2, 3, and 6 in Fig. 1). In the parametric experiments a 22 mL Parr vessel #4703 modified by reducing the wall thickness 1/32" to a depth 1" from the top of the vessel is used as the vessel body (item 1). This modification creates a ledge on which the retainer bottom (item 5, Fig. 1) is positioned. The cap for the vessel (item 3) was machined to provide the umbrella effect shown in Fig. 1 which directs condensation on the vessel lid to the walls of the vessel body instead of to the glass. All the material used in construction of the vessel is 304L stainless steel. The gasket material used in the parametric experiments is TeflonTM. The above changes were made to reduce the cost of the apparatus and to aid in ease of performing the experiments. None of the changes should appreciably affect the extent of glass reaction except that the vessel used in the parametric experiments is ten times less massive than the one used in the Unsaturated Tests. This reduced mass may increase the effect of the small temperature fluctuations caused by the ovens. As temperature gradients between the vessel and WPA will cause vapor transport, this is an important process that must be considered when comparing results from different experiments.

The conditions used in each parametric experiment plus the rationale for performing the experiment are given in Table 2. The experimental matrix used for each series is detailed in Section III, but in most cases both batch and continuous experiments were run. All of the batch experiments have been terminated, while the continuous experiments are still in progress.

The solutions from the vessel bottom are analyzed for Al, B, Ca, Fe, K, Li, Mg, Mn, Na, Ni, Si, and S using Inductively Coupled Plasma/Atomic Emission Spectroscopy (ICP/AES). The analytical uncertainty is 3-10% depending on the element and its concentration. Uranium is determined by the Sintrex method which is based on laser-induced fluorescence ($\pm 10\%$ uncertainty). When enough solution is available, the pH (glass electrode, Orion model 501 Digital Ionanalyzer), total and organic carbon (Dohrmann Total Organic Carbon Analyzer Model DC-80), and the anions F⁻, Cl⁻, NO₂⁻, NO₃⁻, SO₄⁼, HPO₄⁼, CHO₂⁻, and C₂O₄⁼ (ion chromatography) are measured with uncertainties all in the range of 5-10%.

	Table 2. Description, Purpose, and Sta	itus of Parametric Experiments and	l N2 Unsaturated Test
Experiment #	Description	Purpose	Status
P-II	Regular-sized glass waste form, no ss holder, 0.075 mL J-13/ 3.5 days, continuous and batch experiments	To study the release from glass only	Initiated 2/20/84. Batch experiments completed 2/18/85. Continuous experiments in progress.
P-III	Half-sized glass waste form, ss holder, 0.075 mL and E.I-13/ 3.5 days, continuous and batch experiments	To study the effect of changing the waste form surface area by reducing the as-cast surface area by half	Initiated 12/6/84. Batch experiments completed 12/5/85. Continuous experiments in progress.
P-IV	Half-sized glass waste form, ss holder, 0.0375 mL and EJ-13/ 3.5 days, continuous and batch experiments	To study the effect of drop volume by reducing the amount of water added and the as-cast surface area by half	Initiated 2/18/85. Batch experiments completed through one year. Con- tinuous experiments in progress.
P-V	Regular-sized glass waste form ss holder, 0.075 mL and EJ-13/ 14 days, continuous and batch experiments	To study the effect of lengthening the time interval between water additions	Initiated 6/10/85. Batch experiments completed through one year. Con- tinuous experiments in progress.
P-VⅢ Test_#	Regular-sized glass waste forms in presensitized ss holders (heat #22841), 0.075 mL EJ-13/ 3.5 days, continuous and batch experiments	To study the effect of presensitized the ss waste form holder	Initiated 2/27/86. Baich experiments completed through six months. Con- tinuous experiments in progress.
N2	Regular-sized glass waste forms in presensitized ss holders (heat #699960), 0.075 mL and EJ-13/3.5 days, continuous and batch experiments	QA I execution of Unsaturated Test on glass doped with Np, Pu, and Am	Initiated 2/3/86. Batch tests completed. Continuous tests in progress.

. 1

1

-

6

Raw and "corrected" solution analyses are presented in the appendices. The "corrected" data account for the elemental contribution from the injected water. This is done by subtracting from the total solution analysis the amount of each element contained in the water that was injected during the experiment period and added at the beginning of an experiment period. Such a correction assumes that all the water injected actually goes into the vessel. This concern exists because after several years, the injection lines may become partially plugged which makes complete water injection uncertain. The correction also assumes that any leakage from the vessel is only water (presumably as vapor) and that all cations are retained in the vessel. It should be noted that, when analyzed concentrations were reported to be below the detection limit, the detection limit value was used. Thus, the results for elements frequently at very low concentration represent maximum values. These elements include Al, Mg, Ni, and Sr.

Interpretation of the solution data requires consideration of processes that may occur intermittently during the experiment. For example, if during a certain period there has been considerable evaporation from the WPA surface, it is possible that none of the water that contacts the top surface actually drips off of the glass to be collected in the test solution. If this happens, then all elements will show a negative deviation. However, if during the next period effective water transfer from the glass to the test vessel occurs, then a sharp positive deviation in elemental release may be observed. Consequently, elemental release should be viewed as a trend over the entire experiment duration with little weight given to individual deviations from this trend.

In the batch experiments analysis is also performed on the metal and glass components of the systems. The components are observed first using a low-power optical microscope where color photographs are taken and the surfaces mapped for scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS) analysis. If appropriate, samples are taken for x-ray diffraction (XRD) analysis. The samples are then examined by SEM with associated energy dispersive spectroscopy (EDS) and wavelength dispersive spectroscopy (WDS) to characterize the alteration products that formed during the reaction.

B. Starting Components

a a

. . .

. 24 11

The procedures used in setting up, performing, and analyzing the experiments are essentially the same as used in the Unsaturated Test.^{1,2,6} Throughout the entire series of experiments a consistency in methods was maintained.

1. Glass Composition and Homogeneity

The basis for the glass composition is SRL 165 black frit doped with Cs, Sr, and U.⁷ In this report this glass is referred to as SRL U glass. This composition was chosen because of the data available as part of the SRL testing program⁷ and because at the time the experiments were initiated, 165 type black frit was the reference glass composition for processing in the Defense Waste Frocessing Facility (DWPF). Subsequently, the glass processing procedure has been altered and glasses based on frit 200 with both sludge and precipitate hydrolysis components added have been designated as DWPF candidate glasses.⁸ Based on hydration theory,⁹ SRL 165 black frit type glasses should have the best durability of glasses that fit into the potential range of glasses to be produced by the DWPF.

A single quantity of SRL black frit has formed the basis of all the parametric experimentation described in this report. The glass composition is given in Table 3 together with analyses of the starting material as obtained by different laboratories. EDS spectra of the glass at 10 and 20 keV are presented in Figs. 2a and 2b for reference.

2. <u>Water</u>

A 5-gal batch of J-13 water from the J-13 well located near the potential repository horizon was used as the source of water for these experiments. In some experiments the water was used as received and in other experiments the J-13 water was equilibrated with tuff at 90°C following established procedures¹ to produce EJ-13 water, which is taken to be more representative of water that will be present in the waste package environment. Several equilibrations have been done over the course of these experiments and the water compositions used in the parametric experiments are given in Table 4.

3. <u>304L Stainless Steel Waste Form Holders</u>

The waste form holders that enclose the glass during the experiments consist of perforated pieces of 304L stainless steel. The perforations are present to permit direct contact between the dripping water and the glass. Steel from two different heats was used during the course of the experiments (Table 5). In addition, different heat treatments were imposed on the steel to simulate heating that may occur during glass processing and long-term storage in the repository at elevated temperatures. Such heat treatment may cause the steel to lose its resistance to corrosion and become sensitized. In some of the experiments the starting metal was purposely sensitized to measure its influence on glass reaction. Details of the sensitization treatments are presented in the sections describing each individual series of experiments. For reference, an EDS spectrum of 304L stainless steel is presented in Fig. 2c.

III. RESULTS AND DISCUSSION

The results from each series of parametric experiments are presented below as individual subsections. Thereafter a comparison is made between the different series to assess the importance of each physical parameter on glass reaction.

	SRL	U Glass	Black Fri	t Oxide
Formula	Oxide wt %	$egin{array}{c} { m Element} \\ { m wt} \ \% \end{array}$	Ferro ^a	MCC ^b
Al ₂ O ₃	4.08	2.16	4.1	4.3
B_2O_3	6.76	2.09	6.8	6.8
BaO	0.06	0.05		- 0.1
CaO	1.62	1.16	1.5	1.6
CeO ₂	< 0.05	< 0.04		
Cr_2O_3	< 0.01	< 0.007		
Cs ₂ O	0.072	0.07		
Fe ₂ O ₃	11.74	8.20	12.3	11.7
ĸ	$\mathbf{N}\mathbf{A}^{c}$			
La_2O_3	< 0.05	< 0.004		0.2
Li ₂ O	4.18	1.94	4.7	4.8
MgO	0.70	0.42	0.8	0.6
MnO ₂	2.79	1.76	2.9	2.8
MoO ₃	< 0.01	<0.007		
Na ₂ O	10.85	8.05	10.3	10.8
Nd_2O_3	< 0.05	< 0.005		
NiO	0.85	0.67	0.9	0.8
P_2O_5	0.29	0.13		0.3
SiO_2	52.86	24.71	54.1	51.6
SrO_2	0.11	0.10		0.2
TiO_2	0.14	0.08		< 0.1
UO ₂	0.92	0.81		1
ZnO	0.04	0.03		
ZrO_2	0.66	0.48	1.2	0.7
F			0.06	
Cl			0.05	
Pb			0.05	

Table 3. Composition of Glasses Used in the Parametric Experiments

^aBlack frit supplied to ANL by SRL, composition as determined by Ferro Corp.

^bBlack frit supplied by SRL to the Materials Characterization Center (MCC), composition as determined by MCC.

 $^{c}NA = not analyzed.$

-

Fig. 2. EDS Spectra of (a) Unreacted Glass at 10 keV, (b) Unreacted Glass at 20 keV, and (c) 304L Stainless Steel at 20 keV

A. P-II Experiments

This set of experiments is being performed following the Unsaturated Test protocol,² except that there is no metal retainer and all vessel components are made of TeflonTM. All measured release should be solely due to glass/water interaction. This provides a baseline for comparison with the results of other experiments where metal components are present. In addition, the results are directly applicable to those areas of the glass where there is no direct metal contact (i.e., the top portions of the glass in the pour canisters).

The detailed experimental matrix and weight change measurements are presented in Table 6.

The experiments were initiated 2/20/84 and have been completed through 301 weeks. For the first year, batch experiments were terminated at the 6.5-, 13-, 26-, 39-, and 52-week periods, while the continuous experiments were sampled every 6.5 weeks. For the second year, the continuous experiments were sampled every 6.5 weeks and thereafter at irregular intervals of approximately 13 weeks.

1

10

Experiments
Parametric
sed in the
Water U
and EJ-13
n of J-13
Compositio
Table 4.

31 illume.

					М	later C	ompositio	n (ppb)					
Water Type	Al	B	Ca	بلغ e	K	Li	Mg	Mn	Na	Ni	Si	Sr	ŋ
J-13	<100	130	11,800	<10	4500	40	1940	<5	44,700	<20	29,100	37	$\overline{\nabla}$
F.1-13	780	180	4500	18		64	390	\sim	46,600	<20	36,300	30	4
4/30/84	720	200	4550	ND		75	415	QN	47,800	92	37,900	39	4.7
TO 00 17	680	190	4560	QN		70	420	ND	49,900	57	38,000	44	4.6
	660	170	4390	$<\!10$		62	400	° 2	48,200	Ð	37,800	47	4.3
	790	180	4370	<10		11	400	~ 5	46,500	ND	36,900	41	3.9
	750	180	4150	17		99	390	√ 21	47,800	QN	36,200	41	<u>N</u>
1	710	170	4100	<10		11	390	5 5	46,800	R	36,900	37	3.7
	100	180	4100	<10		62	400	∧ 5	48,700	ND	36,200	37	2.8
ГТ 19	026	150	7190	<10		54	270		48,400	<20	35,300	35	$\overline{\vee}$
5 /98 /86	0770	163	7160	<10		49	260	∧ .0	50,300	ND	33,600	35	$\overrightarrow{}$
00/07/0	230	170	7170	$<\!10$		ND	260	\$3	49,000	<20	33,800	35	
	076	160	7570	<10	6930	45	270	5	54,400	42	38,500	32	\sim
	230	180	7230	15	660	42	260	√.5	50,400	<49	33,100	28	$\overrightarrow{}$

. ...

Composition of 304L Stainless Steel Used in the Parametric Experiments and N2 Unsaturated Test Table 5.

14 C 10

								Element	ĸ				
Composition	Heat $\#$	C	M_{II}	Р	S	Si	Сr	Ni	Сu	ပိ	z	Mo	>
Retainer N2 and P-IV, -V, and -XII	096669	0.022	1.49	0.025	0.003	0.40	18.22	10.02	0.12	NA	0.036	0.24	NA
Posts (all tests)	70815	0.027	1.61	0.028	0.021	0.26	18.50	10.62	NA	NA	NA	NA	NA
Retainer P-VIII	22841	0.016	1.33	0.029	0.003	0.51	18.15	9.22	0.36	0.11	0.082	0.28	NA
							a 8						

NA = not reported in certificate of analysis.

12

r i u

ır

۷

....

н н

14.1

		Table 6.	Experimental	Matrix and	Weight (Change Resul	ts from	the P-II	Series	
Test #	Test Period (weeks)	Date Started	Date Stopped	Initial Glass Mass (gm)	Final Glass Mass (gm)	$\Delta_{ m Mass}$ (gmx10 ⁻⁵)	$\begin{array}{c} {\rm SA} \\ {\rm Ends} \\ ({\rm cm}^2) \end{array}$	${\mathop{\rm SA}}\limits_{{ m Sides}}$	$\begin{array}{c} \mathrm{SA} \\ \mathrm{Total} \\ (\mathrm{cm}^2) \end{array}$	J-13 ^a Added Drops (gm)
P-II-1a	6.5/13	2/20/84		9.9678			3.82	9.70	13.52	0.98/6.5 weeks
P-II-2a	6.5/13	2/20/84	III progress	10.0990			3.82	9.56	13.38	0.98/6.5 weeks
P-11-3	9	2/20/84	4/02/84	9.9378	9.9379	10	3.82	9.56	13.38	0.98
P-II-4	13	2/20/84	5/21/84	10.0620	10.0627	70	3.82	9.65	13.47	1.95
P-II-5	26	2/20/84	8/20/84	9.6495	9.6507	80	3.73	9.39	13.12	3.9
P-Ⅱ-6	39	2/20/84	11/19/84	9.5870	9.5885	150	3.66	9.34	13.00	5.85
P-II-7	52	2/20/84	2/25/85	9.6366	9.6368	20	3.71	9.36	13.07	7.80

• •

and Weight Change Results from the P-II Series Mateiv م لتا Ś

^aThe J-13 water was not pretreated.

13

The experiments have been conducted using J-13 water of composition given in Table 4. The water was received from Lawrence Livermore National Laboratory (LLNL) and has been stored in its original shipping container. The source water has been analyzed periodically and its composition remains relatively stable (Table 4).

The results of these experiments will be discussed by describing the general appearance of the glass as observed throughout the test period, by examining the glass surfaces from the batch experiments, and by correlating the solution results with these observations.

1. General Observations

(a) The waste form steadily gained weight during successive sampling periods through 39 weeks. This is the result of precipitation on the glass surface. The precipitates were clearly visible after 6.5 weeks. They initially formed on the top surface and coverage began to extend onto the sides after 224.5 weeks in the continuous experiments. The accumulation of precipitates does not occur on the bottom surface. Based upon detailed investigation of the batch experiments, the precipitates are primarily aluminosilicates (see below).

(b) On the top surface, no accumulation of standing water appears to have occurred. Upon opening the vessels (after cooling), the top surface dries within 10-20 seconds and the surface changes from a dark gray to a dirty white color when drying.

(c) The bottom surface of the glass was usually in contact with standing water throughout the sampling interval and remained wet during sampling.

(d) There was some water loss during the sampling intervals due to vapor escaping from the vessels. However, some fluid was always present in the bottom of the vessels upon sampling or experiment termination, indicating that vapor-saturated conditions were maintained throughout the experiment. A new vessel design was introduced at the 210-week sampling in an attempt to reduce vapor loss and to provide a more secure positioning of the glass in the center of the vessel.

2. Component Analyses

Selected samples from the batch experiments were examined by SEM/EDS/WDS. To do this, the top and bottom faces were carefully cut from the waste form and mounted on aluminum stubs. The reaction products observed on all samples are generally similar with greater coverage evident on the longer duration samples. The following is a description of the 26- and 52-week samples.

a. P-II-5, 26-Week Sample

A Si-rich surface layer is well developed on the glass with two types of reacted areas present. In some areas, the surface is covered by a smooth deposit which is similar in composition to that of the unreacted glass, except that it is somewhat depleted in Na and enriched in Mg, S, and K (Figs. 3a and 3b/EDS, compare with Fig. 2a/EDS). This deposit covers $\sim 25\%$ of the surface and appears to have formed by precipitation. The remainder of the surface has a rougher textured appearance, which at high magnification reveals many small platelets (Fig. 3d). This material is similar in composition to the smooth regions (compare Figs. 3e/EDS and 3b/EDS). There are many small areas which are somewhat enriched in S and Ca relative to the typical surface layer suggesting the presence of gypsum or anhydrite.

Many small grains are distributed over the surface (Fig. 3f). The two most common have been identified by XRD as calcite and gypsum. Calcite takes the form of vertical protrusions from the surface. Gypsum grains are typically very irregular in form (Fig. 3a) and have easily distinguishable EDS spectra (Fig. 3c/EDS). Both phases occur up to 100 μ m across. Since gypsum is not stable above 42°C, at 1 atm, it must have formed either by low-temperature hydration of preexisting anhydrite or by direct precipitation during cooling of the WPA when the experiment was terminated.¹⁰ There are a number of other phases present; however, they were too fine grained to permit identification by XRD. These other grains are rich in Na, K, or Mg.

The bottom surface has far fewer grains on it compared to the top surface. The points of contact between the TeflonTM grid and the glass are evident to the eye and in the SEM (Fig. 4a). The contours of the as-cut surface are still visible but some places appear to be highly eroded. Some of the surface is covered by a smooth deposit; however, the majority has a rougher textured appearance (Fig. 4b). The roughness is more pronounced in the area of the TeflonTM contact. This reacted surface layer has a similar composition in the contact and noncontact areas (Fig. 4c/EDS). A reaction product, not observed on the top surface, occurs as dark splotches (Fig. 4d) and smooth rounded grains (Fig. 4e) on the SEM and is composed predominantly of Na (Fig. 4f/EDS). While it has not been possible to collect a sample for XRD analysis, the EDS spectra and the fact that the grains are beam sensitive suggests it is Na_2CO_3 . The possibility of this being a borate may be excluded based upon WDS analysis of similar grains on the top surface which revealed no boron. The Si and Al in the EDS spectra probably result from excitation of the surface layer as the beam penetrated the grains.

b. P-II-7, 52-Week Sample

ult aldat tan da ut an

A reacted layer is well developed on the top surface. It has a rough textured appearance and is composed of staked irregular shaped platelets (Fig. 5a). There is heavier coverage of precipitated grains compared with P-II-5 (Fig. 5b). These grains are predominantly calcite and gypsum. However, there are also many very irregular shaped grains rich in Na and Cl and are presumably NaCl (Fig. 5c).

Fig. 3. SEM Micrographs and EDS Spectra of Reaction Products Formed on the Top Surface of Experiment P-II-5 (26-Week Sample) (a) 2000X, (d) 15,000X, and (f) 100X

distant and a street

(b)

17

(f)

Fig. 4. SEM Micrographs and EDS Spectra of Reaction Products Formed on the Bottom Surface of Experiment P-II-5 (26-Week Sample) (a) 13X, (b) 2000X, (d) 1930X, and (e) 4200X/8400X

Fig. 5. SEM Micrographs of Reaction Products Formed on the Top Surface of Experiment P-II-7 (52-Week Sample) (a) 5000X, (b) 100X, and (c) 1750X

The bottom surface has a coarse texture similar to that observed on the top surface. A fine-grained precipitated deposit covers much of the coarse reacted layer (Figs. 6a and 6b/EDS). It is not a continuous deposit and it has a porous structure visible at high magnification. Its composition is essentially the same as the coarse reacted layer (compare Figs. 6b/EDS and 6c/EDS). In places, both the precipitated deposit and the reacted layer have exfoliated, exposing etched glass from below (Fig. 6d). The presence of precipitates on the exposed glass indicates that exfoliation occurred during the experiment rather than after termination. Many small grains of NaCl are present (Figs. 6e and 6f/EDS).

3. Solution Analyses

The elemental releases from the two continuous experiments are presented in Fig. 7. Selected element releases normalized for glass composition and sample surface area are given in Table 7. All raw and corrected solution data are presented in Appendix I for both the continuous and batch experiments.

The release of Li, B, and U can be used to monitor glass reaction because they occur in low concentration in the J-13 water. In addition, they are not generally observed to be incorporated in secondary phases.¹¹ However, some caution must be exercised since tincalconite (hydrated Na-borate) has been detected on the surface of steam-reacted West Valley glass.¹¹ The Li release in both continuous experiments is similar being released at a slowly declining rate over the course of the experiments, reaching a cumulative value of ~67 μ g after 301 weeks. The release observed in the batch experiments, which includes a final rinse component not present in the continuous experiments, is only slightly greater than observed in the continuous experiments. The release of Li normalized to the total surface area of the sample and its concentration in the glass is .2.5 g/m² after the 301-week sampling. Boron release is distinctly different from that of Li. Up through the 210-week period in the two

Fig. 6. SEM Micrographs and EDS Spectra of Reaction Products Formed on the Bottom Surface of Experiment P-II-7 (52-Week Sample) (a) 1000X/10,000X, (d) 500X/5000X, and (e) 1500X

and the management of the state of the state

Cumulative Release for Selected Elements from the P-II-1 and P-II-2 Continuous Experiments. (a) Boron, (b) lithium, (c) uranium, (d) sodium, (e) calcium, (f) magnesium, and (g) silicon

20

0 11-1

+ 11-2

- 4

•••	т · 1	Normalized	Release	(g/m^2)
Test $\#$	(weeks)	В	Li	U
P-II-3	6	0.3	0.4	0.07
P-II-4	13	0.9	0.9	0.16
P-II-5	26	0.4	0.8	0.14
P-II-6	39	0.8	1.1	0.27
P-II-7	52	0.9	1.6	0.77
P-II-1	52	2.4	1.0	0.32
	104	3.0	1.8	0.53
	155	3.0	2.0	0.68
	210	3.2	2.5	1.10
	262	10.8	2.7	1.14
	301	11.0	2.7	1.14
P-II-2	52	1.0	1.2	0.26
	104	1.2	1.8	0.31
	155	1.3	1.9	0.57
	210	1.5	2.1	0.61
	262	3.8	2.4	0.65
	301	7.6	2.4	0.66

Table 7. Normalized Release in the P-II Series

continuous experiments, B release leveled off. This was followed by a sharp increase in release. This increase coincides with the time when the vessels were modified to reduce fluid loss. After 301 weeks, release in the P-II-1 experiment is about 50% greater than in P-II-2. There are two possible explanations for this behavior. The first is that little or no reaction took place between 80 and 200 weeks due to vapor loss. Reaction then resumed once the vessel design was modified to retain more water. This is unlikely since the release of Li indicates that reaction continued throughout the entire duration of experiments. An alternative is that a B-bearing phase precipitated and then dissolved once more water was retained. As the continuous experiments are still ongoing, it is not yet possible to verify this contention.

There is a slow, steady release of U throughout the 301-week duration of the experiments. Like B, the release of U is about 50% greater in the P-II-1 experiment. It is not clear why this difference exists, although it is probably attributable to differing degrees of water retention in the two experiments. There is a distinct and regular net negative release of Ca, Mg, and Si. This indicates that these elements were removed from solution during the experiment. This is consistent with the observed occurrence of calcite and gypsum on a Si-rich surface layer on samples from the batch experiments. This behavior suggests that some of the surface layer has formed by precipitation rather than transformation of the glass. Sodium also has a net negative release but its behavior is erratic. This may be the result of periodic precipitation and subsequent redissolution of NaCl and Na₂CO₃. The behavior of these elements demonstrates that the J-13 water plays a role in the formation of the secondary phases.

B. P-III Experiments

The glass surface area is the modified parameter in these experiments. The surface area is reduced by $\sim 50\%$ by shortening the glass cylinders. The area ratio of the "as cut" top and bottom surfaces to the side is reduced from ~ 2.6 to 0.8. The stainless steel components are from heat #22841. The metal was not heat the two the two TIG welds that join the supporting pins to the bottom part of the holder.

This set of experiments was initiated on 12/6/84 and the continuous experiments are still in progress, having completed the 260-week sampling. The experiments were performed at 90°C with an injection volume of 0.075 mL of EJ-13 water every 3.5 days. The batch experiments were terminated in duplicate after 13, 26, 39, nd 52 weeks. The continuous experiments were sampled every 6.5 weeks through the 78th week and then about every 13 weeks thereafter. Two different batches of EJ-13 water were used, the compositions of which are given in Table 4. The change in EJ-13 water was on 10/1/86. The experimental matrix, along with selected weight change data, are presented in Table 8.

1. General Observations

(a) The WPA generally lost weight during the experiments. In most cases, the metal components gained a small amount of weight, presumably from precipitating phases; however, this gain was much less than the amount lost from the glass (Table 8). The one exception to this behavior is P-III-9 which showed a small net increase in weight.

(b) The top glass was always damp during sampling of the continuous experiments and termination of the batch experiments. The amount of water varied from being only at the rims of the metal perforations in the metal to almost filling the noncontact areas.

(c) Standing water was present on the bottom surface of the WPA. In some cases, water bridged the gap between the metal support posts and the side of the glass.

(d) Both the top and bottom metal components showed no local discoloration after the experiments. This suggests that reaction of the metal was minimal.

		Table 8.	Experimental	Matrix and	Weight Ch	ange Results	for the P-	III Series		
Test No.	Test Period (weeks)	Date Started	Date Stopped	Initial Glass Mass (gm)	Final Glass Mass (gm)	Δ Mass (gmx10 ⁻⁵)	SA Glass (cm ²)	Initial Top Canister Mass (gm)	Final Top Canister Mass (gm)	∆ Mass (gmx10 ⁻⁵)
P-111-1a	6.5	12/06/84	in progress	3.16816			6.95	2.34690		
P-III-2a	6.5	12/06/84	in progress	2.70018			6.64	2.35423		
Р-Ш-3	13	12/06/84	3/07/85	3.10109	3.10105	(4)	6.95	2.34086	2.34081	(2)
Р-Ш-4	13	12/06/84	3/07/85	3.02165	3.02153	(12)	7.04	2.34245	2.34249	ন্দ
P-111-5	28	12/06/84	6/20/85	3.02670	3.02625	(45)	6.93	2.34668	2.34680	œ
P-III-6	28	12/06/84	6/20/85	3.09710	3.09528	(182)	7.04	2.33905	2.33922	17
Р-Ш-7	39	12/06/84	9/05/85	3.15518	3.15361	(157)	7.06	2.34517	2.34517	0
Р-Ш-8	39	12/06/84	9/05/85	3.09808	3.09707	(101)	6.87	2.48966	2.48971	ŋ
6-Ш-д	52	12/06/84	12/05/85	3.13821	3.13785	(36)	6.85	2.36099	2.36133	34
P-III-10	52	12/06/84	12/05/85	3.00496	3.00395	(101)	6.99	2.35664	2.35685	21

Cont'd

23

Table 8 (C	ont'd)					
Initial Bottom Canister Mass (gm)	Final Bottom Canister Mass (gm)	∆ Mass (gmx10 ⁻⁵)	Initial Total Vessel Mass (gm)	Finel Total Vessel Mass (gm)	∆ Mass (gmx10 ⁻⁵)	Water Added During Testing
3.34069			318.94	319.74	0.80	0.975
3.34735			312.07	312.99	0.92	0.975
3.34158	3.34152	(9)	316.93	318.64	1.71	1.95
3.34538	3.35432	(9)	313.36	314.96	1.60	1.95
3.32778	3.32782	4	318.62	322.23	3.61	4.20
3.33474	3.33526	52	318.12	321 20	3.34	4.20
3.35074	3.35113	39	318.48	323.32	4.84	6.15
3.32720	3.32739	19	318.49	323.29	4.80	6.15
3.33064	3.33098	34	319.14	325.31	6.17	7.80
3.34616	3.34637	21	321.49	327.07	5.58	7.80

..

. ...

24
2. Component Analyses

The glass and metal components were first examined optically up to a magnification of 140X. At this time, surface features were mapped and areas for further investigation were identified. Some samples were examined by SEM/EDS/WDS and/or SIMS. At least one sample from each experiment was examined.

a. P-III-3 and P-III-4, 13-Week Samples

The metal components of the P-III-3 and P-III-4 samples are very similar in appearance. The parts of the components not in direct contact with the glass have no evidence of accelerated reaction. In the areas where glass contact occurred, there is a thin Si-rich mat developed (Fig. 8a, 8b/EDS). Its texture is essentially the same as that observed on the glass (see below). In a few places this mat forms thicker clumps (Figs. 8c, 8d/EDS, 8e, and 8f/EDS). Overall, precipitate coverage is heavier on the bottom component. Aside from the Si-rich deposit, other precipitated phases include chloride (NaCl?) and sulfates (CaSO₄?) as shown in Figs. 8e, 8f/EDS, 8g, and 8h/EDS. Note the small Ca and S peaks in the EDS spectrum in Fig. 8f/EDS. This suggests the intermingling of phases at a very fine scale. There are also some small irregularshaped masses rich in Na (Figs. 8i and 8j/EDS). These are electron beam sensitive and are similar to that observed on the P-II samples which were tentatively identified as Na₂CO₃ (compare Fig. 8i with Figs. 4d and 4e).

The bottom glass surface has partially defined regions of metal and nonmetal contact. This duality in appearance suggests that there was not close metal-glass contact over the entire surface. The contact and noncontact regions have the same appearance where the "as cut" contours of the glass are still clearly defined but the surface appearance has been transformed from a smooth fractured surface to one covered with an interwoven phase with a "cardhouse" texture (Fig. 9a). Its texture and composition are consistent with a smectite clay (Figs. 9b/EDS and 9c/EDS). Small precipitates are present in crevices and fractures on the glass surface (Fig. 9d). From EDS analysis, these range in composition from only containing Si to having Si and Al to having Si, Al, Cr, and Mn (Figs. 9e/EDS, 9f/EDS, and 9g/EDS). This apparent compositional range may be attributable to the presence of multiple phases at a fine scale.

On the top glass surface, the noncontact areas are clearly defined as light gray to tan circular regions set on a dark brown-black background. The contact areas (with the metal component) have the same textured appearance as observed on the bottom glass (Fig. 9a), but the noncontact areas either retain an unreacted appearance or show incipient development of a textured layer (Fig. 9d). EDS spectra taken from all regions of the top surface are similar to unreacted glass.

Fig. 8. SEM Micrograph and EDS Spectrum of (a and b) the Metal Surface in Contact with Glass from the Top Section of the Waste Form Holder in Experiment P-III-4; (c and d) Clumps of the Mat Materials that Formed on the Top and Bottom Metal Sections from Experiment P-III-4; (e-j) Reaction Products Observed on the Bottom Metal Section from Experiment P-III-4.

 $1000\mathbf{X}$

800X

(i)

1010X

Fig. 8. Cont'd

Fig. 9. SEM Micrographs and EDS Spectra of Reaction Products on the Bottom Surface of the Glass from Experiment P-III-4. This is typical of both metal contact and noncontact regions. (a) 1000X/10,000X. EDS spectra of the contact and noncontact regions are shown in (b) and (c), respectively, (d) 1000X/10,000X (see text)

Fig. 9. Cont'd

÷

SEM Micrograph and EDS Spectra of Reaction Products on the Bottom Surface of the Glass from Experiment P-III-4. (h) 1000X/10,000X view of noncontact area

Þ

SIMS depth profiling was performed on the P-III-3 glass. The profiles are normalized to ²⁸Si intensity. The normalization is a standard technique used to account for variations in the sputtering conditions. As a result, the profiles only show preferential depletion or enrichment relative to Si which is the most abundant component in the glass. Depth profiles of Li, B, and Mg from the contact and noncontact areas of the bottom glass and from the side glass are presented in Fig. 10. In all cases, Li is depleted to a depth of at least 1 μ m. The depletion is not sharp, but instead is of a gradual nature. Boron is also depleted on the bottom surface but it appears to be restricted to the outer 0.3 μ m (see mark on Fig. 3b profile). No B depletion is apparent on the side glass surface, however. Relative to Si, the distribution of Mg is constant.

In summary, the extent of reaction is greatest on the bottom surface and least on the sides. Depletion of Li appears to occur to a greater depth than B. Precipitation of Si-rich "clay" and other phases occurs on both the metal and glass components. This masks the original concoidally fractured appearance of the glass surfaces.

b. P-III-5 and P-III-6, 26-Week Samples

The metal components have the same general appearance as that described for sample P-III-4. The noncontact-contact boundaries are well defined. A Si-rich deposit covers the metal especially where it was in contact with the glass and is much thicker on the P-III-6 components. Development of this deposit is greatest on the bottom component in the contact areas and in the noncontact areas where standing water was present during the experiment (Fig. 11a). This Si-rich material also occurs in clumps. Some of these clumps contain a mixture of phases which may be rich in Ti, Cl, and/or S (Figs. 11b, 11c/EDS, 11d, and 11e/EDS). The presence of anhydrite or gypsum is suggested by the Ca and S peaks in the EDS spectrum shown in Fig. 11e/EDS. A U-bearing phase occurs on the noncontact area (Figs. 11f and 11g/EDS). It contains Si and Ca and has an acicular form, suggestive of uranophane. There was not enough material available for XRD analysis.

The top glass surface has no clearly marked circular noncontact regions and the original surface contours are still apparent. The surface is covered by a Si-rich layer similar in composition to that observed on other samples. Clumps of this same material are also present.

The bottom glass surface is megascopically different in appearance from the outer samples. It has a uniform gold-colored haze and the contact and noncontact areas are only partially visible. At higher magnification, the surface has a thick textured surface layer which is somewhat coarser than observed elsewhere (Fig. 12a). Its composition is consistent with a Ca-smectite (Fig. 12b/EDS). The original surface contours are only barely visible and are considerably rounded. In one region, the surface layer is discontinuous, exposing the glass from below (Fig. 12c). Here, it appears that the thick surface layer exfoliated during the experiment and the glass is now partially overgrown by precipitation of Si-rich "clay." A small cluster of yellow grains is also present on the exfoliated surface (Figs. 12d and 12e/EDS). These grains contain Na, Ca, S, and Cl but have not been positively identified.

other section

Fig. 10. SIMS Spectra Showing the Profiles of Li, Mg, and B Relative to Si for Sample P-III-3 (a) Bottom Section Non-Metal Contact, (b) Bottom Section Metal Contact, and (c) Side Surface. Note the different depth scale in (c)

ENERGY IKEY)

18.8

÷

1

SEM Micrographs and Associated EDS Spectra from the Bottom Glass Section from Experiment P-III-6. (a) Reacted contact area (1000X/10,000X); (b) EDS spectrum of surface in (a); (c) exfoliated, precipitated area (990X); (d) yellow crystals (100X/1000X) from near the exfoliated region; and (e) EDS spectrum of yellow crystals. Note the high Na and Cl content

c. P-III-7 and P-III-8, 39-Week Samples

Sample P-III-8 visually appears to be somewhat more altered so it was investigated further by SEM/EDS. A Si-rich deposit, probably smectite, occurs on both the contact and noncontact regions of the top metal component. The noncontact-contact boundary is well marked (Fig. 13a). The Si-rich deposit also occurs in clumps, some of which contain Mn, Cr, or Fe (Figs. 13b and 13c/EDS). Based upon numerous EDS spectra, the Al content appears to be somewhat variable. A Ti-rich phase occurs rarely and seems to be intimately associated with clumps of Si-rich "clay" (Fig. 13d/EDS). It may be anatase (TiO₂), but XRD analysis was not possible to confirm this.

The bottom metal component is discolored in areas around the support pin welds, but there is no indication of glass-metal reaction. The noncontact-contact boundary is well defined. Like the top component, a Si-rich deposit also covers the bottom metal piece. Clumps of precipitates are extensively developed, many of which have the same composition as the deposit (Fig. 13e). Some thin disc-shaped masses are present which are rich in Ca and S suggesting they are either gypsum or anhydrite (Figs. 13f and 13g/EDS). Other, thicker disc-shaped grains occur which appear to be pieces of the surface layer that stuck to the metal when the sample was disassembled after termination of the experiment (Fig. 13h).

The circular noncontact areas are well marked on the top glass surface. However, there is no significant difference in composition between the noncontact and contact areas. The "as-cut" contours are partially obscured by growth of the reacted layer. Exfoliation of this layer has occurred in places, exposing the glass from below. In these areas, precipitates now partially cover the glass surface. These precipitates, like numerous clumps elsewhere, have a similar composition and appearance to that of the surface layer.

The bottom glass surface also appears highly reacted with the identity of the "as-cut" contours being almost obscured by the presence of a surface layer. The layer, as well as many clumps on the surface, have the same texture and composition as found on the top glass. However, in one area, a smooth overgrowth is present that is somewhat enriched in Ca. The surface layer has exfoliated in some places and a discontinuous cover of precipitates is present on the newly exposed surface.

The side glass near the bottom surface was also investigated by SEM/EDS. The surface has a textured appearance with a "cardhouse" type structure and composition consistent with smectite. There are two layers closest to the bottom surface with a precipitation front visible several millimeters up the side (Fig. 14a). Many chloride-bearing grains are present at this front (Fig. 14c/EDS). Some mottled regions of the upper layer are rich in Fe and Mn suggesting the presence of Fe-Mn oxides or hydroxides intermingled with smectite (Figs. 14d and 14b/EDS). The lower layer has a similar morphology and composition to the upper layer. In places where the lower layer has broken away during sample preparation, a view in the third dimension is possible (Fig. 14d). The layer appears to only be a coating on an otherwise smooth glass surface which suggests the layer developed solely by precipitation rather than by direct glass reaction. This is supported by the presence of small regions

Fig. 13. SEM Micrographs and EDS Spectra of Features from the Top Metal Component of Experiment P-III-8. (a) Glass contact/noncontact interface (6000X); (b) Mn-enriched cluster of alteration products (1000X/10,000X); (c) EDS spectrum of material shown in (b); (d) EDS spectrum of Ti-rich grain

Fig. 13. Cont'd

SEM Micrographs and EDS Spectra of Features from the Top Metal Component of Experiment P-III-8. (e) micrograph (300X) showing general view of precipitate coverage; (f) micrograph (1000X/5000X) of dark splotches. (g) EDS spectrum of splotches shown in (f); and (h) micrograph (600X) of a piece of the altered layer from the glass that stuck to the metal component on separation

Fig. 14. SEM Micrographs and EDS Spectra of the Side Glass of P-III-8.
(a) View (700X) of the precipitation front (see text); (b) EDS spectrum of precipitated surface layer; (c) EDS spectrum from the precipitation front where chlorides are intergrown with the Si-rich "clay"

where the lower layer is incomplete. Here, loosely connected precipitates encroach on small open areas where apparently etched glass is exposed (Fig. 14f). However, investigation of the layer formed on the side surface using analytical electron microscopy provides a more detailed description of the structure of the reacted glass, and should help identify the process by which the glass reacts (see addendum).

d. P-III-9 and P-III-10, 52-Week Samples

SEM/EDS and SIMS, but the metal components were not examined.

$(1) \quad \underline{P-III-9}$

This sample appears to be more reacted than P-III-10. The top glass surface looks highly reacted and cracked and is covered with precipitates (Fig. 15a). However, the noncontact areas are not distinct from the contact areas. The light-colored streaks in Fig. 15a are due to charging along cracks in the surface layer. The layer is Si-rich and is essentially the same composition as observed for other samples (Fig. 15b/EDS). Exfoliation of portions of the surface layer is common (Fig. 15a). Other areas are in the processes of exfoliating as shown in Fig. 15c. The newly exposed glass has the appearance of having been etched (Figs. 15a and 15c). There are numerous precipitates on the surface, often associated with the exfoliated areas. Many are Ca- and S-rich and are probably gypsum or anhydrite (Figs. 15d and 15e/EDS). Round grains and thin threads of NaCl occur over the entire surface (Fig. 15f). Other chlorides, possibly CaCl₂, are also indicated from the EDS spectrum shown in Fig. 15g/EDS. Small grains of Fe-Mn oxide or hydroxide are often intimately associated with the Si-rich "clay" surface layer.

The bottom glass surface has distinctly lighter color noncontact areas (Fig. 16a). Like the top surface, a thick surface layer has developed which is extensively cracked and is exfoliating, especially in the noncontact areas (Figs. 16a, 16b, and 16c). The "as-cut" appearance is completely masked and there are numerous precipitates on the surface. Most of the precipitates, like those in Fig. 16c, are probably either gypsum or anhydrite.

SIMS profiles were obtained from the top and bottom surfaces. Silicon normalized profiles for several elements from the bottom surface are presented in Fig. 17. Lithium is depleted relative to Si to a depth of 2.5 μ m, while Mg, Mn, and K (not shown) are relatively enriched close to the surface. Boron shows some depletion in the near-surface region.

 $(2) \quad \underline{P-III-10}$

Only the bottom surface of P-III-10 was investigated. The noncontact areas are partially visible and the "as cut" contours are obscured by the growth of a Si-rich surface layer. This layer is generally coarser grained than observed on P-III-9 (Fig. 18a). Exfoliation of the surface layer has occurred in places, although to a lesser extent than on P-III-9. The newly exposed glass is etched and appears to be somewhat altered (Fig. 18b). Small round precipitates dot the surface which contain Ca and S and are probably either gypsum or anhydrite.

Fig. 15. SEM Micrographs and EDS Spectrum from the Top Glass Surface of P-III-9. (a) General surface with Ca/S-rich precipitates and exfoliated region (500X), (b) EDS spectrum of surface layer, (c) initial phase of exfoliation (400X), and (d) Ca-S precipitates on surface (5000X)

Fig. 16. Optical Photographs of the Bottom Glass Surface of P-III-9. (a) 6X;
(b) ~12X, the spot with the dark halo is the result of a SIMS analysis. SEM micrographs of features from the bottom glass surface of P-III-9.
(c) General surface appearance (1000X) and (d) higher magnification of surface (10,000X) showing a cracked region plus small Ca/S-rich grains

Fig. 17. SIMS Profiles of the Bottom Glass Section from Experiment P-III-9 in a Region of Glass-Metal Contact

Fig. 18. (a) SEM Micrograph (5000X) Showing the Coarse-Grained Appearance of the Surface Layer; (b) Micrograph (10,000X) Showing Exposed Etched Glass; and (c) SEM Micrograph of a Cross Section of the Bottom Glass Surface from P-III-10

A polished cross section of the bottom glass was also prepared and studied by SEM (Fig. 18c). A band ~1.5 μ m thick is visible at the edge of the glass. The band is comprised of regions of varying electron density contrast with the bright streaks due to charging at the sample-epoxy interface. A survey of the unreacted glass was performed to check for inhomogeneities in the glass. Overall, the composition is quite uniform except that traces of S and Cl are intermittently detectable.

SIMS profiles were obtained from the bottom surface and the side of the glass (Figs. 19a and 19b). The profiles, normalized to Si, are broadly similar to those from P-III-9. Lithium is depleted to a depth of ~1.5 μ m on the bottom surface, which is consistent with the thickness of the altered layer observed by the SEM (Fig. 18c). Boron is also depleted in the near surface. The depletion is more gradual on the bottom than it is on the side.

3. Solution Analyses

Elemental releases from the continuous experiments are shown in Fig. 20, and normalized releases for selected elements are given in Table 9. The raw data and the background subtracted cumulative releases are included in Appendix I for both the continuous and batch experiments.

Partial blockage of the inlet lines occurred in P-III-2 after the second year of the experiment and has continued intermittently to date despite efforts to clear the line without disassembly of the system. However, at no time was the line completely blocked. As a result, less water was injected during these periods than was required.

Fig. 19. SIMS Profiles of the Reacted Bottom and Side Surfaces of the Glass from Experiment P-III-10. (a) Bottom surface metal contact and (b) side surface

There is good agreement in the element release trends between the P-III-1 and P-III-2 experiments. There is some divergence apparent in the most recent analysis, which correlates with the smaller amount of fluid recovered from the P-III-2 vessel. Normalized release of Li is the greatest of all elements, reaching a value of ~6.5 g/m² after 260 weeks. The rate of Li release in both experiments decreased steadily for the first two years after which the rate became relatively constant. However, since about 170 weeks, the rate has increased fairly sharply, especially in the P-III-1 experiment (Fig. 20). The normalized release of B at 260 weeks is ~3.1 g/m² or about half that of Li. The trend of release closely follows that of Li over the entire duration of the experiments. The rate of U release has been fairly constant, although a slight increase seems to have occurred after about 170 weeks. The normalized release reached ~3.3 g/m² after 260 weeks which is about the same as for B.

A ROLL D

11

-

and the state of the second state of the sta

Fig. 20. Cumulative Release of Selected Elements from the P-III-1 and P-III-2 Continuous Experiments

		Norma	lized Releas	se (g/m^2)
Test #	(weeks)	В	Li	U
P-III-3	13	0.2	1.0	0.1
-4	13	0.3	1.1	0.2
-5	28	0.7	1.8	0.6
-6	28	3.2	4.3	2.3
-7	39	3.1	4.2	2.1
-8	39	2.0	3.3	1.5
-9	52	3.7	5.6	2.6
-10	52	2.3	4.0	1.7
P-III-1	52	0.7	2.1	0.6
	104	1.1	3.2	0.8
	156	1.5	4.1	1.2
	208	2.2	5.4	2.3
	234	2.8	6.3	2.8
	26 0	3.6	7.3	3.4
P-III-2	52	0.5	1.9	0.4
	104	0.9	2.8	0.8
	156	1.4	3.8	1.1
	208	1.9	4.7	2.2
	234	2.3	5.3	2.7
	260	2.6	5.8	3.3

od market Horizaharaka oz 🎆 👗 nuko oz terest

£

Table 9. Normalized Release in P-III Series

There is a consistent net negative release of Ca and Mg, indicating that these elements have been removed from the injected EJ-13 water and incorporated into the secondary phases. This is consistent with the ubiquitous occurrence of gypsum or anhydrite on the batch samples. The Mg may be accommodated in the Si-rich "clay" layer.

Both Na and Si have erratic release patterns which are similar in the P-III-1 and P-III-2 experiments. This variable behavior may be attributable to periodic precipitation and redissolution of NaCl (or Na_2CO_3 ?) which is observable on the batch samples. There was a net negative release of Si through the first year followed by a sharp positive release. Then, at the 104-week period for P-III-1 and the 91-week period for P-III-2, the Si release rate diminished. The reason for this behavior is unclear; however, it may be caused by secondary phase formation such as smectite. The sharp increase in release may indicate the initiation of surface layer exfoliation. Since the surface layer is composed predominantly of Si, if pieces of the layer were to fall into the solution, the subsequent acidification of the solution during sampling would preferentially enhance the Si concentration relative to the other elements. Except for the 13-week samples, elemental release is usually much greater in the batch experiments compared to the continuous experiments (Table 9). At the 13-week period, releases are about the same in both types of experiments. While the WPA wash that is incorporated into the termination procedure of the batch experiments adds about 10% to the total release, this cannot account for the up to five-fold difference that is observed for some elements (Appendix I). The extent of element release is markedly different between the duplicate batch experiments terminated after 28 and 52 weeks. The reason for this discrepancy is unknown, although there is a correlation between larger release and a greater volume of solution recovered from the vessel upon termination of the experiments.

4. Discussion

dine dial 1979

The observation that normalized release of Li is twice that of B suggests these elements behave differently during glass reaction and that nonstoichiometric dissolution has occurred. SIMS profiles are consistent with the solution release trends in that B is retained to greater degree than Li in the residual altered layer (Figs. 10, 17, and 19). Another possibility is that B is incorporated in secondary phases. No B-bearing phases have been detected using the WDS system. While both Li and B are removed from the glass during reaction, Li is depleted to a greater depth than B (Figs. 10, 17, and 19). This suggests that Li is more mobile than B and, therefore, a greater volume of glass is leached of Li per unit time. Correlation of the SIMS data with AEM data will hopefully more clearly define the leaching process.

Depletion of Ca, Mg, and Na in solution is associated with the formation of secondary phases on the WPA. The erratic nature of Na release may be due to periodic precipitation of NaCl or Na_2CO_3 ? followed by dissolution.

The most abundant secondary phase is the Si-rich layer that is present on both the glass and metal components. Its composition and "cardhouse" type texture suggests it is composed of smectite (e.g., Figs. 12a and 12b/EDS). The deposit on the metal and at least some of the layer on the glass formed by precipitation. Other parts of the layer on the glass may have transformed in situ from the altered glass, although this has not been demonstrated definitively. Release of Si into solution does not follow a systematic trend (Figs. 20a and 20b). This may in part be due to exfoliation of the surface layer.

Exfoliation of the surface layer is observed in all samples that reacted for at least 26 weeks (i.e., P-III-6, P-III-8, P-III-9, P-III-10). Precipitation of Si-rich "clay" on the newly exposed glass indicates that exfoliation must have occurred during the experiment. This process has important implications for the rate of glass reaction and for interpretation of solution chemistry data.

C. <u>P-IV Experiments</u>

The purpose of these experiments is to examine the effect of reducing the water volume during each injection period. While maintaining the normal injection interval of 3.5 days, the drop volume is reduced by 50% to 0.038 mL. The surface area of the glass is also reduced by $\sim 50\%$, which is the same as for the P-III experiments.

The experiments were initiated on 2/18/85 and have been completed through 247 weeks. The batch experiments were terminated in duplicate at 25.5 and 52 weeks. The continuous experiments are ongoing and have been sampled every 13 weeks up to 221 weeks and for longer intervals since. Two batches of EJ-13 water have been used (Table 4). The switch in batches occurred after 91 weeks. The experimental matrix is given in Table 10.

1. General Observations

The appearance of the WPA during the sampling periods and at termination was very similar to that noted for the P-III experiments. The top surface of glass was damp in the areas not in contact with the stainless steel and there was standing water around the circumference of each hole in the metal. There were small droplets of water present on the top surface of the stainless steel. However, there was no evidence of localized reaction between the metal and glass. The bottom surface had standing water around the circumference of the glass and between the glass and the metal rim. The regions of nonmetal contact were also wet. In some experiments water bridged the gap between the glass and the metal support pin(s).

The weight change measurements (Table 10) indicate that the glass lost weight during all experiments. There is good reproducibility between duplicate samples, and the 52-week samples show slightly more than twice the weight loss of the 25.5-week samples. The metal sections gained weight in most cases with the weight gain being greater for the shorter tests than the longer.

2. <u>Component Analyses</u>

dine fullikne v

The glass from all the terminated batch experiments was examined optically, and the top and bottom surfaces of P-IV-3 and P-IV-5 were investigated by SEM/EDS.

a. P-IV-3 and P-IV-4, 25.5-Week Samples

The general appearance of the two samples is similar. The noncontact areas on the bottom surfaces are clearly visible, appearing as light gray circles on a dark background. There is no such demarkation on the top surface of P-IV-3. However, small irregular whitish patches occur in the central portions of the noncontact areas. Dark circular regions are discernible on the top surface of P-IV-4. The side surfaces are generally shiny brown-black with irregular-shaped areas that correspond to regions of standing water during the experiments. This includes the lower third of the sides where a cracked and peeled bronze-colored scale is present. Near the top surface is an irregularly distributed whitish deposit.

		Table 10	. Experimental	Matrix and	U IUGION I	conneast agurau				
Test No.	Test Period (weeks)	Date Started	Date Stopped	Initial Glass Mass (gm)	Final Glass Mass (gm)	∆ Mass (gmx10 ⁻⁵)	$_{\rm (cm^2)}^{\rm SA}$	Initial Top Canister Mass (gm)	Final Top Canister Mass (gm)	∆ Mass (gmx10 ⁻⁵)
P-IV-1a	13	2/18/85	in progress	3.06736			6.90	2.35246		
P-IV-2a	13	2/18/85	in progress	2.92639			6.81	2.36709		
P-IV-3	25.5	2/18/85	8/19/85	3.17915	3.17880	(350)	6.84	2.35355	2.35306	310
P-IV-4	25.5	2/18/85	8/19/85	3.01384	3.01334	(200)	6.81	2.35334	2.35334	100
P-IV-5	52	2/18/85	2/17/86	3.03562	3.03438	(1240)	6.85	2.36914	2.36924	100
P-IV-6	52	2/18/85	2/17/86	2.74079	2.73976	(1030)	6.55	2.36495	2.36500	50

Results for the P-IV Series 40 +4-1 M F N.C. £

и са и

Cont'd

-

.,

Iable 10 (Cont'd)					
Initial Bottom	Final Bottom		Initial Total	Final Total		Water
Canister	Canister	Δ	Vessel	Vessel	Þ	Added
Mass (gm)	Mass (gm)	Mass (gmx10 ⁻⁵)	Mass (gm)	Mass (gm)	Mass (gmx10 ⁻⁵)	During Testing
3.34578			319.14	319.65	0.51	0.975
3.33530			317.33	317.99	0.66	0.975
3.37079	3.37114	350	319.39	310.48	1.09	1.988
3.34849	3.34877	280	320.08	321.09	1.01	1.988
3.34193	3.34216	230	313.67	315.89	2.22	3.90
3.34688	3.34685	(030)	318.49	320.84	2.35	3.90

Table 10 (Cont'd)

Examination of the bottom glass surface of P-IV-3 by SEM reveals a surface layer has developed similar to that observed on the P-III samples (compare Figs. 21a and Fig. 12a). The layer is Si-rich and is depleted in Na and enriched in Fe and Mn relative to the glass. The development of this layer in the noncontact areas is incomplete (Fig. 21b). Here, glass is still exposed over approximately 10% of the area. It appears that most of the surface layer has formed by precipitation (Figs. 21b and 21c). The glass is quite smooth, even at 10,000X magnification, although there is some fine-scale structure indicating reaction has occurred (Fig. 21c).

The top glass surface has retained most of its original "as cut" appearance; however, clear evidence of reaction is revealed at higher magnification (Figs. 22a, 22b, and 22c). A Si-rich layer has developed across the entire surface.

The contact and noncontact areas are texturally indistinguishable at the scale of the SEM. There are numerous isolated precipitates present which are too small for XRD analysis, but EDS spectra indicate several different compositions. Some have essentially the same composition as the surface layer, while others are composed only of silica and are possibly quartz or opal. Some calcite is present. There are also clusters of precipitates rich in Cr, Fe, and Mn and are probably an oxide or hydroxide phase.

b. P-IV-5 and P-IV-6, 52-Week Samples

The bottom surfaces of these two samples have clearly marked noncontact areas that are light gray in color. These areas are intact on P-IV-6, but on P-IV-5, a surface layer is observable which is cracked and has separated from the glass in many places. This is similar to the appearance of several samples from the P-III experiments.

The top surfaces are very different in appearance. The noncontact areas on P-IV-5 are fairly well marked, being darker than the light blue-green to brown contact areas. Small whitish patches of precipitates are present in the center of a few of the noncontact areas. The noncontact areas on P-IV-6 are barely discernible. An extensive array of saw marks is the most prominent feature which form whitish streaks on a relatively uniform dark background.

The bottom surface of P-IV-5 has a similar appearance to that of P-IV-3 under the SEM, except that there are many small Ca- and S-bearing grains which are probably gypsum or anhydrite (Fig. 23a). A Si-rich layer is present but it is incomplete, exposing glass from below. In some places, the layer is cracked and pieces have exfoliated (Fig. 23a). The process of cracking and exfoliation has begun even before the surface layer has completely developed. The exposed glass surface shows only slight evidence of etching but, otherwise, it looks unreacted (Figs. 23a and 23b). However, the early stages of alteration, where a gel layer forms, may not be readily discernible by SEM.¹² Precipitation of a Si-rich layer appears to be quite rapid in the freshly exposed areas.

Fig. 21. SEM Photomicrographs of the Bottom Glass Surface from Experiment P-IV-3. (a) General surface, ss contact (5000X); (b) general surface, noncontact (1000X); and (c) localized precipitation in the noncontact area (10,000X)

Fig. 22. SEM Photomicrographs of the Top Glass Surface from Experiment P-IV-3. (a) General surface (2000X); (b) general surface texture (10,000X); and (c) general surface (5000X)

(a)

Fig. 23. SEM Micrographs of the Bottom Glass Surface from Experiment P-IV-5. (a) Exfoliation of surface layer and numerous Cs-S grains (600X) and (b) glass surface with only partial coverage of precipitates (300X)

The top surface of P-IV-5 is also similar to the top of P-IV-3. Although the "as cut" contours are still readily visible, a uniform continuous fine-grained surface layer has developed (Fig. 24a). Its Si-rich composition is typical of the layers developed on other samples. No exfoliated areas are present. However, there are numerous places where the layer is cracked and small pieces are raised up from the glass (Fig. 24a). This suggests an incipient stage in the exfoliation process. The surface is dusted with small ($\leq 2 \mu$ m) round grains of gypsum or anhydrite (i.e., Ca + S bearing). Other precipitates include clusters of Cr-, Mn-, Fe-, and Ni-bearing grains (Fig. 24b) which are probably oxide or hydroxide phases. Their composition is variable from containing mostly Fe and Ni, to containing Ni only, to containing predominantly Cr and Mn (Figs. 24c/EDS, 24d/EDS, and 24e/EDS). Others have compositions similar to stainless steel (compare Fig. 24f/EDS with Fig. 2c/EDS).

3. Solution Analyses

Elemental releases from the continuous experiments are presented in Fig. 25 and normalized release of Li, B, U, Na, and Si are given in Table 11. The raw data and the background subtracted cumulative releases are included in Appendix I for the batch and continuous experiments.

The trends in element release are similar between experiments P-IV-1 and P-IV-2 (Fig. 25). However, the magnitude of release from P-IV-2 is on the order of two times that of P-IV-1. It is not clear why these two experiments, which show the same release pattern, should have such different overall release. In both experiments Li, B, Na, Si, and U all have positive releases. After 182 weeks, however, a sharp reduction in the rate of release is apparent for all these elements suggesting a slowing of glass reaction and/or release from the WPA.

Lithium has the greatest normalized release, although it is not much greater than B or Na (Table 11). Release of U is only slightly less than B and Na. Silicon release is much less than these elements. This is attributable to the formation of the Si-rich surface layer on the glass and metal which acts as a sink for Si. The only element with a negative release is Ca. This indicates significant precipitation of a Ca-bearing phase or phases which depletes Ca in the EJ-13 water. This correlates with the observation of tiny grains of gypsum or anhydrite distributed over the surfaces of the batch samples.

4. Discussion

The top and bottom surfaces in the P-IV batch experiments have a different appearance visually as well as under the SEM. The surface layer on the bottom surfaces has a textured appearance and coverage is incomplete. In some places, it is evident that pieces of the surface layer have exfoliated, exposing patches of glass from below. Elsewhere, it appears that the surface layer never developed completely across the glass. Based upon the generally unreacted appearance of the exposed glass, and the distribution of new deposits in the partially covered areas, it seems that the surface layer has formed mostly by precipitation. Other precipitated phases are conspicuous by their absence.

Fig. 24. SEM Micrographs and EDS Spectra of Reaction Products on the Top Surface of P-IV-5. (a) Micrograph (2000X/10,000X) of surface layer);
(b) micrograph (2000X) of surface layer and Cr-, Mn-, Fe-, and Ni-bearing grains; (c-f) EDS spectra of grains shown in (b)

Fig. 25. Cumulative Release of Selected Elements from the P-IV-1 and P-IV-2 Continous Experiments

	Danta 1		Norma	lized Releas	se (g/m^2)	
Test #	(weeks)	Na	Si	В	Li	U
P-IV-3	25.5	2.4	0,6	1.4	2.3	1.0
P-IV-4	25.5	2.1	0,6	1.2	2.0	1.0
P-IV-5	52	4.4	1.5	2.9	3,8	2.0
P-IV-6	52	4.5	1.0	1.7	3.1	1.0
P-IV-1	52 104 156 208 247	$4.1 \\ 9.3 \\ 19.8 \\ 24.2 \\ 23.2$	1.4 3.4 9.0 10.9 10.9	3.9 9.8 20.6 24.6 24.9	5.0 11.0 23.2 28.4 29.0	3.9 7.8 15.8 18.8 19.7
P-IV-2	52 104 156 208 247	$2.9 \\ 4.8 \\ 9.7 \\ 13.5 \\ 12.2$	$0.6 \\ 1.2 \\ 3.4 \\ 5.3 \\ 5.1$	$2.7 \\ 5.8 \\ 9.7 \\ 13.2 \\ 13.4$	$3.8 \\ 7.1 \\ 11.9 \\ 16.4 \\ 16.7$	$2.7 \\ 4.8 \\ 8.5 \\ 11.7 \\ 12.0$

Table 11. Normalized Elemental Release for the P-IV Series

In contrast, the top surfaces are completely covered with a rather uniform fine-grained material whose morphology is only apparent at very high magnification. The "as-cut" contours of the original glass surface are still easily discernible. Cracking and puckering of the layer are visible but this has not progressed to the point of exfoliation. The uniformity of this deposit, and the preservation of the original surface topography, suggest this layer formed mostly through alteration of the glass rather than by precipitation. A precipitated layer tends to have irregular coverage and masks surface features. However, numerous small precipitated grains rich in Ca and S or Cr, Mn, Fe, and Ni occur on the surface.

The P-IV experiments have the greatest normalized elemental release of any of the parametric experiments. This is a curious result considering that the volume of injected water is less than for the other experiments. It is possible that the smaller fluid volume saturates more rapidly, thereby causing precipitation of secondary phases. This could in turn enhance glass reaction by maintaining solute concentrations significantly below the apparent saturation level for the glass. However, the amount of precipitates on the P-IV samples is certainly no more and probably less than that observed on samples from other experiments. Furthermore, observation of the WPA's during sampling of the continuous experiments indicates that the surfaces were always wet or damp which is not the case for most other experiments. This suggestes greater water-glass contact despite the fact that less water is injected. An explanation for the high release in the P-IV experiments may be that glass reaction is continuous due to the perpetual availability of water. In other experiments, where WPA surfaces are occasionally observed to be damp or dry, glass reaction would only be periodic in nature.

D. P-V Experiments

In this set of experiments, the injection rate is reduced from one drop every 3.5 days to one drop every 14 days. All other parameters follow the standard configuration and procedure. The experimental matrix is given in Table 12. The P-V series was initiated on 6/10/85 and the batch experiments were terminated after 26, 52, 110, and 254 weeks. One continuous experiment has been in progress for 234 weeks while the other was terminated after 39.5 weeks because of problems that arose with the WPA during sampling. At the onset, the experiments were conducted using silicone gaskets in an attempt to minimize water loss. This sort of gasket has been used in MCC-1 type leaching experiments, the silicone rubber extruded inside the vessel during closure, providing the opportunity for Si contamination of the solution that collected at the bottom of the vessel. The gasket material in the continuous experiments was changed to TeflonTM after the 26-week sampling.

1. General Observations

Upon termination of the batch experiments, the bottom of the WPA was always wet with some standing water present. The top of the WPA ranged from wet with standing water rimming the inside of the circular holes in the metal, to damp with no standing water, to completely dry in the exposed surface areas. For the continuous experiment, the bottom was usually wet with standing water, however, sometimes it was damp or dry. The top ranged from wet to dry, with dry being the most common state.

All the metal components have a shiny appearance with no local discoloration occurring in any of the experiments. No particulates were ever observed in the solutions during sampling. The glass gained a small amount of weight in all the experiments (Table 12). Some of the metal components gained a very small amount of weight while others showed a slight weight loss.

2. Component Analyses

=

The glass from all the terminated batch experiments was examined optically. The top and bottom surfaces of P-V-3, P-V-4, and P-V-7 were studied by SEM/EDS, but only the top of P-V-6 was investigated. None of the metal components were examined in detail.

						D				
Test No.	Test Period (weeks)	Date Started	Date Stopped	Initial Glæs Mass (gm)	Final Glass Mass (gm)	$\Delta_{ m Mass}$ (gmx10 ⁻⁵)	SA Glass (cm ²)	Initial Top Canister Mass (gm)	Final Top Canister Mass (gm)	$\Delta_{\text{Mass}}^{\Delta}$
P-V-la		6/10/85	in progress	10.06318			13.6	2.63885		
P-V-2a	39.5	6/10/85	3/13/86	9.98827			13.4	2.61856	2.61860	4
P-V-3	26	6/10/85	12/09/85	10.13239	10.13270	310	13.6	2.62487	2.62490	30
P-V-4	52	6/10/85	6/09/86	9.99708	9.99739	310	13.5	2.62150	2.62150	0
P-V-5	52	6/10/85	6/09/86	10.09275	10.09309	340	13.5	2.62564	2.62552	(120)
P-V-6	110	6/10/85	7/20/87	9.89224	9.89259	350	13.2	2.61303	2.61300	(30)
P-V-7	254	6/10/85	4/23/90	9.91531	9.91535	4	13.4	2.61129	2.61133	4

Table 12. Experimental Matrix and Weight Change Results for the P-V Series

Cont'd

÷

Table 12	(Cont'd)					
Initial Bottom Canister Mass (gm)	Final Bottom Canister Mass (gm)	∆ Mass (gmx10 ⁻⁵)	Initial Total Vessel Mass (gm)	Final Total Vessel Mass (gm)	Δ_{Mass}^{Δ} (gmx10 ⁻⁵)	Water Added During Testing
3.41033			320.60			
3.4:0645	3.40668	23	325.98			
3.41020	3.41022	20	320.39	320.95	0.36	0.975
3.51410	3.51414	40	323.78	325.29	1.51	1.95
3.19282	3.39268	(140)	319.30	320.44	1.14	1.95
3.40535	3.40534	(10)	318.49	321.13	2.64	4.05
3.39052	3.39062	10	317.91	322.49	4.58	9.73

Ę

1

alis a suide differen

a. P-V-3, 26-Week Sample

The top surface has clearly marked circular regions corresponding to the noncontact areas. Five of the circular regions are a light gray in contrast to the brown/black background of the glass. The remaining two circular regions have a splotchy light blue-gray appearance, as though the reaction has not progressed to the extent observed in the other noncontact areas. The general appearance of the top surface is not much different than the bottom surfaces from the P-III and P-IV experiments. Several string-like deposits occur at the noncontact-contact boundary. Approximately one half of the contact area has a bluish cast. Superimposed upon this color scheme is a coarser area caused by saw marks. There is a mottled appearance in this region. This appears to be the result of puckering of the surface layer away from the glass. Within some of the saw marks there is a deep blue iridescent appearance, possibly from exposed glass.

For the most part, the top surface preserves the original "as-cut" appearance. A surface layer is developing, although it is not complete and glass is still exposed (Fig. 26a). The distinction between the original glass and the surface layer is not always clear. In general, the sharp edges and ridges become more rounded and stress and chattermarks begin to disappear (Fig. 26a). In some areas, a textured surface is beginning to develop, visible only at high magnification. A Si-rich deposit, essentially the same composition as the surface layer has locally precipitated (Fig. 26b). This is the origin of the string-like marks observed optically at the noncontact-contact boundary. In the rougher regions (caused by saw marks), the surface layer is beginning to pucker and pull away from the glass (Fig. 26c). No complete exfoliation has occurred.

There are a number of phases that have precipitated on the top glass surface. In addition to the Si-rich deposit, small isolated clumps of Si-rich "clay" are present on the surface. These often have CaSO₄ intermingled with the "clay". Small "flowers" of CaSO₄ (whether this is gypsum or anhydrite has not been determined) occur randomly on the surface (see Figs. 26a and 26c). The next most abundant phase is Cr-Mn rich and occurs mostly in small ($<5 \ \mu$ m) spheres, although some grains are tabular. Some grains have Mn > Cr and contain Fe, but the dominant composition is Cr and Mn only with Cr > Mn (Fig. 26d/EDS). These are probably oxides or hydroxides. One portion of the surface has colonies of small Cr-Mn grains (Fig. 26e). The abundance of Cr is unusual and this phase has only rarely been observed on the stainless steel components of other experiments (e.g., on P-VIII-7). Several other precipitated phases include silica, Al-rich grains, NaCl, KCl, calcite, and a Ca-P phase, possibly apatite.

The noncontact areas on the bottom surface are poorly defined, being only a little lighter in color than the brown-black contact areas. Like the top, there is a rougher region which has a coarse speckled appearance.

The surface layer is less well developed than the top. The criteria described for the top glass were used to distinguish altered and unaltered surfaces. The layer consists of dispersed altered areas which have an irregular distribution and appear to be a function of the original surface roughness. No puckering of the altered surface was observed. Unlike most other experiments, the top surface appears to be more reacted than the bottom surface.

(e)

Fig. 26. SEM Micrographs of the Surface Layer and Reaction Products on the Top Surface of P-V-3. (a) 1200X, (b) 2000X, (c) 750X, and (e) 3000X (see text).

Small patches of precipitates occur on both the altered and unaltered surfaces. The amount of precipitates is small compared to the top glass. The most common phases are Si-rich "clay" and CaSO₄ (gypsum or anhydrite). In addition to occurring as small "flowers," there is a large round mat (~130 mm) of CaSO₄ near the edge of the glass. There are a number of beam sensitive grains distributed on the surface that appear to only contain Na like those observed on the P-II experiments. These may very will be Na₂CO₃. Other phases include calcite, dolomite, Al-rich grains, mixed grains with Na, K, Ca, Cl, and S, and a Ti-bearing mixed grain.

b. P-V-2, 39.5-Week Sample

Although this sample was intended as a continuous experiment, it was abruptly terminated during the 39.5-week sampling due to problems with the WPA. The top surface has a similar appearance to the top of P-V-3. Most of the surface has a brown-black color. Several areas in the contact and noncontact areas have a light blue cast. The noncontact areas are partially covered by light-colored precipitates. String-shaped deposits occur at the noncontact-contact area boundaries. There is also a small coarse-grained area that has a speckled appearance.

The bottom is generally coarser grained with speckles like that of P-V-3. The noncontact areas are gray with bluish haloes extending into the contact areas. Very few precipitates are observable.

c. P-V-4 and P-V-5, 52-Week Samples

Sample P-V-4 was investigated optically and by SEM/EDS, but P-V-5 was only examined optically. The top glass surfaces are somewhat different in appearance. The contact areas on P-V-4 are either brown-black or have a milky blue hue, similar to the tops of P-V-3 and P-V-2. The majority of the P-V-5 contact area has a shiny honey-brown color. On both samples the noncontact areas have a deposit of precipitates in the middle, surrounded by a grayish region. Discontinuous string-shaped deposits are developed at several of the noncontact area boundaries.

From SEM/EDS observation, the top glass of P-V-4 has reacted much more than the top of the P-V-3 experiment. The surface has a fuzzy appearance at low magnification indicating that an altered layer has developed. At high magnification, the surface has a variable texture. In some places it is quite smooth with only a hint of fine scale structure. Elsewhere, a coarser texture is developed, reminiscent of the "cardhouse" texture observed on the P-VIII samples (Fig. 27a). There is a range in the coarseness which may correspond to progressive recrystallization of an initially amorphous hydrated layer, although this is only a hypothesis. Alternatively, the coarser areas may have formed by precipitation.

In a number of places the surface layer is cracked and exfoliation has begun. This is best developed in the noncontact areas although it also occurs in the contact areas, especially where the "as-cut" surface is rough. A more complex layer structure is revealed in these areas. The altered layer is actually composed of three or four discrete layers (Fig. 27b). The bottom layer has a coarse texture. Above this are one or two smoother layers. The outermost layer is coarse, having an appearance similar to the bottom layer. The outermost layer is discontinuous, suggesting it formed by precipitation. This patchy distribution results in the observed variation in surface texture described above. The compositions of all the layers are similar and are consistent with the coarse layers being Fe-rich smectite. Small clumps of precipitates are present on all exposed surfaces and have the same composition as the altered layer (see Figs. 27a and 27b). In some places the smooth layer has a mottled appearance (Fig. 27c). EDS analysis indicates that this is due to the incorporation of Cr-Mn+Fe oxide or hydroxide grains within this layer (Fig. 27d/EDS).

on the construction of the

Fig. 27. SEM Micrographs and SEM Spectrum of Reaction Products on the Top Glass Surface of P-V-4. (a) 7000X, (b) 3200X, (c) 3500X (see text).

Aside from the Si-rich "clay" (smectite?) and the Cr-Mn=Fe oxide/hydroxide grains, CaSO₄ (gypsum or anhydrite) is the predominant secondary mineral. There are also some Al-rich grains present that may be gibbsite.

The bottom surfaces of P-V-4 and P-V-5 are coarser than the tops and are similar to P-V-3. The contact area of P-V-5 is generally brownblack while that of P-V-4 is a lighter shiny tan color. The noncontact areas are grayish on both samples and the circular marks extend into the contact area. There are very few precipitates optically visible.

The bottom surface of P-V-4 has a general fuzzy appearance but this is not as well developed as on the top surface. The altered surface is fairly smooth with only a little fine scale texture. In places the texture is somewhat coarser although this material may have formed by precipitation. This is suggested by the areas where the coarser material is restricted to high points and ridges and appears to spread into surface depressions (Fig. 28a). Etching of the surface is suggested by the presence of cuspate depressions on the surface. Preferential etching of stress marks is also apparent and, in some cases, these etched marks provide nucleation sites for Si-rich "clay" precipitates (Fig. 28b). In the rougher areas cracking and exfoliation have begun, but this is much less advanced compared to the top surface. The only other precipitated phase besides the Si-rich "clay" is CaSO₄ (either gypsum or anhydrite).

Fig. 28. SEM Micrographs of the Bottom Surface of P-V-4. (a) 4500X and (b) 4000X (see text)

d. P-V-6, 110-Week Sample

The top and bottom surfaces were examined optically but only the top surface was investigated by SEM/EDS. The bottom surface has an appearance like the other P-V samples (see above). The noncontact areas have complex variations in color, creating bull's eye type features. The central portions are gray and are surrounded by successive rings which are brown-black, then blue, followed by gray at the outer margins.

The top surface of P-V-6 is megascopically smoother than any other sample surface (Fig. 29a). It appears that the "as-cut" surface was ground down somewhat prior to the experiment. There are, however, numerous shallow striations with different orientations distributed across the surface, which occur as white streaks on a brown-black background. The noncontact areas have a variably developed milky white hue. Some light-colored precipitates occur in the noncontact areas.

From observation using the SEM/EDS, there is a fine-scale texture which varies from smooth to coarse, although it is never as coarse as observed on the top of P-V-4. The surface has more of a flaky texture rather than a "cardhouse" texture (Fig. 29b, compare with Fig. 27a). In some areas, mostly in proximity to the contact-noncontact boundaries there is a thicker buildup of the surface layer. This may be due to a thickening of the surface layer or from precipitation. There is no evidence for the presence of a complex layer structure. Some minor cracking and puckering of the surface layer is observable (Fig. 29c). The location of the puckered areas seems to be controlled by the shallow striations and the few remaining saw marks on the surface. Overall, the surface layer appears to be less well developed compared to P-V-4, even though the duration of P-V-6 was twice as long. This suggests that initial surface roughness may play a role in accelerating surface layer development and the initiation of exfoliation.

(a)

(c)

Fig. 29. SEM Micrographs Showing the General Surface Features on the Top of P-V-6. (a) $\sim 6X$, (b) 4000X, (c) 500X, and (d) 4000X (see text)

In contrast with all the other samples in the P-V series, no CaSO₄ is present. Instead, CaCO₃ occurs in fine fluffy masses and as fairly large (up to 20 μ) euhedral grains (Fig. 29d). The large euhedral grains show evidence of having undergone an episode of dissolution. As CaCO₃ has retrograde solubility, this may have occurred when the sample was cooled during termination of the experiment. The only other secondary phase is Cr-Mn=Fe oxide or hydroxide. These occur as fine grains distributed across the surface and sometimes in small colonies similar to P-V-7 (see Fig. 30d). In some places, small clusters of grains occur within the layer which imparts a mottled appearance, similar to that observed on the top of P-V-4.

e. P-V-7, 254-Week Sample

This sample is from the longest duration batch experiment. The top surface is similar to the other P-V experiments except that no saw marks are present. There are two well-defined regions, one which is brown-black and another which has a light blue-gray cast. The noncontact areas are poorly discernible. In two of these areas, there are small masses of milky-blue precipitates. There are a number of string-shaped deposits in the contact area (see below). In two noncontact areas and near the edge of the glass, there are patches of large prismatic grains, which EDS analyses suggest are calcite (see below).

(d)

(f)

hillin a

A reacted layer has developed on the top surface, giving a fuzzy appearance at low magnification. The "as-cut" surface is generally preserved although the contours are noticeably rounded. At higher magnification the surface has a variably developed flaky texture similar to that observed on P-V-4 (Fig. 30a). The flaky texture is generally coarser in the noncontact areas. A hummocky appearance has developed, indicating local variations in layer thickness. The flaky texture and composition suggest the layer is composed of Fe-smectite.

A complex layer structure has locally developed in both the contact and noncontact areas. A thin, smooth layer is draped over the flaky textured material. This deposit is frequently cracked and split, revealing the coarser material from below (Fig. 30b). The smooth areas are somewhat enriched in Si relative to Al. Discontinuous sheets of precipitates have formed on top of the smooth layer, although to a lesser extent than that observed on P-V-4. It would seem, based on examination of the surfaces only, that the top of P-V-4 has evolved to a greater extent even though it was terminated after only 52 weeks. There is no evidence of large-scale exfoliation; however, there are many places where the layer has cracked and pieces have raised up from the surface. The lack of considerable exfoliation may be attributable to the absence of rough saw-marked regions on the surface.

Calcite is abundant, especially in the noncontact areas. Several colonies of large (~60 μ m) etched prismatic grains are present (Fig. 30c). Small isolated grains of calcite are also present, often associated with other secondary phases. Fine Cr- and Mn-rich grains, presumably oxide or hydroxide, occur as small clusters and as large colonies (Figs. 30d and 30e/EDS). This phase is responsible for the string-shaped deposits observed under the optical microscope. Both calcite and the Cr-Mn-rich phase were observed on P-V-6. Other colonies on the top glass are composed of Ca- and P-bearing grains (Figs. 30f and 30g/EDS). These may very well be apatite. Rare Ti-rich grains are present which may be anatase (TiO₂).

The bottom glass surface is similar to the other P-V samples. The noncontact areas are well marked and the light gray coloration extends into the adjacent contact area. The contact area is brown-black with some lightcolored speckles. The surface layer appears to be pulling away from the glass but no exfoliation is apparent.

The bottom surface has a fuzzy surface at low magnification under the SEM. The "as-cut" contours are partially obscured. In detail, the surface layer is quite different compared to the top. Two distinct layers are apparent, although the upper layer is discontinuous (Fig. 31a). The upper layer has a "cardhouse" texture indicative of precipitated smectite. Its composition is consistent with this interpretation. In some places, it seems as though the upper layer has only partially formed (Fig. 31b), while elsewhere it appears to have formed and exfoliated (Fig. 31a). The lower layer has a bumpy texture with the individual bumps ~0.5 μ m across (Figs. 31b and 31c). Locally there is a preferred orientation to the bumps, possibly related to the presence of stress marks on the original glass surface. The alignment is apparent particularly in

Fig. 31c but is also visible in Fig. 31b. Preferential precipitation of the Si-rich "clay" occurs on these aligned bumps. The lower layer shows extensive cracking and puckering from the surface; however, no complete exfoliation has occurred. There are very few precipitated grains on the surface aside from the Si-rich "clay". Traces of S and Cl are occasionally detectable in EDS analyses of the surface layer.

3. Solution Analyses

Elemental releases from the P-V-1 continuous experiment are shown in Fig. 32 and normalized releases for Li, B, and U are given in Table 13. The raw data and background subtracted cumulative releases are included in Appendix I for both the continuous and batch experiments.

The P-V experiments have the smallest element release of any of the parametric experiments. There are, however, several factors that hamper interpretation of the solution data. The most significant problem results from the lack of recovered solution during sampling. When the solution was diluted to obtain enough for chemical analysis (usually 20 times the original volume), many elements including Li, B, and U were sometimes below the level of detection. For the P-V-1 experiment B was below the detection limit on nine occasions (out of a total of 17), while Li and U were below the limit three times. Since the detection limit value is used when computing cumulative release, the magnitude of release must be viewed as a maximum. Similarly, trends also represent maximum rates of release. Another problem involves the observed extrusion of the silicone rubber gaskets into the vessels. It is unknown what contribution, if any, the gaskets made to the amount of Si in solution, but the reported Si values must be suspect for the first 26 weeks.

The concentrations of Ca and Na were always above the detection limit even though both have a net negative cumulative release. This corresponds to the precipitation of Ca- and Na-bearing phases on the WPA. The erratic behavior of Na suggests that precipitation of an Na-bearing phase occurs when little water is available and it is subject to dissolution when more water is present.

Fig. 32. Cumulative Releases of Selected Elements from the P-V-1 Continuous Experiment

÷

	17	Normalized	Release	(g/m^2)
Test $\#$	(weeks)	В	Li	U
P-V-3	26	0.2	0,6	0.1
P-V-4	52	0.4	1.1	0.3
P-V-5	52	0.3	1.0	0.2
P-V-6	110	0.2	0,9	0.1
P-V-1	26 52 110 156 182 208 234	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.3 \\ 0.4 \end{array}$	$0.0 \\ 0.1 \\ 0.8 \\ 1.1 \\ 1.1 \\ 1.4 \\ 1.7$	0.0 0.0 0.1 0.1 0.1 0.2 0.3
P-V-2	26 39,5	0.1 0.1	$\begin{array}{c} 0.1 \\ 0.5 \end{array}$	$\begin{array}{c} 0.0 \\ 0.1 \end{array}$

Table 13.Normalized Elemental Release for
the P-V Series

^aValues are affected by the Si contributed by the silicone rubber gasket.

4. Discussion

The P-V samples appear to have undergone less alteration compared with the other experiments. This conclusion is based on the smaller quantity of precipitates on the surfaces and the low measured element releases. These samples provide insight into the initial stages of surface layer formation. Initial alteration (hydration and leaching) of the glass surface is nonuniform and may be influenced by the surface roughness. Like the glass, there is no finescale texture in altered areas; however, the surface does appear somewhat fuzzy and stress marks are absent. Precipitation of a Si-rich "clay" mat begins at an early stage, even before a continuous hydrated glass layer is completed. This signals the beginning of what will become a composite surface layer. Sample P-V-3 is at this early stage, while P-V-4 already has a partially developed composite layer. The altered layer begins to crack and pull away from the glass. This marks the onset of the process that leads to exfoliation. It is important to note that this process can commence even before the altered layer has completely developed across the surface. Precipitation of the Si-rich "clay" layer appears to be independent of this process. The original surface roughness may be an important factor in the pace and location of exfoliation. Cracks seem to develop first in the rough regions associated with the saw marks. For example,

on the top of P-V-6, where the surface is generally quite smooth, cracking and puckering of the surface layer is restricted to the striations and shallow saw mark traces. As the surface layer ages, coarsening of its texture is apparent. This is particularly noticeable for P-V-7, the 254-week duration experiment. This coarsening may correspond to progressive crystallization of an amorphous layer, but, this is not revealed at the resolution of the SEM.

The top of P-V-6 appears much less reacted than the top of P-V-4 even though its duration was twice as long. This may be the result of the smoother surface on P-V-6 impeding reaction but this is only a hypothesis. The lack of reaction might also result from less water-glass contact during the experiment, perhaps due to evaporation during the experiment.

In all the P-V experiments, Ca is removed from the EJ-13 water. This is consistent with the presence of Ca-bearing phases on the batch samples. On samples P-V-3 and P-V-4 CaSO₄ (either gypsum or anhydrite) is ubiquitous. On samples P-V-6 and P-V-7 calcite is abundant and CaSO₄ is absent. While the availability of sulfate is not well understood, it is unknown why such a difference in mineral occurrence should happen between these samples.

E. P-VIII Experiments

The purpose of these experiments is to examine the effect of sensitization of the stainless steel components on metal-glass-fluid interactions. As the stainless steel pour canisters are anticipated to be exposed to elevated temperatures during filling, the behavior of heat-sensitized steel has direct relevance to waste form performance in the proposed geologic repository.³ The stainless steel used in the experiments is from heat #22841 which contains 0.016 wt% carbon. The components were held at 550 ± 20°C for 24 hours and were then slowly cooled to room temperature by turning off the furnace. This steel proved very difficult to sensitize, owing to its low carbon content.¹³ The degree of sensitization to the actual samples, while believed to be low based on testing of heat-treated but unreacted steel, has not been measured.

The experiments were initiated on 2/27/86 and have been completed through 195 weeks. Batch experiments were terminated after 13, 26, 39, 52, and 104 weeks. Continuous experiment P-VIII-2 was terminated after 170 weeks because the WPA tipped and would no longer remain upright. The batch sample P-VIII-8, which was first sampled after 104 weeks, is presently being treated as a continuous experiment.

1. General Observations

The WPA had a similar appearance in all the experiments during sampling. The top surface was always dry with some light-colored precipitates often present on the glass in the noncontact areas. Some precipitation of secondary phases occurred on the metal. The bottom surface was always wet with some standing water around the circumference of the glass (sample P-VIII-4 was dry upon termination, however). The extent of standing water was variable. At termination of P-VIII-7 (104 weeks), the water was about at the level of the bottom of the glass. When P-VIII-8 was first sampled after 104 weeks, the water level was halfway up the side of the WPA indicating that the bottom had been inundated for a significant period of time. These observations must be considered when interpreting the solution composition data from these experiments.

The metal components from all the terminated experiments experienced approximately the same amount of weight gain (Table 14). This is consistent with the observation of secondary phases on the metal. The glass in the short-term experiments (≤ 26 weeks) gained a small amount of weight, while there was a net decrease in the longer experiments proportional to the experiment duration.

2. Component Analyses

The glass from all the terminated batch experiments was examined optically. The top surface of P-VIII-4 and the top and bottom surfaces of P-VIII-6 and P-VIII-7 were investigated by SEM/EDS. The metal components from P-VIII-6 and P-VIII-7 were also examined by SEM/EDS.

a. P-VIII-3, 13-Week Sample

The noncontact areas on the top surface are rather discrete. They have a light gray tint which is in contrast with the brownish background of the contact areas. The central noncontact area, however, has a bluish cast. There are three small light-colored areas, in the contact area, suggesting localized precipitation has occurred.

The bottom surface has a uniform gray color and the noncontact areas are not discernible. There is one light-colored area at the edge of the glass which is similar to the patches on the top surface. Saw marks are readily visible as light-colored streaks on both the bottom and top surfaces. Rougher regions are associated with the saw marks which have a coarse speckled appearance. Finer speckling is visible in the smooth regions at higher magnification.

b. P-VIII-4, 26-Week Sample

Several features stand out on the top surface. Part of the surface has a light gray-blue tint which is mostly associated with the central noncontact area. White precipitates are present in the bluish regions. The other noncontact areas are poorly marked. These are somewhat lighter in color with some white precipitates at their margins. The contact area is generally brownish but light gray tinting occurs around the edge of the glass. Saw marks, visible as white streaks, are present over much of the surface, imparting a coarsespeckled appearance.

Series
P-VIII
the
for
Results
Change
Weight
and
Matrix
Experimental
14.
Table

. Will a contract W. and ... N.

- 10

💓 o doku dalamado kuanda kukunada di ana ako maadu waadu oo 🏙 dooo araa kuana dheeraha a aa an an an an an araa da aaaa a

- 12

Test No.	Tesi Period (weeks)	Date Started	Date Stopped	Initial Glass Mass (gm)	Final Glass Mass (gm)	∆ Mass (gmx10 ⁻⁵)	$\begin{array}{c} \text{SA} \\ \text{Glass} \\ (\text{cm}^2) \end{array}$	Initial Top Canister Mass (gm)	Final Top Canister Mass (gm)	Δ M ^{ass} (gmx10 ⁻⁵)
P-VIII-1 ^{4.}		2/27/86	in progress	10.50533			13.88	2.34774		
p-VIII-2"	170	2/27/86	6/01/89	9,99264			13.35	2.37578		I
P-VIII-3	Ţ	2/27/86	5/28/86	10.23029	10.23050	210	13.81	2.35705	2.35720	150
P-VIII-4	26	2/27/86	8/28/86	10.37222	10.37225	30	13.86	2.36451	2.36462	110
P-VIII-5	39	2/27/86	11/26/86	10.17771	10.17515	(256)	13.52	2.37383	2.37400	170
p-VIII-6	52	2/27/86	2/26/87	10.27582	10.27524	(580)	13.63	2.36734	2.36774	400
P-VIII-7	104	2/27/86	2/29/88	10.30219	10.30102	(1170)	13.69	2.35248	2.35271	230
P-VIII-8 ^b		2/27/86	in progress	10.37649			13.78	2.37175		
^a Continuo	is experimer	ıts.		1. 1.		e continuoue	avneriment			

10.000.09

bTreated as a batch experiment up to 104 weeks. Thereafter treated as a continuous experiment.

Cont'd

7 de . A

.

-

.

-

ali ...

Initial Fin Bottom Bott	lal om		Initial Total	Final Total		Water
Carister Can Mass M	ister lass	∆ Mass	Vessel Mass	Vessel	A Mass	Added During
(mg) (g	(m)	(arxiiia)	(gm)	(gm)	(_ ntxmg)	I esting
3.35091			320.19			
3.34846			327.34			
3.33102 3.36	3114	120	325.59	327.18	1.59	1.95
3.33765 3.33	3776	110	320.56	323.70	3.14	3.90
3.35271 3.35	5291	200	324.34	328.96	4.62	5.85
3.29773 3.39	9823	500	325.82	531.74	5.92	7.80
3.35325 3.35	3359	310	325.71	336.98	11.27	15.60
3.35672			325.71			

• '

The bottom surface has a rather uniform dark gray color. The noncontact areas are marked by somewhat lighter colored rings around a central region that looks much like the contact area. There is a patch of whitish precipitates, similar to that observed on P-VIII-3. Saw marks give a coarse-speckled appearance to approximately one quarter of the surface.

Only the top surface was investigated by SEM/EDS. The general appearance is similar to the P-IV experiments. The "as-cut" contours are clearly visible, however, the surface has a fine-scale texture at high magnification indicating that reaction has occurred (Fig. 33a). A Si-rich alteration layer has developed across the glass surface. Its composition is essentially the same as observed for the other experiments. Small precipitates of similar composition occur on the surface (Fig. 33a). In some parts, coverage is extensive, forming a discontinuous upper layer upon the altered surface. That the glass has reacted is also indicated by the preferential etching of stress marks. Short cracks have locally developed in the layer and small portions have raised up from the glass. This phenomenon occurs in both the contact and noncontact areas.

Aside from the Si-rich layer, there are several other secondary phases that have precipitated on the surface. There are colonies of small (<0.5 μ m) spherical grains distributed over the entire surface (Fig. 33b). These areas are enriched in Fe relative to the surface layer and EDS analyses suggest a very fine-grained mixture of Si-rich "clay" and Fe ± Mn ± Ni oxide or hydroxide (Fig. 33c/EDS). This is based on the observation that the Si, Al, and Ca peaks have relative intensities approximately equal to precipitated Si-rich "clay" (compare Fig. 33c with Fig. 34c). The Fe peak intensity varies from spot to spot, suggesting its signal is independent of Si, Al, and Ca and that this results from variable proportions of two phases being detected. The phenomenon of coprecipitation is well known.^{14,15}

Other irregular-shaped grains contain Ca and S and are probably either gypsum or anhydrite (see above). A number of large (up to 180 μ m) prismatic grains are present whose EDS spectrum consists of only a Ca peak suggesting it is calcite. Several irregular fluffy masses occur with only Si, Al, and K detectable by EDS (Figs. 33d and 33e/EDS). Their approximate stoichiometry is consistent with K-feldspar, but they have not been analyzed by XRD.

c. P-VIII-5, 39-Week Sample

The noncontact areas on the top surface are easily visible owing to a rather heavy coverage of whitish-gray precipitates. The central noncontact area is gray, and extends into the adjacent contact area. Exfoliation of the altered layer is apparent in the middle of several noncontact areas. The contact areas are brown except in the saw marked regions which have lightcolored speckles as observed on most other P-VIII samples. The bottom surface is similar to the top of P-VIII-3. Most of the noncontact areas are only faintly visible with a slight grayish tone. Saw marks and a corresponding roughspeckled appearance covers approximately half the surface.

Fig. 33. SEM Micrographs and EDS Spectra from the Top of P-VIII-4. (a) 2500X, (b) 1790X, (c) EDS spectrum of material shown in (b), (d) 4000X, and (e) EDS spectrum of grain shown in (d)

. i. it it is it if a start is the second

Fig. 34. SEM Micrographs and EDS Spectra from the Top of P-VIII-6. (a) 1500X, (b) 300X (see text)

in the state of the second second

d. P-VIII-6, 52-Week Sample

The glass and metal components were examined optically and by SEM/EDS. Two precipitates were also analyzed by XRD.

(1) Glass

The top pertion of the glass has clearly marked contact and noncontact areas. The noncontact areas are lighter in color than the contact areas, being tan rather than gray. This is due to heavier precipitate coverage in the noncontact areas. Some saw marks appear as light-colored, discontinuous streaks. Close optical inspection suggests the color difference is mostly due to the partial separation of the surface layer from the glass in the saw grooves. One region, encompassing approximately one-third of the top surface, has a rusty appearance and seems to have more precipitates on it.

The "as-cut" contours are preserved, although they are subdued (Fig. 34a). The surface has a poorly developed flaky texture at high magnification like that on P-VIII-4, indicating the presence of an altered layer (see Fig. 33a). A coarsening of this texture is locally observable, but this may be the result of precipitation. The layer composition is the same as for samples from other experiments; it is Si rich with some Al, Ca, Fe, \pm Mg \pm Mn \pm Ni, \pm Na. Only minor cracking of the surface layer is apparent, although such features are present in both the contact and noncontact areas (Fig. 34a). Where cracking has occurred, small pieces of the adjacent layer have raised up from the glass.

There are a number of secondary phases present. The most abundant is a Si-rich material which occurs in numerous morphologies including: ribbons, round grains with flaky surfaces, string-shaped masses, and fine fromboidal masses (Figs. 34b and 34c/EDS). This material has the same composition as the surface layer. The relative uniform Al-to-Si ratio suggests this is a crystalline phase and its composition is consistent with smectite. The Fe, Mn, and Ni contact can be quite variable; sometimes Ni content can exceed that of Fe.

The next most abundant phase is Fe oxide or hydroxide which is especially abundant in the rusty region. It occurs as irregular-shaped grains; however, some possess a good geometric form, like the diamond-shaped grain in the left center of Fig. 34b. Fe-rich material is also associated with many of the fine-grained precipitates that are present all over the surface. This may explain, in part, the apparent variability in Fe content of the Si-rich (precipitates. Along with Fe, a small amount of Mn is almost always present and Cr and Ni are locally important components (Fig. 34d/EDS).

A Ca- and S-bearing phase, most probably anhydrite or gypsum, is ubiquitous on the glass surfaces It occurs as very fine fromboidal gra.ns that grow on other phases and are often intimately intermingled with these phases. For example, fromboids are growing on the Fe-rich grain in Fig. 34b.

haddaalaandda o oo iitaaa

Several other phases are present in minor quantities which are worthy of note. A silica phase, presumably either quartz or opal, is present as small angular grains. An Al-rich phase occurs in several places. The absence of any other detectable elements, along with its flaky appearance, suggest it is gibbsite or some other Al-hydroxide (Fig. 34e/EDS). Another Ca-rich phase containing Mg and Fe is present which is probably a high-Mg calcite or possibly dolomite (Fig. 34f/EDS). In rare instances, Cl is detectable. These grains often have a complex composition suggesting the presence of numerous phases.

The surface layer and precipitates are well developed on the bottom glass surface. There is only a weak demarkation between the contact and noncontact areas. This is in contrast to the top surface where contactnoncontact areas are well delineated. Saw marks are clearly visible on the bottom surface, marked by light-colored streaks. As with the top layer, this color difference seems to result from buckling and separation of the surface layer from the glass.

The "as-cut" contours are mostly obscured and the surface has a flaky appearance that is much coarser than observed on the top surface (Fig. 35a). This suggests that much of the visible surface may have formed by precipitation, masking the original surface topography. The composition is typical of the altered layer and is probably smectite. An extensive network of cracks has developed across the surface (Fig. 35a). Most have the appearance of shrinkage cracks caused by dessication, presumably after termination of the experiment. However, the glass exposed within the cracks looks altered and has some fine precipitates on it. This suggests cracking must have begun during the experiment. The cracks would then become enlarged as the layer dried after termination of the experiment. Other cracks, where the surface layer has raised up, are associated with the saw marks (Fig. 35b). This represents the initiation of exfoliation of the surface layer.

The types of precipitated phases are essentially the same as described for the top surface with a couple of minor additions. A Ca-bearing phase without any Mg or Fe is present and is probably calcite. One analyzed grain contains only Si, Al, and Na, with Al exceeding the amount found in the surface layer (Figs. 35c and 35d/EDS). It does not have a distinctive morphology, but its composition suggests it is analcime.

(2) Metal Components

The top and bottom steel components generally have the same appearance. They have a dull rusty color where they were in contact with the glass during the experiment. Along the rims and the sides facing away from the glass, little reaction has occurred. There are some small irregular-shaped patches of corrosion on these surfaces. There are, however, small patches of thick precipitates that have developed in both the contact and noncontact areas on the side facing the glass. These are mostly intimate mixtures of Si-rich material, probably smectite clay, and Fe-oxide or hydroxide. The clumps can be stringy in form, similar to that observed on the glass.

Fig. 35. SEM Micrographs of Surface Layer Features from the Bottom of P-VIII-6. (a) 2500X; (b) 200X; (c) a small grain on the surface that contains only Si, Al, and Na (3500X); and (d) EDS spectrum from grain shown in (c)

On the bottom metal piece, there are numerous honey-colored precipitates. These are shaped like open cylinders and cones (Fig. 36a). Analysis of this material by XRD suggests that it is hematite. They occur on both sides of the metal but are most abundant along the edges on the side facing away from the glass. In general, there are more precipitates on the surfaces facing the glass than on the other side. Unlike the glass, there is no complete surface coating on the metal.

Virtually all the phases identified on the glass are also present on the metal components. The most common phases on the metal are the Si-rich clay, Fe-oxide or hydroxide, and calcium sulfate. These are often intimately intergrown with each other. The Si-rich material has the same composition as that found on the glass except that it is generally very poor in Ni. Fe-oxide or hydroxide occurs as the material covering the surface and as open cylinders and cones (Fig. 36a). Tiny dots of gypsum or anhydrite occur all over the metal surface. Chloride-rich grains are present, mostly associated with the welded regions. These grains may contain Na, K, and Ca. XRD analysis confirms the occurrence of NaCl. There is a Cr-rich substance present on both metal components that was not observed on the glass. While spectra from this

Fig. 36. SEM Micrograph (250X) and EDS Spectrum of Fe- and Cr-Rich Deposit on the Bottom Surface of the Metal Component on P-VIII-6

material resemble the metal and Fe-hydroxide, the Cr content is very high (Fig. 36b/EDS). This may be Fe-hydroxide that is for some reason locally very rich in Cr. Considering that the source of the Cr is the metal, the absence of Cr-rich material on the glass suggests that Cr is not very mobile under the conditions of the experiments.

e. P-VIII-7, 104-Week Sample

The glass and metal components were examined optically and by SEM/EDS/WDS.

(1) Glass

The top glass has a general medium gray tone with a smooth, evenly colored region and a rough, mottled region. The roughness is from the saw blade during cutting of the glass cylinder. There is a distinction between the contact and noncontact areas but it is not very pronounced. Precipitates are sparsely scattered over the noncontact areas. A honey-colored mark and a concentration of precipitates are present in one small portion of the contact area, near the edge of the glass.

A well-developed altered layer is present over the entire surface. The "as-cut" contours are not preserved and the layer has a "cardhouse" type morphology reminiscent of clay (this is consistent with its composition). Masking of the contours suggests at least a portion of the layer formed by precipitation, filling in depressions on the rough surface. The surface layer is cracked in many places and appears to be pulling away from the glass (Fig. 37a). Some of the cracks expose etched glass from below. The presence of precipitates bridging the cracks suggests the cracks began to form during the experiments. Some shrinkage after termination of the experiment may have enlarged the cracks. The pulling away of the surface layer from the glass is more pronounced in the rough region. Here, it appears that the layer has variable thickness.

Fig. 37 SEM Micrograph and EDS Spectra of Reaction Products on the Top Glass of P-VIII-7. (a) 3000X (see text)

 $\iota_{-1} \tau$

The most abundant precipitated phase is Si-rich which also contains Al, Ca, Fe, Mn, \pm Mg \pm Ni, \pm Na, \pm K, in proportions similar to the average surface layer. It occurs as ribbons, flaky grains, and fluffy textured masses of variable size (Fig. 37a). At high magnification, the small fluffy masses have the same "cardhouse" type morphology as the top of the surface layer which suggests that the visible portion of this layer may also have formed by precipitation. The next most abundant phase is very Fe rich and is probably Fe-oxide or hydroxide. This material occurs as irregular-shaped grains and is almost always intergrown with Si-rich "clay". It is otherwise generally quite pure with only a small amount of Mn present.

Other precipitated phases include Ca-rich grains, presumably calcite, which are fairly abundant. Some Ca-bearing grains also contain Mg and Fe, indicative of dolomite. Some grains are very Al-rich and are possibly gibbsite (or bayerite?, or nordstrandite?). Variable small Si and Fe peaks on the spectra suggest this material is intermingled with Si-rich "clay". Tiny Cl- and S-rich grains occur on the surface layer and on many precipitates. Based upon numerous EDS analyses, the phases present are likely to be NaCl, Na₂SO₄, CaSO₄, and possibly CaCl₂ (Figs. 37b/EDS and 37c/EDS). Whether the sulfates are actually hydrated is impossible to determine by EDS. A number of grains contain significant Ti. When EDS spectra from several grains are compared, it is clear that they are a mixture of phases (Figs. 37d/EDS and 37e/EDS). For example, while the spectrum in Fig. 37d has large Si and Ca peaks, that in Fig. 37e has a much smaller Si peak and virtually no Ca. This suggests that the Ti-bearing phase does not contain either of these elements. A plausible interpretation is that these grains contain TiO₂, anatase?, along with Si-rich "clay" and calcite.

Several other phases, while occurring rarely, are worthy of note. A couple elongate, layered grains are present which contain only Si and Mg (Figs. 37f/EDS). Their morphology and composition suggest they are serpentine. Ca-phosphate grains presumably apatite, occur sparingly (Fig. 37g/EDS). Silica, possibly quartz or opal occur very rarely.

The bottom surface has a medium gray color with smooth and rough cut regions. The noncontact areas are generally poorly defined, being only slightly darker gray than the adjacent contact areas. Under the SEM, the surface has a similar texture to that observed on the top surface. Small precipitated grains have the same "cardhouse" type texture and composition as the surface layer. An extensive network of cracks is present and, in places, pieces of the layer have exfoliated, exposing etched glass below (Fig. 38a). It is clear that exfoliation occurred during the experiment because of the presence of fine NaCl threads in some of the cracks and Si-rich precipitates on some of the freshly exposed surfaces (Figs. 38a and 38b). In these exfoliated regions there is a continuum of surface appearance from fresh etched glass, to glass with a few precipitates, to glass with a heavy cover of precipitates. This suggests that exfoliation occurred over a period of time up to the termination of the experiment. In one location, it is apparent that the surface layer is actually composed of two layers (Fig. 38b). Here, a flake of the upper portion of the layer has spalled off, exposing a lower layer which in turn is also in the process

Fig. 38. SEM Micrographs of Surface Layer Features on the Bottom of P-VIII-7. (a) 1600X, irregular-shaped grain in NaCl; and (b) 2000X (see text)

of exfoliating. The glass below has many small dots on it either from precipitation or alteration. Based upon several EDS analyses, there are no significant compositional differences between the two layers. The lower layer is finer grained; however, it has the same texture as the upper layer when viewed at high magnification.

Like the other samples, the surface layer and associated Si-rich precipitates form the dominant alteration product on the bottom surface. The texture and composition is consistent with it being Fe-smectite. The next most abundant phase is NaCl. It occurs as fine threads and blocky grains and may also be intimately associated with the Si-rich "clay". It often occurs with Na₂SO₄ and CaSO₄ (whether these sulfates are hydrated is uncertain). These phases, along with CaCO₃, calcite, are frequently intergrown with the Si-rich "clay" at a very fine scale. Fe-rich material is also present as irregular blobs on the surface which may contain minor Mn and Ni. This is probably Fe-oxide or hydroxide, although the XRD results from P-VIII-6 suggest it is an oxide.

(2) Metal Components

There is an extensive deposit of precipitates on the metal components. Small patches of corrosion are associated with the welds. Most of the phases found on the glass are also present on the metal. There are two predominant phases: Si-rich "clay" and Fe-oxide or hydroxide. There is a thin Si-rich "clay" mat on the bottom component, but for the most part, the "clay" occurs in clumps with a fluffy texture. The clumps occur on both sides of the components indicating an origin by precipitation. The EDS spectra are often enriched in Fe (and not Cr) suggesting that the clay is intergrown with Fe-oxide or hydroxide, as was observed on the glass. Fe-oxide or hydroxide occurs in irregular clumps and as tiny balls and open cylinders (see Fig. 36a from P-VIII-6).

Ca-rich phases, presumably calcite and dolomite, are quite abundant. Some grains have a rhombohedral form which is characteristic of calcite. Many Si-rich "clay" clumps have detectable Ca and S suggestive of gypsum or anhydrite.

Very Al-rich grains are abundant on the top component. These grains are generally only a few microns across with only Al in their EDS spectra, suggestive of Al-hydroxide (Fig. 39a/EDS). Ti-rich grains, which are possibly mixtures of clay and TiO₂, are also present on the top metal piece. A rare Cr-Mn phase is associated with the metal grain boundaries and is probably the result of corrosion (Fig. 39b/EDS).

3. Solution Analyses

Ξ

-

Elemental releases from the continuous experiments are shown in Fig. 40, and the normalized releases of B, Li, and U are presented in Table 15. The raw data and the background subtracted cumulative releases are included in Appendix I for both the continuous and batch experiments. Continuous experiment P-VIII-2 was terminated after 170 weeks because the WPA would not remain in an upright position. Batch experiment P-VIII-8 is currently being treated as a replacement for P-VIII-2, but the data are not presented as such in Fig. 40.

There is good agreement in the trends and magnitudes of elemental release between the two continuous experiments, P-VIII-1 and P-VIII-2. Overall release is low and is comparable to the P-V experiments. The last sampling of P-VIII-2, at 170 weeks, showed a sharp change in all element releases (Fig. 40). The tipped WPA may, in some way, have caused this accelerated behavior. The release from P-VIII-8 is significantly greater than the other two continuous experiments. This is probably attributable to the period prior to the 37-week sampling when the bottom of the WPA was submerged. Comparison of the last two solutions, collected at 170 and 195 weeks, suggests a sharp reduction in the rate of release.

The relative magnitudes of release are $Li > B \ge U$ (Table 15). There is a net negative release of Ca and Mg in all three experiments. This indicates that these elements have been removed from the EJ-13 water and incorporated in secondary phases on the WPA. This is consistent with the occurrence of $CaSO_4$ and calcite on the batch samples. Release of Si is negative in the P-VIII-1 and P-VIII-2 experiments. It is positive in P-VIII-8, however, the most recent sampling at 195 weeks shows a minor net negative release. The negative Si release correlates with the extensive amount of precipitated clay on the glass and metal components in the batch experiments. Release of Na is erratic in P-VIII-1 and P-VIII-2 which is similar to that observed in the P-II and P-III experiments. Release of Na in P-VIII-8 is positive and mirrors that of Li, B, and U. The erratic behavior of Na is attributable to periodic precipitation of NaCl or Na₂SO₄ followed by subsequent redissolution during later sampling intervals. These Na-bearing phases are commonly observed on the batch experiments.

Fig. 39. EDS Spectra of Precipitates on the Top Metal Component of P-VIII-7

	D 1	Normal	lized Release	(g/m^2)
Test $\#$	Period (weeks)	В	Li	U
P-VIII-3	13	0.1	0.4	0.10
P-VIII-4	26	0.2	0.9	0.10
P-VIII-5	39	0.2	0.4	0,09
P-VIII-6	52	1.2	2.1	1.24
P-VIII-7	104	1.5	2.6	1.54
P-VIII-8	104 [*] 170 195	$2.6 \\ 5.1 \\ 5.4$	4.8 8.3 8.8	$1.63 \\ 3.17 \\ 3.40$
P-VIII-1	52 104 143 170 195	$\begin{array}{c} 0.1 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{array}$	1.0 1.4 1.6 1.8 2.0	$\begin{array}{c} 0.07 \\ 0.11 \\ 0.12 \\ 0.12 \\ 0.13 \end{array}$
P-VIII-2	52 104 143 170	0.2 0.2 0.2 0.3	$0.6 \\ 1.0 \\ 1.2 \\ 1.5$	$0.05 \\ 0.07 \\ 0.18 \\ 0.29$

Table 15. Normalized Elemental Release for the P-VIII Series

*P-VIII-8 was treated as a batch experiment up to 104 weeks.

Fig. 40. Cumulative Release of Selected Elements from the P-VIII-1 and P-VIII-2 Continous Experiments

4. Discussion

There are several observations that can be made about the nature of reaction during the experiments. Despite the apparent difference in the conditions between the top and bottom surfaces (i.e., the top may have undergone wet/dry cycling, whereas the bottom remained wet at all times), the secondary phases are the same. The only difference is that the bottom appears to have undergone somewhat more reaction. The bottom has more precipitates and the surface layer may be a little thicker. The Si-rich "clay" is present as the reacted surface layer and as discrete grains on the glass and metal components. This indicates that the Si-rich material forms by both in situ transformation of hydrated glass and by precipitation. Its composition is consistent with Fe-smectite. The flaky texture of the glass surface is the same as observed on the metal which suggests that much of what is visible on the glass developed by precipitation. Most of the precipitates are composed of a very fine scale mixture of Si-rich "clay," Fe-oxide or hydroxide, and gypsum or anhydrite. This suggests that coprecipitation has occurred which lends support to the interpretation that the visible surface formed by precipitation. There appears to be more Fe-oxide or hydroxide associated with the P-VIII experiments indicating that presensitizing the stainless steel has had an influence on the observed secondary phases. However, the amount of metal corrosion is slight.

The structure of the surface layer undergoes changes upon aging. A network of cracks forms and parts of the layer begin to pull away from the glass. As this process continues, pieces of the layer exfoliates and precipitates form on the freshly exposed glass surfaces. The surface layer also seems to have a complex internal structure of multiple layers. These may correspond to portions formed through glass transformation and precipitation.

IV. DISCUSSION AND CONCLUSIONS

A. Parametric Effects

The series of five parametric experiments were designed to investigate the effect of various parameters on the rate of glass reaction. Overall element release is generally similar for the experiments suggesting that release is relatively insensitive to these parameters. However, there are differences in release and the observed extent of reaction which can, at least in part, be attributed to the varied parameters. The normalized releases of Li, B, and U are summarized in Fig. 41 for all the parametric experiments and the N2 standard Unsaturated Test using SRL 165U glass.⁶ Relative release for all the experiments except P-II is Li > B ~ U which suggests either nonstoichiometric dissolution of the glass or that B and U are accommodated in secondary phases. The SIMS profiles from the P-III experiments indicate that B is depleted on the surface and within the altered layer, favoring nonstoichiometric dissolution as the explanation for the observed release behavior (Figs. 10, 17, and 19).

-

ŧ

4

Ē

, a la c

.

Ę

Ę

1.1

300

350

300

250

200

Time (wks)

150

350

Ω

50

100

0

0

87

۰.

The behavior of the experiment without the metal retainer (P-II) is similar to the N2 Test. The major difference between the P-II and the other experiments is the abundance of secondary phases that formed by evaporation (e.g., NaCl) and that B release exceeds Li release. Without the metal component, the glass surface may be more prone to drying out between injections, however, a direct cause and effect is not possible, because of problems with water retention in the vessels during the experiments. These problems may also be the cause of the reversed element release.

The reduction of glass surface area (experiments P-III and P-IV) gives an apparent small increase in the normalized release of Li and U relative to the N2 test (Fig. 41). This is an apparent increase because the geometric surface area was used in the normalization procedure, rather than an effective surface area. Visual observations and the results from SEM/EDS and SIMS examinations all indicate a variable extent of reaction between the top, bottom, and side surfaces, with the sides showing the least reaction. Since the surface area was reduced by shortening the sides of the glass cylinder, the change in the effective surface area (i.e., that part of the surface where reaction takes place) should be minimal. Therefore, the normalized releases for the P-III and P-IV experiments are exaggerated by close to a factor of two relative to the other parametric experiments. This must be considered when comparing releases from different experiments. As the effective surface area is smaller than the geometric surface area, the reported normalized releases for all the parametric experiments, especially those with the "full size" glass, will be underestimates of the "true" release. This must also be accounted for when comparing with other types of experiments such as leach tests where geometric surface area is equal to the effective surface area.

The P-IV experiments have anomalously high element release. There are two modified parameters in these experiments: a reduction in surface area and a reduction in the volume of water injected. Even if account is taken of the effective surface area (see above), the normalized releases are still significantly greater than any of the other experiments. The high release correlates with the extensive reaction observed on the surfaces by SEM. The reason for this anomalous behavior is uncertain. A reduction in injected water volume would seem to be an unlikely cause for a sharp increase in release. Conceivably, reaction could be enhanced by precipitation from a smaller fluid volume that would become rapidly saturated. However, the amount of precipitates on the P-IV samples is not noticeably greater than on samples from other experiments such as P-VIII. The observation that the WPAs in the P-IV experiments were always wet during sampling may provide a clue to the accelerated behavior, but, the reason why these experiments remained wettest is not known. In general, while the extent of reaction in these experiments was large, there was considerable variance in the batch and continuous test results.

Extension of the injection interval from 3-1/2 to 14 days reduces the element release and apparent extent of glass reaction. Observation of dry surfaces during sampling suggest that water is virtually absent for prolonged periods between injections. Consequently, elemental release from the glass is limited to short periods directly following injection.

The fifth parameter investigated is the effect of sensitizing the metal components. Assessment of this parameter is hampered by the poorly constrained degree of sensitization of the stainless steel. The stainless steel used in the P-VIII experiments has a lower C content (0.016 wt %) than the steel used in the standard N2 tests (0.022 wt %) which reduces the ability of the steel to become sensitized (Table 5).^{6,16} In the N2 tests, pervasive metal reaction was observed.⁶ However, in the P-VIII experiments, corrosion of the metal components is of a localized nature suggesting incomplete sensitization. Release is marginally greater for the experiments that exhibit metal reaction, but this is not definitive as these are also longer duration experiments. In addition, element release is much lower than in other experiments where unsensitized metal was used (compare P-VIII release and P-III, P-IV releases in Fig. 41). It is not clear that metal corrosion has any significant influence on glass reaction. At most it appears to be a second order effect. The metal components do act as sites for secondary phase precipitation and probably help to maintain water in contact with the glass by capillary action. These physical effects should act to enhance glass reaction.

B. The Surface Layer and Secondary Phases

The variation in the extent of reaction between individual parametric experiments provides the op, ortunity to investigate the evolution of the glass surface during reaction. The following discussion is limited because it is based only on SEM examination. Abrajano et al.¹¹ have demonstrated that Analytical Electron Microscopy (AEM) is required to achieve the resolution necessary for thorough characterization of the alteration layer and its relation to the glass surface. Several samples from the parametric experiments are being prepared for AEM examination, and preliminary results are presented in the Addendum. To help track the phases tentatively identified on the reacted test components, Table 16 provides a listing of phases discussed in the text.

An altered layer develops on the glass surface, presumably resulting from hydration and leaching of the glass. Initially, there is very little structure to this layer at least up to 15,000X magnification. Over time there is a progressive coarsening of the layer texture creating a bumpy or flaky surface. This layer is Si-rich and contains Fe, Ca, \pm Mg, \pm Na, \pm Mn, \pm Ni. It is similar in composition to Fe-smectite and to an amorphous phase called hisingerite. Eggleton et al. indicate that Fe-smectite crystallizes from hisingerite upon aging. It is conceivable that this may also occur in the altered layer. The progressive coarsening of the layer with time supports this hypothesis.

Investigation of extensively reacted samples reveals a complex structure with two to four discrete components to the altered layer. The outermost layer usually has a "cardhouse" or coarse flaky texture and is often not continuous across the surface suggesting it formed by precipitation. Its composition is essentially the same as the other parts of the altered layer, although other phases such as $CaSO_4$ and Fe-oxide or hydroxide are detectable in some EDS analyses. This intimate mixture of phases is consistent with the interpretation that the outermost layer formed by precipitation because the source for most of the Ca is the EJ-13 water. The lower portions of the altered layer have a variable texture as discussed above. The origin of these sublayers is not clear and awaits AEM examination.

Test #	Time of Reaction	Tentative Phase
P-II	26	Si-rich layer (smectite) Smooth layer (similar to glass composition) Gypsum or anhydrite ($CaSO_4$) Calcite ($CaCO_3$)
	52	Si-rich layer (smectite) Calcite Gypsum or anhydrite NaCl
P-III	13	Si-rich layer (smectite) NaCl Na ₂ SO ₄ Na ₂ CO ₃
	26	Si-rich layer (Ca smectite) Gypsum or anhydrite U, Si, Ca grain (uranophane) Na, Ca, S, Cl grains
	39	Si-rich layer Mn, Cr, Fe, Si grains Fe, Mn oxides/hydroxides Gypsum or anhydrite TiO ₂ (anatase)
	52	Si-rich layer (smectite) NaCl Gypsum or anhydrite CaCl ₂ Fe, Mn oxide/hydroxide
P-IV	25.5	Si-rich layer (smectite) Silica (opal/quartz) Calcite Cr, Fe, Mn oxide/hydroxide
	52	Si-rich layer (smectite) Gypsum/anhydrite Cr, Mn, Fe, Ni oxide/hydroxide

Table 16.Summary of Phases Tentatively Identifiedin the Parametric Tests

Cont'd

Table 16 (Cont'd)

Test #	Time of Reaction	Tentative Phase
P-V	26	Si-rich layer (smectite) Gypsum/anhydrite Fe, Cr, Mn oxide/hydroxide Silica (opal/quartz)
	1	Al-rich grains KCl Calcite Ca-P grains (apatite)
		Dolomite Mixed Ti-rich grains
	52	Si-rich layer (smectite) Cr, Mn, Fe, Ni oxide/hydroxide
P-VIII	26	Si-rich layer (smectite) Fe-rich grains with Mn, Ni Gypsum/anhydrite Calcite Si-Al-K grains (K-feldspar)
	52	Si-rich layer (smectite) Fe, Mn, Cr, Ni oxide/hydroxide Anhydrite/gypsum Silica (quartz/opal) Al-rich phase (gibbsite or Al-hydroxide) High-Mg calcite (dolomite) Calcite Cl-rich phase Na-Al-Si grain (analcime) NaCl
	104	Si-rich layer (Fe-smectite) Fe oxide/hydroxide Calcite, with Mg/Fe (dolomite) Al-rich grain (gibbsite, bayerite, nordstrandite) Cl- and S-rich grains NaCl, Na ₂ SO ₄ , CaSO, CaCl ₂ Ti-rich phase (anatase) (Serpentine) (Apatite) Silica (quartz, opal)

н и м

The discontinuous nature of the precipitated layer along with its porous appearance of loosely intergrown grains indicate that the precipitates do not form a reliable barrier to fluid infiltration. While the precipitates will influence the local fluid chemistry, they do not physically impede fluid-glass interaction.

The surface layer undergoes other changes upon aging. A network of cracks form and parts of the layer begin to pull away from the glass. Cracking begins as a localized phenomenon even before the layer has fully developed across the surface. This process, sometimes referred to as crazing, has been observed during leaching of simple alkali-silicate glasses.¹⁷ The inception of cracking may be influenced by the surface topography. The cause of cracking may be tensional forces at the interface between the hydrated altered layer and the glass. A contributing factor may also be volume changes and tensional forces within the layer as it begins to crystallize upon aging. Once a network of cracks is established, pieces of the layer begin to exfoliate from the surface, exposing patches of glass from below. Eventually, the exposed glass becomes covered with precipitates. The ubiquitous occurrence of cracks indicates that the surface layer cannot retard glass-fluid interaction to any large degree. While the intact layer may (or may not) act as a diffusion barrier, the cracks provide free access to the glass.

There are a number of secondary phases that have precipitated on the surface of both the glass and the metal components. The most common is Si-rich "clay" which has the same composition as the altered layer. Fe-oxide or hydroxide (XRD results suggest it is an oxide) is common especially on samples where the metal components have corroded. Some samples have a Cr- and Mn-rich phase, presumably an oxide or hydroxide. While the source of the Cr is probably the metal, no localized metal corrosion is observable on the samples where this phase occurs.

There are two common Ca-bearing phases: calcite and CaSO₄. They may occur together but generally only one is present. The net negative release of Ca in all the experiments indicates that Ca is removed from the EJ-13 water. Furthermore, the Ca depletion indicates that CaSO₄ precipitated during the experiment rather than upon cooling during sampling. Being the stable phase at 90°C, anhydrite must have precipitated. This demonstrates the influence of the EJ-13 water composition on the formation of secondary phases. Sodium-bearing phases are abundant on some samples but absent on others. Their occurrence is presumably linked to the availability of water. Phases tentatively identified include: NaCl, Na₂SO₄, and Na₂CO₃.

A U-bearing phase was observed on the metal components of the P-III-6 batch experiment. The small clusters of acicular grains contain Si and Ca which is suggestive of uranophane. This is the only observed occurrence of an U-bearing phase in any of the parametric experiments, although U-bearing phases are observed in the N2 tests.⁶

ł

In order to assess the relative effects of an unsaturated environment where water drips onto the waste form, it is informative to compare this study's results with other types of experiments. Two short-term leaching experiments have been performed at 90°C using the same SRL 165U glass.^{18,19} In these experiments, the glass was submerged in EJ-13 water and run both with and without an imposed γ -radiation field. The experiments of Ebert were performed at 0 and 1 x 10⁻³ rad/hr up to 278 days and those of Abrajano had a 1 x 10⁻⁴ rad/hr radiation field and a maximum duration of 182 days.

The normalized releases of B, Li, and U in the 278-day experiments of Ebert are presented in Table 17 along with the releases from selected batch and continuous experiments of similar duration. Element releases in the leaching experiments are only slightly greater than in the P-IV continuous and P-III batch experiments (by less than a factor of two). This difference is much less than

	(D) *	Normaliz	ed Release (g	/m²)
Test $\#$	(weeks)	B	Li	U
G308 ^a	39.7	4.93	6.98	4.38
G309 ^a	39.7	4.80	6.89	4.17
G350 ^b	39.7	3.61	5.87	3.56
G351 ^b	39.7	4.08	5.97	3.51
	Parametri	c Experiment	8	
P-II-1	39	2.2	0.9	0.29
P-II-2	39	1.0	1.1	0.24
P-II-6	39	0.8	1.1	0.27
P-III-1	39	0.5	1.8	0.46
P-III-2	39	0.4	1.6	0.34
P-III-7	39	3.1	4.2	2.11
P-III-8	39	2.0	3.3	1.48
P-IV-1	39	2.9	3.8	2.88
P-IV-2	39	2.2	3.2	2.10
P-V-1	39.5	0.1	0.0	0.00
P-V-2	39.5	0.1	0.5	0.06
P-VIII-1	39	0.1	0.8	0.07
P-VIII-2	39	0.1	0.5	0.05
P-VIII-5	39	0.2	0.4	0.09

Table 17. Comparison of Normalized Release of B, Li, and U between the Leaching Experiments of Ebert and the Parametric Experiments

^a90°C leach test of Ebert with 1 x 10^{-3} rad/hr γ -radiation. ^b90°C leach test of Ebert with no radiation.

the order of magnitude range in release obtained for the set of parametric experiments. Furthermore, the normalization procedure underestimates release only for the parametric experiments because the geometric and effective surface areas are equal in the leaching experiments (see above). This suggests that true normalized releases, based upon the effective surface area, would be in even closer agreement between the parametric and leaching experiments.

The release trends of the leaching and parametric experiments do appear to differ. The rates of release in the leaching experiments become progressively reduced through 39 weeks. In contrast, the release rates remain relatively constant in the parametric experiments for at least 300 weeks. This differing behavior may be attributable to the dripping environment where fresh water is periodically added and where evaporation can occur.

Relative release for the leaching (complete liquid submersion) and parametric (drip) experiments is $Li > B \sim U$ (except for P-II) suggesting a similar mechanism of glass reaction for both types of experiments. In the leaching experiments Na and Mg exhibit large positive releases but Ca has only a very small release. In the parametric experiments Na release is often erratic and Mg and Ca have net negative releases. This contrasting behavior is most likely attributable to differences in the secondary phases that precipitate on the Aside from an Fe-smectite-like surface layer, precipitation in the leach glass. experiments is not very extensive. Some Ca-rich precipitates such as calcite are reported by Ebert along with a U-silicate, an Al-rich phase, and rare NaCl. In contrast, precipitates are generally much more abundant in the drip experiments. Ca-rich precipitates such as calcite or anhydrite are common as is NaCl. It appears that in the unsaturated environment of the parametric experiments precipitation is more extensive, which in turn influences the solution chemistry. The development of a clay-like surface layer is common to both types of experiments and the behavior of the elements most indicative of glass reaction (Li, B, and U) is the same.

V. ACKNOWLEDGMENTS

Work supported by the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Yucca Mountain Site Characterization Project, under subcontract to Lawrence Livermore National Laboratory, SANL 910-005.

VI. REFERENCES

Ē

- 1. J. K. Bates and T. J. Gerding, "NNWSI Phase II Materials Interaction Test Procedure and Preliminary Results," Argonne National Laboratory report ANL-84-81 (1984).
- 2. J. K. Bates and T. J. Gerding, "One-Year Results of the NNWSI Unsaturated Test Procedure: SRL 165 Glass Application," Argonne National Laboratory report ANL-85-41 (1986).
- 3. Site Characterization Plan, U.S. Department of Energy, Office of Civilian Radioactive Waste Management, DOE report DOE/RW-0199 (1988).
- 4. W. L. Bourcier, D. W. Peiffer, K. G. Knauss, K. D. McKeegan, and D. K. Smith, "A Kinetic Model for Borosilicate Glass Dissolution Based on the Dissolution Affinity of a Surface Alteration Layer," Mat. Res. Soc. Symp. Proc. <u>176</u>, 209-216 (1990).
- 5. C. J. Bruton, "Geochemical Simulation of Dissolution of West Valley and DWPF Glasses in J-13 Water at 90°C," Lawrence Livermore National Laboratory preprint UCRL-96703 (1987).
- 6. J. K. Bates and T. J. Gerding, "Application of the NNWSI Unsaturated Test Method to Actinide Doped SRL 165 Type Glass," Argonne National Laboratory report ANL-89/24 (1990).
- 7. G. T. Chandler, G. G. Wicks, and R. M. Wallace, "Effects of SA/V and Saturation on the Chemical Durability of SRP Waste Glass," Savannah River Laboratory report DP-MS-86-56 (1986).
- 8. "DWPF Waste Form Compliance Plan," U.S. DOE report DPST-86-746 (1988).
- 9. C. M. Jantzen and M. J. Plodinec, "Thermodynamic Model of Natural, Medieval, and Nuclear Waste Glass Durability," J. Non-Cryst. Sol. <u>67</u>, 207-223 (1984).
- 10. W. A. Deer, R. A. Howie, and J. Zussman, <u>An Introduction to the Rock-Forming Minerals</u>, Longman, London, 528 pp. (1966).
- 11. W. L. Ebert, J. K. Bates, and W. L. Bourcier, "The Hydration of Borosilicate Waste Glass in Liquid Water and Steam at 200°C," accepted for publication in <u>Waste Management</u>.
- 12. T. A. Abrajano, Jr., J. K. Bates, A. B. Woodland, J. P. Bradley, and W. L. Bourcier, "Secondary Phase Formation during Nuclear Waste-Glass Dissolution," Clay and Clay Min. <u>38</u>, 537-548 (1990).

- 13. J. K. Bates, T. J. Gerding, W. L. Ebert, J. J. Mazer, and B. M. Biwer, "NNWSI Waste Form Testing at Argonne National Laboratory, Semiannual Report, July-December 1987," Lawrence Livermore National Laboratory report UCRL-21060-87-2 (1989). NNA.881115.0026
- 14. A. E. Nielsen, <u>Kinetics of Precipitation</u>, MacMillan Co., New York, pp. 72-85 and 108-119 (1964). NNA.910903.0118
- 15. W. Stumm and J. J. Morgan, <u>Aquatic Chemistry</u>, <u>An Introduction</u> <u>Emphasizing Chemical Equilibria in Natural Waters</u>, 2nd Edition, J. Wiley and Sons, New York, NY, 230-319 (1981). NNA.910903.0117
- R. L. Cowan and C. S. Tedman, Jr., "Intergranular Corrosion of Fe-Ni-Cr Alloys," in <u>Advances in Corrosion Science and Technology</u>, Vol. 3, M. G. Fontana and R. W. Staehle, eds., Plenum Press, New York, 292-400 (1973). NNA.890921.0111
- 17. B. C. Bunker, G. W. Arnold, E. K. Geauchamp, and D. E. Day, "Mechanisms for Alkali Leaching in Mixed Na-K Silicate Glasses," J. Non-Cryst. Sol. <u>58</u>, 295-322 (1983). NNA.910215.0015
- T. A. Abrajano, Jr., J. K. Bates, T. J. Gerding, and W. L. Ebert, "The Reaction of Glass during Gamma Irradiation in a Saturated Tuff Environment, Part 3: Long-Term Experiments at 1 x 10⁴ Rad/Hour," Argonne National Laboratory report ANL-88-14 (1988). HQX.880721.0013
- 19. W. L. Ebert, J. K. Bates, and T. J. Gerding, "The Reaction of Glass during Gamma Irradiation in a Saturated Tuff Environment, Part 4: SRL 165, ATM-1c, and ATM-8 Glasses at 1E3 R/h and 0 R/h," Argonne National Laboratory report ANL-90/13 (1990). NNA.900509.0197
- 20. J. P. Bradley and J. K. Bates, "Leached Nuclear Waste Glasses: Ultramicrotomy and Electron Microscopic Characterization," Proc. of the 12th Mtg. of the Microbeam Analysis Soc. (1990). NNA.910903.0119
ADDENDUM

While the SEM provides important information about the nature of glass reaction, it lacks the requisite resolution to understand the detail of alteration layer development. Analytical electron microscopy (AEM) may provide the key to unravelling this process. For example, the AEM study by Abrajano et al. of leached SRL 131 glass reveals a reaction layer with a complex structure, composed of six distinct sublayers and a mixture of amorphous material and crystalline phases.¹² At present two samples from the parametric experiments have been prepared. The following a very brief description of these samples. A thorough AEM investigation will be the subject of a future topical report.

A section through the reacted layer from the bottom glass surface of P-VIII-7 (104 weeks) is presented in Fig. 42. As there is no accompanying glass in this sample, this must be viewed as only a partial section through the upper part of the layer. This part has a complex structure of repeated bands only partially attached to one another. Each band has a fine-grained Fe-rich element with an epitaxial growth of smectite on either side. The structure of the individual bands is reminiscent of that observed for the same glass after 280 days in static MCC-1 leach tests.²⁰ The origin of the multiple bands is uncertain at this time.

A sample from the side of P-III-10 (52 weeks) was taken from near the top surface where prolonged water contact had occurred during the experiment. There is a layer of coarse, loosely packed smectite grains which lies above the glass surface (Fig. 43). No Fe-rich band is observed here. The smectite may have formed by precipitation on the glass. However, etching has caused retreat of the glass surface, resulting in a gap between the smectite layer and the glass.

Much more work needs to be done; however, it is clear that the AEM is an extremely useful tool for investigating the mechanisms of glass alteration. This work is underway. It is comforting that some of the interpretations based on SEM observations are confirmed by the preliminary AEM results.

11 - 1114 - - - -

Fig. 42. TEM Micrograph of the Layer from the Bottom of P-VIII-7. is 7 mm = 500 nmThe scale

Fig. 43. TEM Micrograph of the Side of P-III-10. The scale is 9 mm = 200 nm

e

APPENDIX I

Raw data for the analyses of solutions from the parametric unsaturated experiments (continuous mode) are presented. The data presented include the test number, sample interval (in weeks; both the interval and cumulative time periods are given), sample identifier (TF #), the solution volume in mL submitted for analysis (the original solution volume is diluted with acidified DIW prior to analysis), and the volume of test solution added during the test period (water is injected throughout the test period and a specified volume of water is added to the bottom of the test vessel at the beginning of each test period. The water added at the beginning of the test period is DIW for the P-II experiments and EJ-13 for the other experiments. The volume given in the H₂O Added column is only the volume of EJ-13 or J-13 water and the value is used in the background subtraction process).

The composition of groundwater (ppm) added during the test is given in the first row(s) under the heading of elements. For each sampling period, generally three rows of data are presented. The first row is the total mass of each element in the diluted solution submitted for analysis, the second row is the total mass of each element in solution that can be attributed to the glass (the value is obtained by subtracting from the total elemental mass the mass attributed to groundwater added to the test. The value will be negative if elements are precipitated from solution). The third row is the cumulative mass of each element attributed to the glass.

i hat	0		00	00	00		66		00	00	00
	420 420	504 504 924	460 460 1384	615 615 1999	565 565 2564	570 570 3134	147 147 3281	242 242 3523	245 245 3768	443 443 4211	382 382 4593
Si	30.900 9460 -18350	5800 -26645 -44995	8300 -21828 -66822	4500 -25628 -92450	12200 -20245 -112695	14000 -13810 -126505	7000 -23128 -149632	5360 -24768 -174400	9050 -21078 -195478	24700 - 7745 - 203222	6100 -19392 -222615
E	89 52- 52	496 389 380	400 373 753	400 373 1126	600 571 1696	2050 2025 3721	425 398 4119	-27 4092	-27 4064	-29 4035	-23 4012
ĉ	46700 28400 -13630	26600 -20435 -34065	3000 -15532 -49598	55860 10348 -39250	44300 -4735 -43985	64000 21 <i>97</i> 0 -22015	16400 -29132 -51148	19100 -26432 -77580	27000 -18532 -96112	103200 54165 -41948	81600 43072 1125
Hn.	445 445	52 52 52	410 405 1125	12 <u>15</u> 1280	332 1611 1821	350 346 2016	335 335 2351	870 865 3216	-5 3211	510 505 3716	960 956 4672
0 H	2130 1070 -847	930 -1306 -2154	970 -1107 -3260	550 -1527 -4787	330 -1906 -6694	125 -1792 -8486	250 -1827 -10312	180 -1897 -12209	1200 -377 -13086	1370 -866 -13952	350 -1407 -15360
Ei	49 4320 4276	3110 3059 7334	3300 3252 10587	5130 5082 15669	4035 3984 19652	4500 4456 24108	1210 1162 25271	1000 952 26223	1770 1722 27945	3380 3329 31274	3470 3430 34703
e H	10 2470 2461	2280 2270 4730	1850 1840 6571	1370 1360 7931	1620 9540 9540	1050 1041 10582	1600 1590 12172	5870 5860 18032	5140 5130 23162	2100 2090 25252	715 707 25958
ؾ	13600 4300 -7940	3940 -10340 -18280	5200 -8060 -26340	2000 -11260 -37600	3950 -10330 -47930	2750 -9490 -57420	2100 -11160 -68580	2500 -10760 -79340	11300 -1960 -81300	7600 - 87980 - 87980	2050 -97150 -97150
മ	130 18106 17983	16200 16064 34046	95500 9173 43220	8600 8473 51693	5000 57556	5200 5083 62640	2800 2673 65313	2370 2243 67556	2900 2773 70329	3800 3664 73993	2250 2143 76136
FI I	100 1650 1560	10375 10270 11830	1035 938 12768	1000 902 13670	1500 1395 15065	1200 1110 16175	1200 1102 17278	1300 1202 18480	1000 902 19382	1050 945 20328	2000 1918 22245
	515-23					_	10	10	10	10	G
HCC Acced	006-0	1.050	0.975	0.975	1.050	0.900	0.975	0.975	0.97	1.0	0.82
Solution Voiume	20.57	26.75	20.71	20.52	20.80	24.92	21.28	Ъ.5 Д	20.57	21.11	20.44
[* ; * * E→	II-63	IF-69	TF-72	1F-79	lé-1L	TF-97	IF-111	TT-123	TF-141	TF-152	TF-180
Time Period	م	13	6.5 19.5	6.5 26	ر ب 33	39 6	6.5 45.5	6.5 52	6.5 58.5	7 65.5	5.5 71
Test *	el-IId	đ	C	Ia	2	#	Ig	ų	11	11	1k

alter della della de

2

ì

-

м	00	00	00	00	00		00	60	00	00
þ	448 448 5041	356 356 5397	431 5828	0 5828	0 5828	0 5828	384 384 6212	459 459 6671	473 473 7144	312 312 7456
SI	13400 -21362 -243978	12100 -11075 -255052	21900 -12862 -267915	2300 -27828 -295742	30000 -128 -295870	10400 -19728 -315598	4200 - 25928 - 341525	8500 -21628 -363152	9000 -16492 -379645	3400 -117110 -496755
IN	4300 4300	560 539 839	450 418 5258	460 5690	420 393 6083	520 493 6576	540 513 7089	350 323 7411	-23 7386	430 321 7709
Na.	77100 24562 25688	47300 12275 37952	94000 41462 79425	1200 -44332 35092	101700 56168 91260	12100 -33432 57828	10100 -35432 22395	32500 -13632 9362	70000 31472 40835	82005 133930 133095
Pu	145 129 4811	289 256 5097	130 124 5192	110 105 5297	400 395 5692	520 515 6207	88 12 88 5282 31 88	200 155 155 155	180 176 6653	140 120 5774
Ň	260 -2136 -17496	260 -1338 -18833	200 -2196 -21030	110 -1967 -22996	300 -1777 -24773	800 -1277 -26050	460 -1617 -27666	350 -1727 -29393	062.08- 2681- 098	82786- 078
ГI	3550 2495 38198	2150 2113 2113 40311	3750 3695 44006	460 412 44418	3550 3502 47921	960 712 48833	520 472 49305	1200 1152 50457	2200 2160 52617	420 229 52846
e H	400 389 26347	1400 1392 27740	330 319 28056	230 220 28279	1000 990 29269	1600 1590 30859	950 940 31800	800 790 32590	600 592 33182	800 761 33942
ى	1300 -14000 -111150	-119750 -8600 -119750	1100 -14200 -133950	1200 -12060 -146010	2700 -10560 -156570	4400 8860 -165430	2900 -10360 -175790	1900 -11360 -187150	1100 -10120 197270	2300 -50740 -248010
æ	3200 3054 79189	1700 1602 80792	1500 1354 82146	700 573 82719	1300 1173 83892 -	700 573 84465	550 423 84888 -	530 403 85292 -	600 493 85784 -	450 -57 85728
ÅÌ	1600 1488 23732	2000 1925 25658	2200 2088 27745	2300 2202 29948	2100 2002 31950	2200 2102 34052	1900 1802 35855	1700 1602 37458	2000 1918 39375	1500 1110 40455
H2C Added	1.125	0.75	1.125	0.975	6.975	0.975	0.975	û.975	0.825	3.90 0
Solution Volume	16.13	20.12	22.33	23.49	20.97	15.71	19.13	17.69	20.46	15.35
1F	TF-203	TP-224	TF-237	TF-256	TF-268	TF-290	TF-316	TF-334	TF-349	TF-317
Time Ferlod	78.5	5 83.5	7.5 91	6.5 97.5	6.5 104	6.5 110.5	6.5 117	6.5 123.5	5.5 129	82 <u>121</u>
rest a	11	Ш	In	10	ţ	Iq	ц.	S	11	lu

th

T	26800 2436 2436	300 6351 -5998 -3561	23200 13521 9960	9500 1824 11784	38000 24310 36101	660 3902 3902	1650 782 4685	451 691 4691
D	4434 4434 11890	6.5 105 105 11995	239 239 12234	117 117 12351	120 120 12471	24 24 12495	12 12 12507	23 23 12530
21	175100 5922 -490832	200 4234 -81514 -572346	22800 - 44408 -616754	32500 -20802 -637556	79100 -15918 -653474	22400 - 3092 -656566	25800 -34455 -691021	25870 -5030 -696051
iN	2400 2247 9956	36 762 684 10640	680 619 11259	1000 952 12211	690 604 12815	730 707 13522	1650 1595 1517	450 422 15539
ŝ	319200 63518 -69577	1340 28368 -101225 -170802	104400 2828 -167975	7200 -73358 -241332	156200 12598 -228735	-21728 -21728 -250462	7100 -334427 -334427	4210 -42490 -376917
ų	840 813 7586	5 106 92 7678	401 389 8067	600 591 8659	340 325 8983	120 116 9099	180 170 9270	500 495 9765
Ňġ	2140 -9522 -48249	31 656 -5254 -53504	350 -4283 -57786	1000 -2674 -60451	550 -1473 -61933	270 -1487 -63421	180 -3974 -57394	420 -1710 -69104
LI	11100 10832 63677	34 720 584 64261	1860 1693 65955	400 315 66270	3600 3449 69720	390 350 70069	370 274 70344	180 131 70475
Fe	2260 2145 36088	47 995 37055	800 778 37833	1900 1883 39716	1300 1269 40985	800 792 41777	3200 3780 45557	890 880 46437
ß	6400 - 68060 - 316070	250 5292 -32448 -348518	8500 -21080 -369598	13260 -10260 -379858	7500 -34320 -414178	1500 -9720 -423898	1300 -25220 -449118	1350 -12250 -461368
æ	5320 4638 90336 -	44 931 571 90906	12130 11847 102754	146568 146344 249097	45600 45200 294298	10000 9893 304190	5500 5246 309437	2250 2120 311557
И	2200 1652 42138	100 2117 1840 43777	1800 1582 45560	3200 3028 48587	3400 3400 51680	2400 2318 53997	5500 5305 57302	1500 1400 60702
12C dded	5.475	2.775	2.175	1.725	3.075	0.825	1.%	3.90*
Solution Volume A	22.71	21.17	18.38	31.52	34.26	24.41	18.28	15.04
1F	TF-501	TP-577	TF-639	TF-680	TF-748	TF-767	TF-820	TF-864
Time Per lod	36.5 191.5	18.5 210	14.5 224.5	11.5 236	20.5 256.5	5.5 262	13 275	33 19
Tesi 🕯 I	IV	2	lx	1	14	lac	41 Db	100

contraction of the contraction o

hud	4450 0	00	00	00	00		0 0	00	00	ရာ ယ
р	° <u>8</u> 8	378 378 628	837 837 1465	233 1698 1698	865 2563 2563	57 57 2638	66 56 2702	101 101 2803	62 5882 2882	108 108 2990
SI	30900 2680 -25130	4150 -28295 -53425	18150 -11978 -65402	5700 -24428 -89830	51400 18955 -70875	2900 -24910 -95785	7100 -23028 -118812	7000 -23128 -141940	9300 -20828 -162768	23600 -8845 -171612
IN	57 BS	8, 1 8	328 3 28	6 33 36 22	900 178 1591	424 423 2016	400 373 2389	-27 2362	-27 2334	-29 2305
Nā	46700 8240 -33790	23700 -25335 -59125	71000 25468 -33658	31500 -14032 -47690	118100 69065 21375	24400 -17630 3745	23100 -22432 -18688	27400 -18132 -36620	22505 -23032 -59852	67400 18365 -41488
Řn	5 150 150	30 FF 12	100 395 395	100 35 490	300 295 785	001 26. 198 198	115 110 991	1500 1495 2486	-5 2481	1150 1145 3626
Ą	2130 560 -1357	460 -1776 -3134	540 -1537 -4670	340 -1737 -6407	480 -1756 -8164	150 -1767 -9930	170 -1907 -11837	500 -1577 -13414	485 -1592 -15006	1660 -576 -15582
LI	49 1100 1056	3100 3049 4104	9200 9152 13257	3800 3752 17009	10500 10449 27457	1200 1156 28613	1240 1192 29806	1400 1352 31158	1500 1452 32610	1820 1769 34379
Fe	10 1440 1431	1300 1290 2720	1670 1660 4381	900 890 5271	2400 2390 7660	1650 1641 9302	800 790 10092	1500 1490 11562	3440 3430 15012	2250 2240 17252
ى	13600 1850 -10390	2000 -12280 -22670	2100 -11160 -33830	2000 -11260 -45090	2300 -11980 -57070	2200 -10040 -67110	1900 -11360 -78470	4000 -9260 -87730	3240 -10020 -97750	7800 -6480 -104230
8	130 8550 8533	5400 5264 13796	6050 5923 19720	2373 2373 22093	4000 3864 25956	1120 1003 26960	860 733 27693	900 773 28466	770 643 29109	610 474 29583
¥1	100 3900 3810	12250 12145 15955	1040 942 16898	2900 2802 19700	1600 1495 21195	1100 1010 22205	950 852 23058	1300 1202 24260	1200 1102 25362	1020 915 26278
H26 Added	J-13 0.900	1.050	0.975	0.975	1.050	0.900	0.975	0.975	0.975	1.05
Solution Volume	20.60	20.76	20.68	х .99	20.99	22.40	19.08	25.15	20.24	20.48
[a., **];-1	TF-64	TF-71	TF-73	T7-80	TF-92	TF-98	TF-112	TF-124	TP-140	TF-153
Time Period	9	13	6.5 19.5	6.5 26	33 7	39 V	6.5 45.5	6.5 52	6.5 58.5	7 65.5
est # 1	PII-2a	ୟ	3	2q	Sе С	2f	2ĝ	ณ์	2i	21

	00	00	00	00	00	00	00	00	66	00
М										1
D	6916 621 621	116 116 3285	316 3316	3388	3338 1 1	3338	1 3338	3338	989 989 4327	640 640
SI	11550	1360C	4300	2300	2300	74900	12400	5000	3600	9600
	-13942	-21162	-18875	-32462	-27828	44772	-17728	- 75128	-26528	-15892
	-185555	-206718	-225592	-258055	-285882	-241110	-258838	- 283965	-310492	-326385
IN	-23 2822	340 338 2530	600 579 3169	450 418 3583	460 433 4020	420 393 4413	380 353 4766	450 423 5189	353 354 354	670 847 6388
Нà	70800	78500	14700	820C	23100	185000	23600	10900	4900	25200
	32272	25962	-20325	-44338	-22432	139468	-21932	-34632	-40632	-13328
	-9215	16748	-3578	-47915	-70348	69120	47188	12555	-28078	-41405
'n	620	130	100	110	110	430	190	110	230	430
	616	124	96	104	105	425	185	105	2612	426
	4242	4366	4462	4567	4672	5097	5282	5387	5612	38
ŌŅ	500	440	270	230	500	860	360	320	380	1200
	-1257	-1956	-1328	-2166	-1577	-1217	-1717	-1757	-1597	-557
	-16840	-18796	-20123	-22290	-23866	-25083	-26800	-28556	-30253	-30810
EI	2900	3520	660	450	460	5160	740	680	380	800
	2860	3465	623	395	412	5112	692	632	332	760
	37238	40703	41326	41721	42133	47246	47938	48570	48902	49662
Fe	2300	600	370	250	250	1660	850	900	700	2000
	2292	589	362	239	240	1650	840	990	699	2922
	19544	20132	20495	20734	20974	22624	23464	24354	25145	27036
ى	2700	4700	1900	1300	1800	5800	2400	1700	2100	20700
	-8520	-10600	-8300	-14000	-11460	-7460	-10860	-11560	-11160	9480
	-112750	-123350	-131650	-145650	-157110	-164570	-175430	-186990	-198150	-188670
£	513 30096	855 709 30804	660 562 31367	680 534 31900	690 563 32464	1600 1473 33937	1020 893 34830	450 323 35154	570 443 35597	33 33 33 33
٩١	1900	1700	2000	2200	2022	2200	1700	2200	1900	1700
	1818	1586	1925	2088	2022	2102	1602	2102	1802	1618
	28095	29682	31608	33695	36898	38000	39602	41705	43508	45125
H20 Added	0.825	1.125	0.75	1.125	0.975	0.975	0.975	<i>6.97</i> 5	0.975	0.825
Solution Volume	19.25	16.77	20.64	22.69	22.84	21.51	15.71	22.65	18.92	17.11
11 •	TF-181	TF-204	TF-223	TF-238	TF-257	TF-269	TF-291	TF-317	TF-335	TF-350
Time	5.5	7.5	5	7.5	6.5	6.5	6.5	6.5	6.5	5.5
Ferlod	71	78.5	83.5	91	97.5	104	110.5		123.5	129
lest 🛔	71	21	8	53	8	, 8;	2 4	Ъ	ຊ	2t

1		5400 -18964 -18964	420 8837 -4012 -22976	25400 15721 -7254	9400 1724 -5530	10000 -3684 -9214	5211 5211	2001 2012 2017 2017 2017	3948 2122 2136
D	, 0611 0611	150 150 6307	14 278 278 585 585	231 231 8816	296 296 7112	37 37 7149	24 24 7173	181 181 7191	4 1 2 2 2 2 2
SI	3500 -117010 -443395	84100 -85078 -528472	1970 39104 -46643 -575116	62700 -4508 -579623	29300 -24002 -603626	58700 -36318 -653848	19700 -5792 -659640	35900 -24355 -683996	104740 -15770 -699766
N	320 211 6599	3220 3067 9656	56 1112 1034 10700	600 559	-620 572 11810	534 12332	12 15 15 15 15 15 15 15 15 15 15 15 15 15	3000 2945 15474	450 341 15815
Nà	7700 174430 215835	49600 206082 421918	12900 256065 125473 295445	215200 114528 -180818	7500 - 73058 - 253875	12700 -130902 -405792	600 -32528 -438320	8700 -82365 -520685	220000 37870 -482815
ų	8888 888	1700	15 238 284 8055	234 279 8334	151 151 8486	160 145 8628	120 116 8744	10000 9990 16734	130 130 1385 1385
ğ	220 -8087 -38898	1250 -10412 -49309	50 993 -4918 -54228	900 -3733 -5760	340 -3334 -61294	330 -6220 -68473	240 -1517 -69990	200 -3954 -73944	200 -8107 -82050
E .	480 289 49951	230 -38 49912	190 3772 3636 53548	3800 3693 57241	3100 3015 60257	500 349 60584	2400 2360 62944	351 254 63198	500 5507
re Le	640 661 27639	8400 8345 35983	110 2184 2156 38138	2100 2078 40217	1000 983 41200	700 669 41864	500 492 492	22700 22680 65036	590 551 65388
ى	1200 -51840 240510	9700 -54760 305270	1220 13523 18773 1220	10400 -19180 -337973	52233 -19260 -19261	4000 -37820 401173	-10520 -10520	2300 -435913	770 -52270 -488183
¢۵	320 -187 35802 -	950 238 36041 -	340 6749 6388 42429 -	14400 14117 56546	22600 25600 81522	20000 19600 101464	6000 5893 107356	96600 96346 203703	8740 8233 211936
IN	1600 1210 46335	1800 1252 47588	100 1985 1708 49295	1900 1682 50978	3100 29905 53905	3300 2992 56852	2400 2318 59170	5300 5105 64275	1500 1110 11285
H2G Added	3.900	5.475	2.775	2.175	1.75	3.075	6.825	R.1	3.91
Sclution Volume	15.94	17.91	19.85	19.24	31.20	33.3 %	23.99	17.71	15.07
41 *	IF-318	TF-502	TF-578	TF-649	IF-681	TF-749	TE-768	TF-821	TT-865
Time Period	28 155	36.5 191.5	18.5 210	14.5 224.5	11.5 236	20.5 256.5	5.5 262	13 275	% ज
test 4	ୟ	24	S	ζ,	Ŋ	23	2aa	<u>1</u> 23	Scc

*	ea Lei	e P	99 99	99 99	2 9 2	22	Ð	Ð
-1 +3	691 100 100	122 122	600 4564 4964 4949	1042 17340 16382 16382	1043 15638 16681 16660	6511 111 111 111 120	20044 20916	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3. 3690		1925년 1922년 1922년	1520 16150 75121	15500 453700 463200 314220	24570 460700 487400 221555	15808 338700 354500 138635	513300	592700 104860
之 同	ii N	。 史	360 5100 5160 5160	450 6500 6556	9453 9728 9728	380 8000 8520 8263	1000) 76 11	199 199
Na 46300	113400 22140	114900 23640	(990) 22100 251500 551500	.13706 395006 412706 215140	24500 431900 458200 184420	26200 385800 412000 136220	607006 2419-00	454500 1157aû
ដ រ	14670 14670	25900 23770	99 11700 11770 11769	65) 14200 14850 14850	1500 21000 22500 22500	10281 16201 16201	21000 20761	4100 4061
це Сб	405	580 - 280	85 17 17 17 17 17 17 17 17 17 17 17 17 17	160 739 870 -748	國際國際	130 1030 -1252	1576 -1542	1500
13 F	13140 14121	792+1 905+1	2360 22300 24660 24660	23045 2520 2520 2520	3400 54260 57700 57285	251 2515 2545 2545 254	7 4 406 75845	54100 53546
虎릨	51,706 51,669	42500 42260	545 26960 26903	2150 38500 40550 49703	5600 5620 51300 91742	2260 86.300 90560 90560	22869 (16659	2255e 00-25
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4360 -3695	505 -542	1600 5110 9909 -7320	2003 9800 11500 -5420	2400 12608 15000 -8735	945 12003 12940 -11045	13910 -18080	1 8500 -1 5460
9 139	3430 3173	4250 3518	1100 10460 11566 10736	17 <i>6</i> 8 46400 48160 47446	2010 45010 45016 45016	1730 25200 30030 25036	54400 53074	54500 33474
н 710	1700 316	1880 476	505 316 315	1000 13400 14460 11418	2000 13700 15766 11546	1900 7300 9220 5046	14300 37.62	1.2260 6602
5113 E-313		۲. ۲	4.2 RUNSE ACID SUAK TOTAL	4.2 RINSE ALID SGAK TOTAL	5.85 RINEE Acid Scark Total	5.55 RUNSE Acid Suak Tutal	101 15	103 1 ·
	28.50	8. S	15.18 15.61	15.51 16.55	20.07 22.15	18.83 20. <i>37</i>	23.37	12.
	27 I-11	日山	172-172 172-172	TF-171 TF-175	TF-205	TE-203	TF-243	TF-244
	63 67	9.51	0.81 19	26.0	39.0	9. S	e H	5.8
	1376 1 1 - 14 1 - 14 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1		1177 1	0 11 11 11	2-IIId	143 1- 1-1 1-1 1-1 1-1	8-11:1	

K 2606	C)		8 9	um um	um ene ene	(2) (2)	(2) (C)	614 (114	en a	agini lahar
□ 4 -	439 436	447 442 878	496 491 1365	328 324 1693	454 447 2142	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	음 년 년 문	國展園	543 569 389 393	副的關
51 36908 34280	28870 -7105	39600 -3755 -10865	42900 -453 -11322	36706 -5425 -20748	42900 -458 -21265	41300 -2056 -23262	42200 -1158 -24420	61000 17642 	5700 12342 5565	1.20.660 77.442 82065
N S S	四 516	-24	-24 2084	3801 1265 1265	902 978 5561	주대 4678 전415	2000 1976 22368	54752 5725 004:2	1805 1776 26541	1000 376 27535
Na 46800 49260	3860) -7039	57100 4110 -2926	65300 11211 7355	建設	9051 9710 15060	5005 5010 2010	63190 8116 28120	54160 -853 27230	47630 -7350 15840	-2750 17455
Ē'nĸ	22600	4905 4694 27459	 5- 27423	13日 13日 13日 13日 13日 13日 13日 13日 13日 13日	1400 1374 32651	3800 3774 35345	650 644 36490	1300 1254 37764	770 764 55543	450 374 3742
ри ЭУС Стус	59 FF	國際將	-285 -312	171 516- 516-	國際醫	2017- 123 121-	195 -263 -1415	國際	250 -155	៧ ព្រ ផ្ដ
375	6500 6431	5206 5117 11547	4350 42 <i>67</i> 15814	2776 1867 1867	5550 2567 21662	2500 2417 2417	2600 2517 26595	2200 2112 2112	191 191 191	2000 1917 21945
4 E E	657 <i>0</i> 0 65690	2050) 21458 86176	16200 10128 96367	15000 14768 111354	19160 15085 130442	166631 55755 10062	12600 12588 155219	15000 18738 213007	12909 12855 250355	9200 5138 245064
Ca 4100 2750	3050 -948	2700 -2118 -3065	3760 -1115 -4162	3500 -5706 -5708	4200 -616 -6325	3606 -1215 -7542	4100 -715 -2260	400 - 618 - 5978	2801- 1055- 1075-	2910 -1915 -1312
8 176 14	2440 2274	1800 1600 3874	5895 9121 0171	1620 805 5852	1100 900 6792	1070 870 7665	1100 961 8553	1150 157 127	10701 1078 1078	88 82 1111
Al 716 645	1320	1100 256	1100 266 1159	1100 212 1372	1700 856 2238	2100 1266 3503	2269 1366 4869	2000 2000 6035	2166 1265 7200	120 265 2657
F.MS F.MS										
H.E.G. Added	£ 375 +	1.175	51.1	+ 57	1.17	1.175	1.175	1.175	1.175	R1-1
Solution Volume	39-192 1	17 17 17	۶. Lī	9.10 6.10	15.45 1	21.35	21.76	58°51	21.44	12.21
.k. ₩	TF-114	75-137	11 57 - -	TF-156	TF-167	1E-21	TE-227	15-241	1F-55	TF-274
Time Feriod	6.5	11 12 11 11	10 01	17 - 19 - 19	5 CE	6.5 39	10 10 10 10	55	រក ក្ន ខេត្ត	9. 19 11 11
ita Sei air	FII-Ia	42) 113	<u>1.1</u>	13	4	•+ •1	lç	42 •••		***

. .

ы	620 A.D	61 62	ma da	en (L)	113 CJ		13700 2406 2700		國居住於
Þ				526 526 6500	955 956 956	7e6 764 82e0	605 605 8865	년 년 년 1111년 1111년 1111년 1111년 1111년 1111년 1111년 1111년 1111년 11111년 11111년 11111년 11111년 11111년 11111년 111111	១ពិធិន្ល
2I	2016 2015 2015 2015 2015 2015 2015 2015 2015	127409 62942 157892	90/111 19/91 19/91	78500 6130 222068	65900 12330 234418	73300 630 255048	728:10 -5840 2221 65	6220 -5.00 22353	1400 28350 -44220 177268
E	247e 247e 2745	9728 9728 36276		55- 55-	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1200 1157 41375	670 824 4222	13年5 1957 1957	网络动物
Ř	5400 -533 16400	64500 9510 25770	(11) (전문- (전문-	113900 -2780 22370	120100 14320 36699	110200 4420 4116	9100 -23440 18859	975 975 975	
ų	22 25 25 25	1706 1431 4453	1500 1469 42475	1200 1159 43669	609 529 44278	189 44547	438 418 45268	475 1914 1915	182 172 45962
	259 -176 -2122	233 -163 -2338	60 -155 -156	-134 -134	图影響	-305 -3145	88 222- 1755-	-316 -316 -316	2000 - 44 2000 -
Π	1995E	2015 2017 336/28	5700 3547 39223	3300 3128 42413	3700 3588 44002	5500 5358 47500	350) 3380 52770	2700 2596 55366	45072 1881 1881
di Kaj		32700 32555 264360	23300 23778 206135	4680 40773 348717	5960 5376 354796	+ <i>717</i> 25 37221 000€1	4300 4277 372051	2100 2020 202133	221 4455 4455 36555 36555
3	3000 -1613 -14630	3700 -1118 -15948	1360 -1315 -17262	-25835 -25835	7000 -5723- 1400	7500 -41680	5400 -11045 -52725	5150 1005 1005	回 2011年 2011年 2011年
613	1045 846 11953	44 年2 17年	1328 1474 14189	1806 1454 15443	1700 1554 17196	200 1574 1572	1910 1921 1921	1500 1173 21253	4 21 21 21 21 21 21 21 21
19	1980 166	2000 1166 6995	1450 -76 3721	1650 1134 10055	1100 564 19639	1596 964 11623	1770 1148 1148	19151 1426 14191	
320 Ådded	51.1	40 •••	2.150	3.138	2.150	2.159	667	2.000	2.150
Solution Volume	10.27	20.42	11	11.00	11.33	15.24	16. J	19-51	20.15 20.15
f=1 **	時日	125-11	142 145	1F-393	F-424	IF-453	95t-11	FF329	B C-11
Time	5.0	101 - 100 - 105	13.1	13.9 104	13.0	e e e	e tr	156	1999 1991
Test 🛊	ж. •••	4-4 4-4	ai I	In	63 ***	са. •••	1	L.)()

. . .

. 10.10

5

÷

		() •				
M	10991 10991	12200 1675 6200	57 1388 2765 2765	6020 6630 14551	13870 3420 16075	26830 8236 26495
D	1542 1540 11313	1350 1368 11310	62.2 1379 1377 1377	12451 12451	1615 1613 15564	3709 2775 19265
SI	548041 105.04 105.04	80100 4875 201792	3380 74935 4800 20.6572	66500 -7030 199562	万词 -6600	149600 9380 142942
IN	610 527 44726	630 586 45511	40 837 845 46156	1866 1757 47913	970 927 48840	1750 1498 20335
Кč	111280 5420 -42660	11680ŭ 5330 -33330	4726 104642 2552 -31778	113500 8129 9025-	114600 5022 -13638	3519- 0842 05562
ų	1 <u>20</u> 1 <i>6</i> 7 44071	192 179 46230	12 266 45506	210 159 46/05	455 444 47149	225 208 47355
Ŋ	201 -365 -1312	292 283 283	-555 -556	-135 -157	295 -269 -5676	316 -762 -6 ⁶ 7.8
11	5300 5136 62245	5400 5284 67529	259 555 555 565	5500 5388 78352	6250 6136 6430	13540 13327 57817
Fe	3400 3375 388543	2005 2015	270 5986 5965 397386	4400 4378 4042£5	6370 6348 410613	4059 4007 414622
ű	0018 2727- 0016	2500 -13409 -97549	260 5764 -9072 -106621	6580 -8872 -115493	6370 -9002 -124456	7200 -22115 -146611
æ	3730 3554 25457	3600 3242 28699	169 3547 2213 31712	4688 4254 36146	5340 4594 41168	11089 10420 51536
łł	2000 1484 17164	2100 1565 18756	100 2217 1719 2345	2100 22055 22055	1750 1414 234 <i>5</i> 7	31.69 2176 25645
H26 Added	2.15	1.25	2.275) N	2.15	रूव ब
Solution Volume	20. 25	20.71	27.72	5.8	11.37	13 1
[-1 **	TF-637		TF-73E	11-77.	TF-230	11-369
Time Ferlod	13.0 182		1212	51	24	58 28
lest 4	40 4-1	10	à	3	×	

ā,

5000	<u>در ن</u>	9	00	00	00	6 8	00	09	הי בי	99
С9 мр . на	314 315	38 34 344	375 366 713	323 319 1029	383 354 1413	395 392 1614	546 542 2345	536 2882 2882	728 724 3006	368 364 3976
10 0 0 10 0 0 10 0 0 0	22100 -13675	32300 -10558 -24435	36606 5553 -30992	36300 -7825 -40818	47800 4442 -36375	47800 4442 -31932	52900 9542 -1229)	74200 30642 8452	64400 21942 29495	118500 75142 104638
医周围	5701 5680	50 51 51	-24 565 4	3460 3675 9008	9500 9476 18435	4900 4676 23362	2600 2576 2575	1600 1576 27514	16152 16152 1700	1860 1826 31328
Na 46809 49200	31050 -14530	-17170 -2550 52460	59200 4210 -12960	58200 -300 -13260	•7290 12219 -1050	59500 4510 3460	63500 8510 11973	59800 4810 16750	53400 -1590 15170	53300 -1.690 13500
ξ'nν	20600 20795	6119 6104 26899	56893 - ę	4200 4194 31087	3303 3794 34881	3300 3294 36175	2000 1994 40170	960 954 41124	500 454 41618	560 554 42172
Mg 350 263	69 181	150 -305 -208	150 -208 -517	250 -238 -754	260 -158 -752	180 -278 -1231	-238 -1469	200 -253 -1727	300 -155 -1866	260 -178 -2064
じれな	4570 4501	4600 4517 9017	4000 3917 12934	2730 2641 15575	2790 2707 18262	2260 2177 20458	2400 2317 22775	2200 2117 24291	1600 1517 26408	2160 2017 28425
5 5 2	29770 59770	19600 19538 79376	20100 20685 99467	21600 21568 121054	97300 97785 218842	52700 52658 271531	24100 24588 295619	11600 11563 507207	10600 10538 317796	11800 11723 329534
Ca 4106 7150	2480 -:518	2550 -2268 -3785	3200 -1616 -5402	4000 -1125 -6528	3600 -1218 -7745	5790 -1118 -3802	4100 -716 -9560	3800 -1019 -10598	3400 -1418 -12015	3000 -1613 -13632
e 176 181	1830 1620	1070 870 2534	350 650 3185	840 628 3812	1030 830 4642	980 780 5423	1230 1025 5453	1306 7553	1370 1170 8724	1090 390 9614
4: 710 240	950 253	1300 466 724	1100 266 969	1106 212 1262	1603 766 1968	2000 1166 3135	2209 1366 4479	2060 11 <i>65</i> 5665	2400 1556 7230	1200 366 7596
E-J13 E-J13										
	* 526*0	1.175	1.175	1.250 **	1.175	1.175	1.175	1.175	1.175	1.175
	19.05	25.46	14.12	21.00	16.42	20.50	21.67	20.01	24.04	11.58
	TF-115	1F-12	1F-142	TF-157	TF-168	TF-211	TF-228	TF-242	TF-259	TF-275
	5° CL	6.5	6.5 19.5	6.5 26	6.5 32.5	6.5 39	45.5 5.5	6.5 52	6. T 59. T	6. 5 65
	F111-22	33	Žĩ.	Zá	е М	25	2ġ	Σħ	21	5

.

111

,

	00	00		-7506 -7500	-5750	21600 11056 -2200	14800 3300 1100	7900 950 2050	630 13647 7547 9597
Ð	615 611 4580	254 256 4830	567 561 5392	392 396 5782	193 192 5974	1175 1173 7147	647 645 7791	637 636 8427	38 787 786 9213
SI	86600 43242 147880	≈0900 47542 195422	64800 5465 200288	58100 6800 207688	24800 -14530 193158	37000 14330 207488	680ŭ0 -10660 196828	44200 -3338 193490	3630 75177 37 55 7 231047
H	3000 2976 34004	806 775 34760	1360 1257 36038	-3008 36008	2160 2077 36084	1,200 1,577 1,700	2000 1954 41696	3890 3772 45452	36 745 724 46171
Na	71 500 16310 29810	13000 -41950 -12169	65200 -35320 -47500	61306 -12500 -60000	44460 -12130 -72130	176000 70220 -1960	955J0 -17660 -19620	68400 12 -17605	5220 119177 53857 36449
ų	500 494 42666	1600 1594 44260	870 855 45113	1600 1592 46712	506 494 47206	400 38? 47595	160 165 47764	340 355 48097	24 497 492 492 492
ġ	260 -195 -2262	180 -273 -2546	260 -578 -3119	190 -204 -5323	160 -142 -3466	250 -335 -3801	80 -525 -4325	340 25 4352	10 207 -82 -4424
	2700 2617 31041	1460 1377 32418	2250 2057 34515	1950 1872 36357	1400 1340 37727	5500 5386 4 3116	3400 3280 46396	2400 2328 48724	120 120 120 120 120
Fe	16100 16085 345672	45700 4558 391360	14300 14275 405639	28200 28185 453624	10300 10288 4441:2	13500 13478 457591	3900 3877 461466	9100 9026 470554	240 4973 4959 475513
ؾ	3009 -1818 -15650	2000 - 2818 - 16468	3300 -5515 -23982	2300 -8425 -3240ē	2300 -5522 -38330	6300 -9072 -47402	5200 -11245 -58648	360) -6338 -64986	270 55°2 - 2273 - 67259
ß	1825 1625 11239	69611 082 085	1400 1054 13964	330 83 13052	600 415 13507	2900 2454 15961	15571 1557 17551	1900 1676 1527	110 2278 2101 21328
Y	1000 106 7762	2005 3011 8928	1100 -425 8501	1100 740 9241	1200 924 10165	1600 1084 11249	1600 1048 12277	200 1666 13964	160 2671 1607 1577
H20 Added	1.175	1.:75	2.150	1.503 ***	1.150 ***	2.155	2.300		* *• 001.1
Solution Volume	9.87	20.30	10.55	11.15	11.58	15.71	1 6.30	20.12 D	20.71
4 1	TF-293	TF-322	TF-346	TF-394	TF-425	1÷-454	ŢF-487	5511	18-521
Time Ferlod	6.5	6.5 78	13.0 91	13.0 104	13.0	13.0 130	9-4- 1-4-	12.0 156	13.0 165
Test #	X	17	jë,	Ъл Сл	8	Ð,	Ъ.	iti	2

termane da.

		-1.	C-4 1 F0	n.		
м	9400 2850 12447		5600 -1775 12772	22590 11750 24722	15250 4500 29222	18600 -1900 27522
D	712 711 9924	500 # 756 10722	726 724 11646	1414 1412 1555	1591 1589 14647	2975 2971 17616
SI	25200 -15002 215445	42000 -15404 202341	31300 -39665 162375	68700 -4630 157546	57300 -14230 143315	73800
ĨN	524 974	3300 3268 52453	1400 1355 51791	2630 2587 54378	2390 2347 56725	1220 1135 57553
Na	68700 4246 40057	75300 15576 56293	62000 -40050 16203	144600 35820 55023	167300 1520 56543	15559 -66178 -7627
μu μu	150 153 48772	1306 1272 50064	570 360 50423	4 <u>20</u> 469 50893	650 639 51532	1660 1060 52591
ů.		310 -116 -4714	246 -306 -5026	270 -295 -5316	380 -125 -5501	209 -869 -6370
11	2500 2532 54719	3300 5216 5735	2360 2192 60127	5000 4885 65015	3850 3738 68753	6095 5877 74630
Fe	5800 5787 481300	18800 18784 500084	9406 9379 - 509463	6100 6078 515542	10746 10718 526260	5312 <i>69</i> 5312 <i>69</i>
ؾ	2200 -7166 -74426	3309 -5223 -52707	2500 -12336 -95045	4600 -10772 -105818	5570 -9602 -115620	4000 -25315 -140935
þ	1800 1367 22717	2300 2059 24756	1600 1266 26022	3400 3054 29076	3710 3364 32440	4520 3860 36300
ΥI	1910 1586 1735e	2200 1811 19167	2500 2602 21169	2100 1564 22753	1460 944 23697	1740 756 24455
	•	•				
H20 Added		1.620 **	2.075	5.15	2.15	4.1
Solution Volume	17. W	22.11	24,52	21.01	13.26	17.4
H	15-626 1-626	1F-689	TF-754	TF-772	TF-831	TF-269
Time Ferlod		13.5	12.5 208	13 221	13 234	26 250
## 121	1. 1.	2u	Ę.	ζ	Ζx	54

-

,

11 10 1

•	1 ITTE	Ħ	Solution	HZI		-										
# 15e	7 EF 1 OC	, 2002	Voiume	Àdded	ā	ß	Ca	T.	3	Ъğ	ĥ	Na	Ni	Si	ŋ	:z:
				E-113 E-113	012 64	12 1	6100 7150	10	71	370	ແກຍ	46800	50	36900	4 7 -	
PIV-1a	9	TF-154	21.00	1.475	7100	16600	4400	00572 27506	7500	53 SF	c 12801	47.200 136700	77	34200 140100	4850	2000
					6853	16349	-1648	27365	55822	370	12793	67870	R-	85672	4845	Û
11	1 1 1 1 1 1	TF-199	17.19	1.4375	3400	13406	3400	32100	14800	530	2400	117400	5200	104900	5947	
	5				2379	15156	-2494	32066	14093	F	2393	50125	5171	51856	5942	6
		٠.			8452	25505	7 7	12565	37073	339	15185	965211	5142	137529	10787	Ð
4	13.5	TF-239	18.70	1.5125	3800	12100	3400	10200	13800	350	500	115290	1500	95300	2300	
	ŝ				2726	11843	1082-	10155	13673	16 <u>1</u>	452	45415	1470	39489	5295	ŋ
					11158	41343	-6542	70156	50786	<u>401</u>	15678	163410	6612	177015	16061	ŋ
	13	TF-270	21.57	1.475	4600	15800	5300	11060	16400	640	1000	135306	2300	117000	5954	
	2				3553	15:45	-748	10585	16275	53 19	593 .	60279	2270	62572	5545	-
					14711	26992	0692-	Ei 141	13029	174	16670	225660	2993	237590	22030	0
	13	TF-314	18.49	1.475	3000	17500	0062	18700	18500	0es	3200	125200	1800	117600	5140	
	ιg				1953	17549	-2148	16685	56781	-242	5193	56170	1770	63172	5135	0
					1 6664	74445	-9538	55826	85876	12-	1 9863	265850	10652	302762	27165	ر ت
1	10 10	TF-347	16.35	1.6675	6300	34100	4300	14300	33400	359	800	199500	2805	244200	8332	
	5. 別				5116	33817	-2537	14783	33282	-300	2:52	121461	27.67	182669	8826	0
					21790	108263	-12374	114610	119158	-372	20,655	407311	614E1	485432	33991	3
11	5.9	162-31	15.4!	1.2875	1600	17990	2006	10500	00901	758	120	105500	15001	76400	<i>126</i> 2	
	1				89 89	16781	2621	19487	10509	246	1174	45345	1474	14832	22.62	co
					7700	HOC I	20/4-	125057	127667	-124	21648	452656	14893	514323	38913	3
.'.	Щ.	TF-420	13.52	1.475	OCZE	17669	4300	9200	18600	5 <u>7</u> 3	300	136600	1500	119000	4813	
	104				2846	17363	-6246	9165	18723	-115	293	02049	1470	68555	4812	-7375
					Z122	142406	-15999	134282	146390	-242	22141	516536	16364	582878	43725	-7375
	3.5	TF-445	14.54	1.3125	2900	16300	4500	3600	20500	Z60	170	143290	400	129800	6219	16600
	117.5			•	2537	18056	-6314	3565	20421	921- 1	162	68785	376	78072	22.13	3033
					26049	160463	-22314	137867	118891	612- -	22323	555471	16734	056039	45902	-4335
	ю Т,	1F-484	15.56	1.5375	20390	53806	7009	6069	65300	180	989	342700	780	467530	17927	16500
	131				20519	53544	-4351	1992	65217	-238	573	262575	748	413508	52871	10.53
					48568	214067	-26664	145351	234029	-617	22955	950353	17462	1074458	82329	111

	<u>ي</u> د	5696	9200 2575 7100	416 8266 831 7951	10101 2725 10716	6600 -775 5741	7300 1925 11366	7300 -75 11771	12500 5125 16514	2921 1927- 1962
	ŋ	₹†' म्ल	10716 10715 76542	471 9475 9474 58036	7313 7315 3555	4474 4473 95820	5501 5520 105320	2563 2562 107831	1022 1021	1160 1075 107999
	55	34590	262600 217285 1271745	1440 295394 223357	2012200 149755 1681357	107700 57255 1738612	142900 92455 1831067	78200 27755 1858322	55760 5255 1664077	76050 -7740 1856357
	N	2 2	1500 1474 18755	81 1653 1663 20559	1000 970 21529	1400 1376 22906	2800 2770 25679	1806 1770 27441	2006 1970 29411	720 671 30062
	Ńa	1024F	185200 123010 971076	10100 293616 131065 1102122	153300 115730 11217852	116050 45450 1263252	144100 71530 1534812	51100 8556 1343542	46000 -26570 131 <i>6772</i>	2057821 17252- 07252-
	Æ	ഗഗ	1100 1093 24039	2511 149 1252 1252	700 5523 5523	300 253 2621 ô	1500 1453 27708	1400 1373 29101	600 573 29674	516 495 30191
	Ċ.	390 243	1506 1452 825	28 335 137 1931	300 -88 543	390 2 945	550 262 1148	540 152 1300	300 -582 -1212	490 -244 967
	5		38000 37931 271940	1710 35506 35429 310269	27706 27623 338012	14900 14823 352855	20700 20623 373657	7200 7123 380762	1723 1723 382505	5150 5023 387283
	ů.	91 91	900 9057 155538	470 9475 5450 164595	4400 4395 167383	5000 4585 174369	9903 9855 184254	8790 2555 193129	8503 52325 202024	583 5856 207580
	C3	4100 7150	11.600 2126 -24538	250 54 55 51 555 51 55 51 51 55 51 51 51 51 51 51 51 51 51 51 51 51 5	34 <u>0</u> 0 -7145 -37150	5600 -4746 -42137	6300 -4246 -46353	600 -4546 -59?29	5300 -5245 -56176	6250 -11268 -67443
	ш Ш	1 / 1 1 / 1	48700 48457 262454	1760 35462 35244 35244 297733	2300 22765 32501	10700 10463 230963	15400 15163 348126	8900 8663 354789	2600 2365 357151	2570 2176 357326
	T.	710	11300 11432 60050	540 15286 10532 79532	5200 4646 75428	2300 1946 77274	4500 4146 81520	2300 1946 83466	4200 3846 67312	1600 1212 88524
EH EH	Added	E-113	1.325	1.475	1.475	1.475	1.475	1.475		5, 1, 1 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Solution	Veiume		15.74	20.16	19.82	19.37	19°30	19.27	82. 61	67 63
Ħ	2 9 93		TF-523	TF-555	ŢF-63έ	TF-670	TF-735	TF-758	15-301	TF-855
Tine	Feriod		11	EI	13	132	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13 208	51 221	26
	Test #		¥	-	e H	1n	10	1 E	19	1

an bha

Harris - Harris

ak fri min ddhin dar ddi ...≝..

115

.

K 5000	5700 -725 -5700	540 10471 3096 -2804	10906 3525 721	14100 6725 7446	6000 625 6071	7600 425 8476	12800 5425 13?21	7630 -4220 3301
मा स्व ====	3287 3286 40222	245 6651 6649 6649 44572	5585 5584 57455	8528 8527 60982	2801 2800 63781	966 955 64746	666 665 653	576 594 66004
Si 34900 34200	102400 57085 450728	9280 179935 129454 586222	146800 96355 676577	20268468 002627591	72400 21 <i>95</i> 5 861787	74300 238 35 385642	40400 -10045 87 55 57	59400 -24250 851207
29 N	2200 2174 20126	45 950 921 946	011 0701 72125	16787 1670 1700	1300 1270 25058	1300 1270 26328	1306 1270 27599	1 <i>675</i> 1 <i>626</i> 27255
Na 45600 49200	103700 38510 428910	9010 174704 102134 531044	141200 68630 577674	187200 114630 714304	107196 34530 746834	66100 -6470 742364	47 <i>6</i> 00 -24570 717594	70940 -49600 667794
ىرى T	550 545 27,639	21 407 406 28039	320 313 25351	800 793 29144	320 313 29457	760 753 30207	400 573 30602	540 528 31130
Ha 351 263	1600 1252 422	16 310 344	260 -128 216	500 328 328	1000 612 940	440 52 992	270 -113 874	459 - 194 685
22 22 2	1240) 1221 12180		12:33	26790 23623 272591	9259 9723 213115	5998 5928 5928		한 명 전 더 진 더 더
Fe 16	16200 16187 261238	24i 4654 4659 265877	4700 4685 270562	6900 6585 277447	13800 13765 291232	7200 7185 29418	7500 7485 305903	873) 8725 314625
Ca 4100 7150	9000 -474 -31368	280 5429 -5117 -36485	5300 -5246 -41731	6500 -4046 -45777	6800 -3746 -49523	5800 -4746 -54270	5150 -5446 -5716	5960 -11558 -71275
8 171) 161	8600 8387 119735	520 19765 13765	16490 16163 154662	22100 21863 176525	7600 7363 13587	4600 4363 188250	2130 1893 190142	555061 762 0511
Al 710 240	2001 1652 1652	250 1845 4454 20217	3000 2645 25353	7600 7246 30809	2006 1646 32455	2006 1646 34161	26975 3896 1250	1640 1272 25265
H20 Idded E-J13 E-J13	1.355	5 1 1	1.475	1.475	1.475	1.475	57 4 .1	\$ 7
Solution Volume A	19.57	8. 1		19,08	20.01	19.92	14.13	16.62
#	TF-524	TF-556	TF-641	172-37	1F-736	1F-759	TF-302	TF-856
Time Period	11 45	126	15 169	13	131	13 208	S IS	26 247
Test #	<u>हे</u>	21	P ,	Ъ,	20	₿,	2	Zr

1990 1

,

:

-

Test #	Time Period	# #	Solution Volume	H26 Added	IJ	ŝ	C3	<u>م</u> ، ب		о Х	Å	Na	ž	Si	
PIV-3	25.5	TF-201	18.99	E-J13 1.57	710 7600 6471.1	170 19800 19529.7	4100 9700 3131	10 46100 46084.1	71 30200 30067.11	390 1560 879.9 1	5 25100 250?2.05	46800 205100 130688	20 4500 4858.2	36900 163100 104429 77	, 7748 42.335
P11-4	26.5	TF-202	15.3	1.51	9300 8227.9	16800 16543.3	8570 2379	629fin E	75800 26692.79	1700	20309 20792.45	165100 114432	6900 6663.8	155800 190081 74	7435 29.62
5-AI4	25	TF-272	24.66	2.72	12809 10848.6	42200 41737.6	13300 2148	3972.8 39672.8	50160 49904.88	1700	12036.4	372400 245104	4260 4245.6	350200 247632 15	15190 180.31
è-vid	52	TF-273	23.36	2.85	9300 7274.5	24400 23915.5	14100 2415 1	101060 00971.5	40200 3997.65	3400 2288.5 4	46200 16185.75	370200 236820	10300 10243	27290 27290	7359

5 -1	888	<u>ن</u>	00	00	00	-4000	-7250	-3250	15200 10825 325	7100 4600 4925	
I	4, ***	85	81 R	87 E 18	53 165 51	45 44 149	<u>3</u> 3 23 25	230 230 230	281 280 510	138 138 648	19 18 666
Si	36900 34200	79600 50020	123800 102582 152662	34300 7548 160210	20500 -3485 156725	22100 -5260 151465	7500 -14730 136735	11500 -10730 126005	69600 39675 165680	11300 -5800 159880	7700 -14530 145350
ie Sei	ର ର	3010 3284	3200 3288 6572	5900 5886 12458	850 850 850	-16 13279	-13	380 367 13633	1100 1082 14716	1400 1390 16106	770 757 16862
Na	46800	-20640	10 ⁴⁰ 0 -16610 -37150	15800 -18130 -55280	14300 -16120 -71500	29300 -10060 -81560	14100 -17880 -99440	17900 -14080 -113520	140100 97050 -16470	19800 -4800 -21270	-20380 -41650
ų,	ഗ ഗ	5655 2660	1130 7093 7093	8000 7996 15090	300 297 15386	600 596 15982	450 447 16429	140 137 16566	150 146 16711	230 230 16939	190 187 17126
5,	65 55	330 18	230 6 24	15 15 15 15 15	160 12-25 189	250 40	216 216	140 -31 185	51 129 151	230 22 4 22	210 39 255
:::	12 23	660 603	400 359 962	350 299 1261	600 554 1815	2600 2558 4373	820 786 5159	1400 1366 6526	14700 14654 21180	2000 1974 23154	190 156 23310
نه سا	01 01	5-5000 53592	26600 255°4 120586	43800 43793 164579	7400 7394 171772	18000 17992 189764	10100 10094 199858	5700 5694 205552	4000 3991 209543	3100 3095 212638	3900 3894 216531
Ca Ca	4100 7150	3540 260	1700 -658 -398	-670 -272 -	1400 -1265 -1935	-3120 -5055	1900 -2748 -7802	2300 -2348 -10150	3800 -2456 -12606	2800 -775 -13381	2500 -2148 -15529
æ	170 161	660 524	1000 902 1426	910 787 2213	630 540 2752	400 271 3024	280 175 3199	380 275 3474	830 689 4164	420 4503	580 475 4978
IF	710 240	2200 1632	2000 1592 3224	1400 885 4109	2200 1738	1300 1108 1108	900 744 7700	1200 1044 8744	1700 1490 10234	1400 1280 11514	1900 1744 13221
cn EZO Added	E-J13	0.8000	<u>رد، د.</u>	0.7250	0.6500	0.800	0.5500	0.£00	0.8/20	0.5000	0.6500
Scluti Voluze		22.12	20.60	27.51	22.29	13.07	9.38	12.69	16.72	14.12	19.23
[1] #1		TF-225	TF-233	IF-282	TF-323	IF-355	TF-403	TF-426	TF-455	TF-498	TF-532
larind		15.5	10.5 26	13.5 39.5	12.5 52	16.0 68	12.0 80	12.0 92	18 110	7.5 117.5	12.5
41 41 1 1 1 1	tor + +	2V-1a	.	5	Id	e, T	#	0.	म	***1	

Щ,

5000	300 5769 2332 9806	9400 5962 15769	1913 1913 1913 1913 1913 1913 1913 1913	5300 2982 2005	9975 9975 3086º	3456 200 3105°	
0 1 4	3 8 8 7	88 8 <u>6</u>	132 151 96	% 1000	569 1569 1569		1145 2970 2970
Si 36900 34200	270 5192 -18320 127030	25600 2088 129117	7800 -15712 113405	15100 -8412 104992	56400 31605 136597	-3030 -3030	12951 15653
8 8 N	53 1019 17868	360 346 18214	536 536 536	1100 1086 19887	23 23 23 23 23 23 23 23 23 23 23 23 23 2		1080 1056 22386
Na 46800 49200	720 13846 19591	61900 28075 -33354	-24670 -21125 -21126	2310C -10725	9000 54331 -11072	25700 -17554	86859 29940 11686
ស ស ឌ	9 171 17295	28651 199	300 297 17678	190 187 17865	18 255 12181	國日間	29. 19686
11 390 263	21 JI B EE	180 -1 312	351 351	216 28 29		82 55 5 1	51- 521- 555
83 73 11	27 57 585 586 586 586 586 586 586 586 586 586	4300 4264 27962	1000 964 28°25	1400 1364 11364	5380 5762 36555	1400 1366 37419	665) 44008
Fe 10 10	250 4808 4801 221332	2200 2173 223525	6400 6593 229918	4400 4393 234311	F0.622	3990 3894 245578	6203 6188 249786
Ca 4100 7150	150 2884 -2031 -17560	2500 -2416 -19976	16622- 9106- 0061	2300 -2616 -25607	2900 -2284 -27896	2800 -1848 -29738	3715 -4686 -34424
B 170 161	30 577 565 5445	680 5934 5934	21 51 51 51 51 51 51 51 51 51 51 51 51 51	630 519 6913	1800 1583 85:6	939 855 121	2475 2285 11701
AI 710 240	100 1923 1923 15015	180 1655 1655	1% 25 16676	210 45 16720	200 26	930 774 11220	1550 1268 18788
on E20 Added E-J13	0.5875	<u>c/89</u> .0	0.66/5	0.68 <i>7</i> 0	0.7250	0.650)	1:130
Soluti Volume	19.23	18.06	18.96	10.12	20.00	8	89 101
2 **	TF-582	TF-642	<u>IF-69</u>	TE-737	ET-173	11-832	正-870
Tii Period	13.0 143	13.J 156	13.0 169	13.0 182	14.0 196	12 208	23
Test # I	ц		E		0 •1	Q ₁	01 114

1 2000 1	0.0	99	(.)	5		12 12 13 13 13	影员
다. 19 - 44	动动物	33 11 8	63	23-16 28-38		8	245
SI 36900 34200 93830	135600 114382 208262	40400 15031 223294	285730 249722	613500 541545	4790 373945	787500 638055	1959611 196621
23 22 23 28 19	515 515 515	4300 4266 10459	5100 5180	856 6461	881 121 121	3700 3619	31.83 3088
Na 49200 11250 -23945	10800 -16110 -40050	85100 5252 12775	80.400 34770	169500 78240	151300	215300 25760	36000 134661
6.62 an m 6.63 an m	101 101 101	3500 3497 10392	7400	7705	7600 17551	2001 2001 2001	5220
rg 255 255 255 255 255 255 255 255 255 25	210 11 4	8 5 K	-00 250	1150 340	1000 240	667 -	55 199 199
រុះ សូ សូ ។ រុះ	68 \$j 89	12900 12851 13914	14800 14731	23-62 28-62	26200 26662	23600 23600	11881 35612
Ee 10 10:760 10:692	996211 112966	36300 36293 145279	137966	119200 119080	101280 101280	71600	70000 69554
년 4100 4900 1620	-150 -178 -178	3200 381 1244	6000 4002	13700 5072	552 6028	5300 -11305	7540 7522-
151 151 152 154	1526 1102 1526	1730 1613 3239	4294	10300 1000	7468	5400 4712	2020 B143
10 249 229 2200 249 249 249 249	5255 1892	1900 1412 4936	2201 1508	4800 3416	5600 4216	1700 1770	575 3956
9.856 1	0.578	ũ.5875	0.9750	1. 1	1.9500	4.0500	4.5800
2.15 2.15	23.55	16.36	22.32	20.18	21.64	17.30	16.75+
977-11	TE-254	TF- 283	TE-255	F-357	52E-11	IE-456	TF-883
in W	10.5 26	13.5 39.5	56	53	53	110	iii
27-23	A	50	0-1+0	7-1d	ហ្វ ខ្មែរ	۲ EL	2-Aď

co co

÷

	Test #			VIII-1a		41			먹			1d				,							ti ti			4			
工業	Period			13		13	闿		ព	出		5	ដ	l		5	5			ព	ß		2.01	17 17		5.51	Ţ		
臣	444			11-318		다 다 다 다			11-368							17-451				臣臣			11-11 11-11			品世			
Sciution	Volume			民 村		비			12.16			14.17				13.72				11.13			15.61			13. ET			
臣	Added	日山	512-3	2.150		2.15			2.150			2.150				2.150				Z.450			1.78			51 <u>7</u> 15			
	行	710	0+C	国家	67 4	1990		1047	0421	민만	12	1400	:19 17			(14)) (14)	is	22,51			101	家習	150		<u>153</u>	100	1551	550	
	124	9V1	161	憲問	방전	1500	苦日	1903	360	·f'	商	5	藍			<u>β</u>	14	260t		Ē	176	13:14	(¥)	Ģ		部	13	ĕ	515
	Ľ,	4160	131Z	(N)	-4615	3700	-5115	南方	2200	-615	-16345	31(6)	2112-	-22666		9 1 4(3)	22.601-	ZENEE-		23	-1215	-45150	N . H	1224-	-4557	13	200	12221-	01239-
	eu I-	<u>्</u> य	10	469(k)	196 .9	43700	12:14		60,9(6)	289	15,435	8100	8078	161514		6695	5.78	171052		220	5176	176268	0015		162-50	770	14471	14455	19919
	1	7	64	1609	5447	宮佑	6747	18155	(in⊆r	1717	H H H	3005	印印	25423		4706	₽ 2 1 2	FLOOP			E M	(LIE	<u>7</u> 000	1051	2012C	81 B1	LT.	E	BEE
	£	ß	597 597	420	811-	270	習行	[i	(9) (9)	ц,	-1506	0/Z	10	1212-		410	肾	627-		210	時	-174	3	副	19 19	11	5	Ę	-710
	£	ከካ	(r)		肉	909E	商門	光路	2600	阁	11466	5.0	5	13621		4 50	191	12476	İ	22	冏	1221	阁	111	1401	돠	(<u>15</u>	Ë	19971
	æ	1909	497.00	Jose V	<u>-7470</u>	107210	6160		90.190	回名十	-1112	1010		協調		141300		-101-j		111440	91 1 9	同時で	667.99	ie F	-19776	0110 0110		-1235)	1919
	Ĩ,	2	Ē	3		101-58	68	1715		4	1/0/1		4	<u> 지</u> 지		[(2)]	15	8日			1451	记法	<u>000</u> 2	1351	1409 1	100	E	स्रि	的门
	ŝ	1995) 1995	(9)27E	(1) 1 1	19146-	(4)5E01	24545	077#1-			-51102	(U)ES	-25735	1111	•	7100	915E	<u>ollei</u> -		6600	-1575	(9 <u>5</u> 68-	24700	91.5-		949 1	の問題	-13736	711261-
	1	n t"	•4	465	4	8	志	涩	R	焰	E.	8		H		ß	iß	553		Ki	6	H	11	四	말	(**1	if1	35	E
	Sec)		害用		9		÷	0		0	Ċ		0	Q		ř.	R		į	R C	ß	(Ke)ET	10401	Ē		69		167	

. 122

<u>क</u> 141 मि		1991 1911 1911	墨西日			
44 + +++	ងមព្រ	8 8 5	日日日	타 타 법	55 (Å <mark>6</mark> 5	េ មេ ម្ន
and Base Base		4725 -26235 -125251-	1912) - 1913)	57년 - 156년 - 166년	27887 (2789 (2789)	19500- 66511- 679211
ा ह च	946) 1115 1115	副目目	6155 6155	南阿貴	周期	
Na 4650) 4720)	1415(1) 2622) 25 44	12452 -23380 -2434	1758) 1872- 1886)	110400 450 -43696	107780 -5369 -43076	
ur ur Æ	语言	2001 2001 2001		6년 7년9 1641	高厚的	雪岛南
년 13년 19년	四時	195- 195- 195-	3 FF	23 1917年 1917年	522 515- 516-	
	17년 18년 19년 19년	166) 1668 42645	1500 1665 44.353	2706 2562 46941	고(6) 19원 48722	日日日
E 50	4136 4127 41378	9400 9278 9278	57610 57725 312055	20705 20175 20175	7260 727 340186	40080 40040 380221
Ca 4100 7150	45(6) 45(6) 41072 -11272	3430 -11572 -11572	260 -15112 100367	91511- 57521- 57521-	3630 -10815 108455	5795 115020 115020
	高起 爵	88 10 10 10 10 10 10 10 10 10 10 10 10 10	55 21 21 21	· 图 [1]	12 12 13 13	6 H 5
ंस्ट 19		2000 1454 1572	1900 1384 7965	2012 1451 1451	5651 951	
ee fer T T T T T T T T	2.150	2.150	2.150	2.15	2.S	цр. 19
Solution H Volume Ad	洁. 同		19 19	17.22	~~ 5~ ~~	18.50
4 La - 4884 1	17134 1		157-71	TF-755	11-127	TF-246
Time Fericd	0 2 2	13-0 130	13.0 142	2.51 1.52	14.Ú 170	19 IS
444 444 171	1 T	ena Fel	共	**1	.स -	<u>, 1</u>

	ж	2000	0	00	00	00	0581 1380 1381	1260 1260 1260	12600 3700 20770	1985 1985 1985 1985 1985 1985 1985 1985
	=	4 7	351 351	172 Jee 546	# 건 쁅	亞相亞	67 656 656	55 X 13	81 81 84	四田田
	5	34900 34200	-26435	87500 7965 -18470	9090- 92524-	-110340 -110340	97289- 07022 128270	59000 -14770 -103360	65300 4424 -98636	1720 31442 24659 -14658
	NI.	ୟ ୟ	1995 1995	15400 15257 18314	-43 16771	-43 18725		0092 1922	2005 1964 24100	25 55 51 52 52 52
	Na	46900 49200	2022 1420	55410 -52640 -33640	10501 10502 1021-	10800 11680 11680	186200 82420 -33960	112500 -7640 -41660	96200 6624 -32976	2940 53743 53743 -53763 -58765
	Å.	n ui	1500 1455	650) 6487 5778	- 89011 5801 0011	580 767 12057	570 955 11274	840 825 13224	1951 1971	EE 609 572 14401
	£	35 593	影響	1700 262 313	15 -688 -116-	270 -565 -584	430 -135 -1919	-1404 -1404	280 -1552 -1572	10 163 -402 -1934
	:1	F [3	1911 1912	5700 5547 13055	270 711 13212	3500 3147 16339	5200 5068 21448	2600 2473 25720	1700 1607 25528	45 856 760 26306
	å.	10	13600 135-6	(1946) 1772 1772	22400 22276 115336	55 00 5478 124814	6578 131372	6800 8776 140168	7600 7582 147750	790 1441 14419 142167
	E	4100	3100	6500 -1915 -7430	1500 -7315 -14545	3100 -5715 -20660	4500 -10872 -31532	5300 -12218 -43750	-50871 -7127 -50877	160 2925 -12984 -63861
	una)	171 161	2706 2024	2010 1634 3769	864 15 15 15 15 15 15 15 15 15 15 15 15 15	775 410 4413	720 374 4767	690 476 5292	609 313 5576	36 543 159 5736
	AI	716 240	2300 474	<u>s</u> er e		14:0 -126 494	5084 5084 5578	1800 1212 6750	2000 1573 8363	001 1521 1525
12H	Added	E-J13 E-J13	2.15	2.15		515	51 'Z	2*2	1.75	2.25
Solution	Vol une		Q.3	15.23	13.40	13.60	14.37	17.51	20°04	16.2F
H ،	a) și		IF-319	11-343	海上	TF-422	164-411	05t-31	925-31	
11月	Feriod		13	51 28	11 K	의 <u>명</u>	13 53	51 B	10.5 90.5	13.5 104
•	lest #		E-IIIV3	r¶.]	Li Li	R	a	전	ġ	ι π ί

K 5000	170 <i>66</i> 6250 21692	8600 -2150 19542	1400) 3250 22792	17000 6250 29042	40530 29030 58072
₩ ↔`	774	20	403	25	1155
	772	18	401	25	1155
	1502	1520	1920	15451	2097
51	e3760	34800	73000	53300	1445(h)
36900	-5170	-38730	4470	-20230	65840
34200	-128119	-166349	-162379	-182469	-116769
Ni	1600	3200	600	5700	2940
20	1757	3157	5357	5657	2574
20	26837	29494	35951	41608	2574
Na	118900	66500	101600	134600	280000
46800	13120	-39180	-4160	28520	166840
49200	-75583	-114763	-118943	-90123	76717
ى دى ت	300 287 14696	1200 1189 15886 -	1200 1189 17075	1600 1589 18664	1760 1748 20413
Mg	200	230	220	220	740
350	-365	-335	-345	-345	135
260	-2360	-2655	-345	-3386	-3251
L1 22	2300 2186 28496	1000 888 29364	1600 1688 31072	1800 1688 32760	5680 5560 38221
Fe	7600	25000	52800	18400	18600
10	9578	24578	52778	18375	18577
10	171746	196726	245505	267883	286460
Са	3000	2800	2900	2900	19200
4100	27272	-12572	-12472	-12472	2755
7150	-76233	-88806	101278	-113751	-110956
ة	540	700	670	660	2550
170	294	354	324	314	2180
161	6080	6434	6758 -	7071	5251
Al	1900	2300	2200	2200	4100
710	1384	1784	1684	1684	3545
240	11041	12825	14509	16193	19741
H20 Added E-313 E-313	2.150	2.15)	2.150	2.15	
Solution Volume	18.35	23.19	22.23	21.85	19.58
<u>↓∟</u> ■■	TF-635	TF-667	TF-732	TE-770	TF-826
Time	11.0	13.0	13.0	61	14
Feriod		130	143	57	170
Test a	Zi	21	ह्य	ΙZ	周

•

ж	5000	0	Ō	0	Ũ	65000 00 *	75406 2600+	40840 -8660 -11260	15075 -675 -11535
۲ ۱	P +4	1101 1073	1105 1070	584 962	13766 13738	17120 17084 6	18200 18164 -:	17256 17246 35411	2525 2521 37732
Si	34200	72000 -7335	220300 69010	15600 -67245	396600 101400	751100	966100 411520	651410 312850 724550	131460 -3630 720720
Ni 26	ጸ	2800	13200 13118	121-	-160	1300 968	2200	2010 1812 3700	5800 5721 9421
Na 4680ù	49200	118900 18260	29100 -162880	323200 40060	520700 146300	BBE400 139600	1110000 361200	750640 253560 624760	211310 16770 641730
ت تع	സ	1300 1269	4700 4650	6400 6370	5700 5660	991 1992	4 100 4022	5110 5110 5132	1600 1530 10713
Hg TST:	Z63	450 - 33路	997- 199	-1550 -1550	845 -2275	500 -4573	1500 -3593	546 -2058 -5651	300 -739 -6350
Li 1	23	11600 11647	25200 24909	23900 23470	54800 54232	70000 69041	128500 127541	94330 93815 221356	14590 14385 235740
Fe 10	10	7700 9678	117700) 117659	8600 8540	39700 39620	5200 5044	24400 24244	23580 23481 47725	26370 26330 74056
Ca 4100	7150	4300 -4515	7700 -7110	15500 -9305	-15900 -15900	-55150	869) -79150	10070 -60715 -135865	4300 -23942 -163808
Ē	161	2700 2334	6700 6700	7400	34800 33440	46600 14015	77200 74615	75200 75606 148224	626) 7594 153818
A1 710	240	2100	2600	3(vi) -1296	6700 1620	4500 -2510	17900 10450	13370 10554 21484	1870 922 22406
H20 Added F-113	E-113	2.15	4.10	6.05	6.00	15.60	15.60	9.90	.ਹ.,95 ਹ
Solution Volume		21.42	16.23	14.05	13.63	25.90	25.91	14.38	18.70
H *		TF-320	TF-344	TF-370	1F-423	16-572	TF-576	FF-523	TF_367
Time Feriod		EI	23	8	ដ	104	104	66 170	52 133
Test 💈		E-IIIv	\$-111ve	PVIII-5	9-III√	7-111V9	FVIII-8	មើ	ц ш

-

Distribution for ANL-91/36

Internal:

A. Anderson J. K. Bates (25) J. E. Battles

- J. C. Cunnane
- T. J. Gerding
- J. E. Harmon

External:

Ξ

ź

and the but to a second second

J. E. Helt M. J. Steindler ANL Patent Dept. ANL Contract File TIS Files (3)

DOE-OSTI (2) **ANL Library** Manager, Chicago Operations Office, DOE A. Bindokas, DOE-CH J. Haugen, DOE-CH Chemical Technology Division Review Committee Members: S. Baron, Brookhaven National Laboratory, Upton, NY N. Jarrett, Noel Jarrett Associates, Lower Burrell, PA L. Newman, Brookhaven National Laboratory, Upton, NY J. Stringer, Electric Power Research Institute, Palo Alto, CA J. B. Wagner, Arizona State University, Tempe, AZ R. G. Wymer, Oak Ridge National Laboratory, Oak Ridge, TN E. B. Yeager, Case Western Reserve University, Cleveland, OH C. R. Allen, Nuclear Waste Technical Review Board, Pasadena, CA J. Allison, USDOE, Environmental Restoration & Waste Management, Germantown, MD E. Anderson, Mountain West Research-Southwest, Inc., Phoenix, AZ D. H. Appel, U.S. Geological Survey, Denver, CO Associate Director, USDOE, Storage and Transportation, OCRWM, Washington, DC Associate Director, USDOE, Contract Business Management, OCRWM, Washington, DC Aa. Barkatt, Catholic University of America, Vitreous State Laboratory, Washington, DC J. W. Bartlett, USDOE, Civilian Radioactive Waste Manage., Washington, DC S. Bates, Idaho Falls, ID D. A. Beck, U.S. Geological Survey, Las Vegas, NV C. G. Bell, Jr., University of Nevada, Las Vegas, NV A. Berusch, USDOE, Civilian Radioactive Waste Manage., Washington, DC N. E. Bibler, Westinghouse Savannah River Co., Aiken, SC E. P. Binnall, Lawrence Berkeley Laboratory, Berkeley, CA M. Blanchard, DOE Field Office, Nevada, Las Vegas, NV T. E. Blejwas, Sandia National Laboratory, Albuquerque, NM (5) J. Blink, Lawrence Livermore National Laboratory, Las Vegas, NV W. Bourcier, Lawrence Livermore National Laboratory, Livermore, CA J. C. Bresee, USDOE, Civilian Radioactive Waste Manage., Washington, DC S. J. Brocoum, USDOE, Civilian Radioactive Waste Manage., Washington, DC R. L. Bullock, Raytheon Services Nevada, Las Vegas, NV M. H. Campbell, Westinghouse Hanford Co., Richland, WA D. Campbell, U.S. Bureau of Reclamation, Denver, CO

J. E. Cantlon, Nuclear Waste Technical Review Board, East Lansing, MI M. W. Carter, Nuclear Waste Technical Review Board, Atlanta, GA K. W. Causseaux, U. S. Geological Survey, Denver, CO Center for Nuclear Waste Regulatory Analyses, San Antonio, TX K. A. Chacey, USDOE, Waste Management, Germantown, MD Chief, DOE Field Office, Nevada, U.S. Geological Survey, Las Vegas, NV P. Childress, Lynchburg, VA P. Cloke, Science Applications International Corp., Las Vegas, NV M. O. Cloninger, Yucca Mountain Project Office, Las Vegas, NV B. W. Colston, Raytheon Services Nevada, Las Vegas, NV Community Planning and Development, North Las Vegas, NV C. F. Costa, U. S. Environmental Protection Agency, Las Vegas, NV D. U. Deere, Nuclear Waste Technical Review Board, Arlington, VA Department of Comprehensive Planning, Clark County, Las Vegas, NV Director of Community Planning, Boulder City, NV J. F. Divine, U. S. Geological Survey, Reston, VA M. J. Dorsey, Reynolds Electric & Engineering Co., Inc., Las Vegas, NV (2) R. S. Dyer, Yucca Mountain Project Office, Las Vegas, NV Economic Development Department, Las Vegas, NV D. R. Elle, USDOE, DOE Field Office, Nevada, Las Vegas, NV R. C. Ewing, University of New Mexico, Albuquerque, NM E. Ezra, EG&G Energy Measurements, Inc., Las Vegas, NV R. Fish, TRW Environmental Safety Systems, Las Vegas, NV P. K. Fitzsimmons, USDOE, DOE Field Office, Nevada, Las Vegas, NV A. L. Flint, U.S. Geological Survey, Mercury, NV J. Fordham, Water Resources Center, Desert Research Institute, Reno, NV J. Foremaster, City of Caliente, Caliente, NV (5) D. Foust, TRW Environmental Safety Systems, Las Vegas, NV D. L. Fraser, Reynolds Electrical & Engineering Co., Inc., Las Vegas, NV C. P. Gertz, USDOE, Civilian Radioactive Waste Manage., Washington, DC C. P. Gertz, USDOE, DOE Field Office, Nevada, Las Vegas, NV (5) P. A. Glancy, U.S. Geological Survey, Carson City, NV V. M. Glanzman, U. S. Geological Survey, Denver, CO S. E. Gomberg, USDOE, Civilian Radioactive Waste Manage., Washington, DC J. Hale, USDOE, Civilian Radioactive Waste Manage., Washington, DC D. Harrison-Giesler, Yucca Mountain Project Office, Las Vegas, NV C. K. Hastings, Pacific Northwest Laboratories, Richland, WA T. Hay, Office of the Governor, State of Nevada, Carson City, NV L. R. Hayes, U. S. Geological Survey, Denver, CO (6) D. Hedges, Roy F. Weston, Inc., Las Vegas, NV E. J. Helley, U.S. Geological Survey, Menlo Park, CA R. J. Herbst, Los Alamos National Laboratory, Los Alamos, NM (4) C. Interrante, U. S. Nuclear Regulatory Commission, Washington, DC T. H. Isaacs, USDOE, Civilian Radioactive Waste Manage., Washington, DC R. E. Jackson, Roy F. Weston, Inc., Washington, DC C. Jantzen, Westinghouse Savannah River Co., Aiken, S' L. J. Jardine, Lawrence Livermore National Laboratory, Livermore, CA C. H. Johnson, Nuclear Waste Project Office, State of Nevada, Carson City, NV H. N. Kalia, Los Alamos National Laboratory, Las Vegas, NV W. S. Ketola, USDOE, West Valley Project Office, West Valley, NY

B. G. Kitchen, E. I. DuPont, Savannah River Laboratory, Aiken, SC D. A. Knecht, Westinghouse Idaho Nuclear Co., Idaho Falls, ID W. L. Kuhn, Battelle Pacific Northwest Laboratory, Richland, WA D. Langmuir, Nuclear Waste Technical Review Board, Golden; CO W. Lee, University of California, Berkeley, CA H. Leider, Lawrence Livermore National Laboratory, Livermore, CA Lincoln County Commission, Pioche, NV R. R. Loux, Jr., Nuclear Waste Project Office, State of Nevada, Carson City, NV (3) R. E. Lowder, MAC Technical Services, Las Vegas, NV R. W. Lynch, Sandia National Laboratories, Albuquerque, NM H. Manaktala, Southwest Research Institute, San Antonio, TX S. Marschman, Pacific Northwest Laboratory, Richland, WA J. Matuszek, State of New York, Department of Health, Albany, NY G. B. Mellinger, Battelle Pacific Northwest Laboratory, Richland, WA M. Mifflin, Water Resources Center, Desert Research Institute, Las Vegas, NV R. Morissette, Science Applications International Corp., Las Vegas, NV P. K. Nair, Center for Nuclear Waste Reg. Analyses, Southwest Research Institute, San Antonio, TX J. L. Nelson, Westinghouse Hanford Co., Richland, WA J. H. Nelson, Science Applications International Corp., Las Vegas, NV D. Warner North, Nuclear Waste Technical Review Board, Decision Focus, Inc., Los Altos, CA NRC Document Control Desk, U. S. Nuclear Regulatory Commission, Washington, DC W. O'Connell, Lawrence Livermore National Laboratory, Livermore, CA ONWI Library, Battelle Columbus Laboratory, Columbus, OH R. Palmer, West Valley Nuclear Services, West Valley, NY G. J. Parker, USDOE, Civilian Radioactive Waste Manage., Washington, DC W. D. Pearson, Savannah River Laboratory, Aiken, SC I. Pegg, Catholic University of America, Vitreous State Laboratory, Washington, DC F. G. Peters, USDOE, Civilian Radioactive Waste Manage., Washington, DC T. H. Pigford, University of California, Berkeley, CA Planning Department, Nye County, Tonopah, NV M. J. Plodinec, E. I. DuPont, Savannah River Laboratory, Aiken, SC P. T. Prestholt, NRC Site Representative, Las Vegas, NV D. L. Price, Nuclear Waste Technical Review Board, Blacksburg, VA R. F. Pritchett, Reynolds Electrical & Engineering Co., Inc., Las Vegas, NV Project Directorate, U. S. Nuclear Regulatory Commission, Washington, DC R. B. Raup, Jr., U.S. Geological Survey, Denver, CO J. Roberts, USDOE, Civilian Radioactive Waste Manage., Washington, DC S. Rousso, USDOE, Civilian Radioactive Waste Manage., Washington, DC C. G. Russomanno, USDOE, Civilian Radioactive Waste Manage., Washington, DC SAIC-T&MSS Library, Science Applications International Corp., Las Vegas, NV (2) J. D. Saltzman, USDOE, Civilian Radioactive Waste Manage., Washington, DC J. H. Sass, U.S. Geological Survey, Flagstaff, AZ P. S. Schaus, Westinghouse Hanford Co., Richland, WA V. R. Schneider, U.S. Geological Survey, Reston, VA Senior Project Manager for Yucca Mountain, U.S. Nuclear Regulatory Commission, Washington, DC D. E. Shelor, USDOE, Civilian Radioactive Waste Manage., Washington, DC D. Stahl, B&W Fuel Co., Las Vegas, NV R. Stout, Lawrence Livermore National Laboratory, Livermore, CA D. Strachan, Battelle Pacific Northwest Laboratories, Richland, WA A. T. Tamura, USDOE, Office of Scientific & Technical Information, Oak Ridge, TN

Technical Information Center, Roy F. Weston, Inc., Washington, DC

Technical Information Officer, USDOE, DOE Field Office, N vada, Las Vegas, NV (10)

M. ten-Brink Buchholtz, Lawrence Livermore National Laboratory, Livermore, CA

M. Tomozawa, Rensselaer Polytechnic Institute, Troy, NY

R. Van Konynenburg, Lawrence Livermore National Laboratory, Livermore, CA

E. D. Verink, Nuclear Waste Technical Review Board, Gainesville, FL

R. V. Watkins, U.S. Geological Survey, Denver, CO

C. L. West, USDOE, DOE Field Office, Nevada, Las Vegas, NV

S. S. C. Wu, U.S. Geological Survey, Flagstaff, AZ

D. Zesiger, U.S. Geological Survey, Las Vegas, NV

Commission of the European Communities, Brussels, BELGIUM

C. Davison, Atomic Energy Canada Ltd., Manitoba, CANADA

K. Dormuth, Atomic Energy Canada Ltd., Manitoba, CANADA

L. Johnson, Atomic Energy Canada Ltd., Manitoba, CANADA

R. Odoj, Institut for Chemische Technologie, Julich, WEST GERMANY

F. P. Sergent, Atomic Energy of Canada, Ltd., Manitoba, CANADA

G. Simmons, Atomic Energy Canada Ltd., Manitoba, CANADA

E. Vernaz, Centre d'Etudes Nucleares de la Valle du Rhone, FRANCE

L. Werme, Svensk Karnbranslehantering AB, Stockholm, SWEDEN

The following number is for Office of Civilian Radioactive Waste Management Records Management purposes only and should not be used when ordering this document:

Accession Number: <u>NNA.911206.0022</u>

3

=

FILMED 4 1 29 1 92
. . .