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Parametric estimate of intensity inhomogeneities
applied to MRI

Martin Styner, Christian Brechbühler , Gábor Székely and Guido Gerig

Abstract—This paper presents a new approach to the cor-
rection of intensity inhomogeneities in Magnetic Resonance
Imaging (MRI) that significantly improves intensity-based
tissue segmentation. The distortion of the image brightness
values by a low-frequency bias field impedes visual inspec-
tion and segmentation. The new correction method called
PABIC (PArametric BIas field Correction) is based on a
simplified model of the imaging process, a parametric model
of tissue class statistics, and a polynomial model of the inho-
mogeneity field. We assume that the image is composed of
pixels assigned to a small number of categories with a priori
known statistics. Further we assume that the image is cor-
rupted by noise and a low-frequency inhomogeneity field.
The estimation of the parametric bias field is formulated
as a non-linear energy minimization problem using an Evo-
lution Strategy. The resulting bias field is independent of
the image region configurations and thus overcomes limita-
tions of methods based on homomorphic filtering. Further,
PABIC can correct bias distortions much larger than the
image contrast. Input parameters are the intensity statis-
tics of the classes and the degree of the polynomial function.
The polynomial approach combines bias correction with his-
togram adjustment, making it well-suited for normalizing
the intensity histogram of datasets from serial studies.

We present simulations and a quantitative validation with
phantom and test images. A large number of MR image data
acquired with breast, surface and head coils, both in 2D and
3D, have been processed and demonstrate the versatility and
robustness of this new bias correction scheme.

Keywords— MRI, Intensity inhomogeneity, RF field inho-
mogeneity, Brain tissue segmentation, Nonlinear optimiza-
tion

I. Introduction

A major obstacle to segmentation by multiple thresh-
olding or by multivariate statistical classification [1], [2],
[3], [4], [5], [6], [7], [8] is insufficient data quality. Besides
corruption by noise, the brightness of MR image data is
often deficient due to Radio Frequency (RF) field inhomo-
geneities. This variability of tissue intensity values with
respect to image location can severely affect visual evalua-
tion as well as segmentation based on absolute pixel intensi-
ties. The effects of such inhomogeneities on the subsequent
segmentation in early applications have been discussed by
Kohn et al. [9]. Our approach of removing inhomogeneities
is image-based and is not applied during scanning, mak-
ing it suitable for the correction of existing image data in
retrospective studies.

The segmentation experiments presented by Jungke et
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of Communication Technology, Image Science Group, ETH Zürich,
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al. [10] clearly illustrate that the major problem was
not noise but rather inhomogeneity. Vannier et al. [11]
described a correction method based on line-by-line his-
togram evaluation and a subsequent correction. Another
attempt [2] modeled the inhomogeneity as a linear varia-
tion in the transverse anatomic plane and computed an ap-
proximation to the inhomogeneity as a linear ramp from the
neck to the crown. Only vertical (or horizontal) distortions
were taken into account, while the actual distortions due
to RF field inhomogeneities were often more accurately de-
scribed by polynomial functions of higher degree. Merickel
[3] encountered the problem of the sensitivity profile of the
surface coil which falls off with distance from the center of
the coil towards the slice borders and along the direction of
increasing depth. The intensity gradients were corrected by
employing an unsharp masking technique, reducing low fre-
quency surface coil gradients while enhancing the contrast
of edges [12]. Lim et al. [4] proposed a smoothing technique
to correct the inhomogeneity problem: after extraction of
the head contour, the intensity values were extended ra-
dially towards the image boundaries and smoothed with a
Gaussian filter of a large kernel size. They assumed that
the resulting blurred image represents one homogeneous re-
gion that is only distorted by the scanner inhomogeneities.
The images were corrected with this approximation of the
inhomogeneity characteristics. Kohn et al. [9] discuss and
illustrate the inhomogeneity problem. They observed that
inhomogeneity elongates clusters in feature space in the di-
rection of the origin, but that due to the relative positions
of the clusters representing brain and cerebro-spinal fluid,
the two classes were still separated. The segmentation of
gray and white matter, however, was severely impeded be-
cause these two clusters merged.

Homomorphic filtering assumes a separation of the low-
frequency bias field from the higher frequencies of the im-
age structures. The assumption is often valid in microscope
images of small particles, but can often fail for the struc-
tures imaged by MR. A scene, such as a head structure,
contains a considerable amount of low-frequency compo-
nents. Dawant et al. [13] propose a bias correction method
relying on user interaction. A user selects typical sample
points of a tissue class as input to the estimation of a para-
metric bias field. Tincher et al. [14] and Meyer et al. [15]
present automatic techniques that fit polynomial functions
to pre-segmented regions. The individual fits are combined
to find an estimate for a global inhomogeneity field. The
procedure relies on a preliminary segmentation into region
patches.

Wells et al. [16], [17], [18] propose an expectation-
maximization (EM) algorithm to achieve an interleaved
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bias correction/statistical segmentation. In the case of

scalar data, the bias estimate b̂ is calculated as b̂ =
H[Y − WU ], where H is a low-pass filter, Y the original
data and WU a prediction of the signal, which is the sum of
the class means weighted by the a posteriori probabilities,
∑

Pcµc. Wells’ formulation includes the bias distortion in
the statistical model of the pixel distribution, i.e. the bias
field influences the distribution by locally shifting its mean
value. The algorithm iterates between two steps, the E-
step for calculating the posterior tissue probabilities, and
the M-step for estimating the bias field. Wells presented
excellent results on double-echo spin-echo data as well as
on surface-coil MR images. Our own experiments showed
that appropriate initialization is critical. The procedure
either has to be initialized with a close estimate of the bias
field or with a coarse initial segmentation. Due to low-
pass filtering of the residuals, the method performs best in
cases where tissue categories represent a spatial frequency
pattern much smaller than the frequency of the bias field.

Régis Guillemaud and Michael Brady [19] introduced a
modified EM algorithm that replaces the distribution of the
class other, which includes all tissue not explicitly modeled,
by a uniform probability density function. The correction
was claimed to be more robust and to overcome some limi-
tations of Wells’ original method. They also introduced an
automatic estimation of the initial parameters based on a
constrained and exhaustive search guided by minimum en-
tropy. Nevertheless, the initialization of the parameters re-
mains critical, as in the original algorithm, and the method
is still sensitive to the spatial configuration of image struc-
tures.

A correction algorithm fully based on the histogram was
proposed by Sled [20], [21]. It requires a parametric model
for the bias field but not a decomposition of the intensities
into tissue classes. The algorithm assumes that the his-
togram of an image represents the probability distribution
of the given signal. The histogram of the undistorted image
is estimated iteratively from the current histogram by esti-
mating a parametric bias field with a histogram sharpening
goal function.

We have developed a new approach, based on our own
tests and our experience with several inhomogeneity correc-
tion schemes. Wells’ EM model is based on a probabilis-
tic model in which a bias corruption produces pixels with
mixture densities between classes. In contrast, our model is
based on the observation that a pixel value of the corrupted
image still belongs to a single class, but its value is moved
away from the class mean. Therefore, we try to correct for
the inhomogeneity by “pushing” each pixel to a value which
is near to one of the predefined class means. In contrast to
Wells, we do not alternate between image classification and
bias estimation, and the estimation of the parameters of a
parametric bias field model does not require a preliminary
segmentation. The new method PABIC (PArametric Bias
field Correction) is driven by the assumption that the ideal-
ized scene can be modeled as being composed of pixels that
belong to a small number of classes with known statistics.
This assumption includes an image model with piecewise

constant regions, but it is not restricted to a preferred spa-
tial configuration of image regions with limited spatial fre-
quencies. Our assumptions are closely intertwined with the
main goal of bias correction for improved intensity-based
segmentation of images into a small number of categories,

Section II provides a discussion of our model of the im-
age formation, the parametric model of the bias field, and
the fit of the bias field estimate to the original image ac-
cording to our assumptions of the imaging process. Section
III describes the appropriate settings of the parameters of
PABIC and presents tests, validation and applications to
2D and 3D simulated scenes and MRI images from clinical
studies.

II. Methods

A. Modeling the imaging process

A typical image data set contains several kinds of tissues
or other substances (e.g. cerebral gray and white matter,
cerebro-spinal fluid, bone, muscle, fat, air). The ultimate
goal of our efforts is the determination of the correct class
k for each pixel in the data set, i.e. the segmentation of the
image data.

The mathematical model of signal formation assumes
that each tissue class k has a specific value ρk of the prop-
erty being measured (e.g. proton density). The idealized
signal o(x), therefore, consists of piecewise constant re-
gions, each having one of the values ρk. Biological tissues
usually have interior structures, which we model with an
additive noise term nbio. Characteristics of the measur-
ing device and discrete sampling lead to partial voluming
in the blurred border region between tissue classes. This
effect can be modeled as a convolution with a small ker-
nel h(x). The measuring device further corrupts the signal
with statistical noise nMR and a systematic bias b(x). The
bias field b(x) is induced partly by imperfections of the RF
field and partly by the individual patient. The bias field
is typically very smooth across the whole data set, i.e. it
varies slowly and has only very low frequency components.
A measured signal s(x) is formed as follows:

s(x) = (o(x) + nbio(x)) ⋆ h(x) + b(x) + nMR(x) , (1)

where o(x) = µk(x) and k(x) is the tissue class found at
location x. Our model of signal formation is visualized in
Figure 1.
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Fig. 1. Signal formation in 1D. The idealized signal o(x) (left) is
superimposed by noise n(x) (middle) and a smooth bias field
b(x)(right, lower curve), yielding the signal s(x) (right, upper
curve).

For further simplification, h(x) is neglected, and nbio and
nMR are joined into one term, leading to

s̃(x) = o(x) + b(x) + n(x) (2)
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s̃(x) − b(x) = o(x) + n(x) . (3)

In image acquisition techniques such as MRI, the bias
distortion is a multiplicative effect. In such situations, the
correction technique described in this paper is to the loga-
rithmic transformed image:

s̃(x) = o(x) · b(x) + n(x) (4)

log s̃(x) − log b(x) = log(o(x) +
n(x)

b(x)
) (5)

The goal of PABIC is a recovery of the idealized image
o(x) in order to obtain an intensity-based segmentation of
the scene. Bias correcting an image s̃ means calculating an
estimate b̂(x) of the effective bias field b(x) and removing

the calculated bias field b̂(x) from the measured image s̃.
We can see from Equation (4) that, due to multiplication

and assuming a constant category, the signal-to-noise ratio
o(x) · b(x)/σ2

n(x) becomes smaller in regions with a low bias

field than in those with a large bias field. Bias correction
by division (5) achieves a common brightness level for these
regions, but it results in noise enhancement in dark areas
in comparison to bright areas.

B. Bias field estimation by a smooth parametric bias field

We propose to estimate the bias field b(x) by a para-
metric model. Because the bias field b(x) is usually very
smooth across the whole data set, we assume that b(x) be-
longs to a family of smooth functions. We have chosen
b(x) to be a linear combination of m smooth basis func-
tions fi(x). The parameter vector p of length m speci-

fies one such linear combination, an estimated bias field b̂
(Equation (7)). In 2D, we selected products of Legendre
polynomials P in x and y as the basis functions fij for
the estimated bias field. In 3D, Legendre polynomials in
x, y and z are used. Given detailed information regarding
the bias inhomogeneities of a specific imaging system, the
Legendre polynomials could be replaced by an alternative
parametric model. The image coordinates xj are scaled
to the range [−1, 1]. For Legendre polynomials up to the
degree l, the size m of the parameter vector p is given for

the 2D case by m = (l + 1) (l+2)
2 and for the 3D case by

m = (l + 1) (l+2)
2

(l+3)
3 . For instance, Legendre polynomials

up to the third degree in 3D would therefore require 20
coefficients for p. The choice of the maximal degree of Leg-
endre polynomials largely depends on prior knowledge of
the coil and the expected type and smoothness of the bias
field. The bias field estimate b̂ is determined as follows:

in 2D : b̂(x, p) =

m−1
∑

i=0

pifi(x) =

l
∑

i=0

l−i
∑

j=0

pijPi(x)Pj(y) (6)

in 3D : b̂(x, p) =

l
∑

i=0

(l−i)
∑

j=0

(l−i−j)
∑

k=0

pijkPi(x)Pj(y)Pk(z) (7)

with Pi(.) denoting a Legendre polynomial of degree i
(cf. Appendix V-A).

If b̂(x, p) is a sufficient estimate of the real bias field
b(x), we subtract it from the measured signal and, using
(2), define the bias corrected image ô(x) as

ô(x) = s̃(x) − b̂(x, p)

= o(x) + b(x) − b̂(x, p) + n(x) (8)

≈ o(x) + n(x) . (9)

Following the assumption of images being composed of
pixels from a small number of categories, we expect the val-
ues of the corrected image to be close to the mean of one
of the classes. For the case of a multiplicative bias corrup-
tion we divide the measured signal by the estimated bias
field, i.e. a logarithmic transformed signal is subtracted
(see Equation (12)). This results in a bias corrected signal
log(ô), which is only degraded by noise. Because of the
division, the statistics of the noise varies across the spatial
domain.

s̃(x)/b̂(x, p) = (o(x) · b(x) + n(x)) /b̂(x, p)

≈ o(x) + n(x)/b̂(x, p) (10)

log(s̃(x)) − log(b̂(x, p)) = log(o(x) + n(x)/b̂(x, p)) (11)

= log(ô(x)) . (12)

The appropriateness of choosing a smooth, parametric
bias field model for MR applications is discussed in Ap-
pendix V-C. In this section, the model is validated by esti-
mating the bias field of a MRI phantom image with known
ground truth.

C. Estimating parameters of a single class fitting

Our model of the imaging process assumes the ideal case
of piecewise constant regions or pixels assigned to one of
a few categories, which is violated by effects like partial
voluming. Therefore, the estimation of classes needs to be
based on robust estimators, and minor violations of the
model should not result in incorrect solutions.

Starting from the well-known least squares technique, we
derive a measure for fitting a parameterized single-class
model vi(p) to data ui.

e(p) =
∑

i

(ui − vi(p))2 =
∑

i

square(di) (13)

To get a more robust estimation, i.d. an estimation that
is less sensitive to outliers, we considered various functions
besides “square” (see Figure 2). The “valley” function de-
scribed below belongs to the family of M-estimators, which
are robust estimators ([22], [23]).

valley(d) =
d2

d2 + 3σ2
(14)

This function shows inflection points at d ± σ. Out-
liers have less influence on the position of the minimum if
“valley” is used instead of “square”. Supplying (d − µ)
as an argument will shift the position of the minimum
from 0 to µ. An energy function of the form e(p) =
∑

i valley
(

ui − vi

(

p
))

will yield a small value if the model
v is well fitted to the data samples u.
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Fig. 2. Left: square function. Right: valley-shaped function.

D. Estimating parameters of a multi-class fitting

PABIC estimates the bias field directly from image data.
No image contrast is required to estimate this field. A
contrast between different image regions, however, should
not disturb the bias estimation, i.e. the different brightness
levels of regions should be ruled out by the procedure.

We assume that the images are composed of regions with
piecewise constant intensities with mean values µk. Each
pixel of the idealized signal corrupted by noise o(x) + n(x)
must take values close to one of these class means. There-
fore a multi-class energy function e0(d) must have a mini-
mum at each class mean µk.

We define for each class k a “valley”-function with the
minimum located at the class mean µk. The “valley” func-
tions of all classes are multiplied to form the energy func-
tion e0(d̂) =

∏

k valley(d̂− µk) (Figure 3). Bias corrected
pixels which are close to a µk have a value close to zero
for the product over all classes k and therefore give a small
contribution to the total energy etot image(p).

etot =
∑

i

e0(d̂i) =
∑

i

∏

k

valley(d̂i − µk) (15)

etot img(p) =
∑

x∈img

∏

k

valley
(

s̃(x) − b̂(x, p) − µk

)

(16)
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Fig. 3. Multi-valued energy function. The class values are chosen as
µ0 = log 33 = 3.49, µ1 = log 94 = 4.54, and µ2 = log 181 = 5.20
with σ1 = σ2 = σ3 = 0.03, 0.1, 0.3, and 1.0, from top to bottom
respectively.

E. Multi-class model and partial volume effect

As stated before, our model of the imaging process as-
sumes the ideal case that every pixel can be assigned to
one of a few categories. But in medical imaging, the partial
volume effect violates this assumption, since partial volume
voxels have an intensity that is composed of multiple class
intensities. Low resolution datasets can have as much as
30% of partial volume voxels. If such a high amount of

partial volume voxels is present, the calculation of the bias
field can be impeded and the calculated bias field can be
partially incorrect. In high resolution images, the robust
estimator used for our class model can cope with outliers
like partial volume voxels.

In order to robustize the bias field correction to account
for the large partial volume effect, we apply a preprocess-
ing step to partially mask out these voxels. The masking
method assumes that partial volume voxels mainly occur
at the borders of class regions. The gradient magnitude
of a slightly blurred image is calculated, and voxels with
large gradient magnitude are considered as partial volum-
ing voxels and masked out.

F. Assumptions of PABIC

To summarize, PABIC uses the following assumptions:

• A smooth bias field b(x) is partly caused by imperfections
of the RF field and partly induced by the patient’s influence
on the magnetic and electric fields.
• The bias field b(x) can be approximated by a paramet-

ric model b̂(x, p), which is chosen as the superposition of
Legendre polynomials in the actual implementation .
• The appearance of a class k in the image can be modeled
by a mean intensity µk and a variance σ2

k.
• The hypothetical, idealized signal o(x) consists of pixels
x, each of which can be assigned to a unique tissue class
k with mean value µk, which includes images composed of
piecewise constant regions with values µk.
• Noise n(x) is caused by the granularity and interior struc-
tures of biological tissues and the measuring device.

G. Analysis of the high-dimensional parameter space

The components of the parameter vector p stretch a
multi-dimensional feature space e(p). The dimensional-

ity of this feature space is m = (l + 1) (l+2)
2 for 2D and

m = (l+1) (l+2)
2

(l+3)
3 for 3D applications, with l as the max-

imum degree of Legendre polynomials used to approximate
the bias field. Visualization of the energy landscape e(p)
is very difficult because of the high dimension m. In order
to evaluate the topography of the high-dimensional energy
function at a specific location, we calculate the eigenvec-
tors of the local Hessian matrix and plot the energy values
along each eigenvector. Both, local and global minima are
minimal in each eigenvector direction.

We performed a detailed analysis of a 2D step-edge image
representing a simple two-class image. This image struc-
ture was chosen to demonstrate that our algorithm is in-
dependent of the relationship between spatial frequencies
of the bias field and the image structures. Correction algo-
rithms based on homomorphic filtering would fail in such
cases. The image was distorted by various types of bias
fields and different noise levels (see Figure 4). Even for a
simply shaped bias field and no noise, we observed many
non-optimal minima. Therefore, finding the global mini-
mum requires an optimization technique offering a mecha-
nism to step out of non-optimal minima reliably.

To our surprise the energy function is always smooth,
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Fig. 4. Images of a step-edge function along the x-axis. a: No bias
field, no noise. b: Bias field x·y, Gaussian noise (σ = contrast/4).
d: bias field as in c, Plot of the energy function along the line
connecting the global and the smallest non-optimal minimum.

no matter how high the chosen noise level (see Figure 5).
This leads to the hypothesis that, within certain limits,
the noise level does not severely affect the result of the
bias correction. Our tests supported this hypothesis, as
long as the noise level was lower than the contrast between
neighboring classes. Images with higher noise levels require
a preceding noise reduction step, e.g. one with nonlinear
filtering.

H. Bias field parameter estimation by nonlinear optimiza-
tion

Finding the parameter vector p with minimum energy
e(p) is a nonlinear optimization problem, independent of
the type of bias field and energy function. In principle,
any nonlinear optimization method could be applied.

An early version of PABIC used a discrete taboo search
(TS) technique ([24],[25]). The major advantage of TS is
its ability to step out of non-optimal minima. However,
TS does not have an automatic step size adaptation and
restricts the search directions only to directions parallel to
the parameter axes, resulting in a poor convergence rate.

To improve optimization we developed a new method
that locally adjusts search direction and step size, and pro-
vides a mechanism to step out of non-optimal minima. Fur-
thermore, the method is fast enough to cope with our large
data sets and overcomes the problem of parameters with
different scaling. The developed algorithm uses a so called
(1+1)-Evolution Strategy (ES), which belongs to the fam-
ily of Evolutionary Algorithms (for an introduction see [26]
and [27]).

In an Evolution Strategy, a parameter vector p represents
an individual. The fitness of an individual is determined
by its energy value e(p). In our case, small energy values
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Fig. 5. Plots of the energy function of a bias distorted step-edge im-
age with Gaussian noise (σ = contrast/4). Plots were obtained
along the eigenvectors of the Hessian matrix at a non-optimal
minimum in parameter space and sorted by decreasing eigenval-
ues. From the plots alone it cannot be concluded whether this
minimum is global or not. Further, the energy function is smooth
at any location.

yield a high fitness and vice versa. The existing individuals
form the population at the beginning of each optimization
step. As a result of an optimization step, new individu-
als (“children”) are generated by some sort of mutation
of the population(“parents”). The children are added to
the population, which is then reduced back to the former
size as the fittest individuals survive. In the (1 + 1)-ES
strategy both the population size and the number of chil-
dren generated are equal to 1. A mutation is a random
vector of the multi-dimensional normal distribution with
mean µ = p

parent
and covariance matrix Σ2. The covari-

ance matrix Σ2 gets adapted at each optimization step. It
is increased by a factor cgrow if the new population consists
of fitter individuals, and it is reduced by a factor cshrink

if otherwise. Details of the formalism of the (1 + 1)-ES
algorithm are described in the Appendix in Section V-B.

III. Applications

A. Parameter setting

The parameters of the bias correction can be divided into
three groups: Parameters for the class model, the bias field
model and for the optimization. This paper gives a short
description of the settings of the parameters. For a detailed
evaluation, please refer to [28].

Class parameters

• Number of classes: The number of classes is given by the
number of dominant categories in the image scene; well-
separated by intensity differences. Categories of low oc-
currence only give small contributions to the bias field and
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can be neglected. If a dominant category is omitted from
the model, the optimization will result in a non-optimal
solution.
• Mean and Variances of a class: An inappropriate choice
of the mean values and variances can lead to non-optimal
solutions. Therefore, PABIC is sensitive regarding the
choice of class statistics, but experiences with hundreds
of datasets has shown that PABIC runs stable regarding
minor changes of the class statistics.
• Class-mask: For each image a coarse class-mask must be
defined. The class-mask separates the regions that are well-
modeled by the class probability density functions from
the rest of the image. This masks is usually generated by
a coarse segmentation clustering all modeled classes into
one main category. PABIC can handle class-masks that
are very coarse and contain several misclassified regions.
Experiments indicate that PABIC is not sensitive to seg-
mentation errors smaller than 20%.

Bias estimation parameters

• Type of bias field: Images obtained with a MRI scan-
ner usually have a multiplicative bias field, but for other
applications the bias field may be additive.
• Order of Legendre polynomials: The maximum degree
of Legendre polynomials determines the accuracy and sta-
bility of the calculated bias field. Choosing a too-large
degree results in inefficient computation time, instable co-
efficients, and the calculated bias field is likely to adapt
itself to anatomical structures. When choosing a too-low
degree, PABIC will only be able to remove partially the
bias field. Our experiments showed that, for MRI with
head-coils, Legendre polynomials up to the third degree
sufficiently model the distortion. For 3D MR mammogra-
phy we need higher order polynomials, which encourages
the future use of a more appropriate parametric model than
Legendre polynomials.

Optimization parameters

• Mutation factors cgrow and cshrink: The choice of the
parameters cgrow and cshrink determines the efficiency and
the correctness of the optimization. Generally, the lower
the choice of cgrow the more probable the optimization finds
the optimal solution; the higher the cgrow, the higher the

convergence rate. A good choice for cshrink is c
−1/4
grow (see

[26]) and for cgrow a value between 1.01 and 1.1.
• Maximum number of iterations: The major criterion is a
good approximation of the global bias function and not a
determination of a set of parameters to a very high preci-
sion. This allows us to limit the number of iterations to a
reasonable value.
• Initial value of coefficients p: This parameter is not crit-
ical, but a good initial choice will speed up the calculation.

B. Validation of the calculated bias field

The validation of the resulting bias field can be done
with several methods, using either a visual assessment of
the quality of the correction or a quantitative analysis by
comparison to a gold standard.

• The energy image of the bias field represents the value of
the energy function at each pixel of the bias corrected image
(see Figure 6). The energy image should show a low energy
distribution in the whole image, except in those parts of
the image that are not modeled by the class statistics (e.g.
the background). High energy values may also exist at the
boundaries between regions due to partial voluming effects.
• A coarse segmentation of the corrected image can be per-
formed by simple thresholding; for example, by selecting
only one single class k with mean value µk. Poor homo-
geneity of the segmented region would indicate that the
bias field was calculated incorrectly.

Fig. 6. Zoomed detail (left) of the bias corrected image and its
corresponding energy image (right) of a human head surface coil
image. The energy is low (dark) in homogeneous regions and
higher (bright) at the borders between regions included in the
tissue model. The skin and csf were not included in the class-
model but in the class-mask. They are represented by regions of
maximal energy.

C. Synthetic test images in 2D and 3D

Four simulated image restoration problems were exam-
ined using different bias fields up to the fourth degree and
various noise levels. The first problem was the correction
of a bias distorted step-edge image (see also Section II-
G). In the second problem the step image was replaced
by a checkerboard (Figure 7). The step-edge test was per-
formed only in 2D, and the checkerboard tests in 2D and
in 3D. Additionally, a synthetic 3D onion-like object was
constructed, which consisted of multiple layers of different
intensities. The Mean Squared Differences (MSD) of the
synthetic to the estimated bias fields were calculated di-
rectly from the coefficient vectors (see Appendix V-A). At
least 5 different experiments were carried out for each noise
level and each synthetic test image, resulting in a maximum
and average deviation, which are illustrated in Table I. In
all synthetic tests, the calculated bias field matched the
modeled field to a very high accuracy, i.e. the deviation√

MSD was very low. The major difference between the
3D tests and the 2D tests was increased computation time
and a larger number of parameters.

D. Simulated MRI images

The simulated brain MRI image database (SBD) of
Montréal Neurological Institute (MNI) at the McGill Uni-
versity was used to validate and to test the sensitivity
of PABIC [29], [30], [31]. In this database there is one
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Fig. 7. Bias field correction of a step-edge (top row) and a checker-
board (bottom row) (Gaussian noise σ = 40%contrast). Left:
Noisy, distorted image. Middle: Corrected image. Right: Calcu-
lated bias field.

TABLE I

Several multiplicative bias fields and Gaussian noise

(amplitude in percentage of the contrast) were applied to a

set of synthetic two-class test images. The table shows the

maximum and average
√

MSD in percentage of the contrast.

Noise n1 = 0% Noise n2 = 40%
Image davg dmax davg dmax

Step edge 0.0000311 0.0000472 0.148947 0.253286
Checkerboard 0.0005471 0.001972 0.051534 0.067458

3d onion 0.0000615 0.0001090 0.619582 1.68283

Noise n3 = 80% Noise n4 = 120%
Step edge 0.65116 0.86723 3.98527 6.82645

Checkerboard 0.162641 0.25067 0.873322 1.55208
3d onion 1.6433 4.04466 - -

isotropic atlas dataset of a human head with correspond-
ing ground truth for the segmentation of various tissues,
including white and gray matter. Based on this atlas, MRI
images of the three protocols PD, T2 and T1 are simu-
lated. Additionally, noise of different levels can be added,
and there is a choice between three levels of bias distortions.
We applied the same sequence of image processing steps as
in the case of processing real MR images, which includes
a preprocessing to reduce noise using a locally adaptive
anisotropic filtering method.

The first validation test series was created by bias-
distortion of noisy images (3 MR protocols, 5 different
noise levels) with 20 different parameterized bias fields sim-
ulated by randomized parameter vectors. The correction
was performed with a two-class model using a white and
a gray matter class. The class parameters were computed
by fitting two Gaussians to the histogram of the masked
dataset. The mask was determined with a brain-masking
method using thresholding, mathematical morphology op-
erations and removal of partial volume voxels (see II-E).
After applying PABIC, the Mean Squared Differences be-
tween the synthetic and the estimated bias fields were cal-
culated directly from the parameter vectors (see Appendix
V-A). The average and maximal

√
MSD’s, normalized to

the contrast between white and gray matter, are shown in
Figure II. For all test cases the deviation

√
MSD turned

out to be very small.

TABLE II

5 different noise levels (amplitude as percentage of the

intensity range) and for each noise level 20 random bias

fields were applied to simulated MRI datasets of the

MNI-SBD-database. The table shows the maximum and

average
√

MSD in percentage of the contrast between

white matter and gray matter.

Noise n1 = 0% Noise n2 = 3%
Protocol davg dmax davg dmax

PD 0.05236 0.17399 0.44090 0.59771
T2 0.05902 0.10983 0.70192 0.74620
T1 0.03007 0.08011 0.44802 0.58714

Noise n3 = 5% Noise n4 = 7%

PD 0.72606 0.84473 0.93939 1.21379
T2 0.99343 1.08403 2.32724 2.37639
T1 0.71379 0.83062 0.436402 0.50541

Noise n5 = 9%

PD 0.91545 0.93876
T2 2.88804 3.22135
T1 0.56793 0.60492

In the second validation test series, simulated SBD
datasets including unknown bias fields distortion at 3 dif-
ferent levels were corrected (see Figure 8). The class pa-
rameters and masks were determined as in the first val-
idation series. The estimated bias fields were composed
of Legendre polynomials up to the third degree. All the
corrections were additionally performed using polynomi-
als up to the second degree. The resulting bias fields and
segmentation errors varied less than 1% between Legendre
polynomials up to the third and second degree. All tests
used a subsampling factor of 2 for each dimension to speed
up calculations.

Visualization of intensity-isolines in the uncorrected and
corrected images (see Figure 9) was created to demonstrate
the effect of the bias field on an intensity-based segmenta-
tion. The intensity-isolines were chosen at an intermediate
level between the intensities of gray and white matter, thus
the isolines represent the dividing line between gray matter
and white matter of a segmentation based on thresholding
at this level. The bias-distorted dataset clearly shows an
incorrect segmentation of the gray-white matter boundary.

The validation of the correction was mainly done
by calculating the error of the white and gray mat-
ter segmentations using a simple thresholding tech-
nique. For all white matter (WM) and gray matter
(GM) segmentations, the Alpha (False-Positive) and Beta
(True-Negative) errors were computed in relation to the
amount of corresponding true class voxels, e.g. the
Beta error of white matter was calculated as βWM =
∑

voxels wrongly classified as WM
∑

WM voxels in ground truth
. The overall segmen-

tation error was computed as the maximal value of the 4
segmentation errors {αWM , βWM , αGM , βGM}. The mini-
mal overall segmentation error for white and gray matter
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a b

c d

Fig. 8. Bias field correction of a simulated 3D MRI head image of
the MNI-SBD-database (classes white and gray matter; Legendre
polynomials up to third degree). a: Slice in the original image.
b: Corrected image. c: Computed bias field. d: Class-mask for
brain tissue and partial voluming voxels,

a b

c d

Fig. 9. Bias field correction of a simulated 3D MRI head image of
the MNI-SBD-database. Visualization of intensity-isolines in a
slice (a) of the undistorted base image (b), the distorted image
(c) and the bias corrected image (d). The incorrect course of
the gray-white matter boundary in the distorted image is clearly
visible.

segmentation on the noiseless, undistorted images is not
zero as illustrated in Figure 10. The reason is overlap-
ping intensity distribution clusters with the inherent prob-
ability of misclassification errors for any thresholding tech-
nique. Additionally, the resulting energy image was vi-
sually checked for possible spatial accumulations of high
energy.
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Fig. 10. Alpha/False-Positive and Beta/True-Negative segmentation
errors of the white matter and gray matter segmentation of the
PD (a), T2 (b) and T1 (c) images of the MNI-SBD-database (no
noise, no bias field) depending on the threshold value. Clearly it
can be seen that a segmentation error of 0% cannot be achieved
for all 4 errors simultaneously.

PABIC was applied to images of all 3 protocols with 3
different levels of distortion and 5 different noise levels, a
total of 45 datasets. All corrections were successful, but 2
datasets (PD and T2, both noise level 9%, bias level 40%)
needed an additional recalculation. The segmentation er-
rors of all corrected datasets are shown in Figure 11. For
all test cases the segmentation errors were small and stable
in regard to noise. The increased error in the noiseless T2
image is an effect of the anisotropic diffusion filter that was
part of the standardized segmentation protocol.

E. Real 2D and 3D MRI images

All the following correction problems were preprocessed
with a small anisotropic diffusion filter to reduce noise.

E.1 2D MRI images

The first test with real MRI was performed on 2D images
of a phantom with moderate bias field. It served mainly for
model validation and is discussed in detail in the Appendix
V-C.

The second test was performed on a 2D sagittal image
of a human head scanned with a head surface coil. Since
the sensitivity of the head surface coil decreases approxi-
mately quadratic with distance from the coil, we modeled
the bias field using Legendre polynomials up to the second
degree. The correction used the classes white and gray
matter; other image data was masked out using a coarse
mask generated by manual segmentation. In the original



STYNER,BRECHBÜHLER, SZÈKELY AND GERIG: PARAMETRIC ESTIMATE OF INTENSITY INHOMOGENEITIES APPLIED TO MRI 9

0 3 5 7 9
Noise %

6

7

8

9

10

E %

Segmentation errors, Bias 0%

0 3 5 7 9
Noise %

6

7

8

9

10

E %

Segmentation errors, Bias 20%

a b

0 3 5 7 9
Noise %

6

7

8

9

10

E%

Segmentation errors, Bias 40%

T1

T2

PD

c

Fig. 11. Maximal segmentation errors of bias corrected images of the
MNI-SBD-database for PD, T2 and T1, and bias levels 0% (a),
20% (b), 40% (c).

image (Figure 12) an adequate segmentation is extremely
difficult; the pixel values of the different tissues strongly
overlap. In the corrected image this is not the case, so it
is more suitable for visual analysis and computer-assisted
processing.

a b

c d

Fig. 12. Bias field correction of a sagittal head MRI image (classes
white and gray matter; Legendre polynomials up to second de-
gree): a: Original image. b: Corrected image. c: Computed bias
field. d: Class-mask

Another test was performed on a breast image obtained
by MRI mammography. MRI mammography uses C-coils.
The uncorrected mammography images are very difficult to
interpret (Figure 13). The correction was done with Leg-
endre polynomials up to the third degree with one class for
the fat tissue of the breast and another class for the mam-
mary ducts glands and connective tissue. A mask gener-
ated by manual segmentation masks out other image data.
Compared to the original image, the bias corrected image

provides details throughout the whole breast and the pixel
values of different tissues no longer overlap.

a b

c d

Fig. 13. Bias field correction of a breast MRI image (classes fat
tissue and mammary ducts glands and connective tissue; Leg-
endre polynomials up to third degree). a : Original image. b:
Corrected image. c: Computed bias field. d: Class-mask

E.2 3D MRI images

3D bias correction has been applied to 3D head coil MR
images from several clinical studies. Here we present cor-
rections of serial image data in a Multiple Sclerosis study.
Two time series (proton density and T2-weighted) were ac-
quired at 12 different time points for each patient. These
images were all obtained using an interleaved 2D acqui-
sition protocol with high inter-slice intensity variations.
These inter-slice intensity changes were removed in a pre-
processing step by applying a 2D 0th-order bias correc-
tion/histogram adjustment (see III-E.3) to each slice.

Two classes white and the gray matter were chosen for
modeling brain tissue. Other tissues were masked out with
brain masks generated by a coarse statistical classification
based on a training set from one slice for each volume.
The geometry of the head coil suggests the use of Legendre
polynomials up to the second degree.

Visual inspection reveals no noticeable difference be-
tween the uncorrected and the corrected volumes (Figure
14), because the detected distortions are small. The impor-
tance of bias correction for a subsequent tissue segmenta-
tion is demonstrated in Figure 15 by comparing the values
of the voxels along a line through white matter in an uncor-
rected and a corrected volume. The direction of the line is
approximately perpendicular to the isosurfaces of the local
bias field.

To demonstrate further the effect of the bias correction,
we performed simple thresholding to segment white and
gray matter. The threshold values were adapted manually
for each volume to produce the best result (see Figure 16).
The segmentation in the uncorrected volume contained
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a b

c d

Fig. 14. Correction of a 3D MRI dataset taken from a Multiple Scle-
rosis study using spin-echo dual-echo imaging. A single slice of
the first echo is shown (classes white and gray matter; Legendre
polynomials up to the second degree). a: Uncorrected volume,
b: Corrected volume, c: Calculated bias field. d: Class-mask.
The bias correction is small but significantly improves gray/white
matter separation (see Figs 15, 16).
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Fig. 15. Correction of a 3D MRI dataset taken from a Multiple Scle-
rosis study using spin-echo dual-echo imaging: Plots of the voxel
values along a line in white matter. a: Slice of the uncorrected
volume with plot line, b: Plot of the uncorrected volume, c: Plot
of the corrected volume (c).

misclassified regions, and boundaries were poorly delim-
ited. Besides misclassification due to small MS-lesions in
the image, the segmentation in the corrected volume was
much better, since there were fewer misclassified regions,
well-delineated boundaries and a more homogeneous ap-
pearance. Consider the slices at medium level shown in
Figure 16. Large parts of the ventricles in the uncorrected
image are classified as gray matter and the deep gray mat-
ter is not classified as gray matter. These misclassified
regions were labeled correctly after bias correction.

corr. image Orig medium Corr mediumm

corr. image Orig top Corr top

Fig. 16. 3D Segmentation (MS PD time series) by simple thresh-
olding of white matter (WM, first row) and gray matter (GM,
second row) shown on axial slices at medium and top level. The
corresponding gray value image is displayed on the far left. Orig:
Segmentation of the uncorrected volume. Corr: Segmentation of
the corrected volume.

After these initial tests, PABIC has been applied rou-
tinely in various large clinical studies using MRI imaging.
It is a necessary preprocessing step for a white matter/gray
matter segmentation method applied to image data in sev-
eral Schizophrenia studies. One of these studies was di-
rected by the European BIOMORPH consortium, in which
40 Schizophrenia and 40 control datasets (SPGR, high res-
olution) were successfully corrected using PABIC. Gener-
ally, in newer studies that are based on high resolution
single contrast acquisition protocols (gradient echo proto-
cols like SPGR, IRprepped, Turboflash, e.g.), the observed
bias distortions were small, which is due to improved scan-
ner techniques and built-in correction methods. However,
bias correction is still necessary for correcting patient in-
duced inhomogeneities and the natural variability of tissue
intensities in the spatial domain.
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E.3 4D MRI images - Time series analysis - Histogram ad-
justment

The study of temporal intensity changes requires bias
correction, registration, and normalization of tissue inten-
sities along the time axis. Initially, we performed two time
series analysis on the earlier mentioned Multiple Sclerosis
datasets. After registration using the MIRIT-software [32],
the datasets were transformed into a normalized 4D image
data set. Intensity normalization was achieved by apply-
ing PABIC with the same tissue model, i.e. the same mean
values and variances for the tissue classes, for all datasets
in the time series. PABIC has since been applied routinely
for bias correction and histogram adjustment in MR time
series, for example, it is a required preprocessing step for a
method developed at ETH Zürich to segment and charac-
terize Multiple Sclerosis lesions based on dynamic changes
over time [33]. The segmentation accuracy was significantly
increased and we were able to perform comparisons across
time and space. In total, PABIC has been applied to over
150 high- and low-resolution 3D MR datasets stemming
from Multiple Sclerosis studies.

IV. Conclusions and Discussion

The bias correction method PABIC presented in this pa-
per estimates the parameters of a 2D/3D inhomogeneity
field by nonlinear optimization. PABIC is based on clear
assumptions about the imaging process and about the ob-
served scene. The procedure does not rely on a preseg-
mented image and operates independently of the spatial
configuration of structures in the image. The pixels can
even be scrambled arbitrarily to achieve the same bias es-
timation. This has been demonstrated with the synthetic
images of a checkerboard structure and a single step-edge
showing that they are treated exactly the same way. The
latter image cannot be corrected by homomorphic filtering
nor by methods which need an initial close segmentation.
Further, PABIC can handle bias distortions much larger
than the range of class means.

The estimation of a parametric bias field offers several
advantages. First, the estimate can be constrained by se-
lecting the degree of the polynomial function and the range
of the parameter values. Secondly, prior knowledge about
the type of inhomogeneity allows choosing the appropriate
parametric model. The Legendre polynomials applied in
our implementation are just one of various possibilities. In
the MR mammography image (Figure 13), for example,
one could think of using a mixture of two Gaussian sim-
ulating the effect of the C-coil instead of a higher order
polynomial function.

As a coarse summary, PABIC can be viewed as an opti-
mization of polynomial parameters with respect to a cost
function based on an image classification likelihood.

Extensive applications have been performed on 2D
datasets as well as on 3D datasets (more than 250 scans
in total). The bias correction procedure runs stably and
can be automated to a certain degree. The quality of brain
tissue segmentation by intensity thresholding has been sig-
nificantly improved. The normalization of the intensities

was useful in normalizing each volume in time series and
removing brightness changes between slices within image
volumes, for example slice-by-slice variations in interleaved
acquisitions.

The results demonstrate the universality of the approach.
PABIC cannot only be applied to MRI images but also
to any kind of image data satisfying the initial assump-
tions. The algorithm was also tested successfully on differ-
ent kinds of microscopy images and biological scenes mea-
sured by a video camera.

A major disadvantage of PABIC might be its com-
putation time. A correction of a volume of dimensions
256x256x128, using two classes and Legendre polynomials
up to the second degree, runs about 2 hours on a SUN
Sparc-Ultra 10. The computation time decreases linearly
when subsampling is used. Several tests on the accuracy of
subsampling were performed and the results differed only
marginally. In the 3D tests presented in this paper subsam-
pling of 2x2x2 was used without affecting the results of the
bias correction. This subsampling sped up the correction
by a factor of 8, resulting in a computation time of about
15 minutes.

The present implementation runs semi-automated. Prior
to the correction, class parameters have to be defined and
two coarse masks need to be constructed (Section III-A).
The degree of automation can be increased by registration
of the image to an atlas prior to these preprocessing steps
[34]. The parameters of the noise reduction, the class pa-
rameters, and the masks could then be derived from the
result of the registration. This requires, however, a statis-
tical atlas for every part of the body to be segmented.
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V. Appendix

A. Legendre Polynomials

The basis functions for the bias estimation must be
smooth. First experiments confirm our presumption that
the choice of an orthogonal basis will result in a better-
posed condition for changing the parameters pi. Legendre
polynomials are just one choice that satisfies these require-
ments. A visualization of Legendre polynomials in 2D is
displayed in Figure 17. Polynomials in each coordinate
xj are multiplied to define multivariate basis functions,
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Pl(x) =
∏n−1

j=0 Plj (xj).

Fig. 17. Visualization of Legendre polynomials in 2D (0th to 4th

degree in x and y): increasing x-degree from left to right, y-
degree from top to bottom.

The Legendre polynomials are orthogonal, but not nor-
malized to 1.

∫ 1

−1

P 2
t (x), dx =

2

2t + 1
(17)

The orthogonality is passed on to all products Pl (x). Us-
ing the theorem of Parseval, this property can be used to
derive a formula for the computation of the Mean Squared
Difference of two fields composed of Legendre polynomials
directly from its coefficients. For the 3D case, this results
in following formula

MSD =

∫ 1

−1

(b̂1(x) − b̂2(x))2dx

=
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=
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B. Optimization with (1 + 1)-ES algorithm

An Evolution Strategy (ES) for non-linear optimization
has been implemented. The (1 + 1)-ES optimization (de-
scribed in [27]) iterates by randomly selecting a new posi-
tion in parameter space, which is controlled by a probabil-
ity function centered at the current location. The original
(1+1)-ES algorithm uses a common variance for the muta-
tion of all parameters. The isotropic probability function is
subject to grow or shrink by an update rule which consid-
ers local information. The algorithm can be summarized
as follows (terminology from [27]):

rt ∼ N(0, I)

xt+1 = xt + atrt

at+1 =

{

at · cgrow if f(xt+1) < f(xopt)
at · cshrink otherwise

xopt =

{

xt+1 if f(xt+1) < f(xopt)
xopt otherwise

(20)

The parameters cgrow, cshrink, x0 and a0 are given as
input and r ∼ N(0, I) denotes a multi-dimensional random
vector of an isotropic normal distribution with zero mean
and variance one.

As a consequence of using an isotropic probability func-
tion, no adjustments to unequally scaled parameters and
local properties of the energy landscape are possible, as mu-
tations occur in all directions in parameter space with the
same probability. Hence, the (1+1)-ES algorithm has been
improved by additionally using second order statistics for
the update of the multi-dimensional Gaussian probability
function. The simple scaling of the normal density function
by a scalar at is replaced by a multiplication with matrix
A, which relates to the covariance matrix as Σ = A · A′,
A′ being the transposed matrix A. We use the following
property

rt ∼ N(0, I)

Art + m ∼ N(m, A · A′) (21)

Therefore, a scaled and translated vector r is an instance
of a new normal distribution with mean m and covariance
matrix Σ = A·A′. At each stage of the iterative search, the
covariance matrix is updated with new local information.

rt ∼ N(0, I)

xt+1 = xt + At · rt

At+1 =















At(I + (cg − 1)
rtr

′

t

r′trt
)) if f(xt+1) < f(xopt)

At(I + (cs − 1)
rtr

′

t

r′trt
)) otherwise

xopt =

{

xt+1 if f(xt+1) < f(xopt)
xopt otherwise

(22)

Figure 18 illustrates the optimization of the Rosenbrock
function f(x, y) = 100(x2 − y)2 + (1 − x)2 as an example.
The Rosenbrock function is a standard test function for op-
timization algorithms. It is a badly conditioned problem,
with a narrow winding valley from a start point to the
global minimum. Figure 18b nicely illustrates the change
of the second-order statistics in our method. Our optimiza-
tion scheme is more flexible than the originally proposed
(1 + 1)-ES and results in an improved convergence rate.
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Fig. 18. Convergence of our (1+1)-ES algorithm on the Rosenbrock
function. Left: Isolines of the Rosenbrock function. Right: Il-
lustration of the iterative search procedure, starting upper left.
The shapes of the ellipses represent isolevels of the probability
distributions for finding a new child.
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C. Model validation by MRI phantom images

The model’s appropriateness to real MRI data was vali-
dated using a brain phantom with known substance classes
and its MRI image. One echo from a dual echo MRI im-
age of the brain phantom and the segmentation result are
shown in Figure 19.
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Fig. 19. The input data for the experiment is one MRI echo from a
head phantom (left, courtesy of Dr. Ron Kikinis). The digitized
phantom scene (right) is used as ground truth.

The image has been segmented using a statistical classi-
fication method applied to both echoes, and this segmen-
tation (Figure 19) is considered to be ground truth k(x)
for the present experiment. We select 2D Legendre poly-
nomials up to the third degree. Defining a characteristic
function

χk′(x) =

{

1, if k(x) = k′

0, otherwise
,

the model (2) can be made linear in the parameters µ and
p

s̃(x) =
∑

k

µkχk(x) ·
∑

i,j

pijPi(x)Pj(y) + n(x) .(23)

Fitting a linear model is mathematically simple and
yields the function fit shown in Figure 20a and b.
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Fig. 20. Result of fitting the piecewise smooth model to the MR
phantom. On the left is the resulting 2D image and in the middle
a corresponding 3D plot. On the right, a scaled (factor 5) 3D
plot of the estimated bias function is shown.

After subtracting the estimate for the idealized signal o
and the bias estimate b̂ from the signal s̃, we are left with
the residual s̃−o− b̂ = n (2) as illustrated in Figure 21. It
is obvious that the residual is largest near the boundaries
of tissues, where large changes in the image intensity can
be observed. The flat regions of the residual indicate that
the parametric bias estimate could sufficiently compensate
for the inhomogeneity.
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Fig. 21. Residual difference between the signal and the fitted model,
shown as a gray level image and as 3D mesh.

References

[1] D.A. Ortendahl and J.W. Carlson, “Segmentation of magnetic
resonance images using fuzzy clustering,” in Proc. of Informa-
tion Processing in Medical Imaging, IPMI’87, 1988, vol. 39, pp.
91–106.

[2] M.W. Vannier, Speidel Ch.M., D.L. Rickman, L.D. Schertz,
et al., “Validation of Magnetic Resonance Imaging (MRI) Mul-
tispectral Tissue Classification,” in Proc. of 9th Int. Conf. on
Pattern Recognition, ICPR’88, Nov. 1988, pp. 1182–1186.

[3] M.B. Merickel et al., “Multispectral pattern recognition of MR
imagery for the noninvasive analysis of atherosclerosis,” in Proc.
of 9th Int. Conf. on Pattern Recognition, ICPR’88, Nov. 1988,
pp. 1192–1197.

[4] K.O. Lim and A.J. Pfefferbaum, “Segmentation of MR brain
images into cerebrospinal fluid spaces, white and gray matter,”
Journal of Computer Assisted Tomography, vol. 13, pp. 588–593,
1989.

[5] H.E. Cline, W.E. Lorensen, St.P. Souza, F.A. Jolesz, R. Kikinis,
G. Gerig, and Th.E. Kennedy, “3D surface rendered MR images
of the brain and its vasculature,” Journal of Computer Assisted
Tomography, vol. 15, no. 2, pp. 344–351, Mar. 1991.

[6] L.P. Clarke, R.P. Velthuizen, M.A. Camacho, J.J. Heine,
M. Vaidyanathan, L.O. Hall, R.W. Thatcher, and M.L. Silbiger,
“MRI segmentation: methods and applications,” Magnetic Res-
onance Imaging, vol. 13, pp. 343–368, 1995.

[7] E.T. Bullmore, M.J. Brammer, G. Rouleau, B.S. Everitt, A. Sim-
mons, T. Sharma, R. Frangou, R.M. Murray, and G. Dunn,
“Computerised brain tissue classification of magnetic resonance
images: A new approach to the problem of partial volume arte-
fact,” Neuroimage, vol. 2, pp. 133–147, 1995.

[8] A. Simmons, S.R. Arridge, G.K. Barker, and S.C.R. Williams,
“Simulation of MRI cluster plots and application to neurological
segmentation,” Magnetic Resonance Imaging, vol. 14, pp. 73–92,
1996.

[9] M.I. Kohn, N.K. Tanna, G.T. Herman, S.M. Resnick, P.D. Moz-
ley, R.E. Gur, A. Alavi, R.A. Zimmerman, and R.C. Gur, “Anal-
ysis of brain and cerebrospinal fluid volumes with MR imaging.
Part I. Methods, reliability, and validation,” Radiology, vol. 178,
pp. 115–122, Jan. 1991.

[10] M. Jungke, W. von Seelen, G. Bielke, S. Meindl, et al., “A
system for the diagnostic use of tissue characterizing parameters
in NMR-tomography,” in Proc. of Information Processing in
Medical Imaging, IPMI’87, 1987, vol. 39, pp. 471–481.

[11] M.W. Vannier, Ch.M. Speidel, and D.L. Rickman, “Magnetic
resonance imaging multispectral tissue classification,” NIPS, vol.
3, pp. 148–154, August 1988.

[12] J. Haselgrove and M. Prammer, “An algorithm for compen-
sation of surface-coil images for sensitivity of the surface coil,”
Magnetic Resonance Imaging, vol. 4, pp. 469–472, 1986.

[13] B.M. Dawant, A.P. Zjidenbos, and R.A. Margolin, “Correction
of intensity variations in MR images for compuer-aided tissue
classification,” IEEE Transactions on Medical Imaging, vol. 12,
no. 4, pp. 770–781, 1993.

[14] M. Tincher, C.R. Meyer, R. Gupta, and D.M. Williams, “Poly-
nomial modeling and reduction of RF body coil spatial inhomo-
geneity in MRI,” IEEE Transactions on Medical Imaging, vol.
12, no. 2, pp. 361–365, 1993.

[15] Charles R. Meyer, Peyton H. B land, and James Pipe, “Retro-



14 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 3, MARCH 2000, P153-165

spective correction of Intensity Inhomogeneities in MRI,” IEEE
Transactions on Medical Imaging, vol. 14, no. 1, pp. 36–41, Mar.
1995.

[16] W.M. Wells, W.E.L. Grimson, R. Kikinis, and F.A. Jolesz, “Sta-
tistical gain correction and segmentation of MRI data,” 1993,
internal report BWH Boston.

[17] William Wells, Ron Kikinis, and Ferenc A. Jolesz, “Statisti-
cal intensity correction and segmentation of magnetic resonance
image data,” in Proceedings of the Third Conference on Visual-
ization in Biomedical Computing VBC’94, Oct. 1994, vol. 2359,
pp. 13–24.

[18] W.M. Wells, W.E.L. Grimson, R. Kikinis, and F.A. Jolesz,
“Adaptive Segmentation of MRI Data,” IEEE Transactions on
Medical Imaging, vol. 15, no. 4, pp. 429–443, Aug. 1996.

[19] Régis Guillemaud and Michael Brady, “Estimating the Bias
Field of MR Images,” IEEE Transactions on Medical Imaging,
vol. 16, no. 3, pp. 238–251, June 1997.

[20] John G. Sled, P. Zijdenbos, and Alan C. Evans, “A Comparison
of Retrospective Intensity Non-uniformity Correction Methods
for MRI,” in Information Processing in Medical Imaging, 1997,
vol. 1230, pp. 459–464, Proceedings 15th Int. Conf. IMPI’97.

[21] John G. Sled, P. Zijdenbos, and Alan C. Evans, “A nonparamet-
ric method for automatic correction of intensity nonuniformity
in mri data,” IEEE Transactions on Medical Imaging, vol. 17,
pp. 87–97, Feb. 1998.

[22] P. Huber, Robust Statistics, Wiley, 1981.
[23] S.Z. Li, “Robustizing m-estimation using deterministic anneal-

ing,” Pattern Recognition, vol. 29, no. 1, pp. 159–166, 1996.
[24] Colin R. Reeves, Modern Heuristic Techniques for Combinato-

rial Problems, Blackwell Scientific Publications, 1993.
[25] Ch. Brechbühler, G. Gerig, and G. Székely, “Compensation
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