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Parametric Excitation of a Nonlinear System 
A study has been made on the parametric excitation of a nonlinear system with harden- 
ing springs. I n  the parametric excitation of linear systems, the only subharmonic 
predicted i s  a subharmonic of order 1/2. However, i n  the parametric excitation of non- 
linear systems, i t  i s  shown th I? higher order subharmonics can exist, depending both on 
the amplitude and frequency of the parametric excitation. 

PARAMETRIC excitations of linear systems have bee11 
studied t,o some extent [I,  2, 31 .2 Such studies are necessary to 
investigate the ~tabilit~y of t,he ~olut~ion of a nonlinear system 
under infinitesimal perturbation. The use of the theory of 
Mathieu functions and the Str11tt)-Ince chart predicts the existence 
of a subharmonic of order 1/2. However, no &her subharmonics 
of higher order are predicted from such studies. 

This paper is a study of the parametric excitation of a riorilinear 
system. Consider a nonlinear two-degree-of-freedom syst,ern, 
and assume that the generalized ~oordinat~es are chose11 so that 
the two equations of motion are uncoupled if they were linearized. 
When one generalized coordirlat,e is harmonically excited, the 
second coordinate is under paramet,ric excitatiori through the 
riorllinear conpling terms with the first generalized coordinate. 
Irlvestigatiolr of the behavior of the second coordinate involves 
the study of parametric excitation of a nonlinear system. I t  is 
shown in this paper that subharmonics of high order can exist 
under suitable parametric excitat,ions. The study is motivated 
by some experimental results frorn a vibrational test of some 
monosymmetric thin-wall beams of open section [4, 51, where 
subharmonirs of order 1/14 and over have beer1 observed. 

Statement of Problem 
Consider the following equation: 

where bl, bz, and b3 are positive constants, m and n are pos~tive 
integers, m being odd, n being even, and m > n. Equation (1) 
represents a nonlinear system which is being parametrically 
excited. The parametric excitatio~r has a frequency of h and 
amplitude b3. 

Seeking a subharmon~r solutiori of order l /n ,  assnrne a s o l ~ ~ t ~ o n  
of the form 

Substituting eqnatioi~ (2) into equation (1) and reql~iring 

where 

and 

1 
f(B cos 8, t) = - [bl(B cos 8)m + bz(B cos O)n-l 

W 

- b3(B cos 8)"-' cos ht] (56) 

Mr~ltiplying e q ~ ~ a t i o r ~  (3) by cos 8 and eqnatiori (4)  by sin 0, 
and subtracting, there is obtained 

1 
B - - ( 1  - w2)B cos 0 sin 8 - f sin 0 = 0 

w (6) 

Multiplying equation (3) by sin 8 arid equation (4) by cos 8, and 
adding, there is obtained 

1 
R$ + - (1 - w2)B cos2 0 + f cos 0 = 0 

W 
(7) 

If B(t) and +(t) are slowly varying,3 the slowly varying parameter 
technique [6] can be applied to equations (6) and (7). In this 
application, R(t) and 4(t) are considered constant over one cycle. 
Thus, integrating eqnatiorls (6) arid (7) with respect to 0 from 
zero to 27r, there is obtained 

B - yBn-' sin n+ = o ( 8 )  

arid 

6' cos 8 + B$ sin 8 = 0 (3) 

there is obtained 

1 and -B sin 8 + B$ cos 8 + - (1  - w2)B cos 8 
w 

+ f(Bcos 8, t )  = 0 (4) 

1 
/34 + '- (1  - w2)B + a B m  + PBnp1 - yBn-I cos n 4  = 0 

Lw 

(9) 
where 

b 
a -- -1 m c r n - 1  > 0 

2rnw ( 1 0 ~ )  

b3 
y = > 0  

2 % ~  

mC = 
m! 

I L  - n!(m - n)! 
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dB 
- -  

- y Bn sin n+ 
- 

(1 - w2) 
(11) 

d' aBm+ ( P  - y cos n+)Bn-I + ---- 
2w 

Equation (11) is an exact differential, and its first integral is 

where K is a constant of integration. For each value of K, equa- 
tion (12) defines a trajectory in the B - + phase plane, using R 
as the polar distance from the origin and + as the polar angle. 

For steady-state vibrations, 8 = 0 and 4 = 0. From equa- 
t,ions ( 8 )  and ( Y ) ,  there is obtained 

yBn-I sin n+ = O (13) 

(1  - w2) + (/3 - y cos n+)Bn-I + - B = 0 (14) 
2w 

The singular pointJs in the B-+ phase plane correspond t,o the 
values of B and 6 that satisfy equations (13) and (14) simnl- 
taneonsly. The possible singularities are 

Only the positive real roots of B in equation (17) are of interest 
because, being the polar distance in the B - + plane, B is never 
negative. There is no formula to give the roots of equation (17) 
in terms of a ,  6, 7,  m, and n explicitly in general. However, the 
distribution of positive real roots of equation (17) can be found 
using Uescartes' rule of sign changes in determining the number of 
real roots of algebraic equations. 

A summary bf the distribution of positive roots of eq~~at ion  (17) 
is given in Table 1. 

The natl~i-e of the sirlgl~larities (.an be studied as follows: 
Let 

where Bo and +o give the location of a singularity and 5 and 7 are 
perturbation variables describing the trajectories in the neighbor- 
hood of the singnlarity in the B - + phase plane. Substituting 
equations (18) and (19) in equations ( 8 )  and ( Y ) ,  noting the value 
of n+o is either zero or T, and retaining only the first power of .$ 
and q there is obtained 

$ = (nyBon-1 cos n+,)q (20) 

If B + 0, then 

(ii) n+ = O o r ~  

B,q = - maBom-' + ( n  - 1)(b  - y cos n+o)Bon-2 1 
and Using equations (14) and (20), equation (21) becomes 

( 1  - w2) BOG = - [ (m - l)aBom-I + ( n  - 2)(/3 - y ros ~ + o ) B ~ ~ - ~ ]  
aBm-1 + (/3 - y cos n4)Bn-2 + -- = 0 (17) 

20 X (nyRon-I cos n&)q (22) 

Table 1 

-Conditions on Parametric- 
Excitation Phase Number of Nature of 

Frequency Amplitude (n+o) singularities singularities 

(i) 

(ii) 

(iii) 

w 2  - 1 > o  0 
r - P > O  7r 

1 center 
1 Saddle point 

w 2 - 1 > 0  y - p < 0  1 Center 
7r 1 Saddle point 

w 2 - - 1 < 0  Y - P > ~  0 or zero 1 saddle point 1 center 

CASE [,I 
A' 1 6 = 0 1  

Fig. I ( a )  Phase-plane diagram (m = 5, n = 4, bl = 0.1, b2 = 0.2) 
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Fig. l(b) Phase-plane diagram (m = 5, n = 4, bl = 0.1, bz = 0.2) 

Let q = efit (23) 

and 
1 - w2 

F(B) &m-1 + ( 0  - y cos n+o)Bn-2 f 
2w 

(24) 

Equation (22) can then be written 

where F1(Bo) - dF/dB a t  B = Bo. Since nyBon-1 is always 
positive, the sign of p2 depends on the signs of F1(Bo) and cos n40. 
If p2 is positive, p is real and the trajectories in the phase plane 
diverge away from the singularity, indicating the singularity is a 
saddle point. If pZ is negative, p is imaginary and both and q 
are bounded, showing the singularity is a center. Thus, the 
nature of the singularities can be studied using equation (25). 
The sign of Ff(BQ) can be found by a sketch of the f~mction P(B) 
against B, noting that F(B0) = 0. 

From a plot of P(B) against B it  can be shown that value of BQ 
for case (i) with phase angle n$o = 0 is larger than the correspond- 
ing value of Bo for case (ii). In  both cases, the singularities are 
centers. I n  case (iii) of Table 1, with phase angle n40 = 0, the 
number of singularities depends on the relative magnitude 
(1  - w2)/2w and ( y  - 0). If (1  - w2)/2w is small and (y - 0 )  
is large, equation (17) has two positive real roots; the smaller 
root corresponds to a saddle point and the larger root corresponds 
to a center. Conversely, if (1  - w2)/2w is large and ( y  - 0 )  is 
small, no real root exists. The nature of the singularity at  the 
origin, BQ = 0, can be shown to be a center for all the cases con- 
sidered in Table 1. 

I t  is known that no positive statement car1 be made on the 
stability of a singularity when a singularity is found to be a center 
under infinitesimal perturbational analysis. The full nonlinear 
equation has to be used to determine t,he true character of the 
singularity. Using equation (12) to plot the trajectories in the 
(6 - 4)-plane, it is found that the centers as determined from the 
infinitesimal perturbational analysis are true centers. A summary 
of the nature of the singularities is shown in Table 1. It is 
convenient to plot B against a where a E n+ instead of B against 
4 so that the general features of the trajectories plotted will apply 
to all values of n. Plots of the trajectories for the four cases con- 
sidered in Table 1 are shown in Figs. l(a), l(b), (2a), and 2(b) for 
special values of m = 5, and n = 4. 

Example 
Consider the case m = 5, n = 4. Equation (1) becomes 

CASE I..., 

h2. 16 = -0.1 

b - b b  = 0.5 
3 2  

I 
Fig. 2(a) Phase-plane diagram (m = 5, n = 4, bl = 0.1, bz = 0.2) 

The singularities in the ( B  - a)-phase plane exclrtding t,he origin 
are given by the equations 

440 = 0 or a (27) 
and 

10blBo4 + 2(6b2 - bs cos 440)B,~ - (A2 - 16) = 0 (28) 

Let X2 - 16 = E and 161 << 1. This corresponds to the para- 
metric exciting frequency being a close multiple of the frequency 
of the mode to be excited. Solving equation (28), 

The distribution of singularities can be seen from equation (29). 
When e is negative but small, the expression under the squaie- 

root sign is positive. If (b3 cos 440 - 6b2) > 0, two positive roots 
exist and can be approximated to 

and 

If (b3 cos 440 - 6bz) < 0, no positive real root exists. 
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Table 2 

-Conditions on parametric- 
excitation 

Frequency Amplitude 

(i) X 2  - 16 > 0 ba - 6b2 > 0 

(iii) k 2  - 16 < 0 ba - 6bz > 0 

(iv) X 2  - 16 < 0 bs - 6b2 < 0 

Phase 
(4h) 

0 

Location of 
singularities 

(Bo2) 
(b3 - 6b2) -- 

5b1 
(A2 - 16) 

2(6b2 + b3) 
( X 2  - 16) 

2(6b2 - ba) 
(A2 - 16) 

2(b3 - 6b2) 
No singularity 
No singularity 
No singularity 

Nature of 
singularities 

Center 

Saddle point 

Center 

Saddle point 

Center 

Saddle point 

I t  can be seen that motions in all regioris of the phase plane are 
amplitude stable, but the "phase" u is stable only a t  the shaded 
regions. The net, change of a in such regions after one cycle is 
zero, while the net change is 2 a  in the unshaded regions. Re- 
calling a = n+, it car1 be deduced from equation ( 2 )  that a steady- 
state subharmonic solution of order 1/4 is possible within the 
shaded regions. 

I t  is interesting to note that t,he area of the shaded region and 
also the singularity inside the shaded region are highly dependent 
on the amplitude of the parametric excitation. For the exciting 
amplitude bs less than the critical value of 6bp, no shaded area 
exist,s in the cases X 2  - 16 < 0, and the shaded area is small in the 
case X 2  - 16 > 0. The center inside the region is close to the 
origin in the latter case. On the other hand, when the exciting 
amplitude exceeds t,he critical value, shaded regions exist under 
both freqlteucy rond~tions and the distance ot the center from the 
origin is large. Large amplitude subharmonic motion is possible 
under such circumstances. The trajectories in the ( R  - a)-phase 
plane for general values of rn and n have similar featnres to those 
as shown in Figs. l ( a ) ,  l ( b ) ,  2(a) ,  and 2(b).  Therefore, asteady 
state subharmonic solution of order l / n  is possible within the 
shaded regions in the general case. 

The foregoing analysis agrees with experimental observations 
on testing of the thin-walled beams, that sltbharmonic behavior 
was observed only when a higher mode was in resonance so that 
the parametric excitation amplitude was large; and also that the 
exciting frequency was a mult,iple or near ml~lt~iple of the fre- 
quency of the mode to be excited parametrically. 

Eyl~ation (26) was also solved on an analog computer under 
different parametric-excitation conditions. The results agreed 
well with t,lle analysis. A typical result is shown in Fig. 3. The 
trace with higher frequency is the parametric excitation and the 
trace with lower freqnency is the response of the system. Super- 
position of the two traces as shown illustrates the existence of a 
sltbharmonic solution of order 1/4,  as predicted from the analysis. 

Fig. 3 Analog-computer solution of equation (26) 

It should be pointed out that the system represe~ted by equa- 
tion ( 1 )  can have subharmonic solutions of lower order nnder 
suitable parametric excitation. But srlbharmonic of order l /n  is 
the highest order subharrnonic the system can produce. In  the 
experiment on the analog romput,er, a s.tbharmonic solution of 
1/2  was also observed ~ ~ n d e r  proper parametric excitation. 

Remarks 
The foregoing analysis serves two purposes. First, it presents 

a possible mechanism for what is observed in the experiment of 
thin-walled beams of open section. Second, it points to the fact 
that in nonlinear m~r,lt,ide~ree-of-freedom systems, very high 
order sltbharmoriics can occur. When one mode of the system 
is excited externally, some other mode can be excited para- 
metrically to exec~~te  sltbharmorlic motion. The linearization of 
the parametrically excited equation will automatically exclude 
the possibilit,~ of predicting such high-order subharmonics. 
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