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Abstract: Research interest in iterative multipoint schemes to solve nonlinear problems has increased
recently because of the drawbacks of point-to-point methods, which need high-order derivatives to
increase the order of convergence. However, this order is not the only key element to classify the
iterative schemes. We aim to design new multipoint fixed point classes without memory, that improve
or bring together the existing ones in different areas such as computational efficiency, stability and
also convergence order. In this manuscript, we present a family of parametric iterative methods,
whose order of convergence is four, that has been designed by using composition and weight function
techniques. A qualitative analysis is made, based on complex discrete dynamics, to select those
elements of the class with best stability properties on low-degree polynomials. This stable behavior is
directly related with the simplicity of the fractals defined by the basins of attraction. In the opposite,
particular methods with unstable performance present high-complexity in the fractals of their basins.
The stable members are demonstrated also be the best ones in terms of numerical performance of non-
polynomial functions, with special emphasis on Colebrook-White equation, with wide applications
in Engineering.

Keywords: nonlinear problems; iterative methods; weight functions; complex dynamics; basin of
attraction; fractal

1. Introduction

The solution of nonlinear equations is a typical problem in engineering and experi-
mental sciences. Problems with gases, liquids, and mechanics require calculating the roots
of the equations with the iterative. Among Chemistry problems needing to solve this
kind of equations are chemical equilibrium problems, global reaction rates in packed bed
reactors [1], radioactive transfer [2], continuous stirred tank reactors (see [3]) or to simulate
flow transport in a pipe [4]. In general, these equations cannot be solved analytically and
we must resort to iterative methods to approximate their solutions. With the increasing
speed of computers, numerical techniques have become indispensable for scientists and
engineers. The principle of these methods is to approach the solution x∗ of a nonlinear
equation of the form f (x) = 0, through a sequence of iterations, starting from an initial
estimation of x0. The most known and widely used method to solve nonlinear equations is
Newton’s scheme, whose iterative expression is

xk+1 = xk −
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . (1)

and it presents the quadratic convergence. This method requires two functional evaluations
(d = 2), one of the function and one of its first derivative, per iteration. Kung-Traub’s
conjecture [5] states that an iterative method without memory for finding a simple zero
of an scalar equation is optimal if its order of convergence is equal to 2d−1. Therefore,
Newton’s method is optimal.
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Many variants of Newton’s scheme have been constructed by means of several tech-
niques, setting different multistep schemes. Some of them use Adomian decomposition
(see [6], for instance). Another kind of iterative schemes are those of using higher-order
derivatives, for example in Chebyshev-type methods by some approximatio [7]. Moreover,
the direct composition of known methods with a later treatment to reduce the number of
functional evaluations is often used in order to generate new methods. Indeed, a weight-
function procedure has been used recently to increase the convergence order of known
methods [8,9], in order to obtain optimal schemes.

Moreover, it is known that the sensitiveness of a scheme to the initial seeds increases
as well as does the order [10]. It is widely accepted that the dynamical behavior of the
rational function related to an iterative scheme provides us with important information
about its stability and reliability [11]. In these terms, Amat et al. in [12] described the
dynamical performance of some known families of iterative methods. More recently,
in [9,13–17], different authors analyze the qualitative behavior of several known methods
or classes of iterative schemes. Most of these studies demonstrate some elements with very
stable behavior, which is proven to be useful in practice, and also different pathological
performances, such as attracting fixed points different from the solution of the problem,
periodic orbits, etc. The key tool to understanding the behavior of the different members of
the family are the parameter planes.

We aim to design a new multipoint fixed point class, without memory, that improves
or brings together the existing ones, as for example appears in [18,19], in different areas
such as computational efficiency, stability and convergence order. There exists a wide
number of optimal iterative methods with different orders of convergence, such as [15];
some of them can be grouped as special cases of our proposed class of iterative procedures.

Let us search the conditions that parameter γ and G function, from the iterative expression

yk = xk − γ
f (xk)

f ′(xk)
,

xk+1 = xk − G(ηk)
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . , (2)

must meet to reach the fourth convergence order, where the variable of the weight function

is ηk =
f ′(yk)

f ′(xk)
.

The rest of the paper is organized as follows: in Section 2, we prove the fourth-order
convergence of the proposed class of iterative methods, under some conditions. Moreover,
a particular subclass is presented and some known methods have been found as special
cases of our proposed family. Section 3 is devoted to the qualitative study of our proposed
parametric class of iterative schemes, giving rise to some stable and unstable members, that
are numerically checked in Section 4, along with other known methods. These numerical
tests demonstrate the good performance in both academical and applied problems, such as
the Colebrook-White equation.

2. Convergence Analysis

In the next result, we present the sufficient conditions of the weight function G and
parameter γ that guarantee the convergence of the proposed class.

Theorem 1. Let f : I ⊆ R→ R be a sufficiently differentiable function in an open interval I and
x∗ ∈ I a simple root of equation f (x) = 0. Let G(η) be a real function satisfying |G′′′(1)| < +∞,
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G′′(1) =
9
4

, G′(1) = −3
4

and G(1) = 1. If γ =
2
3

and we choose an initial approximation x0

close enough to x∗, then the family of iterative methods defined by

yk = xk − γ
f (xk)

f ′(xk)
,

xk+1 = xk − G(η)
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . , (3)

satisfies the error equation below:

ek+1 =

[(
5 +

32G′′′(1)
81

)
c3

2 − c2c3 +
c4

9

]
e4

k + O(e5
k),

where ck =
1
k!

f (k)(x∗)
f ′(x∗)

, k = 2, 3, . . ., ηk =
f ′(yk)

f ′(xk)
and ek = xk − x∗, k = 1, 2, . . .. Therefore, all

the members of class (3) converges to x∗ with an order of convergence four.

Proof. Let x∗ be a simple zero of f . As f is a sufficiently differentiable function, using the
Taylor expansion for f (xk) and f ′(xk) at about x∗, we obtain

f (xk) = f ′(x∗)[ek + c2e2
k + c3e3

k + c4e4
k ] +O(e

5
k),

and

f ′(xk) = f ′(x∗)[1 + 2c2ek + 3c3e2
k + 4c4e3

k ] +O(e
4
k).

From these expressions, we obtain the first step

yk = (1− γ)ek + γc2e2
k − 2(γ(c2

2 − c3))e3
k + γ(4c3

2 − 7c2c3 + 3c4)e4
k +O(e

5
k).

Expanding in Taylor’s series f (yk), around x∗,

f ′(yk) = f ′(x∗)
[
1− 2((−1 + γ)c2)ek + (2γc2

2 + 3(−1 + γ)2c3)e2
k + 2(−2γc3

2 + (5− 3γ)γc2c3 − 2(−1 + γ)3c4)e3
k

]
+O(e4

k).

and then, combining these expressions,

η = 1− 2(γc2)ek + 3γ(2c2
2 + (−2 + γ)c3)e2

k − 4(γ(4c3
2 + (−7 + 3γ)c2c3 + (3− 3γ + γ2)c4))e3

k +O(e
4). (4)

Let us represent function G by its Taylor polynomial of the third order around 1, as η
tends to 1 when k tend to infinity:

G(η) = G(1)− 2(γG′(1)c2)ek + γ(2(3G′(1) + γG′′(1))c2
2 + 3(−2 + γ)G′(1)c3)e2

k

+
(−4

3
γ(12G′(1) + γ(9G′′(1) + γG′′′(1)))c3

2 − 2γ(2(−7 + 3γ)G′(1) + 3(−2 + γ)γG′′(1))c2c3

−4γ(3− 3γ + γ2)G′(1)c4

)
e3

k +O(e
4
k).

Therefore,

ek+1 = (1− G(1))ek + (G(1) + 2γG′(1))c2e2
k + (−2(G(1) + γ(4G′(1) + γG′′(1))))c2

2 + ((2G(1)− 3(−2 + γ)γG′(1))c3)e3
k

+
((

4G(1) + 26γG′(1) + 14γ2G′′(1) +
4γ3G′′′(1)

3

)
c3

2 + (−7G(1) + γ((−38 + 15γ)G′(1) + 6(−2 + γ)γG′′(1)))c2c3

+(3G(1) + 4a(3− 3a + a2)G′(1))c4

)
e4

k +O(e
5
k).



Fractal Fract. 2022, 6, 572 4 of 15

To achieve the order of convergence four, it is necessary to force the coefficients of ep
k ,

p = 1, 2, 3 to be null. Then, we obtain that the following conditions are needed: γ =
2
3

,

G′′(1) =
9
4

, G′(1) =
−3
4

and G(1) = 1.

By substituting them in the error equation, we obtain that it is a function of G′′′(1),

ek+1 =

[(
5 +

32G′′′(1)
81

)
c3

2 − c2c3 +
c4

9

]
e4

k +O(e
5
k),

and |G′′′(1)| < +∞ must be satisfied.

Some known schemes can be found as particular cases of family (3) satisfying all
the conditions of Theorem 1. Firstly, the well-known Jarratt’s method [20], with the
iterative expression

yk = xk −
2
3

f (xk)

f ′(xk)
,

xk+1 = xk −
1
2

3 f ′(yk) + f ′(xk)

3 f ′(yk)− f ′(xk)

f (xk)

f ′(xk)
, k = 0, 1, 2, ...,

where G(η) =
3η + 1
6η − 2

.

Moreover, the method designed by Hueso et al. in [21], with iterative expression

yk = xk −
2
3

f (xk)

f ′(xk)
,

xk+1 = xk −
(
−1

2
+

9
8

f ′(xk)

f ′(yk)
+

3
8

f ′(yk)

f ′(xk)

)
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

where G(η) = −1
2
+

9
8η

+
3
8

η and the scheme from Khattri and Abbasbandi constructed

in [22], defined as

yk = xk −
2
3

f (xk)

f ′(xk)
,

xk+1 = xk −
(

1 +
21
8

f ′(yk)

f ′(xk)
− 9

8

(
f ′(yk)

f ′(xk)

)2

+
15
8

(
f ′(yk)

f ′(xk)

)3
)

f (xk)

f ′(xk)
, k = 0, 1, 2, . . .

are particular members of the most general proposed class of iterative methods (3) with

G(η) = 1 +
21
8

η − 9
2

η2 +
15
8

η3.
On the other hand, by using the conditions deduced in the previous result, we select

a particular subclass of iterative methods, depending on a parameter α, whose iterative
expression is

yk = xk −
2
3

f (xk)

f ′(xk)
, (5)

xk+1 = yk −
(

1− 3
4
(η − 1) +

9
8
(η − 1)2 + α(η − 1)3

)
f (xk)

f ′(xk)
, k = 0, 1, 2, . . .

Let us remark that all the members of this family of iterative schemes have fourth-
order of convergence, as they satisfy all the hypothesis of Theorem 1. The differences in
their performance can be studied by using the tools of complex discrete dynamics; so, the
wideness of the sets of converging initial estimations can be deduced depending on α.
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3. Stability Analysis

In order to study the dynamical behaviour of the iterative methods described in (5), it
is necessary to recall a few concepts. Let us consider a rational function R : Ĉ→ Ĉ. The
successive application of the operator R on one point z0 ∈ Ĉ is defined as the orbit of this
point [12,23]:

{z0, R(z0), R2(z0), . . . , Rn(z0), . . .},

where Rn(z0) means R applied on z0, n times. In our context, R is obtained by applying the
class of iterative methods on a quadratic polynomial p(z).

Thus, a fixed point zF ∈ Ĉ of R satisfies R(zF) = zF. It is worthy to notice that it is
possible to find fixed points of R that are not roots of the polynomial; in this case, those
points are called strange fixed points. The stability of fixed points is classified as follows:

• Attractive if |R′(zF)| < 1.
• Parabolic or Neutral if |R′(zF)| = 1.
• Repulsive if |R′(zF)| > 1.
• Superattractive if R′(zF) = 0.

On the other hand, the basins of attraction [24] determine the final state of the orbit of
any point in the complex plane after successive application of operator R. We define the
basin of attraction of a fixed point zF ∈ Ĉ as the set of preimages of any order that meets it:

A(zF) = {z0 ∈ Ĉ : Rn(z0)→ zF, n→ +∞}.

Moreover, the roots of the equation R′(z0) = 0 are called critical points of operator R.
Their asymptotic performance plays an important role in the stability of the method [25].
Moreover, in the connected component of the basin of attraction holding the attractor,
there exists one critical point. Indeed, superattracting fixed points are also critical points;
furthermore, critical points not being zeros of p(z) are defined as free critical points.

On the other hand, the union of the basins of attraction defines the Fatou set of R. Its
complementary set in Ĉ is called the Julia set.

In this section, we analyze the dynamical behavior of fourth-order parametric family (5)
on the quadratic polynomial p(z) = (z− a)(z− b), where a, b ∈ C. So, a rational function
Op(z) is obtained, depending on the parameter of the class, alpha, and also depending on
the roots a and b. To obtain a simpler operator, as the fixed point operator satisfies the
Scaling Theorem, we use the Möbius transformation [23]

M(z) =
z− a
z− b

, M−1(z) =
zb− a
z− 1

,

with properties:

M(∞) = 1, M(a) = 0, M(b) = ∞,

that yields a rational function that, being conjugated to Op(z) (and therefore, with equiva-
lent dynamical behavior), does no longer depend on a and b:

Oα(z) =
(

M ◦Op ◦M−1
)
(z) = z4 135 + 64α + 378z + 378z2 + 162z3 + 27z4

2 + 162z + 378z2 + 378z3 + 135z4 + 64αz4 .

By solving equation Oα(z) = z, the fixed points of the rational function are obtained.
Among them are z = 0 and z = ∞, coming from the roots of the polynomial previous to
the Möbius map. The asymptotic behavior of all the fixed points plays a key role in the
stability of the iterative methods involved, as the convergence to fixed points different from
the roots means an important drawback for an iterative method; thus, we proceed below
with this analysis.
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A direct result of the Möbius transformation applied on this rational function is the
conjugacy by the inverse,

1
Oα(z)

= Oα

(
1
z

)
.

The immediate consequences of this result are:

(a) If Oα(zF) = zF, then Oα(1/zF) = 1/zF.
(b) Except for some specific values of the α simplifying the operator, z = 1 is an strange

fixed point of rational operator Oα(z).
(c) The stability function of two conjugate fixed points coincide,

O′α(z
F) = 1/O′α(z

F).

3.1. Performance of the Strange Fixed Points

The behavior of fixed points different from z = 0 and z = ∞ depends on α. In the
following result, the stability of z = 1 is established.

Theorem 2. z = 1 is an strange fixed point of Oα(z) if α 6= − 135
8 . Thus, z = 1 is attracting if∣∣∣z + 135

8

∣∣∣ > 54, parabolic or neutral when
∣∣∣z + 135

8

∣∣∣ = 54.

Proof. The behavior of z = 1 is given by

∣∣O′α(1)∣∣ = ∣∣∣∣ 432
8α + 135

∣∣∣∣.
Thus, ∣∣∣∣ 432

8α + 135

∣∣∣∣ ≤ 1 is equivalent to 432 ≤ |8α + 135|.

Let us denote α = a + ib. Then,

168399 < 16(135a + 4a2 + 4b2)

and
b2 + (a + 135/8)2 > 2916 = 542.

Therefore, ∣∣O′α(1)∣∣ ≤ 1 if and only if
∣∣∣∣z + 135

8

∣∣∣∣ > 54.

Finally, if α satisfies
∣∣∣z + 135

8

∣∣∣ < 54, then |O′α(1)| > 1 and z = 1 is a repulsive point. It is

clear that it is parabolic in the boundary |O′α(1)| = 1.

In Figure 1, the stability function of z = 1 can be observed. It can be noticed that
complex values of α inside the region

∣∣∣z + 135
8

∣∣∣ < 54 define fourth-order iterative schemes,
whose numerical performance do not include divergence.
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Figure 1. Stability region of z = 1.

The demonstration of this result is similar to those of Theorem 2. In Figure 2, the set of
stability regions of strange fixed points f1(α) to f6(α) appear.

Proposition 1. The roots of F(t) = 27 + 189t + 567t2 + (810− 64α)t3 + 567t4 + 189t5 + 27t6

are strange fixed points of Oα(z), different from z = 1, and are denoted by fi(α), i = 1, 2, . . . , 6.
These strange fixed points are reduced to four if α = 297

8 , as f1
( 297

8
)
= f2

( 297
8
)
= 1. For α 6= 297

8 ,

• f1(α) and f2(α) are conjugate and repulsive, with independence of the value of parameter α.
• f3(α) and f4(α) are attractors for values of α in small regions of the complex plane, inside the

complex area [−0.26,−0.24]× [−0.36,−0.34] and [−0.26,−0.24]× [0.34, 0.36]. Moreover,
both are superattracting for α ≈ −0.250121± 0.348771i.

• f5(α) and f6(α) are conjugate and attractors for values of α inside the complex area [10, 40]×
[−15, 15]. Moreover, both are superattracting for α ≈ 20.3811.

(a) fi(α), i = 1, 2 (b) fi(α), i = 3

(c) fi(α), i = 4 (d) fi(α), i = 4

(e) fi(α), i = 5 (f) fi(α), i = 6

Figure 2. Regions of stability corresponding to fi(α), i = 1, 2, . . . , 6.
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3.2. Critical Points and Parameter Planes

In order to determine the critical points, we calculate the first derivative of Oα(z),

O′α(z) =
108z3(135(1 + z)8 + 32α(1 + z)6(2− 3z + 2z2))

(27 + 162z + 378z2 + 378z3 + (135 + 64α)z4)2 .

By definition, the roots of O′α(z) = 0 are called critical points. As the order of con-
vergence of our class of proposed iterative methods is higher than two, those fixed points
coming from the original roots of the polynomial, that is, z = 0 and z = ∞, are also
critical points. In the next result, the rest of critical points are determined (called free
critical points).

Proposition 2. The number of free critical points of operator Oα(z) is:

• One, if α = 0 or α = − 135
8 . In these cases, the reduced rational operator is:

O− 135
8
(z) =

x4(27x4 + 162x3 + 378x2 + 378x− 945
)

−945x4 + 378x3 + 378x2 + 162x + 27
,

O0(z) =
x4(27x4 + 162x3 + 378x2 + 378x + 135

)
135x4 + 378x3 + 378x2 + 162x + 27

,

whose only free critical point is z = −1, that is a pre-image of z = 1.
• Three, if α 6= 0 and α 6= − 135

8 , as in this case, they are defined as:

cr1(α) = −1,

cr2(α) =
−135 + 48α− 4

√
14
√
−135α− 8α2

135 + 64α
,

cr3(α) =
−135 + 48α + 4

√
14
√
−135α− 8α2

135 + 64α
.

It is easy to prove that cr2(α) =
1

cr3(α)
. Therefore, cr2(α) = cr3(α) = −1 when

−135α− 8α2 = 0.
As we have said, a classical result states that there is at least one critical point related

with each basin of attraction. As z = 0 and z = ∞ are both superattracting fixed points of
Oα(z), they also are critical points and give rise to their respective Fatou components. For
the other critical points, we can establish the following remarks:

(a) If α = 0, then cr2 = cr3 = −1, and it is a pre-image of the fixed point z = 1:
O0(−1) = 1. As z = 1 is repulsive for α = 0, z = −1 ∈ J (Oα). Thus, Op(z) has only
two invariant Fatou components, A(0) and A(∞).

(b) If α = −135
8

, then cr2 = cr3 = −1, and O− 135
8
(−1) = 1. As z = 1 is not a fixed point

when α = −135
8

, then z = −1 ∈ J (Oα) and its orbit will remain at Julia set until the
rounding error makes it fall into the basin of attraction of z = 0 or z = ∞.

(c) For the rest of the values of α ∈ C, we gave three critical points.

As we have previously stated, the dynamical performance of operator Oα(z) depends
on the values of the parameter α. In Figure 3, we can observe the parameter space associated
with family (5): each point of the parameter plane is associated with a complex value of α,
i.e., with an element of family (5). A free critical point is employed as the starting point
and, if for an specific value of α, this critical point converges to z = 0 or z = ∞, and then
the point representing the value of α is painted in red color. Those values of α that make
the critical point not converge to z = 0 or z = ∞ are painted in black color. Therefore,
each connected component of the parameter plane gives us subfamilies of procedures of
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class (5) with similar performance. The fractal defined as the boundary of these connected
components separates regions of stable and unstable performance.

(a) cr2(α) (b) cr2(α), a detail

Figure 3. Parameter plane from free independent critical point.

In Figure 3, the parameter plane associated with cr2 =
1

cr3
is presented. Both critical

points have the same parameter plane, as the are conjugated; thus, only one of them is
considered a free independent critical point. It is usual not to plot a parameter plane for
z = −1 as, although it is also a critical point, it is a pre-image of a fixed point and this
plane would give us information only about the stability of fixed point z = 1. We would
like to remark that the outer black area corresponds to the stability of z = 1. Moreover,
the right-sided black circle inside the red area corresponds to the values of the parameter
where f5(α) and f6(α) are simultaneously attracting. In the detail in Figure 3b, the end of
both inner antennas can be observed and also, in red color, the wide area of stable values
of α, where only the convergence to the roots is possible. This parameter plane has been
obtained by using a mesh of 500× 500 points for complex values of α and a maximum of
200 iterations.

3.3. Dynamical Planes

If one of the values of α (being painted red or black in the parameter plane) is selected,
an specific member of the class of iterative methods (5) is chosen. Then, a set of initial
estimations can be used in order to observe the performance of this iterative method.

The dynamical plane obtained by iterating an element of the family under study, is
obtained by using each point of a mesh of 400× 400 points of the complex plane as an
initial estimation. Those points with orbits converging to infinity appear in blue color;
those that converge to zero are painted in orange (both with a precision of 10−3) and in
green, red, etc., those converge in to other fixed points. All the fixed points appear as white
stars in the figures when they are attractors or as white circles when they are repulsors.
Moreover, the point is painted in black if the maximum number of 80 iterations is reached
without converging to any of the fixed points. The routines used are slight modifications of
those appearing in [24].

Thus, various stable elements can be chosen: values of α where no attracting periodic
points nor strange fixed points appear. Some of them can be observed at the dynamical
planes of Figure 4. In particular, Figure 4a, shows the performance of the method corre-
sponding to α = 1, where the only basins of attraction are those of z = 0 (orange area) and
z = ∞ (blue region). Indeed, these basins are wider in this case than in cases α = −20i
(Figure 4b) and α = 5− 10i (Figure 4c).
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(a) α = 1 (b) α = −20i (c) α = 5− 10i

Figure 4. Stable performance of operator Oα(z).

Similarly, some unstable elements can be chosen. It can be observed that α = −50,
which yields in the biggest black area of parameter plane (see Figure 3), corresponds to an
iterative method whose bigger basin of attraction is that of an attracting 2-periodic orbit,
which can be observed in yellow in Figure 5a. However, Figure 5b, where α = 25, the basins
of attraction of attracting strange fixed points f5(α) and f6(α) appear in red and green, and
are wider than the one of z = 0. Other attracting elements appear for different values of
the parameter; for example, α = −20 + 45i gives rise to a dynamical plane (see Figure 5c)
where the black basin corresponds to an attracting periodic orbit of period four, which has
been plotted in yellow in the figure. Therefore, it can be observed that the fractal defined
by the Julia set, the boundary among the basins of attraction, is much more complicated in
the case of unstable elements of the family of iterative methods.

(a) α = −50 (b) α = 25 (c) α = −20 + 45i

Figure 5. Unstable performance of operator Oα(z).

This information will be checked numerically in the next section, where non-polynomial
functions are used to see the performance of some of these stable and unstable elements of
the proposed family of iterative methods.

4. Numerical Results

In this section, we demonstrate the behaviour of the new family of iterative methods
defined in (5), which is a particular sub-class of the method defined in (3). From the stability
analysis, we know that those members of this class of iterative schemes, corresponding to
values of α inside the red area of the parameter plane (see Figure 3), have better perfor-
mance on quadratic polynomials than those belonging to black areas. We check now their
performance on other kind of functions in order to see whether these stability properties
are held.

Numerical computations have been carried out by using MATLAB R2019a, by using
variable precision arithmetics with 1000 digits of mantissa, on a PC equipped with a Intel
Core™ i5-5200U CPU 2.20GHz. In all the tables, we demonstrate the residuals | f (xk+1)|
and |xk+1 − xk| at the last iteration, the estimation of the solution found, the number of
iterations needed (if the scheme does not converge, a “d” appears) and the execution time
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in seconds with the format t± d, calculated with the command cputime. In it, t is the mean
of 100 consecutive executions and d is the standard deviation. The stopping criterion used
is |xk+1− xk|+ | f (xk+1)| < 10−200, and the ACOC, defined in [26], has been also presented
in the tables, whose expression is:

ACOC =
ln |(xk+1 − xk)/(xk − xk−1)|

ln |(xk − xk−1)/(xk−1 − xk−2)|
, k = 2, 3, . . .

The nonlinear test functions used are both academical and real-life functions:

• f1(x) = sin2x− x2 + 1, with two real roots at x∗1 ≈ −1.4044 and x∗2 ≈ 1.4044.
• f2(x) = cosx − xex, with real roots at x∗1 ≈ 0.517, x∗2 ≈ −14.137 and x∗3 ≈ −17.278,

among others.

• Colebrook-White function [27] f3(x) =
√

1
f + 0.86 ln

(
10−4

3.7 + 2.51
105
√

1
f

)
, with a real root

at x∗ ≈ 0.01885050, among others.

Colebrook-White function is one of the most accurate equations for the calculation of
the friction factor and over a wider range, but it has the disadvantage of complexity, as
it is an implicit function. It must be solved iteratively until an acceptable level of error is
reached, with the computational cost and time involved. It was proposed by Colebrook
and White in 1939 [4,27]. and is the most widely used because it is the most accurate and
universal. For each nonlinear function, two initial approximations are used: one near to the
solution and the other far from it.

Some of the proposed schemes are compared with classical Newton’ and Jarratt’s
methods, Wang. et al. scheme KM [28] and two procedures from Chun [29], denoted by
CM1 and CM2.

In Tables 1 and 2, we notice that when values of α are considered inside the stable
zone (α = 1, α = −20i, α = 5 − 10i or α = −4.5 + 10i), the method achieves better
approximations to any of the roots with fewer iterations. It is noteworthy that one of the
unstable values of the parameter, α = −20 + 45i, does not even obtain convergence. One of
the stable members for α = 1, shows the lowest execution time, even compared with the
classical Newton and Jarratt’s methods.

Table 1. f1(x) = sin2x− x2 + 1, x0 = 2.

α | f (xk+1)| |xk+1− xk| Solution Iterations ACOC Time (s)

−50 7.0883 × 10−1007 8.4884×10−253 −1.4044 8 4.0 0.3223 ± 0.2001
−40 0 1.4357×10−402 −1.4044 29 4.0 0.9086 ± 0.5325

−20 + 45i d d d d d d
−16 − 45i 2.4842×10−1432 5.1013×10−425 1.4044 10 4.0 0.3597 ± 0.1498

1 0 1.8974×10−331 1.4044 6 4.0 0.2188 0.2253 ± 0.0838
−20i 7.0302×10−1505 8.8753×10−498 1.4044 7 4.0 0.2487 ± 0.0415

5 − 10i 0.0 1.4936×10−755 1.4044 7 4.0 0.2481 0.2419 ± 0.0176
−4.5 + 10i 3.5457×10−891 1.0501×10−223 1.4044 6 4.0 0.2223 ± 0.0224

Newton 1.4479×10−514 8.6274×10−258 1.4044 10 2.0 0.2033 ± 0.0248
Jarratt 0.0 9.6997×10−510 1.4044 6 4.0 0.1970 ± 0.0200
CM1 0.0 4.9393×10−810 1.4044 5 6.0 0.2264 ± 0.0419
CM2 0.0 1.5533×10−693 1.4044 5 6.0 0.2334 ± 0.0619
KM 0.0 9.821×10−761 1.4044 5 6.0 0.2158 ± 0.0185



Fractal Fract. 2022, 6, 572 12 of 15

Table 2. f1(x) = sin2x− x2 + 1, x0 = 4.

α | f (xk+1)| |xk+1− xk| Solution Iterations ACOC Time (s)

−50 0 1.5957 × 10−569 1.4044 7 4.0 0.2347 ± 0.0293
−40 0 3.5896 × 10−451 1.4044 7 4.0 0.2420 ± 0.0614

−20 + 45i 1.1188 × 10−1416 1.475 × 10−409 1.4044 8 4.0 0.2589 ± 0.0262
−16 − 45i 2.9743 × 10−1380 8.4532 × 10−372 1.4044 8 4.0 0.2603 ± 0.0305

1 0 7.1697 × 10−507 1.4044 7 4.0 0.2263 ± 0.0155
−20i 1.1363 × 10−995 6.6845 × 10−250 1.4044 7 4.0 0.2347 ± 0.0266

5 − 10i 3.0563 × 10−1262 2.6576 × 10−316 1.4044 7 4.0 0.2314 ± 0.0152
−4.5 + 10i 0 3.7277 × 10−384 1.4044 7 4.0 0.2302 ± 0.0129

Newton 1.6796 × 10−543 2.9384 × 10−272 1.4044 11 2.0 0.2013 ± 0.0128
Jarratt 0.0 1.7167 × 10−754 1.4044 7 4.0 0.1970 ± 0.0200
CM1 0.0 7.3559 × 10−390 1.4044 5 6.0 0.2177 ± 0.0203
CM2 0.0 2.2786 × 10−230 1.4044 5 6.0 0.2100 ± 0.0144
KM 0.0 9.2909 × 10−265 1.4044 5 6.0 0.2083 ± 0.0436

In Tables 3 and 4, the best results are obtained by the stable proposed members of
family (5), in terms of the number of iterations and residuals. Two of the unstable members
do not reach convergence to any root.

Table 3. f2(x) = cosx− xex, x0 = 1.

α | f (xk+1)| |xk+1− xk| Solution Iterations ACOC Time (s)

−50 1.0082 × 10−1007 4.6325 × 10−399 −14.137 8 4.0 0.2728 ± 0.0657
−40 d d d d d d

−20 + 45i 2.9787 × 10−1009 2.2945 × 10−324 −17.278 12 4.0 0.3858 ± 0.0756
−16 − 45i d d d d d d

1 0 5.7578 × 10−315 0.517 6 4.0 0.2247 ± 0.0474
−20i 1.9236 × 10−1366 6.3944 × 10−359 0.517 7 4.0 0.2566 ± 0.0551

5 − 10i 0.0 6.7181 × 10−632 0.517 7 4.0 0.2797 ± 0.0715
−4.5 + 10i 3.0281 × 10−1747 1.7704 × 10−740 0.517 7 4.0 0.3034 ± 0.0963

Newton 1.4521 × 10−498 7.5503 × 10−250 0.517 10 2.0 0.2075 ± 0.0499
Jarratt 0.0 3.9685 × 10−570 0.517 6 4.0 0.2198 ± 0.0529
CM1 0.0 4.9393 × 10−810 1.4044 5 6.0 0.1923 ± 0.0152
CM2 0.0 1.5533 × 10−693 1.4044 5 6.0 0.1922 ± 0.0168
KM 0.0 9.821 × 10−761 1.4044 5 6.0 0.2158 ± 0.0185

Table 4. f2(x) = cosx− xex, x0 = 2.4.

α | f (xk+1)| |xk+1− xk| Solution Iterations ACOC Time (s)

−50 1.4177 × 10−1008 5.6457 × 10−294 −1.8639 6 4.0 0.1848 ± 0.0133
−40 1.4177 × 10−1008 5.1924 × 10−678 −1.8639 7 4.0 0.2048 ± 0.0155

−20 + 45i d d d d d d
−16 − 45i d d d d d d

1 0 1.6078 × 10−702 0.5177 8 4.0 0.2273 ± 0.0189
−20i 1.0214 × 10−961 1.0043 × 10−240 −1.8639 9 4.0 0.2553 ± 0.0230

5 − 10i 0.0 4.4053 × 10−627 0.5177 22 4.0 0.5289 ± 0.0233
−4.5 + 10i 1.4234 × 10−979 2.2838 × 10−242 −29.8451 9 4.0 0.2653 ± 0.0487

Newton 2.4269 × 10−437 3.0867 × 10−219 0.5177 12 2.0 0.1956 ± 0.0260
Jarratt 0.0 1.0119 × 10−612 0.5177 7 4.0 0.1909 ± 0.0243
CM1 0.0 4.8037 × 10−559 0.5177 6 6.0 0.2230 ± 0.0273
CM2 0.0 1.5709 × 10−609 0.5177 6 6.0 0.2208 ± 0.0261
KM 0.0 9.7594 × 10−581 0.5177 5 6.0 0.2106 ± 0.0218

In the case of the Colebrook-White function, as shown in Tables 5 and 6, it is only
possible to converge to the solution with a very close initial estimation. In this case, the
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best results in terms of the number of iterations are obtained by the stable members of the
proposed class as well as by Jarratt’s method. In terms of the lowest execution time, the
best results are given by Jarratt and α = 1 schemes.

Table 5. f3(x) =
√

1
f + 0.86 ln

(
10−4

3.7 + 2.51
105
√

1
f

)
, x0 = 0.02.

α | f (xk)| |xk+1− xk| Solution Iterations ACOC Time (s)

−50 2.2683 × 10−1007 5.9163 × 10−668 0.01885050 6 4.0 0.4098 ± 0.1367
−40 1.1341 × 10−1007 3.1316 × 10−702 0.01885050 6 4.0 0.3978 ± 0.0532

−20 + 45i 2.4166 × 10−667 0.0 0.01885050 6 4.0 0.4517 ± 0.1145
−16 − 45i 1.5247 × 10−1677 1.4073 × 10−671 0.01885050 6 4.0 0.4555 ± 0.0999

1 1.1341 × 10−1007 2.2713 × 10−277 0.01885050 5 4.0 0.3361 ± 0.0419
−20i 4.0218 × 10−796 9.0943 × 10−202 0.01885050 5 4.0 0.3386 ± 0.0255

5 − 10i 1.5202 × 10−872 8.1035 × 10−221 0.01885050 5 4.0 0.3744 ± 0.0241
−4.5 + 10i 3.2812 × 10−893 5.7307 × 10−226 0.01885050 5 4.0 0.3706 ± 0.0178

Newton 2.9268 × 10−693 5.9571 × 10−349 0.01885050 9 2.0 0.3630 ± 0.0332
Jarratt 1.1341 × 10−1007 2.0266 × 10−489 0.01885050 5 4.0 0.3319 ± 0.0655
CM1 1.1341 × 10−1007 2.0266 × 10−489 0.01885050 5 4.0 0.3447 ± 0.0301
CM2 1.1341 × 10−1007 2.0266 × 10−489 0.01885050 5 4.0 0.3494 ± 0.0252
KM 1.1341 × 10−1007 2.0266 × 10−489 0.01885050 5 4.0 0.3400 ± 0.0208

Table 6. f3(x) =
√

1
f + 0.86 ln

(
10−4

3.7 + 2.51
105
√

1
f

)
, x0 = 0.009.

α | f (xk)| |xk+1− xk| Solution Iterations ACOC Time (s)

−50 d d d d d d
−40 d d d d d d

−20 + 45i d d d d d d
−16 − 45i d d d d d d

1 2.3085 × 10−906 4.1347 × 10−229 0.01885050 6 4.0 0.3880 ± 0.0206
−20i 2.2683 × 10−1007 1.9203 × 10−445 0.01885050 9 4.0 0.6564 ± 0.0519

5 − 10i 1.2533 × 10−1118 2.48 × 10−282 0.01885050 7 4.0 0.5059 ± 0.0328
−4.5 + 10i 2.2683 × 10−1007 2.5742 × 10−397 0.01885050 7 4.0 0.5020 ± 0.0177

Newton 2.0584 × 10−397 4.9958 × 10−201 0.01885050 10 2.0 0.3942 ± 0.0227
Jarratt 1.1341 × 10−1007 1.1036 × 10−272 0.01885050 5 4.0 0.3200 ± 0.0233
CM1 0 1.8787 × 10−675 0.01885050 5 6.0 0.4191 ± 0.0255
CM2 0 1.8799 × 10−675 0.01885050 5 6.0 0.4194 ± 0.0354
KM 0 1.8793 × 10−675 0.01885050 5 6.0 0.4064 ± 0.0168

5. Conclusions

In this manuscript, we present a new parametric family of iterative methods with
the fourth-order of convergence in order to solve nonlinear equations f (x) = 0. The class
has been generated using composition and weight functions techniques. With the help of
dynamical analysis, we select the most stable methods by choosing some values of the free
parameter. These schemes demonstrate a simple fractal as the Julia set separating the basins
of attraction. The described numerical examples allow us to confirm the theoretical results
corresponding to the proposed convergence and stability. On the other hand, when the
parameter alpha is unstable, the corresponding method needs more iterations to converge
or fails to converge. These numerical tests confirm that the new family of methods is
suitable for solving nonlinear problems, when the adequate values of the free disposable
parameter are used.
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