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Parametric Empirical Bayes Inference: 
Theory and Applications 

CARL N. MORRIS* 

This article reviews the state of multiparameter shrinkage 
estimators with emphasis on the empirical Bayes view- 
point, particularly in the case of parametric prior distri- 
butions. Some successful applications of major impor- 
tance are considered. Recent results concerning 
estimates of error and confidence intervals are described 
and illustrated with data. 

KEY WORDS: Empirical Bayes; Parametric empirical 
Bayes; Empirical Bayes confidence intervals; Stein's es- 
timator. 

1. MULTIPARAMETER ESTIMATION: -BORROWING 
STRENGTH FROM THE ENSEMBLE 

Statisticians often must make many estimates of similar 
quantities, for example, estimates of annual income must 
be made for many areas, the quality of a process must 
be re-evaluated every month, an actuary must estimate 
the risks of many different groups of drivers, and so on. 
Thus, the situation of Table 1 often arises. 

We assume that k parameters 01, . . . , ok must be es- 
timated starting with independent unbiased estimates Y1, 
.. ., Yk, EYi = Oi. In cases where Yi is normal we can 
write 

Yi I Oi-N(%i, Vi), i = 1, . . ,k independently (1.1) 

with Vi = var( Yi). The estimate Yi often would be a re- 
duction of the original data, perhaps a sample mean or 
some other statistic, each computed from an independent 
set of data. We will take the variances Vi to be known 
here, in order to concentrate on the main issues. Usually, 
however, they would have to be estimated, perhaps by 
the within-groups sums of squares. 

If the Vi are suitably small, the statistician may be con- 
tent to use the estimates Yi, but otherwise he may seek 
alternative estimates 0i of Oi. Examples include i =Y, 
the grand mean, or more generally, 

6i= z1tb, (1.2) 
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with zi an r-dimensional column vector of regression var- 
iables, and b a vector of estimated regression coefficients. 
We assume 0 < r - k - 3 throughout (this is required, 
for example, so that the expectations in (1.4), (1.17) exist 
and so that (1.19) be positive). The estimates (1.2) would 
be ideal if one knew that for every i 

Oi= z/13. (1.3) 

In that case b is computed as the least squares estimator 

b = (Z'DZ)'-Z'DY (1.4) 

with Z the k x r matrix having rows zi', D- = Diagonal 
(VI, . . ., Vk), Y = (Y1,. . . , Yk)'. Then 0i is unbiased, 
and dominates Yi as an estimator of Oi for sum of squared 
error loss function. 

Which estimate of Oi should be preferred if (1.3) is not 
known to hold? In the most interesting cases a compro- 
mise estimator 

0i = (1 - Bi)Yi + Bi 6i (1.5) 

will outperform either extreme choice. Here Bi is a 
shrinking coefficient, 0 c Bi ' 1, Bi = 0 resulting in no 
shrinkage of 0i from Yi towards 0i. 

How do we choose the Bi? That depends on the vari- 
ance A of the errors Oi - zi',. If A = 0 then (1.3) holds 
and Bi = 1 is best, but Bi should decrease to 0 as A -> 
oo. Although A is unknown, the Yi values contain infor- 
mation about A that can be used profitably. 

This issue can be incorporated formally by making the 
assumption that 

indep 

oi I I, Ai - N(zi'I, Ai) i = 1, . . . k (1.6) 

to complement the model (1.1). Here, we allow Oi to have 
a different variance Ai for each i. Many other assumptions 
might be appropriate for (1.6), that the Oi be dependent, 
that the Oi be nonnormal, and so on. The complexity of 
such assumptions must be restricted, however, so the 
data Y can be used to investigate the model (1.6) and any 
unknown parameters. 

The choice between Yi and 0i as an estimator of Oi is, 
in terms of (1.6), a choice between Ai = co and Ai = 0, 
respectively. The model (1.1), (1.6) will lead to better 
results because it is richer, also allowing values 0 < A 
< oo. Thus, the superiority of shrinkage estimators like 
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Table 1. One-way Layout Showing the Statistician's 
Simultaneous Estimation Problem. The Parameters 
01, * * *, ok are to be Estimated From Independent 
Unbiased Estimates Y1, . . ., Yk. The Alternative 

Estimates 01, .. ,ok Probably are Biased Because 
They are Computed From the Y1 Values by Making 
Restrictive Assumptions About the Parameters, 

Perhaps Using Concomitant Information z1, . . ., IZk 

Restricted Concomitant 
Parameters to Unbiased Model Information 
be Estimated Estimate Variance Estimate Vector 

Oi Y, V1 O1 Z1 
02 Y2 V2 02 z2 

Ok Yk Vk Ok Zk 

(1.5) will be attributable mainly to the richer model. That 
is, the benefits are mainly due to assuming (1.6), and less 
critically to how one estimates Bi. 

We derive from (1. 1), (1.6) the posterior distribution of 
the unknown parameters, for i = 1, .. .k, 

ind 

Oi I Yi, , Ai - N(0i*, Vi(I - Bi)) (1.7) 

with 

Oi*= (1 - Bi)Yi + Bizi' (1.8) 

and 

Bi = ViI(Vi + Ai) (1.9) 

Were the Ai and ,B known, the Bayes estimator Oi* would 
be the ideal estimator for any symmetric loss function. 
When the Ai and ,B are unknown, they may be estimable 
from the marginal distribution of Yi, which is readily cal- 
culated for i = 1,... k as 

ind 

Yi I , Ai - N(zi'p, Vi + Ai). (1.10) 

Estimates of the shrinking coefficient Bi can be derived 
most simply from (1.10) when all the Ai are known to be 
proportional to the Vi, say Ai = aoVi, ao unknown. This 
usually would happen only in a carefully designed ex- 
periment, for example, if Vi = u21ni with ni proportional 
to I/Ai. Changing notation, the Vi may be taken to be 
equal if we divide Yi and zi by Vi12. Formally, with Ai = 
aoVi, which will be called the "equal variance case," 
(1.10) may be changed to 

ind 

Yi I , A - N(zi', V + A), (1.11) 

and (1.8) becomes 

0j* = (1 - B)Yi + Bzi', (1.12) 

the shrinkage B = V/(V + A) not depending on i. 
In the equal variances case, b in (1.4) and 

S- , (Y1 - zi'b)2 (1.13) 

are independent, complete sufficient statistics for (,B, A). 
These yield minimum variance unbiased estimates for ,B 
and A, with Eb = ,B and, because S - (V + A) Xk-r 

EB = B if B (k-r-2)VIS. (1.14) 

Insertion of (b, B) for (,B, B) into (1.12) gives an estimate 
of the Bayes rule 0j*, or an empirical Bayes estimator 

Oi = (1 - B) Yi + B zi' b. (1.15) 

The compromise estimator (1.15) is Stein's celebrated es- 
timator (James and Stein 1961). Its risk, averaging over 
both distributions (1.1), (1.6), that is, its empirical Bayes 
mean squared error, is the same for every coordinate, 

E(0 - O)2 = EEO (Oi -_)2 

= V(1 - B) + ((r + 2)/k) VB (1.16) 

= V(1 - ((k - r - 2)/k EB), (1.17) 

which is less than V provided r c k - 3, as assumed. 
(The subscript 0 on E indicates that the random variable 
0 = (01, * * *, ok) is fixed when one computes this ex- 
pectation.) Stein's theorem simply notes that the expec- 
tation given 0 

(1/k) Eo , (, -o 0)2 

- V(1 - ((k - r - 2)1k) E0B) (1.18) 

also is less than V, meaning that (1.15) also dominates 
the vector Y as an estimator of 0 = (OI, 02, . *, ok) in 
the frequentist sense for sum of squared errors. Formula 
(1.18) follows from (1.17) and the fact that (b, B) is a 
complete sufficient statistic for (,B, B) (Efron and Morris 
1973). Unlike the empirical Bayes case (1.16), the dom- 
inance property (1.18) does not hold for individual com- 
ponents E(01 - 0,)2. 

Stein showed that B is further improved if A ' 1 is 
forced whenever S is too small. This is clear in the em- 
pirical Bayes sense because we know B c 1. In fact, the 
empirical Bayes viewpoint argues for changing Stein's 
estimator further to 

B = ((k - r - 2)1(k - r))V(V+A) (1.19) 

with 

A = Sl(k- r) - V (1.20) 

and A + = max(O, A). Note that A is unbiased for A and 
is the maximum likelihood estimator for A based on S 
alone. Formula (1.19) reduces to B in (1.14) if A ? 0. The 
constant (k - r - 2)I(k - r) helps correct for curvature 
dependence of B on A. That is, B = V/(V + A) is a 
convex nonlinear function of A and so substitution of a 
nearly unbiased estimate A of A into B produces an es- 
timate of B that is biased to be too large (by Jensen's 
inequality). The multiplying constant (k - r - 2)I(k - 
r) < 1 in (1.19) offsets the bias. 

Stein's estimator should not be used in the unequal 
variances case. Then, other estimators are required, and 
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they turn out to be more difficult to evaluate mathemat- 
ically. But almost all applications involve unequal vari- 
ances, so that case cannot be ignored. We discuss it in 
Section 5. 

2. SOME SIGNIFICANT APPLICATIONS OF 
EMPIRICAL BAYES AND RELATED METHODOLOGIES 

Statisticians and other scientists have applied shrink- 
age techniques similar to those of the previous section to 
many important problems. Some well-documented suc- 
cessful applications are described in Table 2, and there 
have been many others. In each case the investigator was 
aware of some deficiency in classical methods, usually 
that the estimates were unstable, calling for shrinkage 
toward some ensemble estimate (0i). 

For example, the per capita incomes Yi of small (less 
than 500 persons) geographical areas (there are 15,000 
such areas in the United States) could not be estimated 
well from the 20 percent income sample collected in the 
1970 census. Even so, accurate income estimates of 0i, 
the true per capita income, are required each year for 
General Revenue Sharing Program purposes. Also avail- 
able were two concomitant variables: housing values for 
owner-occupied homes and IRS income per deduction. 
These produced regression estimates 0i of income Oi via 
(1.4). The 0i are much less variable than Yi, but are biased. 
Fay and Herriot (1979) developed an empirical Bayes pro- 
cedure for compromising between each small area sample 
estimate Yi annd the regression estimate 0i. As Table 2 
indicates, doing this required estimating Bi when all Ai = 
A, but with differing Vi. A similar procedure is described 
in Section 5. 

The other investigators in Table 2 also dealt with im- 
portant real problems representing a wide range of ap- 
plications. 

Hoadley (1981) showed that Bell Telephone quality as- 
surance decisions can be made more accurately if they 
use empirical Bayes procedures. 

Actuaries have used credibility methods (credibility 
1 - Bj) to do insurance ratemaking since Whitney (1918). 

Rubin (1981) showed that data on all law schools can 
be used to improve admission policies of each law school 
by providing remarkably better weights for estimating 
first-year grade point average from the LSAT (Law 
School Aptitude Test) scores and undergraduate aver- 
ages. 

Carter and Rolph (1974) showed that the New York 
City Fire Department could respond to alarms more ap- 
propriately if the false alarm rates at fire alarm boxes were 
estimated by empirical Bayes techniques using neigh- 
borhood alarm rates too. 

Efron and Morris (1975) used empirical Bayes methods 
to estimate toxoplasmosis rates in El Salvador cities. The 
modified estimators there ranked the bad cases differ- 
ently than did the maximum likelihood estimator. 

These investigators had to deal with the unequal var- 
iances problem not covered by Stein's method. One, 
Hoadley, had to develop interval estimates to determine 
the probability of being out of control. In most cases, 
normal distribution requirements were not considered too 
restrictive, either because a nonlinear transformation to 
normality could be made, or because the empirical Bayes 
model in Section 1 concentrates on estimating the first 
two moments of the prior distributions, and does not use 
its form. But several investigators did address the Poisson 
problem directly. 

The most persuasive arguments for the effectiveness 
of the procedures actually were made via cross-validatory 
methods. The shrinkage techniques predicted new data 
in each application more accurately than did the tradi- 
tional methods, and the investigators showed that better 

Table 2. Some Documented Applications of Empirical Bayes and Related Methodology 

Application Author i Yi, O, Technical Features 

Revenue Sharing- Fay and Herriot (1979) Small areas Per capita census a, b(REG: Housing value, 
Census Bureau income IRS Income per 

exemption). 

Quality Assurance-Bell Hoadley (1981) Time periods # failures, a, b(GM), c(Poisson), d (to 
Labs. determine probability 

system is out-of-control.) 

Insurance Rate-making Many, eg. Buhimann Group of insureds or Insurer's risk per unit a, b(GM) Credibility 
(1970), Morris and territory exposure 1 - B, 
VanSlyke (1978) 

Law School Rubin (1981) Law school Weight for LSAT score a, b(GM) 
Admissions-Educ. relative to GPA. 
Test. Serv. 

Fire Alarms-New York Carter and Rolph (1974) Alarm box locations False alarm rate a, b(GM), c(Poisson). 
City 

Epidemiology-El Efron and Morris (1975) City Toxoplasomosis a 
Salvador prevalence rate 

Note: Key to "Technical Features": Letters indicate presence of the following concerns. a: Unequal variances (V1 $ V,). b: Shrinking to estimated points (GM = grand mean, REG 
= regression surface). c: Nonnormal sampling distribution (mentioned only if alternative distribution explicitly acknowledged). d: Interval estimates. 
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decisions would have been made had empirical Bayes 
procedures been used in the past. This is not surprising 
because Stone (1973,1974) and Geisser (1975), have 
shown that Stein's estimator is nearly the best sample 
predictive re-use estimator for the one-way layout situ- 
ation with equal numbers of observations per group. 

3. EMPIRICAL BAYES STATISTICAL INFERENCE 

Empirical Bayes inference concerns two stochastic 
processes, one for the data and one for the parameters. 
The data Y are assumed distributed according to a par- 
ametric family of distributions f(y I 0). The parameters 
o E 0 are assumed to have some distribution nr belonging 
to a known class H of distributions on 0. Inferences are 
to be made about the realized value of 0. 

The inference procedure will depend on knowledge of 
H, but may not depend upon any (unknown) w E H, and 
the procedure's performance will be judged by its be- 
havior for all -n E H. The inference procedure t(y) is 
evaluated with respect to both sources of variability, f 
and nw. The procedure t(y) may be a Bayes rule with re- 
spect to a second stage prior distribution on H, but that 
is not required for it to be an empirical Bayes rule. The 
empirical Bayes emphasis is on consideration of a wider 
range of models, and not on the mode of inference within 
richer models. The Bayes-frequency controversy thereby 
remains unresolved-presumably some may argue for 
"Bayesian empirical Bayes," and others may not. 

Thus we observe 

YIO f (yI0) and 0-w7r,rEH. (3.1) 

If there is a loss function L(0, a) for taking action a when 
o is true, then the empirical Bayes risk function is 

r(wr, t) = Es Eo L(O, t(y)), wr EI H (3.2) 

for evaluating inference procedure t. 
All Section 1 examples fall into this framework with Y 

the vector of k sample means, f(y I 0) the k-dimensional 
density of independent normal distributions, and Hl the 
class of independent normal priors with mean zip and 
variances Ai, or A(=AI = A2 = ). Actually HI is a 
parametric family of priors with parameters ,B, A. For- 
mula (1.16) provides an example of r(rr, t) when t(y) is 
Stein's estimator, as a function of ,, A. 

The empirical Bayes model described in (3.1) contains 
both the frequentist and the Bayesian models as extreme 
cases. Bayesian inference, at least its textbook version, 
corresponds to cases in which H has but one member. 
Then one should use the Bayes rule for that unique, 
known, wr E Hl. Frequentist theory corresponds to letting 
HI contain all point priors im, 0 E 0. Then r(wo, t) sim- 
plifies to the ordinary risk as a function of 0. Empirical 
Bayes modeling is most interesting when Hl is properly 
included between these two extremes. 

Robbins (1951,1955,1964) recognized the promise of 
modeling these situations, first used the term "empirical 
Bayes," and is responsible for the early development of 

the subject, principally of the asymptotic theory as k -* 
oo. Gini (1911), whose work also is discussed by Forcina 
(1982), earlier provided empirical Bayes solutions for es- 
timating a binomial parameter. Most of Robbins's work 
considers all (Yi, Oi) to be independent identically dis- 
tributed i = 1, . . . , k with an unrestricted prior for 01 
(though he occasionally has considered parametric priors 
(e.g., Robbins 1980)). Then in a variety of situations, Rob- 
bins showed that decision procedures tk can be found so 
that 

lim r(rr, tk) = r(rr, t,), 7T E fl (3.3) 
k->oo 

when t, is the Bayes rule. Thus one can do as well asymp- 
totically as the Bayes rule, knowing nothing of the mar- 
ginal distribution of Oi. 

It sometimes helps to distinguish Robbins's cases from 
the parametric choices for HI and then we will call them 
"nonparametric empirical Bayes" (NPEB). Parametric 
empirical Bayes (PEB) is needed to deal effectively with 
those cases in which k is too small for Bayes's theory to 
approximate well. One then cannot do as well as the 
Bayes rule (e.g., (3.3)), but one hopes to make substantial 
improvements on standard methods, as Stein's estimator 
does, for example. 

Nonparametric empirical Bayes is asymptotically sim- 
ilar to Bayesian theory, but apparently not too much, for 
D. V. Lindley notes in Copas (1969) that "there is no one 
less Bayesian than an empirical Bayesian." But that ear- 
lier criticism of NPEB may apply less to parametric em- 
pirical Bayes methods, which tend to be more similar to 
fully Bayesian methods. And although Bayesians still 
abhor integrating over the distribution of Y in applica- 
tions, many recognize that the marginal distribution, or 
predictive distribution 

g(y I a f f(y I 0) r(O)dO (3.4) 

of y can be used to assess the prior ir (see, e.g., Box 
1980). Many put "second stage" priors on H (Good 1965, 
Lindley and Smith 1972) to acknowledge uncertainty in 
ir. Berger (1982) uses the term "robust Bayes" to refer 
to this problem and investigation of r(Qr, t) as X varies 
over a restricted family HI or all priors. Others have de- 
fined "gamma minimax" for r(rr, t) (see, e.g., Jackson et 
al. 1970). 

The pair of models for Y and 0 is also represented in 
frequentist methodology, via random effects and variance 
components models and in mixing distributions. The em- 
phasis there, however, has been on estimating the dis- 
tribution -r, not the 0 values (there are exceptions, e.g., 
Harville 1980). 

The empirical Bayes approach to applications seems 
congenial to statisticians, because formulating a second 
model for the parameters requires the same activity as 
modeling the data, to which statisticians are accustomed, 
and the marginal density g(y I -zr) can help guide this 
process. Of course the distributions permitted for -z can 

This content downloaded from 128.173.127.127 on Wed, 04 Nov 2015 01:57:53 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Morris: Parametric Empirical Bayes Inference 51 

be much broader than indicated above. For example, the 
restrictive independence and exchangeability assump- 
tions can be replaced by more complicated correlated or 
autoregressive structures for the parameters, provided k 
is large enough. 

The applications of Section 2 involve moderate values 
of k, so the statisticians have used parametric empirical 
Bayes methods. Large values of k would allow use of 
nonparametric empirical Bayes theories, but it may be 
difficult to find so many problems, each with the same 
distribution for the parameters. While not asymptotically 
optimal against all priors, parametric empirical Bayes es- 
timators still can be asymptotically optimal against the 
class of "conjugate" priors. Conjugate priors enjoy an 
important robustness property, as follows. 

Theorem 1. Suppose Y has a univariate natural expo- 
nential family with quadratic variance function (Morris 
1982), and the mean 0 of Y is to be estimated with quad- 
ratic loss (0 _ 0)2. In the class of all priors HI having mean 
,u and variance A, the conjugate prior 7ro is "empirical 
Bayes minimax." That is, if t,(Y) = E=O I Yis the Bayes 
rule for wEr fI and rO r(rro, t,o) then for all wEr HI 

r(IT, tlT) < r(IT, tro) = rO r(rro, two) < r(wo, tw). (3.5) 

This result is proved in Morris (1983). 
The normal, Poisson, gamma, binomial, and negative 

binomial distributions are covered by Theorem 1, to- 
gether with their normal, gamma, reciprocal gamma, 
beta, and F conjugate priors. Thus Theorem 1 suggests 
that statisticians who choose the conjugate prior will not 
incur larger risks than they expect. This too should hold 
approximately in empirical Bayes situations when (,, A) 
are unknown, but are estimated with reasonable accu- 
racy. 

We now turn to the question of empirical Bayes con- 
fidence intervals, whose definition is indicated by the gen- 
eral theory. 

Definition. An empirical Bayes confidence region with 
respect to H, having confidence coefficient 1 - ac, is a 
set C(Y) C 0 satisfying 

Ih(OEC(Y))-1 - a all 7rEfi. (3.6) 
Formula (3.6) requires computing the probability with re- 
spect to the joint distribution on ( Y, 0). If HI is the class 
of point priors on 0, no, then (3.6) is the frequentist con- 
fidence region. 

Section 4 will present empirical Bayes confidence in- 
tervals for the equal variances normal case that are 
shorter than the standard intervals for every Oi, i = 1, 2, 
... , k. No such statement is possible for frequentist 
intervals; that is, if one does not average over 01, . 
Ok, it is impossible to dominate the mean squared error 
for every component, as (1.16) shows Stein's rule does 
in the empirical Bayes sense. Thus, new results are pos- 
sible by taking HI to be a restrictive class of priors. Of 
course, if HI does not include distributions that adequately 

represent the actual parameters, the operating charac- 
teristics claimed will be invalid. 

4. EMPIRICAL BAYES CONFIDENCE INTERVALS-THE 
EQUAL VARIANCE CASE 

That Stein's estimator has no accepted measure of its 
error or associated confidence interval surely must de- 
tract from its practicality. Of course as k -* oo with r fixed 
it is nearly a Bayes estimator and so the variance of each 
Oi is approximately V(1 - B), the Bayes posterior vari- 
ance, and the Bayes credibility interval becomes an ap- 
proximate empirical Bayes confidence interval. These 
asymptotic results have been relied upon in most attempts 
to assign interval estimates, but their validity must be 
questioned for small k. 

Two other sources of variation must be accounted for 
when k is small or moderate: there is an increase in pos- 
terior variance due to estimating 3; and a term is needed 
to acknowledge the fact that A is estimated with error. 
In the equal variances situation with V1 = ... = Vk = V 
andA1 = A.. = A (1.1), (1.6) we propose the following 
procedure, a slight generalization of Morris (1977,1981). 
Use 

Si2 = V(1 - ((k - r)Ik)B) + v(Yi- zi'b)2 (4.1) 

for the variance of Stein's estimator (1.15). Here we take 
B according to (1.19) and let v represent the variance of 
B, defined by 

v = (21(k - r - 2)) B2. (4.2) 

Then the empirical Bayes confidence intervals proposed 
for Stein's estimator, modified for PEB as in (1.15), 
(1.19), are 

A 

Oi + zsi (4.3) 

with z determined by the N(O, 1) distribution; for example, 
z = 1.96 if 1 - a = .95. That is, we claim that for all A 
2 0, I , 

P(0j - zsi ' Ei ' 0i + zsi) 2 24)(z) - 1, (4.4) 

with 4)(z) the N(O,1) distribution function. 
Actually, (4.1) and (4.2) are approximations to the pos- 

terior variances of Oi and B given the data Y. Although 
Stein's rule is not a Bayes rule, a Bayesian alternative, 
with slightly different formulas, may be derived (Morris 
1977,1981). However, such a rule is much harder to ex- 
tend to the unequal variances case, as we shall need to 
do in Section 5 and for most applications. 

The variances (4.1) satisfy 

R-(lk) I si21 V C< I - ((k - r - 2)1k) B (4.5) 
and so the root mean squared interval width from (4.3) 
is less than the corresponding frequentist interval with 
V1I2 for every data set Y. Thus the intervals (4.3) generally 
will be shorter. In (4.5), A also arises as an estimate of 
the risk E6> (0, - 0i)2IkV. 

Does (4.3) have confidence coefficient at least 1 - a 
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for every k , r + 3 and all E Rr, A z 0? There is 
mathematical and numerical evidence (Morris 1981, and 
unpublished) that this is so for the usual levels of 1 - a. 
No formal proof has yet been given, but if the coverage 
probability of (4.3) ever is less than 1 - a, it could be 
only by a negligible amount. The only flaw with (4.3) is 
that these confidence intervals are too wide, not too nar- 
row, when S (1.13) is small, and so the coverage prob- 
ability substantially exceeds 1 - a when A is small. 

The intervals (4.3) are not frequentist confidence in- 
tervals because for fixed 8 they have very low probability 
of covering Oi when k is large if, for example 02 = 03 = 
... = Ok and 01 = 02 + Vk-V. Of course such an arrange- 
ment is unlikely to occur if the Oi are independent, iden- 
tically distributed as N(p, A). 

The EB confidence intervals (4.1) through (4.4) have 
dependent coverage probabilities because all k intervals 
are based on the same estimates (b, B). The Bayesian 
theory used to suggest these intervals also easily yields 
confidence ellipsoids for the entire 0-vector (see, e.g., 
Berger 1980). Although ellipsoids could be useful, we 
have ignored this here because the data analyst, in choos- 
ing between empirical Bayes and frequentist methods, 
mainly will want EB interval estimates for each individual 
0i to replace the familiar t-intervals. 

One also might suspect some skewness in the EB in- 
tervals for extreme Yi and wish to make refinements, as 
in van der Merwe et al. (1981) by further relying on the 
underlying Bayesian theory. This is not done here for 
simplicity in applications and also in theoretical work 
when showing (4.4) holds. 

We illustrate in Figure 1 the use of empirical Bayes 
confidence intervals to predict the season batting aver- 
ages 0i of 18 baseball players on the basis of their batting 
averages Yi after the first 45 at bats, that is, in the equal 
variance case (Efron and Morris 1975). The 45 degree line 
in Figure 1 is the classical estimate Yi marked "CLAS- 
SICAL." The shrinking rule, a modification described 
in Morris (1977) of Stein's estimator, has B = .675. That 
estimation line has a much gentler slope of 18 degrees, 
crossing the CLASSICAL line at Y = .266, the average 
of all 18 players. In this case the true averages 0i were 
obtained and are plotted in Figure 1. The empirical Bayes 
line EBE lies much nearer to the least squares regression 
line of 0i and Yi, because the 0i are much less variable 
than the Yi, and so it predicts much more accurately. 

The CLASSICAL confidence bands, Yi + z VI2, also 
are plotted for z = 1.00 (68 percent confidence) and for 
z = 1.96 (95 percent confidence). They cover the right 
fraction of points (17 of 18 in the 95 percent case) but are 
quite wide because of the steep slope. The gentler slope 
for EBE permits shorter confidence bands, which are 
curved to allow for greater uncertainty at the extremes. 
The 95 percent empirical Bayes intervals cover all 18 
points while being 37 percent shorter. 

The ensemble information in this problem is strong. 
Thus, Y1 = .400 suggests 01 = .400 in frequentist terms, 
because frequency methods do not account for the fact 
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c .400 - .\0/ 

> EBE, 975th percentile / V 

:3.300// 

o: EBE, 84th percentile 1 / 

a) ~~~~EBE 
. .200 -/ / 

EB E, 16th percentiler / 

0/ 
EBE, 2.5th percentile va l 

.100 

CLASSICAL, Y, 
.000 

.000 .100 .200 .300 .400 

Figure 1. EIGHTEEN POINTS PLOTTED AT (Y,, 0,). CLASSICAL 
Yi, Y, ? Vo12, and Yt ? 1.96 V112 (dashed lines. EBE = 0i EBE 

?s,, and EBE + 1.96s, (solid curves) 

that all 17 other players had Y1 < .400. The PEB interval 
for 01, which uses this information, puts .400 at the 98th 
percentile, an unlikely value. 

On the other hand the true value 017 = .318 is contained 
in the 95 percent EB interval, which is [.152, .320], but 
not in the frequentist confidence interval [.046, .304] for 
player 17. Thus the EB intervals are smaller, but are not 
necessarily contained in the usual intervals. In this case 
.318 was the true average of player 17 so only the shorter 
EB interval correctly covers the true value. (Player 17 
was Thurman Munson, who was to become a perennial 
all-star.) 

We could say, when reporting these intervals, "As- 
suming the 18 players are a random sample from a pop- 
ulation with normally distributed batting abilities, we are 
95 percent EB confident that .152 s 017 < .320." Random 
sampling assures the exchangeability needed for the Oi. 
The "EB" is included to warn the reader that this is not 
an ordinary confidence statement, although it might be 
left unmentioned because the "normally distributed bat- 
ting abilities" phrase already indicates that the Oi are ran- 
dom. Similar statements could be made for the other 17 
players. 

5. EMPIRICAL BAYES CONFIDENCE INTERVALS-THE 
UNEQUAL VARIANCE CASE 

Now consider the more general case (1.1), (1.6) when 
the Vi may be unequal, and all A, = A are the same. The 
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cases Ai = aiA with ai known, seemingly more general, 
can be made equivalent to the case Ai = A via transfor- 
mation and relabeling. 

Based on the model (1.7), (1.10), a reasonable estimate 
of Oi or of the posterior mean Oj* is 

Oi = (1 - Bj)Yi + Bi (zi'). (5.1) 

Here, with A an approximately unbiased estimate of A, 
i is the weighted least squares estimate 

i-(Z'DZ)1-Z'DY (5.2) 
with D = Diag (W1, .. ., Wk), the diagonal matrix of 
weights 

Wi -1/(Vi + A)i(53 IV,+A). (5.3) 
The variance A is estimated by 

A E Wi{(kI(k - r)) (Yi - zi P)2 - Vi} 

but we force A 2 0 if (5.4) is negative. Actually A, , must 
be determined by guessing atA, and then computing (5.3), 
(5.2), and (5.4) to improve the guess. These steps may be 
iterated until A converges, usually taking about four to 
eight cycles. Any set of weights Wi in (5.4) will make A 
nearly biased. The estimate (5.4) of A is not the maximum 
likelihood estimate of A, but is related to ones used by 
Fay and Herriot (1979), Carter and Rolph (1974), and 
"RIDGM" in Dempster, Schatzoff, and Wermuth (1977). 
When r = 0, the maximum likelihood estimate of A (Efron 
and Morris 1973) is obtained by replacing Wi with W,2 in 
(5.4). When r > 0 it is better to use a restricted maximum 
likelihood estimator (REML) of A than the MLE. The 
REML is given approximately by (5.4) provided Wi is 
replaced with W12. 

Now let 

Bi = ((k - r - 2)1(k - r)) Vi/(Vi + A) (5.5) 

and 

Si2 = Vi [1 - ((k- ri)lk) B1] + vi(Yi - zif)2. (5.6) 

In (5.6) we have 

ri= kWi[Z(Z'DZ) 1Z']ii (5.7) 

(ri estimates the effective value of r for component i), 

vi = (21(k - r - 2)) Bi2(V + A)/(Vi + A) (5.8) 

(vi approximates the variance of B,), and 

V = E WiVi/E Wi (5.9) 

is the average variance. 
The interval 

Oi-+ Z Si (5.10) 

is proposed as an approximate empirical Bayes confi- 
dence interval containing A. with probability 1 - a = 
24?(z) - 1. Evidence for this claim is incomplete, but is 
based on three observations. 

A Y" 
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t.400 / \\ 1 
+ 400 

380 
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4.340 1 

+ .280 

+.260 

I I 
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1 3 5 7 9 11 13 15 17 19 21 23 

Figure 2. TY COBB'S BATTING AVERAGES, 1905-1928. 1 = ob- 
served average; 3 (Dark line) = regression estimator (r = 3 quad- 
ratic); 2 = empiricial Bayes estimate, shrinkages B, range from 56 
to 79 percent 

1. The intervals (5.10) reduce in the equal variances 
case to those of Section 4, which have the claimed cov- 
erage probability. 

2. The proposed rule has been derived by following 
Bayes's theory. As k increases, A coverages to A in prob- 
ability, and so Bayes's theory guarantees the correct 
coverage probability. 

3. The coverage probabilities have held up in various 
computer simulations. 

The unequal variance estimates and intervals just pro- 
posed will be illustrated next by a second baseball ex- 
ample. We ask whether Ty Cobb was ever a "true" .400 
hitter for one season. Cobb had the highest lifetime bat- 
ting average of all time (.367) and in 1911, 1912, and 1922 
he batted over .400. Only a handful of other players ever 
have exceeded .400 for an entire season, no one since 
1941. If there ever was a true .400 hitter, it probably was 
Ty Cobb. (Hornsby is the only other serious candidate.) 

Figure 2 shows Cobb's batting averages Yi for the k = 
24 years of his career. He batted .420 in his best year, 
1911, but that is only 1.04 standard deviations above .399 
for his 591 at bats. Thus we ask whether Cobb was lucky 
that year with Y7 > .400 but 07 < .400. 

A quadratic curve fits Cobb's career performance 
pretty well and we take that as the prior mean 

E0Z = Zi' 3o + PIt, + 32ti2 (5.11) 
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with r = 3 parameters, ti the year index, zi' = (1, tj, ti2), 
and ,B' = (Po, ,,, 12) estimated according to (5.2). 

From binomial considerations we take Vi = .367 (.633)/ 
ni, ni = at bats. Then V = (.022)2 and A = (.015)2 from 
(5.9) and (5.4). Shrinking is typically 62 percent of the 
way towards the quadratic curve,, with .56 c Bi ' .79 
always. The risk estimate is R = .51, about half that of 
Yi. The typical si is .016 with .014 c sic .026 (ni = 150 
is quite small, giving si = .026). 

The jagged line in Figure 2 shows the empirical Bayes 
estimates. In every case Oi < .400, with a high in 1911 of 
.392, so in no year was Cobb more likely than not to be 
a true .400 hitter. 

We estimate the probability that Oi ' .400 by 

P(Oi - .400 1 Y) = 1?((0i - .400)Isi) (5.12) 

The largest of these numbers is 34 percent, in 1911. The 
probability that Cobb was a true .400 hitter in at least one 
unidentified year is about 88 percent, assuming the 24 
probabilities in (5.12) can be combined by assuming in- 
dependence. When this analysis was redone with r = 5 
(a quartic polynomial for the prior mean fits better) the 
88 percent dropped to an 84 percent probability. 

6. CONCLUDING REMARKS 
In some real problems the statistician will have a mo- 

del f(y 1 0) for the data but he may be undecided between 
two hypotheses concerning the possible values of the pa- 
rameter 0, say between HI, a high-dimensional space, and 
Ho, a low-dimensional subspace. His dilemma will be 
most acute if the parameter estimates under HI have large 
variances. Resolution may lie in specifying an empirical 
Bayes model, letting the data determine a compromise 
between, rather than choose between, the Ho and HI es- 
timates. If the true 8 E Hi is not too distant from Ho, 
then this approach will provide greater accuracy. 

Should statisticians use empirical Bayes modeling in 
most multiparameter inference problems? Probably not, 
for there is a limiting factor. Choosing the class of prior 
distributions inappropriately may destroy any hoped-for 
advantages and produce distorted estimates. For exam- 
ple, if one includes with the 18 baseball players of Section 
4 a 19th estimate of the success rate of a new product, 
or even the batting average of a pitcher, one probably 
will harm estimation of both groups of parameters. Thus, 
as always, improving estimates depends on proper use of 
valid new information. In this case, to be valid, the class 
of prior distributions II must contain members that make 
the true 0 likely. 

The celebrated minimax result for Stein's estimator 
may seem to contradict the preceding statement because 
in Stein's case it sounds as if the sample mean can be 
improved upon without extra information. Not so. Stein's 
estimator is minimax in the equal variances case for the 
sum of squared errors loss function. It is not minimax for 
loss functions 2 L1(0, - 0i)2 that weight the squared 
errors quite differently; in fact, it is not minimax if any 

one Li is even twice the average of all others. Thus, 
Stein's estimator provides advantages over the vector of 
sample means only if additional information is available. 
In the decision theoretic case that extra information is 
the correct loss function. 

Most statisticians are more comfortable specifying 
probabilistic models for 0, as empirical Bayes modeling 
requires, than they are choosing among loss functions. 
Furthermore, the marginal density (3.4) is available to aid 
modeling, but choosing loss functions is pure guesswork. 
And minimax generalizations of Stein's estimator for the 
unequal variances case with equally weighted squared 
errors require absurd shrinking patterns: greater shrink- 
age for small than for large variances Vi. For practical 
work, then, the empirical Bayes viewpoint dominates the 
minimax approach. 

Empirical Bayes modeling permits statisticians to in- 
corporate additional information in problems by viewing 
the parameters as a second stochastic process having an 
unknown, but restricted, class of distributions. More 
work is needed to develop new applications, new com- 
putational software, methods for new situations, and to 
verify that the procedures have good properties with re- 
spect to the jointly distributed data and parameters. When 
this is done, statisticians will have powerful tools that can 
be used to good advantage on many multiparameter in- 
ference problems. 

[Received August 1982. Revised October 1982.] 

REFERENCES 
BERGER, J. (1980), "A Robust Generalized Bayes Estimator and Con- 

fidence Region for a Multivariate Normal Mean," Annals of Statis- 
tics, 8, 716-761. 

BERGER, J. (1983), "The Robust Bayesian Viewpoint," Robustness 
in Bayesian Statistics, ed. J. Kadane, Amsterdam: North Holland. 

BOX, G.E.P. (1980), "Sampling and Bayes' Inference in Scientific Mo- 
delling and Robustness," Journal of the Royal Statistical Society, 
Ser. A, 143, 383-430. 

BUHLMANN, H. (1970), Mathematical Methods in Risk Theory, New 
York: Springer-Verlag. 

CARTER, G., and ROLPH, J. (1974), '"Empirical Bayes Methods Ap- 
plied to Estimating Fire Alarm Probabilities," Journal of the Amer- 
ican Statistical Association, 69, 880-885. 

COPAS, J. (1969), "Compound Decisions and Empirical Bayes," Jour- 
nal of the Royal Statistical Society, Ser. B, 31, 397-423. 

DEMPSTER, A.P., SCHATZOFF, M., and WERMUTH, N. (1977), 
"A Simulation Study of Alternatives to Ordinary Least Squares," 
Journal of the American Statistical Association, 72, 77-106. 

EFRON, B. (1975), "Biased Versus Unbiased Estimation," in Ad- 
vances in Mathematics, Vol. 16, No. 3, New York: Academy Press, 
259-277. 

EFRON, B., and MORRIS, C. (1973), "Stein's Estimation Rule and Its 
Competitors-An Empirical Bayes Approach," Journal of the Amer- 
ican Statistical Association, 68, 117-130. 

(1975), "Data Analysis Using Stein's Estimator and Its Gen- 
eralizations," Journal of the American Statistical Association, 70, 
311-319. 

FAY, R.E. III, and HERRIOT, R.A. (1979), "Estimates of Income for 
Small Places: An Application of James-Stein Procedures to Census 
Data," Journal of the American Statistical Association, 74, 269-277. 

FORCINA, A. (1982), "Gini's Contributions to the Theory of Infer- 
ence," International Statistical Review, 50, 65-70. 

GEISSER, S. (1975), "The Predictive Sample Reuse Method with Ap- 
plications, " Journal of the American Statistical Association, 70, 320- 
328. 

GINI, C. (1911), "Considerazioni Sulla Probabilita a Posteriori e Ap- 

This content downloaded from 128.173.127.127 on Wed, 04 Nov 2015 01:57:53 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Berger: Comment on Parametric Empirical Bayes Inference 55 

plicazioni al Rapporto dei Sessi Nelle Nascite Umane," Metron, 15, 
133-172. 

GOOD, I.J. (1965), The Estimation of Probabilities: An Essay on Mod- 
ern Bayesian Methods, Cambridge: Massachusetts Institute of Tech- 
nology Press. 

HARVILLE, D. (1980), "Predictions for National Football League 
Games via Linear-Model Methodology," Journal of the American 
Statistical Association, 75, 516-524. 

HOADLEY, B. (1981), "Quality Management Plan (QMP)," Bell Sys- 
tem Technical Journal, 60, 215-273. 

JACKSON, D.A., DONOVAN, T.M., ZIMMER, W.J., and DEELEY, 
J.J. (1970), "r2-Minimax Estimators in the Exponential Family," 
Biometrika, 57, 439-443. 

JAMES, W., and STEIN, C. (1961), "Estimation with Quadratic Loss," 
Proceedings of the Fourth Berkeley Sumposium on Mathematical 
Statistics and Probability (Vol. 1), University of California Press, 
Berkeley, 361-379. 

LINDLEY, D.V., and SMITH, A.F.M. (1972), "Bayes Estimates for 
the Linear Model," Journal of the Royal Statistical Society, Ser. B, 
34, 1-41. 

MORRIS, C. (1977), "Interval Estimation for Empirical Bayes Gen- 
eralizations of Stein's Estimator," Proceedings of the Twenty-Second 
Conference on the Design of Experiments in Army Research Devel- 
opment and Testing, ARO Report 77-2. 

(1981), "Parametric Empirical Bayes Confidence Intervals," to 
appear in the Proceedings of the Conference on Scientific Inference, 
Data Analysis and Robustness, University of Wisconsin. 

(1982), "Natural Exponential Families With Quadratic Variance 
Functions," The Annals of Statistics, 10, 65-80. 

(1983), "Natural Exponential Families With Quadratic Variance 
Functions: Statistical Theory," The Annals of Statistics, 11. 

MORRIS, C., and VAN SLYKE, L. (1978), "Empirical Bayes Methods 
for Pricing Insurance Classes," Proceedings of the Business and Eco- 
nomics Statistics Section, American Statistical Association, 579-582. 

ROBBINS, H. (1951), "Asymptotically Subminimax Solutions of Com- 
pound Statistical Decision Problems," Proceedings of the Second 
Berkeley Symposium on Mathematics, Statistics and Probability, 
University of California Press, 131-148. 

(1955), "An Empirical Bayes Approach to Statistics," Pro- 
ceedings of the ThirdBerkeley Symposium on Mathematics, Statistics 
and Probability, Vol. 1, 157-164. 

(1964), "The Empirical Bayes Approach to Statistical Decision 
Problems," The Annals of Mathematical Statistics, 35, 1-20. 

(1980), "An Empirical Bayes Estimation Problem," Proceedings 
of the National Academy of Sciences USA, 77, 12, 6988-6989. 

RUBIN, D. (1981), "Using Empirical Bayes Techniques in the Law 
School Validity Studies," Journal of the American Statistical As- 
sociation, 75, 801-827, with discussion. 

STONE, M. (1973), "Discussion of the Paper by Professor Efron and 
Dr. Morris," Journal of the Royal Statistical Society, Ser. B, 35, 408- 
409. 

(1974), "Cross-validatory Choice and Assessment of Statistical 
Predictions" (with discussion), Journal of the Royal Statistical Soci- 
ety, Ser. B, 36, 111-147. 

VAN DER MERWE, A.J., GROENEWALD, P.C.N., NEL, D.G., and 
VAN DER MERWE, C.A. (1981), "Confidence Intervals for a Multi- 
variate Normal Mean in the Case of Empirical Bayes Estimation 
Using Pearson Curves and Normal Approximations," Tech. Rept. 
No. 70, Department of Mathematics and Statistics, University of The 
Orange Free State, Bloemfontein, South Africa, November. 

WHITNEY, A.W. (1918), "The Theory of Experience Rating," Pro- 
ceedings of the Casualty Actuarial Society, Vol. IV, 274-292. 

omment 
JAMES BERGER* 

Morris has provided us with an excellent description 
of parametric empirical Bayes inference as it applies to 
estimation of normal means. The techniques he reviews 
(many developed by himself) seem eminently sound and 
useful for the types of problems he considers. My com- 
ments will address (a) applicability, (b) Bayesian aspects, 
(c) minimax aspects, and (d) robustness of the theory. 

1. APPLICABILITY OF PARAMETRIC EMPIRICAL BAYES 
THEORY 

For the small to moderately large dimensional prob- 
lems most frequently encountered, I agree with Morris 
that it is necessary to postulate a model for the unknown 
means Oi and estimate the parameters for this model, 
rather than try nonparametric estimation of the (assumed) 
common prior. There are rarely enough data for the non- 
parametric approach to prove successful, and a rather 
large degree of robustness with respect to the postulated 
model is present, as will be mentioned later. 

* James Berger is Professor of Statistics, Department of Statistics, 
Purdue University, West Lafayette, IN 47907. Research was supported 
by the National Science Foundation, Grant MCS 81-01670A1. 

It is also worth emphasizing Morris's comment that the 
parametric empirical Bayes approach is generally very 
worthwhile when one is trying to decide between a higher 
or lower dimensional model for the parameters of inter- 
est. A relatively common instance of this is when one is 
trying to decide whether to use a pooled estimate of var- 
iance or individual estimates. It can rarely be correct, 
when doubt exists, to use one extreme or the other; an 
empirical Bayes compromise is typically much better. 

The development of empirical Bayes confidence sets 
is very important, not just as a necessary adjunct to es- 
timation but also since tests can be done using the con- 
fidence sets. A related important aspect of the theory is 
its effect on "ranking problems." In the unequal variance 
case the empirical Bayes estimates will often be ordered 
differently from the original estimates Yi, essentially be- 
cause an "extreme" Yi with large variance will be shrunk 
a substantial amount towards the estimated prior mean, 
perhaps leapfrogging a Yi with a smaller variance. The 
resulting ordering of the population means is usually 
much more accurate and can allow substantially better 
selection of "extreme" Oi. 

It should be mentioned that the theory does not demand 
that simultaneous estimation of all Oi be applicable. For 
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