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Abstract

Consider a stationary sequence of random variables with infinitely divisible

marginal law, characterized by its Lévy density. We analyze the behavior of a

so-called cumulant M-estimator, in case this Lévy density is characterized by

a Euclidean (finite-dimensional) parameter. Under mild conditions, we prove

consistency and asymptotic normality of the estimator. The estimator is con-

sidered in the situation where the data are increments of a subordinator as

well as the situation where the data consist of a discretely sampled Ornstein

Uhlenbeck process induced by the subordinator. We illustrate our results for

the Gamma-process and the Inverse-Gaussian-OU-process. For these processes

we also explain how the estimator can be computed numerically.

Key words and Phrases: cumulant, empirical characteristic function, Lévy pro-

cess, self-decomposable distribution, stationary process.
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1 Introduction

Let Z = (Zt, t ≥ 0) be a pure-jump increasing Lévy process, also known as a

subordinator. The distribution of Z is characterized by its marginal distribution

at time t = 1 which, by the Lévy-Khintchine representation (Sato (1999), theorem

8.1), is infinitely divisible and has Fourier transform

ψ(t) = EeitZ1 = exp

(∫ ∞

0
(eitx − 1)ν(dx)

)

, ∀t ∈ R.

Here the measure ν is a σ-finite measure on (0,∞) satisfying the integrability con-

dition
∫

(x ∧ 1)ν(dx) < ∞. The measure ν is called the Lévy measure of Z. We

assume ν admits a density with respect to Lebesgue measure, which we denote by

a. Thus ν(dx) = adx.

Barndorff-Nielsen & Shephard (2001) consider the Ornstein-Uhlenbeck (OU)-

process driven by Z as a model for stochastic volatility in mathematical finance.

For a given number λ > 0, this process is defined as the stationary solution to the

stochastic differential equation

dX(t) = −λX(t)dt+ dZ(λt).

The marginal distribution of X is positive and infinitely divisible with Lévy density

that can be expressed in terms of the Lévy measure of Z:

νX(dx) = x−1ν(x,∞) dx =: x−1k(x) dx

Here k is a decreasing function on (0,∞). In Jongbloed et al. (2005), a nonparamet-

ric estimator for this Lévy measure is introduced and shown to be consistent under

appropriate conditions. Restricting the model to a parametric one, asymptotic dis-

tribution theory can be established as well. In the present paper we introduce a

parametric analogue of this estimator based on a discretely observed OU process.

However, since the monotonicity of the function k is not essential for the proofs in

this paper (contrary to Jongbloed et al. (2005)), we adopt a slightly more general
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approach, also covering parametric estimation of a based directly on the discretely

observed process Z.

Suppose we observe a (sufficiently mixing) stationary time series X1, X2, . . .

with infinitely divisible marginal distribution. Assume the Lévy density of X1 is

parametrized by a Euclidean parameter θ ∈ Θ ⊆ Rk. Hence, a = aθ and ψ = ψθ.

Let θ0 ∈ Θ denote the true value of the parameter, which we wish to estimate.

Firstly, we explain our estimation paradigm briefly, deferring the precise de-

tails to the next section. As a starting point, we take a sequence of preliminary

estimators (ψ̃n, n ≥ 1) such that for each t, ψ̃n(t) → ψθ0(t), either almost surely

or in probability. The most natural example of such an estimator satisfying this

consistency condition in many interesting situations, is the empirical characteristic

function, though other estimators are possible. Now define an estimator θ̂n for θ0

as the minimizer of the random criterion function

θ 7→
∫

(log ψ̃n(t)− logψθ(t))
2w(t)dt (1)

over Θ. Here w is a compactly supported weight-function and logψ refers to the

distinguished logarithm of a characteristic function ψ, the cumulant function. For

this reason, we call this estimator a cumulant M -estimator (CME). In this paper,

we give conditions on the existence of the CME θ̂n, and prove consistency and

asymptotic normality under mild conditions. The asymptotic analysis is restricted to

the case where we use the empirical characteristic function as preliminary estimator.

We consider two specific examples for the sequence (Xn). The first is a sequence

of increments of Z. Since Z has stationary and independent increments, the dif-

ferences Xi = Zi∆ − Z(i−1)∆ are independent and identically distributed (i.i.d.).

Moreover, X1 is infinitely divisible with Lévy measure ∆νθ0 . Without loss of gener-

ality we assume ∆ = 1. The second is a stationary sequence obtained by sampling

the OU-process driven by Z at equidistant time points. The latter problem is in

fact the problem addressed nonparametrically in Jongbloed et al. (2005).

Especially in the i.i.d. setting of increments of Z, a maximum likelihood ap-
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proach might seem appropriate. However, a problem is that for many infinitely

divisible distributions a closed-form expression for the density of Xi is not available

or intractable, whereas the Lévy density aθ0 is often explicit. An example of such

infinitely divisible distributions is given by the class of tempered stable distributions

(cf. Barndorff-Nielsen & Shephard (2002)), which are used in finance.

Some related work on empirical characteristic function procedures includes Feu-

erverger & McDunnough (1981), Feuerverger & McDunnough (1981a) and Knight

& Satchell (1997). In the first two papers an estimator is obtained by minimizing a

quadratic distance between the empirical characteristic function and the supposed

parametric characteristic function. Knight & Satchell (1997) take the same ap-

proach, with characteristic functions replaced by cumulant functions. In this sense,

their estimators are closer to the ones defined here, although they consider a crite-

rion function that differs from (1). Our estimator has the advantage that it works

for any consistent sequence of preliminary estimators (in a sense to be made precise

later on).

Bayesian estimation for OU-processes driven by a subordinator is discussed in

Roberts et al. (2004). A nonparametric estimator for the Lévy measure of a dis-

cretely observed Lévy process is given in Figueroa-López & Houdré (2004). Their

estimation method is different from ours in the sense that their estimator is explic-

itly based on the jumps of the process, requiring a continuous monitoring of the

process. A parametric estimator is obtained by calibrating the parametric model to

the nonparametric estimator.

Here is an outline of the contents of this paper. In the next section, we start

with a precise definition of our estimator. Sufficient conditions for consistency are

given in section 3. In section 4 we analyze the asymptotic behavior of the CME,

in case ψ̃n is the empirical characteristic function of the observations. The results

are illustrated in section 5, where we suppose we discretely observe a Gamma Lévy

process. In section 6 we move to the case of dependent observations from a Lévy

4



driven OU-process. To illustrate the results, we work out the computations involved

for the Inverse-Gaussian OU-process. The appendix contains some technical results.

2 Definition of the estimator

Throughout, we denote the true value of the parameter by θ0 and suppose θ0 ∈ Θ ⊆
Rk. We write d for Euclidean distance on Rk. We aim to estimate θ0, based on

X1, . . . , Xn, where X1 has law πθ0 satisfying

ψθ0(t) =

∫

eitxπθ0(dx) = exp

(∫ ∞

0
(eitx − 1)aθ0(x)dx

)

, ∀t ∈ R.

To explain our estimation method, we first discuss some characterizations of the

distribution of X1.

By the uniqueness theorem for characteristic functions, πθ0 is determined by ψθ0 .

The following result shows that it suffices to know ψθ0 on a finite interval containing

the origin. A proof can be found in Loéve (1977), chapter 4.

Lemma 1 Let X be a positive random variable with characteristic function ψ. If

ψM is the restriction of ψ to an interval (−M,M), then ψM determines ψ.

By a result from complex analysis (see for example Chung (2001), section 7.6),

we can attach to each characteristic function without zeros a unique continuous

function g such that eg(t) = ψ(t). We call this function the cumulant function and

denote the cumulant of a particular characteristic function ψ1 by g1 or logψ1. Since

an infinitely divisible characteristic function has no zeros (Sato (1999), lemma 7.5),

its cumulant is well-defined. Combining this with the above lemma, we conclude

that the distribution of X1 is determined by its cumulant function on an interval

(−M,M). Therefore, all information on θ0 is present in gθ0 , restricted to an interval

(−M,M).

To obtain a consistent estimator for θ0, we suppose there exists a preliminary

estimator ψ̃n for ψ0 such that

∀ t ∈ R ψ̃n(t)→ ψθ0(t) , as n→∞ , (2)
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where the convergence is either almost surely or in probability. Unless stated other-

wise, we will assume (2) holds with convergence almost surely. Often, this require-

ment is fulfilled by the empirical characteristic function (e.c.f.), which is defined by

ψ̃n(t) =
∫

eitxdFn(x), where Fn denotes the empirical distribution function of the

data. If (2) holds, then, for n sufficiently large, we expect that g̃n = log ψ̃n and gθ0

are close in a sense yet to be made precise. Upon comparing these functions on a

compact interval around the origin, we obtain an M -estimator. We now work out

the details.

Let w be an integrable weight-function with compact support, denoted by S.

Assume w is symmetric around the origin and w is strictly positive on a neighbor-

hood of the origin. One may think of w = 1[−m,m] for some m > 0. Define the space

of square integrable functions w.r.t. w(t)dt by

L2(w) :=
{

f : R → IC
∣

∣ f is measurable and

∫

|f(t)|2w(t)dt <∞
}

.

We define a semi inner-product 〈·, ·〉w on L2(w) by

〈f, g〉w = <
∫

f(t)g(t)w(t)dt

=

∫

<f(t)<g(t)w(t)dt+
∫

=f(t)=g(t)w(t)dt ,

where the bar over g denotes complex conjugate and < (=) the operation of taking

the real (imaginary) part of an element of IC. For g ∈ L2(w) we define a seminorm

by ‖g‖w =
√

〈g, g〉w.
Throughout the rest of the paper, we assume n is large enough such that g̃n =

log ψ̃n exists on S. Given g̃n, we define an estimator for θ0 as the minimizer of

Γn(θ) := ‖gθ − g̃n‖2w =

∫

|gθ(t)− g̃n(t)|2w(t)dt

over Θ ⊆ Rk. Since we minimize a weighted difference between cumulants, we

call this estimator a cumulant-M-estimator (CME). Put Mn(θ) :=
√

Γn(θ). In the

following, we write ‖ · ‖∞ for the supremum norm on S, i.e. for f : R → IC bounded,

we define ‖f‖∞ = supt∈S |f(t)|.
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Proposition 2 Assume the parameter-set Θ ⊆ Rk is compact. If for every sequence

(θm) ∈ Θ

θm → θ ⇒
∫ ∞

0
(x ∧ 1) · |aθm(x)− aθ(x)|dx→ 0, (m→∞) (3)

then there is a θ̂n ∈ Θ such that Mn(θ̂n) = minθ∈ΘMn(θ).

Proof It suffices to prove that the mapping θ 7→Mn(θ) is continuous. Let θ, ξ ∈ Θ.

For t ∈ S,

|gθ(t)− gξ(t)| =
∣

∣

∫ ∞

0
(eitx − 1)(aθ(x)− aξ(x))dx

∣

∣

≤ |t|
∫ 1

0
x |aθ(x)− aξ(x)|dx+ 2

∫ ∞

1
|aθ(x)− aξ(x)|dx

≤ max{|t|, 2}
∫ ∞

0
(x ∧ 1)|aθ(x)− aξ(x)|dx,

where we use the inequality |eix − 1| ≤ min{|x|, 2}. By the triangle inequality, we

find that

|Mn(θ)−Mn(ξ)| =
∣

∣‖gθ − g̃n‖w − ‖gξ − g̃n‖w
∣

∣ ≤ ‖gθ − gξ‖w

≤
(

‖gθ − gξ‖2∞
∫

w(t)dt
)1/2

≤ C

∫ ∞

0
(x ∧ 1) · |aθ(x)− aξ(x)|dx,

for some constant C > 0. Now, continuity ofMn on Θ is a consequence of assumption

(3).

By a dominated convergence argument, it is often easy to check for (3).

Corollary 3 Assume the parameter-set Θ ⊆ Rk is compact. Suppose there exists

a function A : (0,∞) → [0,∞) satisfying
∫∞
0 (x ∧ 1)A(x)dx < ∞ (e.g. A(x) =

1/(x
√
x)) such that supθ∈Θ aθ(x) ≤ A(x), for all x > 0. If the mapping θ 7→ aθ(x)

is continuous for all x > 0, then θ̂n = argminθ∈Θ Γn(θ) exists.

Remark 4 Even if the Lévy measure ν does not admit a density with respect to

Lebesgue measure we may still prove existence of a CME. For example, let Z be a
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Poisson process with jumps of size θ ∈ Θ ⊆ R. Then νθ is a point-mass at θ and

hence

|gθ(t)− gξ(t)| = |eiθt − eiξt| ≤ |t| · |θ − ξ|,

which implies that we can adapt the proof of proposition 2 to this case.

3 Consistency

Under appropriate conditions, we expect the random criterion functions Mn to con-

verge to a deterministic function M : Θ → [0,∞]. Since roughly, g̃n ∼ gθ0 for n

large, we expect, under θ0, that

Mn(θ)
a.s.−→M(θ) := ‖gθ − gθ0‖w.

The latter deterministic map is easily seen to be minimized for θ = θ0.

Although θ̂n is possibly not uniquely defined, the next theorem shows that any

choice of θ̂n (as minimizer of Mn) is a consistent estimator for θ0 under mild condi-

tions.

Theorem 5 Suppose Θ ⊆ Rk is compact and (3) holds. Assume the sequence of

preliminary estimators is such that (2) holds (for convergence almost surely). If

πθ 6= πθ0 whenever θ 6= θ0, then, θ̂n → θ0, almost surely, as n tends to infinity.

Proof By lemma 5.2 in Jongbloed et al. (2005), we can strengthen the convergence in

(2) to supt∈S |ψ̃n(t)−ψθ0(t)|
a.s.−→ 0 under θ0. Theorem 7.6.3 in Chung (2001) implies

that the uniform convergence of ψ̃n to ψθ0 on S carries over to uniform convergence

of g̃n to gθ0 on S. That is, ‖g̃n − gθ0‖∞
a.s.−→ 0. By the triangle inequality we have

sup
θ∈Θ

|Mn(θ)−M(θ)| = sup
θ∈Θ

|‖gθ − g̃n‖w − ‖gθ − gθ0‖w|

≤ ‖g̃n − gθ0‖w ≤ ‖g̃n − gθ0‖∞
(

∫

w(t)dt
)1/2 a.s.−→ 0.

Furthermore, since θ̂n minimizes Mn over Θ,

Mn(θ̂n) ≤Mn(θ0) = ‖gθ0 − g̃n‖w
a.s.−→ 0.
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Combining both assertions, we conclude that M(θ̂n)
a.s.−→ 0 (n→∞). Once we have

proved

∀ ε > 0 inf
θ : d(θ,θ0)≥ε

M(θ) > M(θ0) = 0, (4)

this implies that for each ω ∈ Ω and for every ε > 0, d(θ̂n, θ0) < ε for n ≥ N . That

is, θ̂n
a.s.−→ θ0, as n→∞.

We now prove (4). Suppose θ 6= θ0, then by identifiability πθ 6= πθ0 . Using

lemma 1, this implies that there exists a neighborhood U ⊆ S around zero, such

that ψθ 6≡ ψθ0 on U . Therefore gθ 6≡ gθ0 on U and hence, by the continuity of

the cumulant function, M(θ) = ‖gθ − gθ0‖w > 0, since we have U ⊆ S. Thus

M(θ) > M(θ0) = 0. Therefore M has a unique minimizer on Θ.

By similar inequalities as in the proof of lemma 2, for θ, ξ ∈ Θ,

|M(θ)−M(ξ)| ≤ ‖gθ − gξ‖w ≤ C

∫ ∞

0
(x ∧ 1)|aθ − aξ|dx,

for some positive constant C. Hence, by (3), the mapping θ 7→ M(θ) is continuous

on Θ. Let ε > 0. The set Vθ0 := {θ ∈ Θ : d(θ, θ0) ≥ ε} is a closed subset of

the compact set Θ and hence compact. By continuity, M(Vθ0), the image of Vθ0

under M , is compact. Since θ0 is the unique minimizer of M on Θ and M(θ0) = 0,

0 6∈ M(Vθ0). Therefore, there exists an η > 0 such that M(θ) ≥ η on Vθ0 . This

proves (4).

In case we assume (2) holds with convergence in probability instead of convergence

almost surely and retain the other assumptions of theorem 5, the proof of the pre-

vious theorem can easily be adapted to show that in that case supθ∈Θ |Mn(θ) −
M(θ)| p−→ 0. Since (4) remains true, we can apply theorem 5.7 in Van der Vaart

(1998), which then asserts that any sequence of estimators θ̄n with Mn(θ̄n) ≤
Mn(θ0) + oP (1) converges in probability to θ0. (Here, and in the following we

use stochastic order symbols: for a sequence of random vectors Xn and a given se-

quence of random variables Rn we write Xn = oP (Rn) if Xn = YnRn for a sequence
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of random vectors Yn tending to zero in probability.) Now

|Mn(θ̂n)−Mn(θ0)| ≤Mn(θ̂n) + |M(θ0)−Mn(θ0)| = oP (1) + oP (1),

where the two oP (1) terms follow from the inequalities in the first two displays of

the proof of theorem 5. Therefore, θ̂n
p−→ θ0.

Corollary 6 Suppose Θ ⊆ Rk is compact and (3) holds. Assume the sequence

of preliminary estimators satisfies (2) for convergence in probability. If πθ 6= πθ0

whenever θ 6= θ0, then, θ̂n
p−→ θ0, as n tends to infinity.

4 Asymptotic behavior of the estimator

To derive asymptotic distribution results for the CME, we go through the following

steps:

(I) Derive weak convergence of the process (
√
n(ψ̃n(t)− ψθ0(t)), t ∈ S).

(II) Show Hadamard differentiability of the mapping that attaches to a character-

istic function its cumulant. Subsequently, apply the functional Delta method

to obtain weak convergence of the process (
√
n(g̃n(t)− gθ0(t)), t ∈ S)

(III) Use results from the theory of M- and Z-estimators to derive the asymptotic

distribution of
√
n(θ̂n − θ0).

Details will be given along the way.

To simplify results a bit, we assume in this section that our initial estimator is

the empirical characteristic function, which we denote by ψ̃n (see however remark

16). Throughout this section, we assume all observations are independent, with

common distribution πθ0 .

Step (I)

Define for t ∈ R

Yn(t) =
√
n(ψ̃n(t)− ψθ0(t)).
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(Presently, we suppress the dependence of Yn on θ0 for ease of notation. Later on,

we will explicitly write Y θ0
n .)

By the multivariate central limit theorem it follows that for t1 < · · · < tk,

(Yn(t1), . . . , Yn(tk))Ã Nk(0,Σ(θ0)), n→∞,

where, if X is a random variable with distribution πθ0 ,

Σθ0 |j,k = E(eitjX − ψθ0(tj))(eitkX − ψθ0(tk)) = ψθ0(tj − tk)− ψθ0(tj)ψθ0(−tk). (5)

We aim to prove that there exists a centered Gaussian process Y with covariance as

in (5) such that Yn converges weakly to Y in the space `∞(S), where

`∞(S) = {z : S → IC : ‖z‖∞ = sup
t∈S

|z(t)| <∞},

is the space of bounded complex valued functions on S, equipped with the supremum

norm. By weak convergence we mean

E∗h(Yn)→ Eh(Y ), n→∞

for every bounded and continuous function h : `∞(S) → R. Here E∗ denotes outer

expectation. (We use outer expectations, since elements of `∞(S) may not be Borel-

measurable. See for instance Van der Vaart (1998), chapter 18.) If the sequence Yn

converges weakly to Y, we write Yn Ã Y .

The result below follows from Giné and Zinn (1986). The ε-covering number of

a set A for a semi-metric ρ, denoted by N(ε,A, ρ), is defined as the minimal number

of ρ-balls of radius ε needed to cover the set A.

Theorem 7 (Giné and Zinn (1986), chapter 4, theorem 6.1) Let X be a ran-

dom variable with distribution πθ0. Define for s, t ∈ R

σ(s, t) :=
(

E|eitX − eisX |2
)1/2

= 2
(

E
[

sin2 12(t− s)X
]

)1/2
.

If
∫ ε0

0
(logN(ε, S, σ))1/2dε <∞, (6)
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for some small ε0 > 0, then Yn converges weakly in the space `∞(S) to a complex-

valued centered Gaussian process Y with covariance structure

cov(Yt, Ys) = ψθ0(t− s)− ψθ0(t)ψθ0(−s). (7)

Let B denote a standard Brownian Bridge and define a process B0 by

B0(x) = B(πθ0([0, x]), x ≥ 0. (8)

The limit process can be identified as the process Y ′, defined by

Y ′(t) :=
∫

eitxdB0(x), t ∈ S, (9)

where B denotes a standard Brownian Bridge. To see this, note that Y ′ is a centered

Gaussian process with the same covariance function as Y . Since weak limits are

unique in a distributional sense, it follows that Yn converges weakly in `∞(S) to Y ′.

Since F := (C(S), ‖·‖∞) is a closed subset of (`∞(S), ‖·‖∞), we have by the

Portmanteau theorem

P (Y ′ ∈ F ) ≥ lim sup
n

P (Yn ∈ F ) = 1.

Therefore Y ′ is almost surely continuous and by lemma 18.13 in Van der Vaart

(1998) the weak convergence of Yn of Y in space `∞(S) carries over to the space

C(S). Hence, Yn Ã Y ′ in (C(S), ‖ · ‖∞). We summarize this result in a corollary.

Corollary 8 If the entropy condition of theorem 7 holds true, then Yn converges

weakly in (C(S), ‖ · ‖∞) to the centered Gaussian process Y ′, as defined in (9).

A simple moment condition suffices for (6).

Lemma 9 If for some α > 0

∫

|x|απθ0(dx) <∞, (10)

then the entropy condition (6) is satisfied and the conclusion of theorem 7 holds.

A proof is given in the appendix.
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Step (II)

Next, we consider the weak convergence of the empirical cumulant process, defined

by

Un(t) :=
√
n(g̃n(t)− gθ0(t)) =

√
n(log ψ̃n(t)− logψθ0(t)).

We use the functional Delta method (see e.g. Van der Vaart (1998), chapter 20).

Let Ψ denote the set of infinitely divisible characteristic functions and let T be the

mapping that assigns to ψ ∈ Ψ its corresponding cumulant function. We write

G = T (Ψ) to denote the set of cumulants. Recall ‖ · ‖∞ refers to the supremum

norm on S.

Proposition 10 The mapping T : (Ψ, ‖·‖∞) → (G, ‖·‖∞) is Hadamard differen-

tiable tangentially to C0 := {f : R → IC | f is continuous and f(0) = 0}. Its

Hadamard derivative at ψ is given by T ′ψ(ϕ) = ϕ/ψ for ϕ ∈ C0.

Proof Fix ψ ∈ Ψ and ϕ ∈ C0. Let ϕε be such that ψ + εϕε ∈ Ψ for all small ε > 0

and such that ‖ϕε − ϕ‖∞ → 0, as ε ↓ 0. By the triangle inequality

∥

∥

∥

∥

T (ψ + εϕε)− T (ψ)
ε

− ϕ

ψ

∥

∥

∥

∥

∞
≤
∥

∥

∥

∥

T (ψ + εϕε)− T (ψ)
ε

− ϕε
ψ

∥

∥

∥

∥

∞
+

∥

∥

∥

∥

ϕ− ϕε
ψ

∥

∥

∥

∥

∞
. (11)

By the defining property of the distinguished logarithm, we have for any ψ1, ψ2 ∈ Ψ

that T (ψ1)−T (ψ2) = T (ψ1/ψ2). Therefore, the first term on the right-hand-side of

the preceding display equals

1

ε

∥

∥

∥

∥

T

(

1 + ε
ϕε
ψ

)

− εϕε
ψ

∥

∥

∥

∥

∞
=

1

ε
sup
t∈S

∣

∣

∣

∣

T

(

1 + ε
ϕε
ψ

)

(t)− εϕε(t)
ψ(t)

∣

∣

∣

∣

. (12)

Define uε(t) := ϕε(t)/ψ(t). Since {|uε(t)| , t ∈ S} is compact, we can choose ε small

enough such that εuε(t) ∈ B1/2(0) = {z ∈ IC : |z| ≤ 1/2} for all t ∈ S. Within

B1/2(0) the following inequality holds: | log(1 + w) − w| ≤ 1
2 |w|2/(1 − |w|) (see

Remmert (1991), section 5.4). Using this inequality we see that (12) is bounded by

1

ε
sup
t∈S

∣

∣

∣

∣

1
2

ε2(uε(t))
2

1− εuε(t)

∣

∣

∣

∣

≤ 1

2ε

ε2M2
ε

1− εMε
≤ 1

2
M2
ε ε,
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where Mε = ‖uε‖∞. Now Mε ≤
∥

∥

∥

ϕ−ϕε

ψ

∥

∥

∥

∞
+
∥

∥

∥

ϕ
ψ

∥

∥

∥

∞
. We conclude that once we

have proved that
∥

∥

∥

ϕ−ϕε

ψ

∥

∥

∥

∞
→ 0 as ε ↓ 0 and

∥

∥

∥

ϕ
ψ

∥

∥

∥

∞
< ∞, then both terms on the

right-hand-side of (11) can be made arbitrarily small by letting ε tend to zero.

Since an infinitely divisible characteristic function has no zeros, every ψ ∈ Ψ is

bounded away from zero on compacta. Therefore ‖1/ψ‖∞ = supt∈S |1/ψ(t)| ≤ C

for some positive constant C and

‖(ϕ− ϕε)/ψ‖∞ ≤ ‖1/ψ‖∞ ‖ϕε − ϕ‖∞ ≤ C‖ϕε − ϕ‖∞,

which tends to zero as ε tends to zero. The same argument shows that ‖ϕ/ψ‖∞ ≤
C‖ϕ‖∞ <∞. Hence, the left-hand-side of (11) can be made arbitrarily small, which

means that T is Hadamard differentiable at ψ with T ′ψ as stated.

By the functional Delta method (Van der Vaart (1998), theorem 20.8) we now obtain

Corollary 11 If Yn Ã Y in (C(S), ‖ · ‖∞), then Un Ã U in (C(S), ‖ · ‖∞), where

U = T ′ψ(Y ) = Y/ψ.

The process U is centered Gaussian with covariance function

cov(U(t), U(s)) = [ψθ0(t− s)− ψθ0(t)ψθ0(−s)]/[ψθ0(t)ψθ0(−s)], t, s ∈ S.

In the following we will write U θ0
n and U θ0 , to avoid confusion with other thetas

appearing.

Step (III)

To derive the asymptotic behavior of θ̂n, we define conditions which enable us to

define θ̂n as a Z-estimator. By this we mean that we define conditions under which

θ̂n is a point for which all partial derivatives of θ 7→ Γn(θ) are (nearly) zero. The

following assumption suits our purposes well. We denote by θi the i-th coordinate

of a vector θ ∈ Θ ⊆ Rk.
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Assumption 12 (i). Condition (6) is satisfied, so that the process Yn converges

weakly and, by corollary 11, the process Un as well.

(ii). For each i = 1, . . . , k the partial derivative θ 7→ giθ :=
∂
∂θi
gθ exists. Moreover,

the mapping (θ, t) 7→ giθ(t) is jointly continuous on Θ× S.

Combining the second part of this assumption with dominated convergence we get

∂

∂θi
Γn(θ) = 2〈giθ, gθ − g̃n〉w =: Ψi

n(θ), 1 ≤ i ≤ k.

Hence, θ̂n is a (near) zero of the random criterion function

Ψn(θ) := (Ψ1n(θ), . . . ,Ψ
k
n(θ))

′,

Since g̃n converges almost surely uniformly on S to gθ0 , we expect that θ̂n converges

to a zero of

Ψθ0(θ) := (2〈g1θ , gθ − gθ0〉w, . . . , 2〈gkθ , gθ − gθ0〉w)′.

Note that θ0 is such a zero. The actual proof follows the line of thought as in

theorem 5.21 of Van der Vaart (1998). For the statement of the next theorem, we

need a few definitions. Define Hn,θ0 : Θ ⊆ Rk → Rk by

Hn,θ0(θ) : =
√
n(Ψn(θ)−Ψθ0(θ))

= (−2〈g1θ ,
√
n(g̃n − gθ0)〉w, . . . ,−2〈gkθ ,

√
n(g̃n − gθ0)〉w)

= −2(〈g1θ , U θ0n 〉w, . . . , 〈gkθ , U θ0n 〉w).

Denote the i-th coordinate of Hn,θ0 by Hi
n,θ0

. We will often write Hn(θ) instead of

Hn,θ0(θ). In case we do so, we should keep in mind that Un is always assumed to

depend on θ0 (not on the general θ, which is the argument of Hn). For θ ∈ Θ, define

zθ : R2 → IC by

zθ(t, x) :=
eitx

ψθ(t)
. (13)

Theorem 13 Assume the mapping θ 7→ Ψθ0(θ) is differentiable at θ0 with non-

singular derivative matrix Ψ̇θ0(θ0). Assume

Hn(θ̂n)−Hn(θ0)
p−→ 0. (14)
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If θ̂n
p−→ θ0 and Ψn(θ̂n) = oP (n

−1/2) (θ̂n is a near zero of Ψn), then

√
n(θ̂n − θ0) = −Ψ̇−1θ0 Hn(θ0) + oP (1), (15)

where the sequence {Hn(θ0)}n is tight. Moreover, the sequence
√
n(θ̂n−θ0) is asymp-

totically normal with mean zero and covariance matrix Ψ̇θ0(θ0)
−1Σθ0(Ψ̇θ0(θ0)

−1)′,

where

Σθ0 |i,j = 4

∫

〈giθ0 , zθ0(·, x)〉w〈g
j
θ0
, zθ0(·, x)〉wdπθ0(x)

−4
(∫

〈giθ0 , zθ0(·, x)〉wdπθ0(x)
)(∫

〈gjθ0 , zθ0(·, x)〉wdπθ0(x)
)

. (16)

Proof First note that

Hn(θ̂n) =
√
nΨn(θ̂n) +

√
n(Ψθ0(θ0)−Ψθ0(θ̂n))−

√
nΨθ0(θ0)

=
√
n((Ψθ0(θ0)−Ψθ0(θ̂n)) + oP (1). (17)

Since θ 7→ Ψθ0(θ) is differentiable near θ0, we have for h ∈ Rk, that R(h) :=

Ψθ0(θ0+h)−Ψθ0(θ0)−Ψ̇θ0(h) satisfiesR(h) = o(‖h‖), as h→ 0. Since θ̂n−θ0 = oP (1)

this implies (Van der Vaart (1998), lemma 2.12)

√
n(Ψθ0(θ̂n)−Ψθ0(θ0))− Ψ̇θ0(θ0)

√
n(θ̂n − θ0) =

√
noP (‖θ̂n − θ0‖).

Inserting (17) into this expression and using (14) gives

√
nΨ̇θ0(θ0)(θ̂n−θ0)+

√
noP (‖θ̂n−θ0‖) = −Hn(θ̂n)+oP (1) = −Hn(θ0)+oP (1). (18)

If we define for each θ ∈ Θ the mapping Λθ : (C(S), ‖ · ‖∞)→ Rk by

Λθ(f) = (−2〈g1θ , f〉w, . . . ,−2〈gdθ , f〉w)′, f ∈ C(S),

then Hn(θ) = Λθ(U
θ0
n ). By lemma 22 from the appendix, the mapping Λθ is con-

tinuous. Since U θ0n Ã U θ0 in C(S) we have by the continuous mapping theorem

Λ(U θ0n )Ã Λ(U θ0) in Rk, which means that

Hn(θ)Ã Λθ(U
θ0) = −2(〈g1θ , U θ0〉w, . . . , 〈gkθ , U θ0〉w)′ =: Hθ0(θ).
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As a consequence, the sequence {Hn(θ0)}n is tight.

By lemma 24 and assumption 12 we have
∫

|〈giθ0 , zθ0(·, x)〉w|
2dπθ0(x) <∞, ∀ 1 ≤ i ≤ k,

which enables us to apply lemma 23. This yields that the distribution of H(θ0) is

multivariate normal with mean zero and covariance Σθ0 as specified in the statement

of the theorem.

By invertibility of the matrix Ψ̇θ0 we obtain from (18)

√
n‖θ̂n − θ0‖ ≤ ‖Ψ̇−1θ0 ‖

√
n‖θ̂n − θ0‖ = OP (1) + oP (

√
n‖θ̂n − θ0‖).

This implies that θ̂n is
√
n-consistent. Inserting this in (18), we obtain that

√
nΨ̇θ0(θ̂n−

θ0) = −Hn(θ0)+oP (1). Now multiplication of both sides with Ψ̇−1θ0 gives (15). (The

remainder term still converges to zero in probability, since matrix multiplication is

a continuous operation.) The final statement of the theorem follows from the weak

convergence of Hn(θ0) to H(θ0).

Remark 14 Under regularity conditions,

Ψ̇θ0(θ)|i,j =
∂

∂θj
Ψi
θ0(θ) = 2〈gjiθ , gθ − gθ0〉w + 2〈giθ, gjθ〉w,

where gjiθ = ∂
∂θj∂θi

gθ. In that case Ψ̇θ0(θ0)|i,j = 2〈giθ0 , g
j
θ0
〉w.

It remains to give conditions under which (14) holds. Since convergence in probabil-

ity of a vector is equivalent to convergence in probability of each of its components,

it suffices to prove Hi
n(θ̂n) − Hi

n(θ0)
p−→ 0 for each i ∈ {1, . . . , k}. As seen in the

proof of theorem 13

Hn(θ)Ã Hθ0(θ), θ ∈ Θ, (19)

where

Hi
n(θ) = −2〈giθ, U θ0n 〉w and Hi

θ0(θ) = −2〈g
i
θ, U

θ0〉w.

Just as for Hn we will drop the θ0 on Hθ0 , for sake of readability, thus we write H

instead of Hθ0 . The next lemma shows that we can strengthen the convergence in

(19) to (14) under mild conditions.
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Lemma 15 Assume Θ is compact. If θ̂n is a sequence in Θ such that θ̂n
p−→ θ0,

then Hn(θ̂n)−Hn(θ0)
p−→ 0.

Proof To prove Hi
n(θ̂n) − Hi

n(θ0)
p−→ 0 (1 ≤ i ≤ k), we check the conditions of

lemma 25 below.

Let (θm) be a sequence in Θ converging to θ. By assumption 12(ii), and com-

pactness of S and Θ, dominated convergence gives that ‖giθm
− giθ‖w → 0 (m→∞).

By the Cauchy-Schwartz inequality

|Hi(θm)−Hi(θ)| ≤ 2‖giθm
− giθ‖w‖U θ0‖.

The right-hand-side of this expression tends to zero, as m → ∞, since almost all

sample paths t 7→ U θ0(t) are continuous on S. This shows continuity of θ 7→ Hi(θ),

a.s.

Let ‖·‖Θ denote the supremum norm on Θ. Define Λ : C(S, ‖·‖∞)→ C(Θ, ‖·‖Θ)
by [Λ(f)](θ) = 〈giθ, f〉w. If fn → f in C(S), then

‖Λ(fn)− Λ(f)‖Θ = sup
θ∈Θ

|〈giθ, fn − f〉w ≤ sup
θ∈Θ

‖giθ‖w‖fn − f‖w → 0,

which proves continuity of Λ. Since U θ0
n Ã U θ0 in C(S), the continuous mapping

theorem implies Λ(U θ0
n )Ã Λ(U θ0) in C(Θ). That is, Hi

n Ã Hi in C(Θ). Now apply

lemma 25.

Remark 16 The line of proof given in this section holds for more general prelim-

inary estimators than the empirical characteristic function. We now point out at

which places in the proof we use that the preliminary estimator is the empirical char-

acteristic function. Firstly, step (I) was simplified thanks to theorem 7. Secondly,

if we were to use another preliminary estimator than the empirical characteristic

function, we would still obtain that
√
n(θ̂n−θ0) = OP (1) (by theorem 13), although

it would be much harder to find the precise limiting distribution of this sequence. In

particular, the derivation of (16) depends heavily on the expression for Y in terms

of a Brownian bridge.
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Remark 17 Ideally, we would like to choose the weight-function w such that the

asymptotic variance of
√
nθ̂n (as given in theorem 13) is minimal. However, even if

the parameter is one-dimensional, this problem is difficult by the complicated form

of the asymptotic variance. Moreover, this optimal weight-function will depend on

the unknown parameter that needs to be estimated.

We now point out some related estimation procedures that are based on charac-

teristic functions and cumulants, where similar problems occur. The K-L-procedure

of Feuerverger & McDunnough (1981) runs as follows:

(i) Choose a set of points T = {t1, . . . , tq}. Set

zθ = (<ψθ(t1), . . . ,<ψθ(tq),=ψθ(t1), . . . ,=ψθ(tq))′

zn = (<ψn(t1), . . . ,<ψn(tq),=ψn(t1), . . . ,=ψn(tq))′,

for ψ̃n the empirical characteristic function.

(ii) Under conditions,
√
n(zn−zθ0) converges weakly to a Normal distribution with

mean zero and covariance-matrix Σθ0 . Define θ̂n as the maximum-likelihood

estimator for this Normal distribution, with Σθ0 replaced by a consistent esti-

mator, say Σn. Thus, θ̂n is the minimizer of θ 7→ (zn − zθ)′(Σn)−1(zn − zθ).

For the one-dimensional case, Feuerverger & McDunnough (1981) point out that

the variance of
√
nθ̂n can be made arbitrarily close to the Cramer-Rao-bound, by

choosing the grid points in T sufficiently fine and extended. For the multivariate

case, which is considered in Feuerverger & McDunnough (1981a) this is not so clear.

Most arguments are given in a heuristic way. If we take a regularly spaced grid, i.e.

tj = jτ for some τ > 0, it is proposed to take τ as the minimizer of the determinant

of Σθ0 . We doubt whether minimizing the determinant is a sensible criterium.

Knight & Satchell (1997) follow exactly the same approach as in Feuerverger &

McDunnough (1981a), but with the characteristic function replaced by the cumulant

function. The same remarks hold for the choice of the weights.
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For our method, numerical results indicate that a good choice for the weight-

function can improve the results obtained so far. In Jongbloed et al. (2005), section

7.1, a data-adaptive choice for w is proposed, which could also be used for the

numerical examples in this paper. However, then our asymptotic results are not

valid as stated.

To conclude, since there is no universal rule for choosing the grid-points in

the K-L-procedure, as well as the weight-function for the CME, a fair numerical

comparison of both models is hard.

5 Example: discrete observations from a

Gamma-process

In this section we give an example in which we consider existence, consistency and

asymptotic behavior of the CME. Furthermore, we explain how the estimator can

be approximated numerically.

Suppose we discretely observe a Gamma process. Statistically, this is equivalent

to observing a sample X1, . . . , Xn with common law πθ ∼ Gamma(c, α), where

θ = (c, α) ∈ (0,∞)2. The cumulant of πθ is given by

gθ(t) = −c log(1− α−1it).

The Lévy density is given by aθ(x) = cx−1e−αx1{x≥0}, which is continuous in θ for

all x > 0. Let Θ ⊆ (0,∞)2 be compact and suppose the true value of the parameter

θ0 is in Θ. If we take a sequence of preliminary estimators which satisfies (2), then,

by corollary 3, θ̂n = argminθ∈Θ Γn(θ) exists. From theorem 5 we obtain consistency:

θ̂n
a.s.−→ θ0.

Next, we turn attention to the asymptotics of θ̂n. For the rest of this example,

we use the empirical characteristic function as a preliminary estimator. Clearly,

condition (10) is satisfied. Whence the empirical cumulant process Un converges
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weakly. Both partial derivatives of gθ exist and are given by

g1θ(t) =
∂

∂c
gθ(t) = − log(1− α−1it)

g2θ(t) =
∂

∂α
gθ(t) = −c

−t2 + iαt

α(α2 + t2)
.

Joint continuity of the partial derivatives in (t, c, α) is easily seen. We conclude that

assumption (12) is fulfilled. Now, we want to apply theorem 13 to obtain asymptotic

normality of θ̂n.

By existence and continuity of all partial derivatives of θ 7→ gθ it follows that

the mapping θ 7→ Ψθ0(θ) is differentiable near θ0, for θ0 ∈ Θ. Since also all second

order partial derivatives exist and are continuous, we have Ψ̇θ0(θ0)|i,j = 2〈giθ0 , g
j
θ0
〉w

(see remark 14). Then, we will generally have that the matrix Ψ̇θ0 is non-singular.

By lemma 15, condition (14) is easily satisfied. Thus,

√
n(θ̂n − θ0)Ã N((0, 0)′, Ψ̇θ0(θ0)

−1Σθ0(Ψ̇θ0(θ0)
−1)′), (20)

with Σθ0 as specified in (16).

The estimator can easily be computed numerically. First note the linearity prop-

erty gθ(·) = g(c,α)(·) = cg(1,α)(·). This property makes the numerical optimization

problem relatively easy. The objective function can be written as

Γn(θ) ≡ Γn(gθ) = ‖gθ − g̃n‖2w = ‖cg(1,α) − g̃n‖2w.

First we minimize Γn(θ) for fixed α with respect to c. This is easy, since c 7→
Γn((c, α)) is quadratic. Taking the partial derivative with respect to c gives

∂

∂c
Γn((c, α)) = 2c‖g(1,α)‖2w − 2〈g(1,α), g̃n〉w

and by equating this expression to zero we obtain

cn(α) =
〈g(1,α), g̃n〉w
‖g(1,α)‖2w

.

as a minimizer for fixed α. Now we can minimize α 7→ Γn((cn(α), α)) numerically by

using a Fibonacci search algorithm. Denote the minimizer by α̂n, then ĉn = cn(α̂n).
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The asymptotic covariance can be obtained from theorem 13 by numerical inte-

gration. We took w(·) = 1[−2,2](·) and θ0 = (3, 2). Applying Simpson’s rule gives

that

Ψ̇θ0(θ0)
−1Σθ0(Ψ̇θ0(θ0)

−1)′ ≈





25.5691 17.3076

17.3076 13.6966



 . (21)

This value can be compared with the asymptotic variance we would find if we

would apply maximum likelihood. This value is given by the inverse of the Fisher

information matrix, which equals

I−1θ0 =
α20

c0Υ(1, c0)− 1





c0/α
2
0 1/α0

1/α0 Υ(1, c0)



 ≈





16.2336 10.8224

10.8224 8.5483



 . (22)

Here Υ denotes the derivative of the logarithm of the Gamma-function. This shows

that the CME is less efficient than the MLE. However, there is a gain in robustness,

by the use of the empirical characteristic function, see Feuerverger & McDunnough

(1981a).

For a sample of size n = 1000 we computed both the CME and MLE 20 times.

The resulting scatterplot is given in figure 1. By (20), for n large, the CME θ̂n

has approximately a N2(θ0,
1
nAθ0) distribution, where Aθ0 := Ψ̇−1θ0 Σ

θ0(Ψ̇−1θ0 )
′. If we

define the ellipse

En,α :=
{

θ ∈ R2 : (θ − θ0)′(Aθ0)−1(θ − θ0) ≤ χ2,α/n
}

,

then, for n large, P (θ̂n ∈ En,α) ≈ 1 − α. Here χ2,α denotes the upper α-quantile

of the χ2-distribution with two degrees of freedom. In figure 1 we added a contour

plot of E20,0.05 for both the CME and the MLE.

Figure 2 shows the estimated canonical function and density in case we have

respectively n = 100 (dashed curve) and n = 1000 (solid curve) observations. The

true canonical function and true density are also plotted (dotted line).

For n = 100 we computed the CME 100 times. Denote the estimates by q100 =
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Figure 1: Gamma(3, 2) distribution, Scatterplot of parameter estimates for 20 i.i.d. data

sets of sample-size n = 1000. Starred: CME, circled: MLE. Solid ellipse: 95%-contour plot

for the CME. Dashed ellipse: 95%-contour plot for the MLE.
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Figure 2: Gamma(3, 2) distribution, Left figure: x 7→ xa(x). Right figure: density function.

Dashed: n = 100, solid: n = 1000, dotted: true.

23



(θ̂
(1)
100, . . . , θ̂

(100)
100 ), then

mean(q100) =





3.1228

2.0836



 and 100 ∗ cov(q100) =





23.4063 16.1694

16.1694 12.6988



 .

Similarly, for n = 1000 we got

mean(q1000) =





3.0038

2.0048



 and 1000 ∗ cov(q1000) =





25.6449 16.2889

16.2889 12.3042



 .

6 Parametric estimation for OU-processes driven by a

subordinator

Suppose Z is a subordinator without drift. For a given λ > 0 define the process X

as the stationary solution to the stochastic differential equation

dX(t) = −λX(t)dt+ dZ(λt), t ≥ 0 . (23)

We call X an Ornstein-Uhlenbeck (OU) process, driven by Z. The theorem below

shows that a stationary OU-process exists if the Lévy measure of the driving subor-

dinator Z satisfies an integrability condition. In that case the marginal distribution

of X is infinitely divisible and its Lévy measure can be expressed explicitly by the

Lévy measure of the underlying process Z.

Theorem 18 Suppose Z is an increasing Lévy process with Lévy measure ρ (which

is by definition the Lévy measure of Z(1)). For t ≥ 0, let Pt(x, ·) denote the transi-

tion kernel of the (Markov) process X, when started at x. If ρ satisfies the integra-

bility condition
∫ ∞

2
log xρ(dx) <∞ ,

then Pt(x, ·) converges weakly to a limit distribution π as t→∞ for each x ∈ (0,∞)

and each λ > 0. Moreover, π is infinitely divisible with Lévy measure ν(dx) =

x−1k(x)dx, for k the decreasing function defined by k(x) = ρ(x,∞)1(0,∞)(x). Fur-

thermore, π is the unique invariant probability distribution of X.
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For a proof, see Sato (1999), theorem 17.5 and corollary 17.9. The theorem in fact

implies that π is self-decomposable (Sato (1999), section 15), and within this context,

k is referred to as the canonical function. Note that due to the special scaling in

(23), π does not depend on λ.

We assume that ρ, the Lévy measure of Z, is parametrized by θ ∈ Θ ⊆ Rk and

that we wish to estimate the true value of the parameter (θ0) based on discrete-time

observations X0, X∆, . . . , X(n−1)∆ (∆ > 0) from X, as defined by (23). By theorem

18 this problem is the same as the problem considered so far, except for the fact

that the observations are not independent. Nevertheless, the results on existence

and consistency of the CME of sections 2 and 3 remain valid. We remark that the

empirical characteristic function satisfies (2), since a stationary OU-process is β-

mixing (Jongbloed et al. (2005), theorem 3.1). In section 6.1 we consider asymptotic

normality for the CME. In section 6.2 we apply the results to an Inverse-Gaussian

OU-process.

6.1 Adaptations to the proof of asymptotic normality of the CME

Part I of section 4 needs some adaptations, which we shall now work out. We start

with a result due to Rio (1998). Denote the L2-norm with respect to a measure Q

by ‖·‖2,Q. For the definition of an image admissible class we refer to the appendix,

definition 26.

Theorem 19 (Rio (2000), theorem 1) Suppose (Xn, n ∈ Z) is a stationary time-

series with β-mixing coefficients βn satisfying
∑

n>0 βn < ∞. Let F be a class of

image admissible functions. Suppose

(i) there exists an envelope function F for the class F for which

∫ 1

0
β−1(u)Q2F (1− u)du <∞. (24)

Here QF denotes the quantile function of |F (X0)| and β−1(u) = inf{k ∈
IN : βk ≤ u}.
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(ii)
∫ 1

0

√

HF
2 (ε,F) log(1/ε)dε <∞, (25)

where

HF
2 (ε,F) := log(sup

Q
N(ε‖F‖2,Q,F , ‖ · ‖2,Q) ∨ 2),

and the supremum is taken over all finite discrete measures Q on R (recall the

definition of N given before theorem 7).

If we let P denote the common law of the observations and Pn the empirical measure

of the first n observations, then
√
n(Pn−P ) converges weakly in `∞(F) to a Gaussian

process with covariance function Γ.

We remark that a nice expression for the covariance function Γ in the above theorem

does not exist.

We verify the conditions of this theorem for Xn ≡ Xn∆ the discretely observed

OU-process and F the class of functions defined by

F := {ft | ft(x) = eitx, x ∈ R, t ∈ S}, (26)

Since

`∞(F) := {z : F → R : ‖z‖F := sup
f∈F

|z(f)| = sup
t∈S

|z(ft)| <∞},

it is natural to identify ft with t ∈ S and the space `∞(F) with `∞(S).

Corollary 20 Let X0, X∆, . . . , X(n−1)∆ be observations from the stationary OU-

process. If (10) holds, then the stochastic process (Yn(t), t ∈ S) converges weakly in

the space `∞(S) to a centered Gaussian process Y .

Proof First note that F has envelope function F ≡ 1. By lemma 27 from the

appendix, F is image admissible. If (10) holds, then the OU-process is geometrically

ergodic (Masuda (2004), theorem 4.3). That is, there exists a constant c such that

βn ≤ e−c∆n. Therefore,

β−1(u) ≤ inf{k ∈ IN : e−c∆k ≤ u} = d− 1
c∆ log ue ≤ − 1

c∆ log u+ 1.

26



Furthermore, for all x ∈ (0, 1), QF (1− x) = inf{u : P (1 ≤ u) ≥ 1− x} = 1. These

combined results show that condition (24) is satisfied if (10) holds.

The class F is Lipschitz in the parameter, in the sense that |ft(x) − fs(x)| ≤
d(s, t)R(x), with d(s, t) = |s− t| and R(x) = |x|. We have

N(ε‖R‖2,Q,F , ‖ · ‖2,Q) ≤ N(ε, S, d) ∼ 1

ε
. (27)

The inequality follows as in theorem 2.7.11 Van der Vaart & Wellner (1996). The

proof is easy: let t1, . . . , tp be an ε-net for d for S, then for each t ∈ S there is a ti

such that d(ti, t) ≤ ε. Now

‖ft − fti‖2,Q ≤ d(t, ti)‖R‖2,Q ≤ ε‖R‖2,Q.

Taking the supremum over all finite discrete measuresQ in (27) shows that supQN(ε‖R‖2,Q,F , ‖·
‖2,Q) is bounded by a function of order 1/ε. Thus (25) is satisfied and the above

theorem applies to our case.

Remark 21 To gain some insight to the conditions involved in theorem 19, we

compute for a fixed t ∈ R, vnt := varYn(t). Define random variables (Wj) by

Wj = eitXj∆ − EθeitXj∆ . Then

vnt = var(
√
nWn) =

n
∑

h=−n

(

n− |h|
n

)

γW (h),

where γW (h) = cov(W0,Wh) denotes the auto-covariance function of the stationary

process (Wj). Therefore, we can bound vnt by

vnt ≤ γW (0) + 2
n
∑

h=1

(

n− |h|
n

)

|γW (h)|

≤ γW (0) + 4

∫ 1

0

n
∑

h=1

1{u<βW (h)}Q
2
|W0|(1− u)du

≤ γW (0) + 4

∫ 1

0
β−1X (u)Q2|W0|(1− u)du,

where the second inequality follows from theorem 1.1 in Rio (2000). The last in-

equality follows since the β-mixing numbers of W are smaller than the β-mixing

numbers of X.
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Thus condition (24) ensures that the variance of the limiting process is finite.

Furthermore, the entropy condition measures the size of the class F , which should

not be too large.

Next, we go through steps (I) up to (III) in case we have dependent observations

by pointing out where the differences with the case of independent observations

occur. For (I), we see that the limit process Y is still Gaussian, but with covariance

function Γ, for which we do not have a nice closed form expression. Accordingly, the

limit process U in part (II) remains a Gaussian process, but with a different (more

complicated) covariance structure as for the case with independent observations.

In the proof of theorem (13) we still obtain weak convergence of Hn, but with a

different limit H. In this case it is much harder to find the weak limit of
√
n(θ̂n−θ0).

Despite this, under similar conditions as in the independent observations case, we

do get weak convergence of
√
n(θ̂n − θ0) to a normal limiting distribution.

6.2 Example: discrete observations from an Inverse

Gaussian-OU-process

Suppose we have observations X0, . . . , X(n−1)∆ from a stationary OU-process with

Inverse Gaussian marginal law, which we denote by πθ. Hence, for θ = (δ, γ) ∈
(0,∞)× [0,∞), πθ ∼ IG(δ, γ). The density of πθ is given by

f(δ,γ)(x) =
1√
2π
δeδγx−3/2 exp(−(δ2x−1 + γ2x)/2)1{x>0},

and if γ > 0 the cumulant function is given by

g(δ,γ)(t) = δγ − δ|γ2 − 2it|1/2 exp(− i
2 | arctan(2t/γ

2)|).

Let Θ ⊂ (0,∞) × [0,∞) be compact and suppose the true value of the parameter

θ0 is in Θ. The Lévy density is given by aθ(x) = x−1kθ(x), where the canonical

function is given by kθ(x) = 1√
2π
δx−1/2 exp(−γ2x/2). It is easy to see that θ 7→

aθ(x) is continuous for each x > 0. Assume the sequence of preliminary estimators
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Figure 3: Simulation of a stationary OU-process with Inverse Gaussian(2, 1) marginal law.

satisfies (2). By corollary 3, θ̂n = argminθ∈Θ Γn(θ) exists. From theorem 5 we

obtain consistency: θ̂n
a.s.−→ θ0. If we take the empirical characteristic function as

a preliminary estimator, we can verify the conditions for
√
n(θ̂n − θ0) to converge

weakly to a 2-dimensional Normal distribution. Since this is basically the same

problem as in the Gamma-example of section 5, we omit discussion on this.

The numerical issues are also similar to the Gamma-case. This time we have the

linearity property gθ(·) = g(δ,γ)(·) = δg(1,α)(·). Therefore, the objective function can

be written as Γn(θ) = ‖δg(1,γ) − g̃n‖2w. Minimizing Γn(θ) for fixed γ with respect to

δ gives

δn(γ) =
〈g(1,γ), g̃n〉w
‖g(1,γ)‖2w

.

Now we can minimize γ 7→ Γn(δn(γ), γ) numericallly by using a Fibonacci search

algorithm. Denote the minimizer by γ̂n, then θ̂n = (δn(γ̂n), γ̂n).

Figure 3 shows a simulated path of a stationary Inverse-Gaussian OU-process

with (δ, γ) = (2, 1) and intensity parameter λ = 2 (by this we mean that Z is

constructed such that π ∼ IG(2, 1)). We took observations at t = 0, . . . , 999 (i.e.

∆ = 1) and computed the CME based on the first 100 and all 1000 observations.

We took w(·) = 1[−2,2](·). Figure 4 shows estimated canonical function and density

in both cases. (dashed curve: n = 100, solid curve: n = 1000). The true canonical
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Figure 4: Inverse Gaussian(2, 1) distribution, Data from the OU-process. Left figure: canon-

ical function. Right figure: density function. Dashed: n = 100, solid: n = 1000, dotted:

true.

function and true density are also plotted (dotted line). The estimated parameters

corresponding to this figure are





δ̂100

γ̂100



 =





1.9864

1.2039



 and





δ̂1000

γ̂1000



 =





1.9600

0.9877



 .

So the main reason for the bad fit of the density-function in case n = 100 is due to

a relatively bad estimation of γ. This has less influence on the fit of the canonical

function, since in the expression for k, γ appears only in the exponent.
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Loève, M. (1977) Probability Theory I. Springer, 4th edition.

Masuda, H. (2004) On multidimensional Ornstein-Uhlenbeck processes driven by a
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7 Appendix

Proof of lemma 9 Let ε > 0 and kα = E|X|α. For each α ∈ (0, 1] and x ≥ 0 we

have sin(x) ≤ xα. Therefore, E sin2 |εx| ≤ E|εX|2α = ε2αk2α. Taking ε = |t − s|/2
gives

σ(s, t) ≤ 2

∣

∣

∣

∣

t− s
2

∣

∣

∣

∣

α
√

k2α = 21−α|t− s|α
√

k2α =: Cα|t− s|α.

Put dα(s, t) = |s− t|α, then N(Cαε, σ, S) ≤ N(ε, dα, S) ≤ Kε−1/α, for some positive

constant K, depending on S. Since the right hand side of this display satisfies the

entropy condition (6), this suffices.

Lemma 22 For each θ ∈ Θ, the mapping Λθ : (C(S), ‖ · ‖∞)→ Rk defined by

Λθ(f) = (−2〈g1θ , f〉w, . . . ,−2〈gkθ , f〉w)′, f ∈ C(S),

is continuous.

Proof By the Cauchy-Schwarz inequality, we have

‖Λθ(f)‖22 =
k
∑

i=1

| − 2〈giθ, f〉w|2 ≤ 4
k
∑

i=1

‖giθ‖2w‖f‖2w.
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Now if ‖fn−f‖∞ → 0, then (since ‖fn−f‖2w ≤ ‖fn−f‖2∞
∫

w(t)dt) also ‖fn−f‖w →
0 which implies (by the inequality in the preceding display) that Λθ(fn − f)→ 0 in

Rk. Finally, by linearity of Λθ it follows that Λθ(fn)→ Λθ(f).

For the next lemma, recall the definition of B0 as given in (8). Let U θ0 denote the

process from section (4), based on independent observations.

Lemma 23 (i) Let U θ0 be defined as in corollary 11. For f ∈ C(R, IC),

〈f, U θ0〉w a.s.
=

∫

〈f, zθ0(·, x)〉wdB0(x),

where zθ0 is as defined in (13).

(ii) Let fi ∈ C(R,R) (i = 1, . . . , k) be such that
∫

fi(x)
2dπθ0(x) < ∞. The vec-

tor V = (V1, . . . , Vk)
′ ∈ Rk with Vi =

∫

fi(x)dB
0(x)) possesses a Nk(0,Ξθ0)

distribution, where

Ξθ0 |i,j = cov(Vi, Vj) =

∫

fi(x)fj(x)dπθ0(x)−
(∫

fi(x)πθ0(x)

)(∫

fj(x)πθ0(x)

)

.

(28)

Proof The proof of (i) is straightforward:

〈f, U θ0〉w = <
∫

f(t)U θ(t)w(t)dt = <
∫

f(t)

∫

zθ0(t, x)dB
0(x)w(t)dt

a.s.
=

∫

<
∫

f(t)zθ0(t, x)w(t)dtdB
0(x) =

∫

〈f, zθ0(·, x)〉wdB0(x),

where we use the stochastic Fubini theorem (Protter (2003), p. 207) at the third

equality sign. The second assertion follows by first noting that for a ∈ Rk,

a′V =

∫

(

k
∑

i=1

aifi(x)

)

dB0(x).

For f ∈ C(R,R) satisfying
∫

|f(x)|2dπθ0(x) < ∞, we have that
∫

f(x)dB0(x) is

normally distributed with mean zero and variance

∫

f2(x)dπθ0(x)−
(∫

f(x)dπθ0(x)

)2

,
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which follows from elementary rules for Ito-integrals. Therefore, a′V is normally

distributed with mean zero and variance

∫

(

k
∑

i=1

aifi(x)

)2

dπθ0(x)−
(

∫

(

k
∑

i=1

aifi(x)

)

dπθ0(x)

)2

= a′Ξθ0a,

with Ξθ0 as in (28).

Lemma 24 If h : R → IC is continuous, then
∫

|〈h, zθ0(·, x)〉w|2dπθ0(x) <∞,

Proof The above expression equals
∫

∣

∣<
∫

h(t)zθ0(t, x)w(t)dt
∣

∣

2
dπθ0(x) ≤

∫ ∫

∣

∣h(t)zθ0(t, x)w(t)dt
∣

∣

2
dπθ0(x)

≤
∫ ∫

∣

∣eitx|2dπθ0(x) |h(t)|2
∣

∣

∣

1

ψθ0(t)

∣

∣

∣

2
w(t)dt ≤

∫

|h(t)|2
∣

∣

∣

1

ψθ0(t)

∣

∣

∣

2
w(t)dt.

This is finite, since both h and ψθ0 are continuous, ψθ0 is bounded away from zero

on S, and S is compact.

The next result is similar to lemma 19.24 in Van der Vaart (1998).

Lemma 25 Suppose that Hn Ã H in the space `∞(Θ). Assume almost all sample

paths θ 7→ H(θ) are continuous on Θ. If θ̂n is a sequence in Θ such that θ̂n
p−→ θ0,

then Hn(θ̂n)−Hn(θ0)
p−→ 0.

Proof Since θ̂n
p−→ θ0 in Θ and Hn Ã H in `∞(Θ) we have (Hn, θ̂n) Ã (H, θ0) in

`∞(Θ)×Θ.

Define a mapping ϕ : `∞(Θ)×Θ→ R by ϕ(z, θ) = z(θ)− z(θ0). The function ϕ

is continuous with respect to the product semimetric at every point (z, θ) such that

η 7→ z(η) is continuous at θ. If (zn, θn) → (z, θ), then zn → z uniformly on Θ and

hence zn(θn) = z(θn)|+ o(1)→ z(θ), if z is continuous at θ.

Since H is assumed to be continuous on Θ a.s., we have by the continuous

mapping theorem that ϕ(Hn, θ̂n)Ã ϕ(H, θ0). This means that Hn(θ̂n)−Hn(θ0)Ã

H(θ0) − H(θ0) = 0. The lemma follows, since convergence in distribution and

convergence in probability are the same for a degenerate limit.
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Definition 26 Let F be a class of functions on a measurable space (X,B(X)). F
is called image-admissible if there exist a locally compact space with countable base

Y , with its Borel-σ-algebra B(Y ), and a surjective mapping T : Y → F , for which

T (y)(x) : (X × Y,B(X)⊗ B(Y ))→ (IC,B(IC))

is measurable.

Lemma 27 If we take X = R and Y = S and T (x, y) = eiyx, then F , as defined in

(26) is image-admissible.

Proof If we define T̃ : S → F by the mapping x 7→ [T̃ (y)](x), then T̃ is surjective.

The mapping T : (R × S,B(R) ⊗ B(S)) → (IC,B(IC)) defined by T (x, y) = [T̃ (y)](x)

is continuous in the product topology and hence measurable with respect to the

product σ-algebra B(R)⊗ B(S).
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