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Abstract

Water quality environmental assessment often requires the joint simulation of several subsystems (e.g. wastewater treatment

processes, urban drainage and receiving water bodies). The complexity of these integrated catchment models grows fast, leading

to potentially over-parameterised and computationally expensive models. The receiving water body physical and biochemical

parameters are often a dominant source of uncertainty when simulating dissolved oxygen depletion processes. Thus, the use of

system observations to refine prior knowledge (from experts or literature) is usually required. Unfortunately, simulating real-

world scale water quality processes results in a significant computational burden, for which the use of sampling intensive

applications (e.g. parametric inference) is severely hampered. Data-driven emulation aims at creating an interpolation map

between the parametric and output multidimensional spaces of a dynamic simulator, thus providing a fast approximation of

the model response. In this study a large-scale integrated urban water quality model is used to simulate dissolved oxygen

depletion processes in a sensitive river. A polynomial expansion emulator was proposed to approximate the link between four

and eight river physical and biochemical river parameters and the dynamics of river flow and dissolved oxygen concentration

during one year (at hourly frequency). The emulator scheme was used to perform a sensitivity analysis and a formal parametric

inference using local system observations. The effect of different likelihood assumptions (e.g. heteroscedasticity, normality and

autocorrelation) during the inference of dissolved oxygen processes is also discussed. This study shows how the use of data-

driven emulators can facilitate the integration of formal uncertainty analysis schemes in the hydrological and water quality

modelling community.
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Introduction

Integrated urban water quality modelling focuses on the joint

simulation of processes driving pollution dynamics through

the urban-river system (Muschalla et al. 2009; Rauch et al.

2002). These models jointly evaluate wastewater treatment

processes, urban drainage and river dynamics, which usually

generate a rapid escalation of complexity (Benedetti et al.

2013). The representation of all subsystems involved pro-

duces highly parameterised conceptualisations, requiring a

large amount of data in the calibration process (Langeveld

et al. 2013a). Additionally, the dynamics of interest often oc-

cur at very different time-space scales. For instance, urban

combined sewer overflow (CSO) discharges have a character-

istic timescale of minutes-hours whereas river dissolved oxy-

gen dynamics exhibit hourly to monthly scales. Quantifying

and analysing uncertainties in these platforms is hence re-

quired to avoid over-confidence in modelling results and to

guide further model improvement (Deletic et al. 2012;

Tscheikner-Gratl et al. 2017). However, the computational

effort required is a severe limitation for the applicability of

uncertainty analysis techniques for most real-scale integrated

catchment modelling studies (Tscheikner-Gratl et al. 2019).
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Many uncertainty quantification strategies rely on intensive

model sampling applications (Dotto et al. 2012). For instance,

parametric inference schemes often require a large number of

model evaluations (on the order of 104–105) to reach conver-

gence. This hampers the use of formal uncertainty inversion

methods in real-scale integrated urban water systems.

One approach to speed up convergence time is the use of

optimised sampling schemes. For instance exploiting informa-

tion from parallel model evaluations (Goodman and Weare

2010; Laloy and Vrugt 2012) or by using informed adaptive

Markov chain Monte Carlo schemes (Hoffman and Gelman

2014). However, this still requires a prohibitive number of

model samples, which often fall beyond the computational

budget of most model users. A key strategy for the accelera-

tion of model sampling is the use of data-driven or mechanis-

tic model emulation, where a mathematical representation is

used to approximate an interpolation map between a vector of

parameters-inputs and the dynamic response of the simulator.

Laloy et al. (2013) proposed a two-stage sampling scheme,

first generating a rough estimate from a model surrogate and

later from the simulator itself to perform parametric inference

in a groundwater model. Carbajal et al. (2017) compared the

performance of mechanistic vs. data-driven emulation for ur-

ban drainage simulators, concluding that in general a fully

data-driven approach is to be preferred unless confronted with

highly sparse training datasets. Yang et al. (2018) used a

Gaussian process data-driven emulator to study parameter un-

certainty in a semi-distributed hydrological model.

Data-driven emulators are constructed by drawing samples

of the computationally expensive model at a selected number

of input-parameter combinations. These samples are then used

to build a database of input-output relationships. The emulator

creates an interpolation between the two multi-dimensional

spaces, thus allowing the fast estimation of the response when

using a new parameter-input combination. Unfortunately, most

mathematical structures used to emulate dynamic models (e.g.

polynomial expansions, Gaussian processes) are sensitive to

the dimensionality of the problem. The number of required

samples to train the emulator increases non-linearly with the

dimension of the input space (Xiu and Karniadakis 2002), thus

reaching a point in which the construction of the emulator has

an equivalent computational burden as using the simulator di-

rectly. Consequently, emulators often deal with a low number

of static global parameters and a fixed time-window model

output. The discretisation of input time series (as a parameter

vector) can allow for the emulation of short time series

(Mahmoodian et al. 2018) yet the length of the time series is

limited to a few discrete steps, thus hampering its use in most

cases. Hybrid strategies can be used to encode system knowl-

edge in the data-driven emulator thus representing input dy-

namics. For instance, Moreno-Rodenas et al. (2018) presented

a methodology to emulate hydrodynamic simulators (2D shal-

low water equations) under variations of parameters and time-

dynamic rainfall inputs by encoding unitary response non-

linearities in a polynomial expansion scheme. However, the

generalisation of such input-parametric response emulation

schemes to other variables (e.g. non-conservative water quality

pollutants) still remains unaddressed.

Nevertheless, formal inference and intensive sampling tech-

niques for uncertainty analysis are not being generally applied in

integrated urban water quality modelling studies (Tscheikner-

Gratl et al. 2019). This is primarily due to the high computational

cost involved with such applications. The use of emulators can

facilitate dealing with such large-scale modelling schemes, and

thus further stimulate the consideration of modelling uncer-

tainties in environmental studies. Moreno-Rodenas et al. (2019)

presented an uncertainty analysis for a large-scale integrated

catchment system for the assessment of water quality dynamics

in the Dommel River (the Netherlands). The contribution of

different uncertainty sources in dissolved oxygen depletion sim-

ulations in a highly urbanised river system was quantified.

Forward uncertainty propagation showed that the use of prior

knowledge (extracted from literature, measurements and expert

elicitation) of the river physical and biochemical parameters cap-

tured roughly 70% of the statistical uncertainty in the simulation

of dissolved oxygen dynamics. Performing inference directly on

the original model structure is however prohibitive due to its high

computational cost. An emulator structure was used to accelerate

the model evaluation and thus updates system knowledge based

on local observations. The development of this emulator and the

inference of the model parameters are here presented.

This study discusses the application of a fully data-driven

emulation scheme to accelerate the estimation of the dynamics

of dissolved oxygen and river flowwhen varying a set of global

river parameters. An emulator platform (polynomial orthogonal

expansion) is created to represent an interpolation map between

a set of river parameters (four water quantity and eight water

quality process parameters) and the dynamic time series of river

flow and dissolved oxygen concentrations at a location of in-

terest. The training is performed by generating a database of

model parameter to output relationships during the full year of

2012 (hourly frequency). The emulator is then used to imple-

ment a global sensitivity analysis and an inference scheme un-

der various likelihood function conceptualisations.

Consequently, this work shows that the use of a dynamic emu-

lator scheme can facilitate the use of sampling intensive appli-

cations in large-scale simulators for water quality studies.

Materials and methods

The integrated catchment model

This modelling study targets the simulation of dissolved oxygen

dynamics in theDommelRiver. This is a sensitive stream located

in the south of the Netherlands (Fig. 1). The river has a discharge
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between 2 and 20 m3/s, flowing through a mild-sloped lowland

area. The river receives the discharge of 192 combined sewer

overflow structures (CSOs) from several municipal urban drain-

age systems (connected urban area of ~ 4400 ha) and of a waste-

water treatment plant (WWTP) of ~ 750,000 p.e. (population

equivalent). High pollution loads from connected urban areas

result in acute and chronic oxygen depletion events at the receiv-

ingwater body. The integratedmodel accounts for the interaction

between these three subsystems (river, urban drainage and

WWTP). The river model is conceptualised as a tank-in-series

hydrological scheme consisting 65 sections where the pollutant

fluxes and transformation rates are computed (a conceptual

scheme is presented in Annex A). The main river water quality

processes are shown in Table 6 (Annex A). The WWTP was

modelled through an a ASM2d (Gernaey et al. 2004) scheme

representing three biological lines with primary clarifiers, acti-

vated sludge tanks and secondary clarifiers with a total capacity

of 26,000m3/h and a controlled bypass storm settling tankwith a

capacity of 9000 m3/h. Urban drainage flow was represented by

29 lumped rainfall-runoff and sewer transport schemes (Solvi

2006). Sewer water quality was represented by an influent gen-

erator at the WWTP (Langeveld et al. 2017) and by an event

mean concentration multiplier at the CSO-receiving water links

(Moreno-Rodenas et al. 2017b). The fully integrated model was

implemented in the platform WEST (DHI). Further detail in the

model and system characteristics can be found at Langeveld

et al. (2013b) and Moreno-Rodenas et al. (2017a). Figure 14

(Annex A) depicts the model structure scheme. The river dis-

charge and dissolved oxygen concentration were measured at a

local station (M_0121, Fig. 1) with hourly frequency. Table 1

depicts some of the main characteristics of the observed data,

Dynamic emulator

A polynomial chaos expansion (PCE) structure (Xiu (2010))

was used to create an interpolation map between a set of model

parameters and the model outputs of river discharge and dis-

solved oxygen concentration (at the location M_0121, Fig. 1)

at hourly frequency during 1 year (01-01-2012–31-12-2012).

PCE relies on fitting a series of orthogonal polynomials to the

parametric-outputmultidimensional spaces. Themodel (M) con-

sists of a large system of coupled differential equations, which

represents the internal processes of the integrated water system

to be emulated. An arbitrary time-dependent output state vari-

able (Ysim ∈ℝ
D) can be computed by solving the model:

Y sim ¼ M x0; x; θM ; θIð Þ ð1Þ

given a set of m initial conditions (x0 ∈ℝ
m), a set of r dynamic

inputs of length F (x ∈ℝrxF) and a group of global model pa-

rameters [θM, θI], which in this case is decomposed as two pa-

rameter subsets; a group of global model parameters (θM ∈ℝ
S),

which value is fixed by the modeller during the emulation and a

subset of P global model parameters (θI ∈ℝ
P) for which the

modeller seeks to emulate.

The emulator is composed of a series ofN orthogonal poly-

nomials (ϕ(θI) ∈ℝ
Nx1) such that the value of the dynamic

variable of interest (at a certain combination of emulated pa-

rameters θI) can be approximated:

Y sim t; θIð Þ≈ϕ θIð ÞT � c ð2Þ

where c ∈ℝNxD is a matrix of coefficients which is calibrated

based on samples drawn from the simulator, thus creating a

mapping between the parameter and output spaces (ℝP
→

ℝ
D). The training dataset is pre-computed by evaluating the

model response at a number of K parameter combinations

(θI = qi for i = 1… K). The training dataset is then used to

calibrate the matrix of coefficients (c) such that:

Y sim t; θI ¼ q1ð Þ
⋮

Y sim t; θI ¼ q1ð Þ

2

4

3

5¼
ϕ1 q1ð Þ ⋯ ϕN q1ð Þ
⋮ ⋱ ⋮

ϕ1 qKð Þ ⋯ ϕN qKð Þ

2

4

3

5 �
c1 tð Þ
⋮

cN tð Þ

2

4

3

5 ð3Þ

from which the polynomial values at each parameter sample,

ϕj(qi) and the model output Ysim(t, θI = qi) are known. A least

squares approach was used to calibrate the set of coefficients c

for each variable of interest. Then, Eq. (2) can be used to

approximate the output variable at a new combination of em-

ulated model parameters. Further information about the fit of

polynomial expansions and the selection of orthogonal series

can be found at Hadigol and Doostan (2018), Feinberg (2015)

and Xiu and Karniadakis (2002).

Two polynomial expansions were used to emulate the

modelled flow and DO dynamics at the receiving water body

(1-year, hourly frequency series at the location M_0121, Fig.

1). The model response was emulated for variations of four

(flow) and eight (DO water quality) model parameters respec-

tively. The expansion was created using an orthogonal

Legendre polynomial series (Gautschi 1994), truncated at

3rd order, and 200 training samples were drawn for both

parameter spaces. Table 2 depicts the four river parameters

for the emulation of flow and Table 3 shows the parameters

for the emulation of DO along with their distribution (PCE

training). Training samples were drawn using a Latin hyper-

cube sampling (LHS) scheme.

Table 1 Data characteristics at

the observed period (2012) Variable Units Location Frequency Mean Std Min Max

River discharge m3 · s−1 M_0121 Hourly 6.5 3.3 2.2 23

River DO gO2 · m
−3 M_0121 Hourly 6.9 2.1 0.3 11.6

Environ Sci Pollut Res (2020) 27:14237 14258–14240



The integrated urban water quality model depends on a

large number of dynamic inputs and submodel parameters

(e.g. urban drainage in-sewer parameters, WWTP parameters,

rainfall inputs) some of which were of a stochastic nature. All

model inputs and parameters were fixed to a deterministic

realisation and only the emulated parameters were varied dur-

ing the training database sampling.

Additionally, 100 and 50 random parameter samples were

drawn independently for the flow and DO-simulated outputs

respectively. This independent set was used to test the emula-

tor’s performance by comparing the Nash-Sutcliffe efficiency

(NSE) between the emulator vs. simulator output series at

random parameter realisations.

The fitted coefficients of the polynomial expansion have a

direct interpretability in terms of the sensitivity of the different

parameters (Xiu 2010). Also, the emulator can be used to

cheaply evaluate any combination of the parameters within

the training parameter range, hence facilitating the application

of sampling intensive system analysis tools. In order to de-

scribe the sensitivity of the studied model parameters, the

Sobol global sensitivity analysis (Sobol 1993) was applied

to the flow and DO river dynamics.

Parametric inference

Prior knowledge of the river model parameters was encoded

by means of independent uniform probability density func-

tions. The parameter distribution ranges were defined based

on literature values and expert criteria (non-formal elicitation).

Tables 2 and 3 show the prior probability density function

selected for each parameter.

This prior knowledge was updated by using an observation

layout Yobs ∈ℝ
1xL for hourly measured flow and dissolved ox-

ygen concentration at the outlet of the Dommel catchment dur-

ing a period of approximately 7 months (15-Jan-2012–05-Aug-

2012). The basic model observation layout was defined as:

Y obs ¼ M x0; x; θM ; θIð Þ þ Z ð4Þ

where M refers to the integrated catchment model. Initial con-

ditions x0 were computed using a warming up simulation peri-

od of 1 year for the WWTP initial conditions and a dedicated

initialisation of the previous 15 days between 01-Jan-2012 until

15-Jan-2012 for the rest of the variables. The term Z refers to

the residual structure between the simulated and measured se-

ries. This error term lumps measurement and model errors to-

gether. During the inference process, a probabilistic description

of the model-measurement residuals Z is assumed a priori, and

is later validated based on the posterior computed residuals. A

common initial guess is to assume that residuals are indepen-

dent, identically and Gaussianly distributed. This assumption

leads to the following log-likelihood structure:

ℓ Y obsjθIð Þ∝−
1

2
log det Σð Þð Þ−

1

2
Y obs−M θIð Þð ÞT ⋅Σ−1⋅ Y obs−M θIð Þð Þ;

ð5Þ

where Σ represents the residual covariance function, which in

this case:

ΣZ ¼ σ2
1 � I ð6Þ

being I ∈ℝLxL the identity matrix and σ2

1
the constant variance

of the residuals.

Table 2 River hydrology

parameter PCE training ranges

(emulation) and prior distribu-

tions (inference)

Name Units Description PCE training Prior distribution

n s · m−1/3 Manning roughness ~U(0.02, 0.15)* ~U(0.025, 0.12)

kz – Embankment slope multiplier ~U(0.3, 2) ~U(0.7, 1.3)

kW – River bed width multiplier ~U(0.3, 2) ~U(0.5, 1.5)

ksurface – Rural flow input multiplier ~U(0.3, 2) ~U(0.7, 1.3)

*~U(a, b) refers to uniformly distributed probability density function between a and b

Table 3 River dissolved oxygen

parameter PCE training ranges

(emulation) and prior distribu-

tions (inference)

Name Units Description PCE training Prior distribution

Kd1 d−1 Decay rate for BOD fast ~U(0.3, 1) ~U(0.3, 0.8)

Kd2 d−1 Decay rate for BOD slow ~U(0.2, 1) ~U(0.2, 0.4)

Vs1 m · d−1 Sedimentation rate for BOD fast ~U(0.2, 40) ~U(0.5, 20)

Vs2 m · d−1 Sedimentation rate for BOD slow ~U(5, 100) ~U(10, 60)

TKd – Temperature coefficient for BOD oxidation ~U(1, 1.1) ~U(1, 1.1)

TKL – Temperature coefficient for reaeration ~U(1, 1.1) ~U(1, 1.03)

TSOD – Temperature coefficient for SOD ~U(1, 1.1) ~U(1, 1.1)

VKL – Velocity reaeration coefficient ~U(2, 8) ~U(2, 5)

Environ Sci Pollut Res (2020) 27:14237 14258– 14241



Flow dynamics are also known to render heteroscedastic er-

ror structures. This implies that residuals trend to be systemati-

cally larger when the discharge is larger. This is often encoded

by assuming that the residual standard deviation follows a linear

relationship with the simulated variable. This results in a log-

likelihood function with the form described in Eq. (5) with the

following covariance matrix:

ΣZ het ¼ σ1 þ QF � σ2ð Þ2 � I ð7Þ

where I ∈ℝLxL is the identity matrix,QF ∈ℝ
1xL is the computed

output time series; meanwhile, σ1 and σ2 are the

hyperparameters of the error generating process.

Additionally, the inference of dynamic models often leads

to autocorrelated residual structures. Previous studies in the

hydrological literature have often taken this into account by

the use of a discrete autoregressive model of order p (Bates

and Campbell 2001), or as formulated by Schoups and Vrugt

(2010):

Φp Bð Þ � zt∼N 0;σ1ð Þ ð8Þ

being ΦB Bð Þ ¼ 1−∑
p
i¼1pi � zt−i an autoregressive polynomial

of order p for the residual zt, with Gaussian updates.

An equivalent formulation to account for a correlation struc-

ture was discussed by Honti et al. (2013) with the use of a bias

description stochastic process B along with the error generating

model (Z). If assuming a stationary continuous constant bias

and heteroscedastic residuals, Eq. (5) defines the log-likelihood

function, with a covariance matrix defined as:

Σ Z hetþBð Þij
¼ σ1 þ QF tið Þ � σ2

� �2

� δij þ σ2
3 � e

− di; jj j�τ−1 ð9Þ

which are the i and j elements of the covariance matrix

Σ ZhetþBð Þ∈ℝ
LxL, with δij, the Kronecker’s delta, QF tið Þ the ex-

pected flow (at time ti), di, j the distance in hours between i and j

elements, σ3 a parameter of the stationary bias and τ an extra

hyperparameter which drives a correlation exponential decay.

Del Giudice et al. (2013) discuss that in practice the model effect

and the bias descriptors can have a poor identifiability, thus in-

ferring both, model parameters and bias hyperparameters, which

often require assigning strong priors to the latter. Table 4 presents

the prior distributions for the hyperparameters of the different

likelihood distribution structures.

Posterior samples were created using a Metropolis-

Hasting algorithm (Hastings 1970; Metropolis et al.

1953). The joint prior probability distributions for the flow

and dissolved oxygen river parameters were updated by

drawing 50,000 samples from their posterior distribution

by means of a Markov chain Monte Carlo sampling

scheme (25,000 burn-in, 5 thinning). The Bayesian infer-

ence implementation was performed using the python

probabilistic programming package PyMC version 2.3.6

(Patil et al. 2010).

Evaluating the likelihood distribution when using the full

bias-description term involves inverting a covariance matrix

of size n. In this case, this was prohibitively expensive when

using the original measurement layout (n = 4892). Thus, a

shorter period was used to test the inference of the bias de-

scription (26-Jul-2012–14-Sep-2012). In this case, only 4000

accepted samples were used (2000 burn-in, 2 thinning).

Results and discussion

Dynamic emulation of flow and dissolved oxygen
concentrations

The performance of the trained emulator to represent the inte-

grated catchment model outputs (at new parameter combina-

tions) was tested using an independent dataset. Figure 2 shows

the Nash-Sutcliffe efficiency (NSE) between the emulated and

simulated flow time series (1-year, hourly frequency) at 100

random parameter combinations for the flow emulator.

Figure 3 shows the same test performed at 50 random samples

drawn from the dissolved oxygen concentration emulation

scheme. The performance of both emulator implementations

is consistent across the parameter ranges and varies between

0.99–1 NSE. The observed performance during validation

was considered sufficient for the substitution of the simulator

by the emulator during the inference sampling.

Figures 17 and 18 (Annex C) show also a graphical com-

parison between the time series outputs from the emulator and

the simulator at a series of random combinations of parameters

independent from the samples drawn at the training dataset.

Table 5 presents the computational effort required to sample

from the original simulator, training and operation of the em-

ulator. In this case, the computed average timings refer to a

2.2-GHz Intel Core i7 from mid 2014.

Global sensitivity analysis of process parameters

The emulator structure was used to estimate the sensitivity of

the integrated catchment model outputs to variations of the

river physical and biochemical parameters. Figures 4 and 5

depict the first-order Sobol sensitivity indexes from the prior

distribution of parameters at the river flow and DO dynamics.

Figure 4 shows the simulated flow level is highly sensitive on

the parameter ksurface (which drives the river base-flow input)

during dry-weather periods, whereas the manning’s roughness

(n) becomes more sensitive during the rising limb of the

hydrographs. kW (multiplier for the river bed width) shows a

reduced influence. kz (a multiplier for the slope of the embank-

ment) has a similar, yet less pronounced effect when com-

pared with hydraulic roughness.

The results of the study of the sensitivity for the DO con-

centration simulation are shown in Fig 5. The parameter

Environ Sci Pollut Res (2020) 27:14237 14258–14242



controlling the reaeration rate (VKL) dominates the dry-

weather DO variability during summer times. This influence

decreases during winter, where the temperature coefficient for

the sediment oxygen demand (TSOD) becomes increasingly

relevant. This has to do with the temperature inhibition model

structure, which influences the oxidation rate of organic mat-

ter for temperatures differing from 20 °C (Annex A, Table 6).

During oxygen recovery patterns, TSOD is also relatively rel-

evant, since the sediment layer becomes the main oxygen sink

(days after a large storm event). Sensitivity indexes do not

Table 4 Error model

hyperparameters for the different

hypotheses

Hyperparameter Units Description Prior distribution

Flow i.i.d Gaussian

σ1 m3/s σ1, stationary standard deviation error ~U(0, 10)

Flow independent heteroscedastic Gaussian

σ1 m3/s σ1, stationary standard deviation error ~U(0, 10)

σ2 m3/s σ2, stationary standard deviation error ~U(0, 10)

Flow AR(3) Gaussian updating

σ1 m3/s σ1, stationary standard deviation error ~U(0, 10)

p1, 2, 3 – Autocorrelation coefficients p1, p2, p3 ~U(0, 1)

Flow heteroscedastic normal error and exponentially correlated bias

σ1 m3/s σ1, linear intercept standard deviation error ~U(0, 10)

σ2 m3/s σ2, linear slope standard deviation error ~U(0, 10)

σ3 m3/s σ3, bias standard deviation ~U(0, 10)

τ h Tau, bias correlation exponential decay ~U(10, 80)

Dissolved oxygen i.i.d Gaussian

σ1 mgO2/l σ1, stationary error standard deviation ~U(0, 10)

Fig. 2 Nash-Sutcliffe efficiency (NSE) at the flow emulator vs simulation

for a four-dimensional parameter space under validation conditions. The

x-axis shows the 100 combinations of the parameter values (simulation id

0 to 99). Above, the NSE between 1-year hourly frequency time series

simulated by the model and the emulator for each parameter combination

Environ Sci Pollut Res (2020) 27:14237 14258– 14243



show a consistent behaviour during acute oxygen depletion

processes. Some depletion events, as the three occurring dur-

ing July and September (also seen at Fig. 5b), present as dom-

inant parameters kd1 and kd2 which are the oxidation rates for

the two fractions of suspended BOD in the system. However,

the events occurred in June and the three in October showed to

be more sensitive to a different parameter combination as TKL

or TSOD, which are related to temperature-driven reaeration

or oxygen consumption. This is a good example of the com-

plexity of the underlying process, in which interactions are

highly dependent on the dynamic state of the system. For

instance, if a storm event activates predominantly northern

CSOs (Fig. 1), which are closer to the outlet of the catchment,

there is less time for the degradation of suspended matter to

occur than a more upstream storm process. Also, events in

which the WWTP is the main source of discharge (and not

CSOs), the settling facilities of the WWTP might lead to a

lower sediment build-up in the river and thus increasing the

relevance of suspended organic matter degradation.

Parametric inference

A local dataset was used to update the river parameters prior

knowledge. The emulator allowed drawing fast samples

(Table 5) from the posterior distribution of the parameters

given several hypotheses for the error generating process

(Gaussian, independent and homoscedastic for DO dynamics

and Gaussian, independent and heteroscedastic for the river

flow dynamics). Figure 6 displays the comparison of

Fig. 3 Nash-Sutcliffe efficiency of dissolved oxygen emulator vs

simulator for an eight-dimensional parameter space under validation con-

ditions. The x-axis shows the 50 combinations of the parameter values

(simulation id 0 to 49). Above, the NSE between 1-year hourly frequency

time series simulated by the model and the emulator for each parameter

combination

Table 5 Emulation vs. model computational effort for 1-year hourly

frequency series (in seconds)

Sample Flow DO

Simulator sample 3300 s 3300 s

Training database (× 200 simulator samples) 660 × 103 s 660 × 103 s

Emulator training 14 s 61 s

Emulator sample 0.06 s 0.07 s

Environ Sci Pollut Res (2020) 27:14237 14258–14244



measured flow and the inferred mean model response. Also, a

validation period (05-Aug-2012 until 31-Dec-2012) is shown.

Intense dry weather periods induce a systematic overestima-

tion of the flow as seen in July and in the beginning of

September, this however is expected to have a limited influ-

ence in the water quality dynamics. The same comparison

(measurement vs inferred and validation series) can be found

in Fig. 7 for the simulation of dissolved oxygen. The general

dynamics of DO are captured, especially the depletion pro-

cesses, daily and seasonal variation.

The posterior probability density functions of the pa-

rameters for the water quantity and quality of the river

section can be found in Figs. 8 and 9 respectively. The

river variable kW is poorly identified, which is denoted by

the wide range of the posterior distribution (diagonal kW at

Fig. 8). This is also supported by the very low sensitivity of

this parameter to the overall flow dynamics (Fig. 4). The

rest of the parameters appear to be identifiable and are

mostly mutually independent with the exception of a

strong negative correlation between kz and n (Spearman’s

correlation coefficient, ρs = − 0.78). Therefore, the joint

inference/calibration of both elements is not recommend-

ed, since the provided observations lack sufficient informa-

tion to identify these parameters independently. Further use

of this model should therefore prioritize fitting n, since it

exhibits a larger sensitivity than kz.

Water quality variables show a mostly independent joint pos-

terior distributionwith the exception of kd1 and kd2, which show

a mild negative correlation (ρs = − 0.29). This is explained by

the fact that both parameters influence the same process (oxida-

tion of organic matter) at two fractions of BOD for which DO

measurements are probably insufficient to discriminate.

Error-generating process and likelihood description

Bayesian inference relies on the a priori definition of an error-

generating process (Eq. 4), which constitutes the likelihood

structure used during the inference scheme. The error-

generating process is selected based on a series of hypotheses,

which can be encoded by expert guesses on the behaviour of the

system. Yet those assumptions are still a subjective exercise and

its validity should be checked once sampled from the posterior

distribution. In this case, the initial error generation process for

both flow and DO series was conceptualized as an independent,

identically distributed Gaussian distribution. The posterior distri-

bution for the flow process revealed a dependency of the resid-

uals and the inferred flow dynamics. Such phenomena is well

described in the hydrological literature (Sorooshian and Dracup

1980) and was corrected by the use of a linear dependent stan-

dard deviation structure in the river flow error-generating process

(Eq. 7). Figure 10 represents three relevant characteristics of the

residual structure at the posterior samples of river flow,

Fig. 4 Sobol sensitivity indexes (first order) for the flow dynamics. Above, mean flow simulation and the 95% interval for the propagation of the

parametric ranges. Below, sensitivity indexes for the four parameters. In the right, detail of the sensitivity during a medium-high intensity storm event (b)
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comparing the assumed error-generating process (in black) and

the observed one (in blue). Figure 10a shows the heteroscedastic

structure of flow residuals, Fig. 10b shows the comparison of the

residual histograms and Fig. 10c shows the time-autocorrelation

structure. It is apparent that the residual independency assump-

tion is violated, since computed residuals present a strong time

autocorrelation structure.

Fig. 11 shows the comparison of the computed residuals

and the assumed error-generating process (independent, ho-

moscedastic and Gaussian) for the dissolved oxygen in the

river. The variance of the residuals is largely independent

from the DO value. Also, residuals present a clear auto-

correlation structure, albeit shorter than that of the flow

inference.

Fig. 5 Sobol sensitivity indexes (first order) for the dissolved oxygen dynamics. Above, meanDO simulation and the 95% interval for the propagation of

the parametric ranges. Below, sensitivity indexes for the eight parameters. In the right (b) detail of the sensitivity during a high intensity storm event

Fig. 6 Posterior sample for the inferred flow dynamics between 15-Jan-2012 and 05-Aug-2012. In orange, the posterior distribution under validation

conditions 05-Aug-2012 until 31-Dec-2012, in black observed flow at the station M0121
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The time autocorrelation structure in hydrological inference

has been discussed in several studies. For instance, Kuczera

(1983) applied an ARMA (autoregressive moving-average)

model to represent an autocorrelated likelihood structure in a

hydrological model. Bates and Campbell (2001) argued that

ARMA structures lead to local minima, and AR

(autoregressive) models of order p are to be preferred. Schoups

and Vrugt (2010) presented the use of an alternative likelihood

structure, which addresses several common issues; like the non-

normality of residuals, variance non-stationarity and the tempo-

ral correlation of the residuals (captured by an AR(p) model).

Yet all these three studies simulated catchment hydrological

flows at daily scales. In this work, the measurement layout has

an hourly time-step, since relevant processes occur at those

scales. It is expected that the autocorrelation structure becomes

stronger when dealing with shorter timescales. As seen in

Figs. 10 and 11 the correlation is still around 0.5 at 50–100 h

lag time. Honti et al. (2013) and Del Giudice et al. (2013) pre-

sented the direct encoding of a bias description process within

the error model. This was applied to urban drainage hydrody-

namic simulation with time-steps of 1–2 min, which present

strong autocorrelation structures. The bias description can be

conceptualised as function of different variables or inputs, yet

in its basic form, it constitutes a Gaussian multivariate distribu-

tion with an exponential covariance structure as in Eq. 9.

The use of an AR(3) model, in this case, rendered an almost

negligible effect of the autoregressive parameters of higher order

than one (< 0.01), thus generating an equivalent AR(1) model.

Measured series vs. inferred comparison and the residual struc-

ture can be seen in Fig. 15 (Annex B). Although the autocorre-

lation of residuals is better represented, the fit of the mean sam-

ple did not improve, rather was degraded through accounting for

the autocorrelation term. This was also discussed by Evin et al.

(2013), who showed that using AR(1) models for hydrological

inference on the raw residuals can lead to strong interactions

with the inferred parameters and degraded outcomes.

On the other hand, the use of a bias description as in Del

Giudice et al. (2013) becomes prohibitive for long time series.

This implementation requires the inversion of a covariance ma-

trixΣ ∈ℝLxL being L the size of the measurement layout. In this

case, considering an hourly sampling layout during 15-Jan-2012

until 05-Aug-2012 leads to L = 4892 elements. Expected values

of the decay parameter τ are likely to produce a highly sparse

covariance matrix, thus sparse inversion optimisation could be

applied (Betancourt and Alvarado 1986) yet intensive sampling

for populating the posterior is still cumbersome. This large co-

variance matrix inversion renders the evaluation of the likeli-

hood function computationally expensive, thus eliminating the

benefits of the use of the dynamic emulator. A possible solution

is to create a database of likelihood samples from the dynamic

emulator which is used to build a second emulator linking the

parameter space and the response of the likelihood function

(Dietzel and Reichert 2014). An illustrative example of the re-

siduals when using a bias description term is shown in Fig. 16

(Annex B) in which the inference was performed in a shorter

time series (26-Jul-2012–14-Sep-2012). The description of the

autocorrelation structure in the residuals did not allow for a

better description of the process, or a better understanding of

the parametric uncertainty. Ammann et al. (2018) recently stud-

ied the representation of autocorrelated likelihood structures

with the conventional error models for hydrological applica-

tions. They discussed that the use of stationary autocorrelation

models deteriorates the performance of the inferred model sig-

nificantly (degrading even further when increasing the measure-

ment layout frequency). They propose that the use of non-

stationary autocorrelation schemes may overcome this problem,

Fig. 7 Posterior sample for the inferred dissolved oxygen dynamics between 15-Jan-2012 and 05-Aug-2012. In orange, the posterior distribution under

validation conditions 05-Aug-2012 until 31-Dec-2012, in black observed flow at the station M0121
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since hydrological models are expected to lose memory under

storm events (thus dry-weather and wet-weather present differ-

ent residual correlation patterns). This non-stationarity could not

be found in this case, being the correlation structure in dry

weather and wet weather for short scales (0–80 h lag) equivalent

and the large-lag structures only slightly different (Fig. 12).

Also, this is not expected to be applicable for DO series, where

residuals are even less structured as in hydrological flow.

A strong autocorrelation structure is expected due to the

nature of the process and the measurement layout. Both flow

and dissolved oxygen concentrations present several dynamic

modes, induced by storm events, daily fluctuation in the

WWTP effluent and variation between dry-wet periods and

temperature seasons. Small temporal shifts are expected due to

model structural misfit (e.g. incorrect CSO timing in the urban

drainage scheme or misrepresentation errors in rainfall data).

The temporal shift will likely render strongly correlated resid-

uals in time. Yet these time-shifts are of limited influence for

the model application. The objective of the model is to repre-

sent dynamics of oxygen in a receiving water body for envi-

ronmental policy assessment studies. These studies use met-

rics which lumps the time-dynamics, as frequency-duration-

concentration tables (FWR 2012); thus, the exact timing of the

oxygen depletion is not highly relevant, but rather the correct

representation of the magnitude and duration of each event.

Consequently, the stiff likelihood conditions required to con-

struct formal inference schemes (as shown in this study) might

not render the most adequate approach when dealing with the

with long-term dissolved oxygen dynamic series (in which the

system exhibit multitude of complex dynamic states).

Approximated Bayesian computation (Toni et al. 2009) could

be of interest by allowing defining metrics which attend to the

Fig. 8 Posterior joint parametric distribution for the inference of the flow model parameters. σ1 and σ2 are hyperparameters of the selected error

generation process (heteroscedastic, independent Gaussian). The spearman’s correlation coefficient (ρs) is shown at each parameter couple
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Fig. 9 Posterior joint-parametric distribution for the inference of the water quality model parameters. σ1 is the hyperparameter of the selected error

generation process (independent, identically distributed Gaussian). The spearman’s correlation coefficient (ρs) is shown at each parameter couple

Fig. 10 Residual structure at the flow posterior mean sample. a Scatter plot variable-residual showing the dependency of the variance. b The residual

probability density. c The autocorrelation plot at different time-lags
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relevant features of the dissolved oxygen output space (e.g.

duration and magnitude of events, slopes of the depletion/

recovery patterns, etc.). The selection of signature-based met-

rics are being increasingly used for the diagnosis of hydrolog-

ical modelling studies (Kavetski et al. 2018; Vrugt and Sadegh

2013) and could also facilitate the identification and calibra-

tion of urban water quality dynamics.

Conclusions

This study presents the emulation and inference of river flow and

dissolved oxygen dynamics in an integrated urban water quality

system. The simulator jointly evaluates wastewater treatment

processes, urban drainage and receiving water quality processes.

The use of an emulation scheme allowed accelerating signifi-

cantly the approximation of the response of the simulator to

variation of a set of global parameters. This facilitated the imple-

mentation of sampling intensive applications (e.g. sensitivity

analysis and formal Bayesian inference schemes).

A polynomial orthogonal expansion emulator was fitted to rep-

resent flow and dissolved oxygen depletion for a 1-year-long time

series (hourly frequency) under four and eight global parameters

respectively. Two hundred model realizations sufficed to generate

an acceptable interpolation in both cases. The emulator was vali-

dated using independent data, rendering a high-quality mapping

between the parametric space and the dynamic response. This

technique still exhibits severe limitations, like the impossibility to

Fig. 11 Residual structure at the dissolved oxygen posterior mean sample. a Scatter plot variable residual showing the dependency of the variance. b The

residual probability density. c The autocorrelation plot at different time-lags

Fig. 12 Autocorrelation structure for flow residuals by magnitude
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include large parametric spaces, dynamic inputs or non-smooth

parametric to output relationships (e.g. bifurcation solution points).

The use of the emulator facilitated the computation of the

sensibility of flow and DO dynamics to river parameters.

Oxygen depletion processes exhibit a non-stationary depen-

dency across storm events. In general, the reaeration rate

showed to be the most relevant parameter during dry weather

flow. Depletion of fast-slow biodegradable matter is often the

responsible for the magnitude of the oxygen depletion event

(attending only to the river process parameters). Meanwhile,

oxygen recovery after a large depletion event is highly influ-

enced by the sediment oxygen demand and reaeration process-

es, with a strong dependence in seasonality (temperature

driven).

A set of observations of river flow and DO was used to

update prior knowledge about the receiving water model

parameters. This was achieved by performing an inference

scheme on the emulator as a substitute of the simulator.

Several hypotheses were used to define the likelihood

structure. A homoscedastic, independent Gaussian distrib-

uted error was applied to the dissolved oxygen error pro-

cess . Meanwhi le , the f low res idua l s showed a

heteroscedastic structure. Both inferred residual series ren-

dered a highly temporally correlated structure, which vio-

lates the assumption of independence. The residual auto-

correlation is related to the measurement layout frequency

(hourly) and the nature of the simulated processes. Both

flow and DO residuals are influenced by a strong memory

effect, model structure-induced time shifts and input er-

rors. Various formulations to deal with the residual auto-

correlation or structural bias were tested. However, the

inferred dynamics either deteriorated or did not improve.

Detailed investigation on the effects of neglecting the cor-

relation structure in the dissolved oxygen residual struc-

ture is still missing. Also, the use of alternative metrics for

the inference of dissolved oxygen dynamics should be fur-

ther studied.

The use of a dynamic emulation scheme allowed gaining

insights on the underlying mechanistic relationships of the inte-

grated urbanwater quality system. This can be easily extended to

similar environmental modelling studies thus facilitating the ap-

plication of sensitivity analysis, inference or calibration under

long time series and low-dimensionality parametric spaces.
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Annex A: River model water quality processes

Table 6 presents the process matrix for the dissolved oxygen

process routine at the river section. Themodel accounts for the

transport and conversion rates of seven concentration state

variables; BOD1 (biological oxygen demand of fast biode-

gradable suspended fraction), BOD2 (biological oxygen de-

mand of slow biodegradable suspended fraction), BOD1p (bi-

ological oxygen demand of fast biodegradable particulate

fraction), BOD2p (biological oxygen demand of slow biode-

gradable particulate fraction), BODs (biological oxygen de-

mand at the sediment section), NH4 (ammonium) and DO

(dissolved oxygen concentration).

Table 6 Process matrix for the river water quality model structure

State variable BOD1 BOD1p BOD2 BOD2p BODs NH4 DO Rate

gO2/m
3 gO2/m

3 gO2/m
3 gO2/m

3 gO2/m
3 gN/m3 gO2/m

3

Process
1a. Oxidation of fast-suspended fraction (BOD1) −1 −1 TKdTwat−20 � Kd1 � BOD1 � DO

KO2þDO
1b. Oxidation of fast-particulate fraction (BOD1p) −1 −1 TKdTwat−20 � Kd1 � BOD1p � DO

KO2þDO
2a. Oxidation of slow-suspended fraction (BOD2) −1 −1 TKdTwat−20 � Kd2 � BOD2 � DO

KO2þDO
2b. Oxidation of slow-particulate fraction (BOD2p) −1 −1 TKdTwat−20 � Kd2 � BOD2p � DO

KO2þDO
3a. Sedimentation of BOD1p −1 +1 Vs1 · BOD1p
3b. Sedimentation of BOD2p −1 +1 Vs2 · BOD2p
4. Oxidation of organic matter in the sediment −1 −1 TSODTwat−20 � KBOD � BODs

d
� DO
KSOþDO

5. Constant sediment oxygen demand −1 TSODTwat−20 � SOD
d

� DO
KSOþDO

6. Nitrification -1 −4.57 TKnitTwat−20 � Knit � NH4 � DO
KNO2þDO

7. Photosynthesis macrophyte +1 TKpTwat−20 � kprodM � Io � MB
d

8. Macrophyte oxygen consumption −1 TKpTwat−20 � kpcons �
MB
d

9. Reaeration +1 TKLTwat−20 � VKL � CS−DOð Þ
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The river flow was conceptualized as a tank in series

lumped scheme, in which each tank is a well-stirred

reactor in which the biochemical processes take place

(Fig. 13). The mass balance equation is computed at

each node:

dV i

dt
¼ Qini

−Qouti
; ð1Þ

where Vi is the volume at tank i and Qini
the sum of

inflows from CSOs, upstream sections or rural hydrolo-

gy. Qouti
is the outflow from the tank at each instance

and is computed as a free-surface flow following the

Gauckler-Manning equation:

Qouti
¼ A � R

2
3

H � slp
1
2 � n−1; ð2Þ

being A and RH the area and hydraulic radius for a trapezoidal

section with a given slope (slp) and bedManning’s roughness (n).

Figure 14 depicts the whole integrated system scheme

which comprises the urban drainage networks connected to

the area of interest in the Dommel, the WWTP of

Eindhoven and the river stretch considered in the water quality

model along with the parameter and input model spaces.
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Fig. 13 Tank in series river flow scheme
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Annex B: Accounting for the autocorrelation
structure

Fig. 15 Autoregressive model order 3, comparison of measured and inferred dynamics and residual structure
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Fig. 16 Bias description, comparison of measured and inferred dynamics and residual structure
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Annex C: Test output series
for the emulator-simulator comparison

Fig. 17 Emulator vs. simulator flow time series graphical comparison for different test parameter combinations
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