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Parametric excitation in a two degree of
freedom MEMS system1
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Abstract. This contribution investigates the influence of parametric excitation on the dynamic stability of a microelectrome-
chanical system. In systems with just a single degree of freedom, parametric excitation causes the oscillator to exhibit unstable
behavior within certain intervals of the parametric excitation frequency. In multi-degree of freedom systems on the other hand,
unstable behavior is caused within a wider range of intervals of the parametric excitation frequency. Moreover, such systems
show frequency intervals of enhanced stability, an effect known as anti-resonance phenomenon. Both types of phenomena, the
parametric resonance and anti-resonance, are modeled and studied for a microelectromechanical system with two degrees of
freedom and some novel results are discussed.
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1. Introduction

Microelectromechanical systems (MEMS) are becoming more and more important for all kinds of industrial
applications. The global market for micro-electromechanical systems, which includes products such as sensors in
automobile airbag systems, actuators in printer cartridges and many others reached 40 billion USD already in 2006,
according to economic sources. Therefore, there is a huge market for new developments, but also for improvements
of already existing technology.

Due to the many difficulties in the production process [8], MEMS consist of rather simple mechanical struc-
tures [6]. In general the number of independent motions of such a system is very limited. As a result it is not a
surprise that single degree of freedom (1-dof) systems prevail for the most part in present industrial applications. Al-
though the design has to be rather simple from a mechanical point of view, the electro-mechanical properties of such
micro-devices are frequently more complicated than equivalent systems in the macro-world. Especially the presence
of non-linear characteristics, the almost complete absence of external damping and other factors contribute to the
complex behavior of such low-dimensional MEMS. On the other hand, the combination of electrical and mechanical
forces in such devices make it possible to take advantage of physical effects that are not useful, occasionally even
strictly avoided, in other applications.

One of such ideas is the introduction of time-periodic parameters to a microelectromechanical system. In one
of the first papers [7] on this topic, Turner et al. proposed to operate a single degree of freedom (1-dof) MEMS
oscillators at a so-called parametric resonance instead of a conventional resonance. The advantage of this concept
lies in the fundamental difference between an ordinary resonance phenomenon and a parametric resonance. The
latter destabilizes the system and causes the oscillation amplitudes to grow exponentially with time, rather than
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Fig. 1. Mechanical model of the 1-dof MEMS oscillator.

linear as for the conventional system. Since a fast response and growth of a signal is frequently the desired effect,
such parametrically excited MEMS exhibit an improved performance compared to a conventional design, see [10]
for example.

Due to the possibility of tuning parametrically excited MEMS oscillators, as discussed in [1,11], the frequency
ranges where parametric resonances might occur can be adjusted. This makes it possible to significantly increase
the accuracy of mass sensors as presented, for example, in [14,16,18,20]. The mass sensing oscillator is thereby
deliberately operated at a parametric resonance and makes use of the fast transition between a stable and an unstable
state of motion.

Another possible application is to use a MEMS as a parametric amplifier, see [5]. This offers several advantages
compared to a semiconductor based design, as it is more heat resistant and has generally lower signal noise. The
filtering of electronic signals is yet another field of application. Due to the growing demand for efficient and accurate
filtering of signals, parametrically excited MEMS can help to further improve the systems quality. Basic MEMS filter
designs and detailed investigations are presented in [9,12] for example.

While parametric excitation (PE) is used so far to take advantage of parametric resonances, this contribution sug-
gests to also exploit so-called parametric anti-resonances in order to improve the damping behavior of such systems.
As vibration damping is typically low in microelectromechanical system since they operate in vacuum, there is a
need for adjusting and amplifying the damping properties of such systems. As the parametric anti-resonance phe-
nomenon requires a system with at least two degrees of freedom, modeling aspects of a 2-dof MEM system and
some first results are the focus of this paper.

Section 2 starts off with a brief review of a parametrically excited 1-dof MEMS oscillator as proposed and dis-
cussed in the recent literature. In Section 3 the MEMS is expanded by an additional degree of freedom, enabling
the system to not only extend its parametric regions of instability (see Section 4), but also to exploit parametric
anti-resonances. This specific vibration phenomenon is discussed in Section 5. The paper concludes in Section 6,
summarizing the present work.

2. Single degree of freedom MEMS oscillator

A typical single degree of freedom MEMS oscillator may consist of a backbone with two elastic beam springs
connected on each side (see [8]). In order to force the system into motion, a so-called comb drive may be connected
to the backbone. Typical comb drives are operated by alternating voltage signals, resulting in a time dependent
mechanical stiffness acting on the backbone. Such a MEMS oscillator can be modeled by a mechanical spring-mass
system as shown in Fig. 1.

The corresponding differential equation can be written as

mẍ+ (c01 + c02)ẋ + (k lin
01

+ k lin
02

)x+ k lin
es (t)x + (k nlin

01
+ k nlin

02
)x3 + k nlin

es (t)x3 = 0, (1)

with x being the system’s deflection. The linear damping coefficients are denoted c01 and c02, whereas the stiffness
coefficients of the elastic beams are denoted k01 and k02. The nonlinear mechanical stiffness provided by the beams
is accounted for by nonlinear stiffness coefficients multiplied by cubic terms of the deflection. According to [10] the
electrostatic stiffness provided by the comb drive can be modeled by

kes(t) = (r1Ax+ r3Ax
3)V 2

A [1 + cos(ωt)] , (2)
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Table 1
Nondimensional parameter definitions adapted from [9]

Definition Nondimensional parameter

z′ = dz
dτ

Scaled time derivative of deflection

Ω =
ω
ω̂

Nondimensional parametric excitation frequency

ηi =
ω
ω̂

Nondimensional natural frequency

ξ1 =
c01
2mω̂

Scaled damping ratio for c01

ξ2 =
c02
2mω̂

Scaled damping ratio for c02

λ1 =
r1AV 2

A

k lin
01

+k lin
02

Linear electrostatic excitation amplitude

λ3 =
x2

0
r3AV 2

A

k lin
01

+k lin
02

Nonlinear electrostatic excitation coefficient

χ =

(

k nlin
01

+k nlin
02

)

x2

0

k lin
01

+k lin
02

Nonlinear mechanical stiffness coefficient

where r1A and r3A are the linear and nonlinear electrostatic stiffness coefficients, influenced by the particular design
of the comb drive (see [19]). The amplitude of the alternating voltage input signal is denoted VA. To make the dif-
ferential equation nondimensional, a dimensionless parametric excitation frequencyΩ is introduced. This frequency
is related to the actual parametric excitation frequency ω as follows

Ω =
ω

ω̂
, (3)

where ω̂ is a characteristic reference frequency. In the present case, given a system with just a single degree of
freedom, it is beneficial to use the natural frequency of the linearized system ω̂ as a reference. In order to obtain a
scaled system time, a dimensionless time τ is introduced, which leads to

τ = ω̂t, ωt = Ωω̂t = Ωτ. (4)

The deflection x of the single backbone mass is rescaled according to

z =
x

x0

, (5)

where x0 is a scaling parameter of suitable size related to the physical dimensions of the MEMS. Carrying out the
rescaling leads to a nondimensional differential equation of the form

z′′ + 2(ξ1 + ξ2)z
′ + (1 + λ1) z + [cos(Ωτ)λ1] z + (χ+ λ3) z

3 + [cos(Ωτ)λ3] z
3 = 0, (6)

where the newly introduced differential operators and the linear and nonlinear nondimensional parameters are de-
fined as stated in Table 1.

It is widely known that single degree of freedom parametrically excited systems exhibit parametric resonances at
excitation frequencies of

Ωk =
2η1
k

, k = 1, 2, 3, . . . , (7)

where η1 is the normalized natural frequency of the system. In recent publications (e.g. [10] or [19]), the primary
parametric resonance 2η1 has been investigated for systems similar to the one shown in Fig. 1. Due to presence of
damping the parametric resonances of higher order (k > 1) are of limited practical interest.

As a possible application, it is suggested to use parametrically excited MEMS oscillators for electronic filtering.
Because of the sharp transition between stable and unstable system behavior, the quality of a filter may be improved
significantly. Keeping that application in mind, a MEMS with two degrees of freedom is modeled and analyzed.
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Fig. 2. Basic design of the 2-dof MEMS.

Fig. 3. Mechanical model of the 2-dof MEMS oscillator.

3. MEMS oscillator with two degrees of freedom

The MEMS oscillator with two degrees of freedom is based on the single degree of freedom design and supple-
mented by an additional backbone, spring and comb drive. The basic structure of the resulting oscillator is shown in
Fig. 2.

3.1. Modeling the 2-dof MEMS oscillator

The mechanical model of the two degree of freedom MEMS oscillator is depicted in Fig. 3. It can be seen that
due to the second comb drive, a time dependent electrostatic stiffness is present on both sides of the oscillator.

The differential equations in matrix form is derived as follows

Mẍ+Cẋ+K
lin

x+K
nlin

x
3 + cos(ωt)P lin

C x+ cos(ωt)P nlin
C x

3 = 0, (8)

with the vector of deflections given by

x =
[

x1 x2

]T
. (9)

The mass matrix M and the damping matrix C are derived as follows

M =

[

m1 0
0 m2,

]

(10)

C =

[

c01 + c12 −c12
−c12 c02 + c12

]

. (11)

The mechanical stiffness matrix K may be split up in a linear and a nonlinear part. By introducing the following
stiffness coefficients

αlin = k lin
12

+ r1AV
2

A, (12)

αnlin = k nlin
12

+ r3AV
2

A (13)
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Table 2
Nondimensional parameter definitions for the 2-dof MEMS oscillator

Definition Nondimensional parameter

z′1,2 =
dz1,2
dτ

Scaled time derivative of deflections

Ω =
ω
ω̂

Nondimensional parametric excitation frequency

γ =
m1

m2

Mass ratio

ξ01 =
c01

2m1ω̂
Scaled damping ratio for c01

ξ12 =
c12

2m1ω̂
Scaled damping ratio for c12

ξ02 =
c02

2m1ω̂
Scaled damping ratio for c02

λ1 =
r1AV 2

A

k lin
01

Linear electrostatic excitation amplitude

λ3 =
x2

0
r3AV 2

A

k lin
01

Nonlinear electrostatic excitation coefficient

β12 =
k lin
12

k lin
01

Linear mechanical stiffness quotient

β02 =
k lin
02

k lin
01

Linear mechanical stiffness quotient

χ01 =
k nlin
01

x2

0

k lin
01

Nonlinear mechanical stiffness coefficient

χ12 =
k nlin
12

x2

0

k lin
01

Nonlinear mechanical stiffness coefficient

χ02 =
k nlin
02

x2

0

k lin
01

Nonlinear mechanical stiffness coefficient

one obtains the linear and nonlinear stiffness matrix

K
lin =

[

k lin
01

+ αlin
−k lin

12

−k lin
12 k lin

02 + αlin

]

, (14)

K
nlin =

⎡

⎣

k nlin
01 + αnlin + 3k nlin

12

x2

2

x2

1

−k nlin
12 − 3k nlin

12

x2

1

x2

2

−k nlin
12

− 3k nlin
12

x2

2

x2

1

k nlin
02

+ αnlin + 3k nlin
12

x2

1

x2

2

⎤

⎦ . (15)

The electrostatic stiffness can be expressed by Eq. (2), resulting in the linear and nonlinear parametric excitation
matrix

P
lin
C =

[

r1AV
2

A 0
0 r1AV

2

A

]

, (16)

P
nlin
C =

[

r3AV
2

A 0
0 r3AV

2

A

]

. (17)

For an easier interpretation of the upcoming simulation results and for efficient numerical treatment, the nonlinear
differential Eq. (8) is scaled. Therefore, a nondimensional parametric excitation frequency Ω is introduced the same
way as in Eq. (3), with the characteristic reference frequency ω̂ being defined as the natural frequency of a linearized
subsystem. This subsystem can be derived from the original system shown in Fig. 3 by setting every stiffness (and
damping) coefficient to zero, except for k lin

01
. The remaining subsystem consist only of mass m1 and the linear

mechanical spring k lin
01

. The natural frequency of that subsystem is known to be

ω̂ =

√

k lin
01

m1

. (18)

To obtain a scaled system time, a dimensionless time τ is introduced by multiplying time t with the reference
frequency ω̂ according to Eq. (4). The displacements x1 and x2 of the oscillator are rescaled using a convenient
scaling parameter x0

z1 =
x1

x0

, z2 =
x2

x0

. (19)
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Table 3
Parameter values for a two degrees of freedom MEMS

Parameter Value Units

m1 1.8 × 10−10 kg

m2 3.6 × 10−10 kg

c01 6.0 × 10−8 Ns/m

c12 6.0 × 10−8 Ns/m

c02 4.0 × 10−7 Ns/m

klin01 1.9 µN/µm

klin
12

1.4 µN/µm

klin
02

8.0 µN/µm

knlin
01 0.018 µN/µm3

knlin
12

0.009 µN/µm3

knlin
02 0.018 µN/µm3

r1A 3.8 × 10−4 µN/V2µm

r3A −1.6 × 10−5 µN/V2µm3

Carrying out the rescaling substitutions leads to the following nondimensional matrix differential equation for the
unknowns z =

[

z1 z2
]T

z
′′ + Ĉz

′ + K̂
lin

z+ K̂
nlin

z
3 + cos(Ωτ)P̂ lin

C z+ cos(Ωτ)P̂ nlin
C z

3 = 0, (20)

with the newly introduced nondimensional parameters defined as stated in Table 2.
The scaled damping matrix is defined by

Ĉ =

[

2 (ξ01 + ξ12) −2ξ12
−2γξ12 2γ (ξ02 + ξ12)

]

. (21)

Defining the parameter

α̂nlin = χ12 + λ3, (22)

leads to the following scaled stiffness matrices

K̂
lin =

[

1 + β12 + λ1 −β12

−γβ12 γ (β02 + β12 + λ1)

]

, (23)

K̂
nlin =

⎡

⎣

χ01 + α̂nlin + 3χ12

z2

2

z2

1

−χ12 − 3χ12

z2

1

z2

2

γ
(

−χ12 − 3χ12

z2

2

z2

1

)

γ
(

χ02 + α̂nlin + 3χ12

z2

1

z2

2

)

⎤

⎦ (24)

and parametric excitation matrices

P̂
lin
C =

[

λ1 0
0 γλ1

]

, (25)

P̂
nlin
C =

[

λ3 0
0 γλ3

]

. (26)

4. Numerical stability investigation

The dynamic stability behavior of the present 2-dof parametrically excited MEMS oscillator is analyzed using
two different numerical methods. The first approach described in Section 4.1 is a rather simple one, whereas the
second approach described in Section 4.2 is more elegant and makes use of the Floquet theorem. For both stability
investigations the system parameters are defined as stated in Table 3 (see [17]).
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Fig. 4. Stability chart, depicting instability areas due to primary parametric resonances and combination resonances.

4.1. Numeric integration

The applied numerical approach is to solve the given equation of motion in the time domain and examine the
resulting vibrations in regard of the stability of the system. By using the system parameters stated in Table 3 and the
following initial conditions

z1,2(τ = 0) =
x1,2(t = 0)

x0

=
1 µm

1 µm
= 1, (27)

z′
1,2(τ = 0) = 0, (28)

Equation (20) is solved for various (parametric excitation) frequencies Ω of the alternating voltage amplitude VA.
The stability of the system is analyzed by examining the resulting vibrations after a sufficient time period, which is
τ = 2500 in terms of the nondimensional time. Figure 4 shows the obtained stability chart with the first parametric
regions of instability emerging from

Ω PR
k =

2η1
k

, k = 1, 2, 3, . . . . (29)

In addition to these primary frequencies, more parametric combination resonances occur at frequency intervals near

ΩPCR
k =

η1 + η2
k

, k = 1, 2, 3, . . . , (30)

with the same unstable behavior as the primary parametric resonances (see [2]). Comparing these results with the
one from the single degree of freedom oscillator described in Section 1, it can be seen that the parametric regions of
instability are significantly increased.

Figure 5 shows time series of the systems deflections z1 and z2 using the primary parametric resonance frequen-
cies obtained from Fig. 4 as excitation frequencies. It can be seen that the oscillation amplitudes increase from the
initial values z1,2 = 1 (at τ = 0), limited only by the present nonlinearities. The behavior of the system, which is
reaching a stable limit cycle, is mostly determined by the nonlinearity of the parametric excitation, but the nonlin-
earities of the springs contribute, too. The linear system becomes unstable at the frequencies Ω of the parametric
excitation mentioned above (see Fig. 6).
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Fig. 5. Displacements z1, z2 at PE-Resonances 2η1, 2η2 and η1 + η2 with VA = 30V and parameters taken from Table 3.

4.2. Floquet method

For analyzes of linear differential equations with time periodic coefficients, the Floquet method (see e.g. [15]) has
proven to be very useful. The set of scaled second order differential Eq. (20) can be rewritten as a set of first order
differential equations

z
′ = f [z(τ), τ ] . (31)

The solution of this problem may be written as

z(τ) = z0(τ) + ∆z(τ), (32)

where z0(τ) is the periodic steady state part of the solution and ∆z(τ) is an additional disturbance. The solution
z(τ) is stable if the following two conditions hold

z (τ + T ) � z(τ) ⇔ ∆z (τ + T ) � ∆z(τ). (33)

The coefficient T is the period of the steady state solution z0(τ). By substitution of Eq. (31) into Eq. (30), expanding
the expression by a Taylor series for z0 and neglecting nonlinear terms of the disturbance, one obtains

∆z
′ = J∆z(τ), (34)
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Fig. 6. Displacements z1, z2 of the linearized system at PE-Resonances 2η1, 2η2 and η1 + η2 with VA = 30V and parameters taken from
Table 3.

with J being the Jacobian of Eq. (31). A set of fundamental solutions ∆Z (τ + T ) of the disturbance ∆Z after one
period T can be written as

∆Z (τ + T ) = Λ∆Z(τ), (35)

where ∆Z(τ) is a set of fundamental solutions at the beginning of the period T . The so-called Monodromy matrix
Λ can be calculated by integration of the Jacobian with n independent sets of initial conditions over one period T .
The coefficient n, in this case, represents the number of first order differential equations. In order to determine the
stability of the solution z(τ), the eigenvalues of the Monodromy matrix Λ have to be analyzed. If the magnitude of
one of the calculated eigenvalues exceeds one, the system is unstable. If, on the other hand, all eigenvalues are less
than one, the system is stable. Figure 7 shows a stability chart of the linearized 2-dof MEMS oscillator for a specific
range of the parametric excitation frequency Ω and the amplitude of the alternating voltage input signal VA.
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Fig. 7. Stability parameter at primary parametric resonances Ω = 2η1,Ω = 2η2 and at the combination resonance Ω = η1 + η2.

Fig. 8. Stability parameter at the first order parametric anti-resonance Ω = η2 − η1 as a function of the excitation amplitude VA.

The stability chart reveals the primary parametric resonances and also the primary combination resonance of the
additive type. The areas of instability match reasonably well the ones previously discussed in Section 4.1. Other
effects of different nature, for example chaotic behavior, cannot be studied by this method due to its intrinsic limi-
tations. Therefore, intervals of instability where the trivial solution becomes unstable via a Hopf-bifurcation can be
detected in the first place, and of course frequency domains with enhanced damping due to the effect of a parametric
anti-resonance.

It can be suspected that the fully non-linear 2-dof system may also exhibit chaotic behavior. To find such phenom-
ena, either the numerical method as presented in the previous section, or other suitable methods must be applied. In
the course of this study, however, no results where obtained that indicated chaotic behavior. This observation might
be based on the fact that the non-linearities in the system are rather small, and that the focus of this work was to
investigate only intervals of parametric instabilities and of parametric stabilization.

5. Parametric anti-resonance

In addition to the additive parametric combination resonances (see Eq. (29)), so-called parametric anti-resonances
(see [13]) exist at subtractive parametric combination frequencies of

Ω PCR
k =

η2 − η1
k

, k = 1, 2, 3, . . . . (36)
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Fig. 9. Effect of anti-resonance in the time domain using Eq. (37) as initial conditions.

In contrast to the parametric resonances and additive combination resonances, an anti-resonance has no destabilizing
effect on the system. In fact, it enhances the system’s damping, see [3,13]. Figure 8 shows the first order anti-
resonance η2− η1 by using the Floquet method. It can be seen that the eigenvalues of the Monodromy matrix do not
exceed 1, but decrease significantly in the region of the anti-resonance.

The positive aspect of the anti-resonance phenomenon can be examined best by comparing vibration signals in
the time domain. Figure 9 shows time series, using initial conditions as defined by Eq. (37), which are close to the
limit cycles of the vibration amplitudes as shown in Fig. 5(b). The system’s deflections are analyzed for the system
without parametric excitation (VA = 0) and for the parametric anti-resonance frequency Ω = η2 − η1 = 0.41.

z1(τ = 0) = 2, z2(τ = 0) = 1, z′
1,2(τ = 0) = 0. (37)

While Fig. 9(a) basically shows the expected exponential decay of the vibration amplitudes, a quite different behav-
ior can be seen in the time series below. Due to the parametric excitation at Ω = η2−η1 = 0.41 with a PE-amplitude
of VA = 30V, a rather fast decay of the vibration signal z1 occurs. At τ ≃ 300 the vibration amplitudes of z1 are
less than half of those for the system without parametric excitation. Initially, this rapid decay does not occur for the
vibration signal z2 at the other mass m2. In fact, first one encounters a modulated vibration signal and only after
100 time units a reduction of the vibration level starts. However, at τ = 500 also for z2 the signal is less than half
of that for the system without PE at the anti-resonance frequency. The enhanced vibration decay is remarkable, but
still not the maximum effect that may be achieved for a system optimized in regard of the anti-resonance effect.

When looking at these simulation results, one might think that parametric excitation acts as an additional damping
mechanism for the system. In fact, an energy transfer is initiated by PE between the first and the second vibrational
mode, see [4]. Vibrational energy that is concentrated in one vibrational mode is gradually moved to the other mode.
This energy transfer between two modes goes on and on as long as PE is active and energy is still present. By this
mechanism advantage is taken of the fact that in engineering systems higher modes have a higher damping ratio.
Therefore, energy can dissipate faster compared to the conventional system without PE, if energy is moved to a
mode of higher order. Since the energy transfer is not unidirectional, modulated vibrations are observed and for an
optimal effect, the system design may be optimized accordingly.
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6. Conclusion

Single degree of freedom MEMS oscillators exhibit parametric resonances at frequency intervals of 2η1/k. Due to
the presence of damping the resonances of higher order (k > 1) are not relevant for application purpose. Electronic
filtering is a possible application of such 1-dof MEMS. Because of the distinctive different stability behavior in the
stable and the unstable parameter domain, almost ideal filter characteristics can be achieved (see [10]).

In the second part this study explores advantages that can be gained from a novel 2-dof MEMS design. The use
of a two degree of freedom MEMS oscillator, as investigated here, is motivated by two major advantages compared
to a single degree of freedom design, particularly concerning a band-pass filter application. Not only are the usable
regions of parametric instability increased (see Eq. (29)), but also a very advantageous anti-resonance phenomenon
occurs. This phenomenon may be used to improve the damping behavior of the system in order to further increase the
quality of a band-pass filter design. Concerning a parametric MEMS mass sensor, the anti-resonance phenomenon
might be beneficial for the increase of the sampling time. If the system transitions between an unstable and a stable
state, the enhanced damping causes the oscillator to reach a static condition even faster (see Fig. 9).
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