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Abstract

A large number of visual features are parametric in nature� including� edges� lines�
corners� and junctions� We present a general framework for the design and implementation
of detectors for parametrized features� For robustness� we argue in favor of elaborate
modeling of features as they appear in the physical world� In addition� optical and sensing
artifacts are incorporated to achieve realistic feature models in image domain� Each feature
is represented as a densely sampled parameterized manifold in a low�dimensional subspace�
During detection� the brightness distribution around each image pixel is projected to the
subspace� If the projection lies close to the feature manifold� the exact location of the
closest manifold point reveals the parameters of the feature� The concepts of parameter
reduction by normalization� dimension reduction� pattern rejection� and e	cient search are
employed to achieve high e	ciency�

Detectors have been implemented for 
ve speci
c features� namely� step edge ��
parameters
� roof edge �� parameters
� line �� parameters
� corner �� parameters
� and
circular disc �� parameters
� All 
ve of these detectors were generated using the same
technique by simply inputing di�erent feature models� Detailed experiments are reported on
the robustness of detection and the accuracy of parameter estimation� In the case of the step
edge� our results are compared with those obtained using popular detectors� We conclude
with a brief discussion on the use of relaxation to re
ne outputs from multiple feature
detectors� and sketch a hardware architecture for a general feature detection machine�

Category� Low�Level Processing� Pattern Analysis

Index Terms� Parametrized features� feature modeling� optical e�ects� sensor e�ects�
feature manifolds� normalizations� dimension reduction� e	cient search� feature detection�
parameter estimation� step edges� roof edges� corners� lines� discs� software modules� relax�
ation� modular hardware architecture�



� Introduction

Most applications in image processing and computational vision rely on robust detection of
image features and accurate estimation of their parameters� An example of a parametrized
feature is the step edge� It is by far the most intensely studied� both due to its abundance
in natural scenes� and due to its simplicity� The step edge� however� is by no means the only
feature of interest in image understanding� It is closely followed in signi
cance by other
ubiquitous ones such as lines� corners� junctions� and roof edges �� This list is far from
comprehensive� even if we restrict ourselves to the class of well�de
ned and commonplace
features� Moreover� in any 
xed application� the term feature may take on a meaning
that is speci
c to that application� For instance� in the inspection or recognition of a
manufactured part� a subpart such as bolt may be the feature of interest� Such a feature
may also be parametric in nature� The rotation of the head of the bolt would result in a
continuum of image appearances� In short� features may be too numerous to justify the
process of deriving a new detector for each one� Is it possible to develop a single detection
mechanism that is applicable to any parametrized feature�

This is exactly the objective of our work� We seek a general and easy to imple�
ment methodology for detecting parameterized features within an image� In addition to
detection� we wish to obtain precise estimates of the feature parameters� In most real ap�
plications� detection alone does not su	ce� Feature parameters� if recovered with precision�
can be of vital importance to higher levels of visual processing� A simple example is that of
the generalized Hough transform� where accurate knowledge of edge direction reduces the
dimension of the Hough space by one� Likewise� the performance of any boundary growing
algorithm is dramatically enhanced when the directions of image edgels are used to guide
the growth of the boundary� In our framework� detection and parameter estimation go
hand in hand� The end result is a rich yet concise description of an image�

If one is in pursuit of high performance in both detection and parameter estimation�
it is essential to accurately model the features as they appear in the physical world� We do
this by de
ning highly descriptive models of features that include as many parameters as
necessary to accurately represent the feature� We do not make simpli
cations for analytic
or e	ciency reasons� For instance� our model of the step edge has � parameters� namely�
the lower brightness level� the brightness di�erence across the step� the angle �orientation

of the edge� its intrapixel location� and a blurring �scaling
 parameter� Our experimental
results indicate that the intrapixel localization corresponds to approximately ��o of edge
orientation in terms of representational accuracy� The blurring parameter turns out to be

�A concise description of the di�erent types of features and a review of existing step edge detectors can
be found in �Nalwa ���� A survey of early edge detectors can be found in �Davis �	�� Given the extent to
which feature detection has been explored
 a survey of all the work in this area is well beyond the scope of
this paper� In our discussion
 we only use examples of previous detectors without attempting to mention
all of them� Further
 we will be primarily interested in examples that use parametric feature models rather
than those based on the intensity gradient or other di�erential invariants�
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almost equally important� Hence� we argue that reliable step edge detection requires the
use of a model that includes both intrapixel localization and blur parameters� Conversely�
edge detectors which are not based on such descriptive models are fundamentally limited�
We arrive at similar conclusions for the other features we experimented with� We used a
� parameter model for roof edges� a � parameter model for lines� a � parameter model for
corners� and a � parameter model for circular discs�

Hitherto� our notion of a feature model has been a continuous one� Previous work
on feature detection has almost always designed continuous detectors using continuous
feature models and then sampled the detectors before applying them to discrete images�
However� in order to obtain a reliable detector� careful consideration must be given to
the conversion of the radiance function of a feature in the scene to its discrete image
produced by a sensor� For instance� the aspect ratio of an image sensor clearly impacts
the appearance of a feature� Perhaps less obvious are the e�ects of the shape and size of
the photosensitive elements on a CCD image sensor� Our results show that� these e�ects
translate to a representational error equivalent to approximately ���o of orientation� say
for the step edge� Though such an error may seem small� it can degrade performance in
many applications� In addition� we also model the blurring caused by the optical transfer
function of the imaging optics� Modeling these sensor and optical characteristics leads to
very realistic descriptions of measured features� Note that� altering the sensor and optical
models to match the speci
cations of the particular imaging system is simple� It requires
the change of just one system module�

The detailed models of features and of the imaging system allow us to accurately
predict the pixel intensity values in a window about the feature� All we require are the
feature�s parameters� If we treat the pixel values as real numbers� we can think of each
parameterized feature as corresponding to a parameterized manifold in �N � where N is the
number of pixels in the window surrounding the feature� As the parameters of the feature
vary� the point in �N corresponding to the feature� traces out a k�dimensional manifold�
where k is the number of feature parameters� In this setting� feature detection means

nding the closest point on the manifold to the point in �N corresponding to pixel values
in a novel image window� If the closest point is near enough� we register the presence of
the feature� The exact location of the closest manifold point reveals the parameters of the
feature� If� on the other hand� the nearest manifold point is too far away� we declare the
absence of the feature� This statement of the feature detection problem is certainly not new�
It was 
rst introduced for step edges and lines by Hueckel �Hueckel ���� and subsequently
used by Hummel �Hummel ��� for step edges� More elaborate parametric models for step
edges were used by Haralick �Haralick ��� and Nalwa and Binford �Nalwa and Binford ����
amongst others �see �Nalwa ���
�

Hueckel and Hummel both argued that� for e	ciency� a closed form solution to the
feature 
tting problem must be found� To make their derivations possible� they used simple
continuous models for step edges and lines� Our view of feature detection is radically
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di�erent� We believe that the features we wish to detect are inherently complex visual
entities� Hence� we willingly forego all hope of 
nding closed�form solutions for the best�
t
parameters� Instead� we discretize the search problem by densely sampling the feature
manifold� The closest point on the manifold is then approximated by 
nding the nearest
neighbor amongst the sample points� Typically� this sampling may result in the order of
��� points� which lie in a space of dimension� N � ������� Further� note that the search
for the closest manifold point must be repeated for each window �centered around each
pixel
 in the image�

At 
rst glance� this should seem ine	cient to the point of impracticality� However�
we will show that our approach is in fact very practical� To obtain the required e	ciency
we used a number of di�erent techniques� First� we introduce a set of simple normalization
procedures that reduce the dimensionality of the manifold to � or � �for the � features we
experimented with
 without loss of information or reduction of the signal�to�noise ratio
�S�N�R�
� Next� we apply the Karhunen�Lo�eve �K�L
 expansion �Oja ���� as a dimension
reduction technique� This enables us to achieve high detection rates by projecting the
feature manifolds into spaces of dimension� d� N � In practice� d is generally in the range
����� Such a compressed representation was proposed for ��D object recognition and pose
estimation in �Murase and Nayar ����

During detection itself� we use a heuristic search algorithm that exploits the local
smoothness of the manifolds� to quickly 
nd the closest sample point� Further� it turns out
that we do not need to perform the search for every pixel in the image� Amongst other
rejection techniques� we use a recently developed rejection algorithm �Baker and Nayar ���
to quickly eliminate a vast majority of pixels from further consideration� without even
projecting into the K�L subspace� Such a rejection scheme is feasible and e�ective since
most pixels in an image do not represent features of interest� With the above ideas in
place� our feature detectors� even in their present unoptimized implementation� take only a
few seconds on a standard single�processor workstation when applied to a ������� image�
Given the enormous strides being made in memory and multi�processor technology� it is
only a matter of time before real�time performance is achieved�

This approach to feature detection and parameter estimation di�ers from previous
ones in two signi
cant ways�

� Our system o�ers a level of generality that is uncommon in the realm of feature
detection� As far as we can ascertain� there is no single technique capable of detecting
even the 
ve features �step edges� lines� corners� circular discs� and roof edges
 we
implemented� More importantly� the addition of a new feature to our system is simply
a matter of writing a single �C� function that de
nes the feature model� Alternatively�
features could be de
ned by experimentally obtained data sets without any di	culty�

� Most previous approaches have used simple feature models with detection as the
main goal and not parameter estimation� Such models do not entirely capture the
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image properties of scene features� The descriptive nature of our features models and
the incorporation of sensor and optical e�ects give our features an unusual level of
realism� This has enabled robust detection and parameter estimation for each of the
complex features we implemented�

The paper is organized as follows� In the following section� we introduce the notion
of a generic scene feature and discuss the modeling of imaging and sensing e�ects� We show
how this leads to the parametric feature manifold representation� Then� the application
of normalization and dimension reduction is described� In section �� we model our 
ve
example features� namely� step edges� lines� corners� roof edges� and circular discs� In each
case� the feature model� the result of dimension reduction� and the manifold representation
of the feature are presented� In section �� the implementation of detection is discussed�
via manifold sampling� e	cient search� and the use of rejection techniques� In section ��
our experimental results and comparisons with the Canny �Canny ��� and Nalwa�Binford
�Nalwa and Binford ��� detectors are included� In section �� we brie�y describe a modular
software package we are developing that will enable easy use of the proposed method� The
idea of using relaxation for extracting high�level image descriptions from multiple detected
features and their parameters is outlined� Finally� we brie�y mention how our general
feature detector lends itself to a simple but e	cient hardware implementation�

� Parametric Feature Representation

We begin by presenting the theoretical basis of our approach to feature detection� First�
the notion of an arbitrary parameterized scene feature is introduced� Then� we describe the
artifacts introduced by the imaging system as it maps a scene feature to its discrete image�
The family of images obtained by varying feature parameters is represented as a parametric
manifold in a 
nite dimensional Hilbert Space� Simple but important normalizations are
introduced that reduce the dimensionality of the parametric manifold� Finally� a dimension
reduction technique is invoked to obtain parametric feature manifolds in low�dimensional
subspaces�

��� Parametric Scene Features

By a scene feature we mean a geometric and�or a photometric phenomenon in the physi�
cal world that produces spatial radiance variations which� if detectable� can aid in visual
perception� Let us assume that the imaging system is perfect� in which case� image bright�
ness is proportional to scene radiance� The image feature is then the continuous radiance
function of the scene feature� It can be written as F c�x� y q
 where �x� y
 � S are image
points within a 
nite feature window� S� and q are the parameters of the feature� For
instance� in the case of a step edge� q would include edge orientation and the brightness
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values on the two sides of the edge� In the case of a corner� it would include the orientation
of the corner� the angle made by the corner� and the brightness values inside and outside
the corner� Note that� to fully specify a feature� we need to provide the feature function�
F c�x� y q
� the feature window� S� and the ranges of the parameters� q�

��� Modeling Image Formation and Sensing

It is interesting to note that previous work on feature detection has overlooked the artifacts
induced by the imaging system� Two reasons could serve to justify this� First� some of these
artifacts are nonlinear in nature and would only make the problem of detector derivation�
as approached before� more cumbersome� Second� the e�ects introduced by the imaging
system are typically less pronounced than those that result from the feature parameters
themselves� For reasons that will become clear shortly� we are able to incorporate both
linear and nonlinear e�ects in our feature model� Hence� we have chosen to make our
feature models as precise as possible by incorporating the e�ects of image formation�

The 
rst e�ect is the blurring of the continuous feature image� If the scene feature
lies outside the focused plane of the imaging system� its image is defocused� Further� the

nite size of the lens aperture causes the optical transfer function of the imaging system
to be bandlimited in its spatial resolution� In addition� the feature itself� even before
imaging� may appear somewhat blurred� For instance� a real scene edge would not be a
perfect step but rather rounded� The e�ect of this in image space clearly depends on the
magni
cation of the imaging system� The defocus factor can be approximated as a pillbox
function �Born and Wolf ���� the optical transfer function by the square of the 
rst�order
Bessel function of the 
rst kind �Born and Wolf ���� and the blurring due to imperfections
in the feature by a Gaussian function �Koenderink ���� We lump all three e�ects in a single
blurring factor that is assumed to be a ��D Gaussian function�

g�x� y �
 �
�

����
exp���

�
� x

� ! y�

��

 ��


The continuous image on the sensor plane is converted �typically by a CCD detector

to a discrete image through two processes� First� the light �ux falling within each pixel is
summed� or averaged� If the pixels are rectangular in structure �Barbe ��� �Norton ���� the
averaging function is simply the rectangular function �Bracewell ����

a�x� y
 �
�

wxwy

�"�
�

wx

x�
�

wy

y
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where� wx and wy are the x and y dimensions of the pixel� respectively�

The sampling function that converts the continuous image to a discrete one is often
a rectangular grid�

s�x� y
 � �III� �
px
x� �

py
y
 ��
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where� px and py are spacings between discrete samples in the two spatial dimensions� It is
important to note that the blurring� averaging� and sampling functions can vary between
sensors� Above� we have assumed the pixels and the sampling to be rectangular� In practice�
these functions must be selected based on the speci
cations of the image sensor used� The

nal discrete image of a feature may now be written as�

F �x� y q
 � fF c�x� y q
 � g�x� y
 � a�x� y
 g � s�x� y
 ��


where� � is the ��D convolution operator� Since the above image is simply a weighted sum
of Kronecker delta functions �Bracewell ���� it can also be written as F �m�n q
� where
�m�n
 � S are the �integer valued
 pixels coordinates of the discrete sample locations
within the feature window�

��� Parametric Feature Manifolds

If the total number of pixels in the window is N � each feature image� F �m�n q
� may
be regarded as a point in an N �dimensional Hilbert space� Suppose the feature has k
parameters �dim�q
�k
� Then� as the parameters vary over their ranges� the point traces
out a k�parameter manifold in the N �dimensional Hilbert space� It is possible therefore to
represent each feature of interest as a multivariate manifold in a high�dimensional space�
Feature detection then entails 
nding the closest point of the feature manifold for each novel
candidate window in the image� Clearly� this is impractical given the high dimensionality of
the Hilbert space �N
 and the manifold itself �k
� In the following subsections� we present
two techniques that dramatical reduce dimensionality� making the feature manifold a viable
representation for detection and parameter estimation�

��� Parameter Reduction by Normalization

For each feature instance� we compute its mean ��q
� �
N

P
�n�m��S F �m�n q
� and its mag�

nitude ��q
 � jj F �m�n q
 � ��q
 jj� The following brightness normalization is then
applied�

F ��m�n q
 �
�

��q

�F �m�n q
 � ��q
 
 ��


This simple normalization proves to be valuable� In all the features we have implemented� it
has reduced the dimensionality of the manifold by two� This happens because� F ��m�n q

turns out to be �approximately
 independent of two of the parameters in q� For instance�
in the case of the step edge� the normalized feature is invariant to the brightness values on
either side of the step� All step edges� irrespective of their brightness values� are reduced
to step edges with the same brightness on either side� It is important to note that this
normalization does not alter the signal�to�noise ratio of the edge prior to normalization�
The normalization is applied not only while constructing the feature manifold but also
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during feature detection� Once a feature has been detected� its mean � and magnitude �
can be used to recover the two brightness parameters eliminated during normalization�

��� Dimension Reduction

In most parameterized features� the image F � � F ��m�n q
 varies gradually with the
parameters q� As a result� consecutive feature instances tend to be highly correlated�
Further� inherent symmetries in the structures of certain features add to the similarity
between instances� It is therefore possible to represent the feature manifold in a low�
dimensional subspace without signi
cant loss of information�� If correlation between feature
instances is the preferred measure of similarity �or dissimilarity
� the Karhunen�Lo�eve �K�L

expansion �Oja ��� �Fukunaga ���� yields the optimal subspace�

The covariance matrix R � E��F � �E�F ��
�F ��E�F ��
T � represents the correlation
between corresponding pixels in the di�erent feature instances� The normalized feature
instances F � are N �dimensional vectors� and so R is a symmetric N � N matrix� The
reduced space is computed by solving the eigenstructure decomposition problem�

Re � � e ��


The result is the set of eigenvalues f�j j j � �� �� ���� N g where �� 	 �� 	 ����� 	 �N 	 ��
and a corresponding set of orthonormal eigenvectors f ej j j � �� �� ���� N g� Due to
the inherent structure of most parametrized features� the 
rst few eigenvalues tend to be
signi
cantly larger than the remaining ones� This allows us to represent features in a low�
dimensional subspace spanned by the few most prominent eigenvectors� Suppose we use
the 
rst d eigenvectors� Then� a measure of the information discarded is the K�L residue
de
ned by�

R�d
 �
NX

j�d��

�j ��


As an example� a step edge with a ���D Hilbert space �pixels
 can be represented in a ��D
subspace with K�L residue ��#� Moving to an ��D subspace reduces the residue to �#�

The parametric feature manifold is constructed by simply projecting all instances
of the feature to the subspace� This only requires dot products of each feature instance
with the prominent eigenvectors that serve as a basis for the subspace� Since such a

�This idea was �rst explored by Hummel �Hummel ��� for the case of an ideal step edge� Hummel
analytically derived the optimal basis for representing a step edge� Later
 a similar derivation was put forth
by Lenz �Lenz ��� for the case of an ideal line� Such closed
form derivations require detailed manipulations
and the use of simplistic feature models to facilitate analysis� Furthermore
 even with the use of simple
models
 closed
form solutions may not exist for many features of interest� Our approach is to use elaborate
feature models to generate feature instances for di�erent parameter values
 and then use numerical methods
to compute the optimal basis� This results in higher precision and greater generality�
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parameterized feature manifold is easy to compute for any feature� we have at our disposal
a generic tool for designing feature detectors� Further� the dramatic dimension reduction�
and the parameter reduction by brightness normalization in section ���� together allow us
to compactly represent features and detect them e	ciently�

� Example Features

We now illustrate manifold representations of � parametrized features� For each feature�
we provide a formal de
nition of the feature and its parameters� discuss the e�ects of
brightness normalization� and present results on dimension reduction�

The features we have chosen to discuss here are merely examples that happen to
be of import in machine vision� It is worth adding that the techniques we have developed
are by no means restricted to features in brightness images� The same techniques may
be applied to features found in data produced by other sensors� such as� infrared� X�ray�
ultrasound� and range sensors�

��� Step Edge

Our 
rst example feature is the familiar step edge� Parametric models for edges date back to
the work of Hueckel �Hueckel ���� Since then� the edge has been studied in more detail than
any other visual feature �see �Davis ����Nalwa ���
� Figures ��a
 and ��b
 show isometric
and plan views of the step edge model we use� This model is a generalization of those used
in �Hueckel ���� �Hummel ���� and �Lenz ���� It is closest to the one used by Nalwa and
Binford �Nalwa and Binford ���� but di�ers in its treatment of smoothing e�ects�

The basis for the ��D step edge model is the ��D unit step function�

u�t
 �

���
��

� if t 	 �

� if t � �
��


A step with lower intensity level� A� and upper intensity level� A ! B� can be written as
A ! B � u�t
� To extend to ��D� we assume that the step edge is of constant cross section
�step size along its length
� it is oriented at an angle 	� and lies at a distance� 
� from the
origin� Then� the orthogonal distance of an arbitrary point �x� y
 from the step �see Figure
��b

 is given by�

z � y � cos 	 � x � sin 	 � 
 ��


Therefore� an ideal step edge of arbitrary orientation and displacement from the origin
is given by the ��D function A ! B � u�z
� For reasons given in section ���� we need to
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incorporate the Gaussian blurring function� the pixel averaging function� and the sampling
function� The 
nal step edge model is�

FSE�x� y A�B� 	� 
� �
 � f �A ! B � u�z

 � g�x� y �
 � a�x� y
 g � s�x� y
 ���


where� z is given by equation ��
� Note that our edge model has � parameters� namely�
orientation 	� localization 
� blurring or scaling �� and the brightness values A and B�

To complete our de
nition of the step edge� we need to specify ranges that the pa�
rameters may take� Here� distances are in units of the distance between two neighboring
pixels� and angles in degrees� The orientation parameter� 	� is drawn from ��o� ���o�� We

restrict the localization parameter� 
� to lie in ��
p
�
�
�
p
�
�

�� since any edge must pass closer

than a distance
p
�
�

from the center of at least one pixel in the image� The blurring pa�
rameter� �� is drawn from ����� ����� As described in �Nalwa and Binford ���� substantially
larger values of � could be used� but really represent an edge at a much higher magni
ca�
tion� Such cases would require the use of large image window for detection� The intensity
parameters A and B are free to take any value� This is because of the normalizations
described in section ���� The structure of a normalized step edge� given by the parameters
	� 
� and �� is independent of A and B� Further� the values of A and B may be recovered
from the mean � and the magnitude ��

The results of applying the Karhunen�Lo�eve expansion are displayed in Figures
��c
 and ��d
� In Figure ��c
 we display the � most important eigenvectors� ordered by
their eigenvalues� The similarity between the 
rst � eigenvectors and the ones derived in
�Hummel ��� is immediate� On closer inspection� however� we notice that while Hummel�s
eigenvectors are radially symmetric� the ones we computed are not� This is to be expected
since the introduction of the parameters 
 and � serves to break the radial symmetry that
Hummel�s edge model assumes� While Hummel�s eigenvectors are optimal for his edge
model� our numerically obtained results imply that they are not optimal for our� more
complex� edge model�

The window� chosen for our edge model includes �� pixels� To avoid unnecessary
non�linearities induced by a square window� we have used a disc shaped one� In Figure
��d
� the decay of the Karhunen�Lo�eve residue is plotted as a function of the number of
eigenvectors� To reduce the residue to ��# we need to use � eigenvectors� To reduce it
further to �# we need � eigenvectors� These results illustrate a signi
cant data compression
factor of ���� times� As a result� feature detection and parameter estimation prove to be
e	cient� Hummel predicts that for the continuous step edge� the eigenvalues should decay
like ��n�� Our results are consistent with this� We found that for our edge model the
eigenvalues initially decay like ��n�� but the rate of decay increases with n due to the
discretization introduced by realistic modeling of the sensing element�

�In our modular implementation
 the window may be changed independently of the feature� During
our comparison with the Nalwa
Binford and Canny edge detectors we resort to a 	� 	 square window for
fairness�
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Figure �� The step edge model includes two constant intensity regions of brightness A and A�B�

Its orientation and intrapixel displacement from the origin are given by the parameters � and ��

respectively� The �fth parameter �not shown� is the blurring factor �� The K�L residue plot

shows that that 	
� of the edge image content is preserved by the �rst � eigenvectors and 	
�

by the �rst 
 eigenvectors� The step edge manifold is parameterized by orientation and intrapixel

localization for a �xed blurring value and is displayed in a ��D subspace constructed using the

�rst three eigenvectors�
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The step edge manifold is displayed in Figure ��e
� Naturally� we are only able to
display a ��D projection of it into a subspace� This subspace is spanned by the � most
important eigenvectors� Also� for clarity� we only display a � parameter �slice� through
the manifold� by keeping � constant and varying 	 and 
� As mentioned earlier� the 
rst
� eigenvectors capture more than ��# of the information� This is re�ected by Figure ��e
�
where most points on the manifold are seen to lie at a unit distance from the origin� Note
that the four apparent �singularities� of the manifold are simply artifacts of the projection
of the manifold to the ��D subspace� If we were able to visualize a higher dimensional
projection� these would disappear�

��� Roof Edge

The roof edge is in some respects similar to the step edge� However� unlike the step edge�
it has not been explored much in the past despite having been acknowledged as a pertinent
feature �Nalwa ���� The main di�erence between the two edge models is that the step
discontinuity is removed from the step edge and the lower intensity step is replaced with a
slanting �roof�� as shown in Figure ��a
� A formal de
nition can be obtained by replacing
A!B � u�z
 with A�M � z � u�z
� where A is the upper intensity level of the roof� and M
is the gradient� or slope� of the roof� The result is a � parameter model written as�

FRE�x� y A�M� 	� 
� �
 � f �A�M � z � u�z

 � g�x� y �
 � a�x� y
 g � s�x� y
 ���


where u�z
 and z are as de
ned for the step edge� The parameter ranges we used are�

	 � ��o� ���o�� 
 � ��
p
�
�
�
p
�
�

�� and � � ����� ����� The parameters A and M are free as before�
As in the case of the step edge� the structure of the normalized roof edge is independent of
A and M � and their values are easily recovered from the normalization coe	cients � and
��

The results of applying the Karhunen�Lo�eve expansion� shown in Figures ��c
 and
��d
� are similar to those for the step edge� The K�L residue decays slightly faster in this
case� This might be expected since the roof edge more closely resembles a constant intensity
region� The residue of a constant intensity region would be exactly zero� Also note that the

rst two eigenvectors are approximately the same as those for the step edge �at least� up
to a rotation of ���o
� � eigenvectors are needed to capture ��# of the edge content� and
� eigenvectors for ��#� The parametric manifold for the roof edge is displayed in Figure
��e
� The radical di�erence in appearance from the one for the step edge is entirely due to
the di�erence between the third eigenvectors of the two features� The projection onto the

rst two eigenvectors is similar�
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(a) Roof edge model (b) Plan view
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(e) Roof edge parametric manifold
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Figure �� The roof edge model has on one side a region of constant brightness A and on the

other a brightness gradient M � Both these parameters are removed by brightness normalization�

The orientation parameter �� the localization parameter �� and the blur parameter � are similar

to those used for the step edge� The �rst few eigenvectors of roof edge are similar to those of

the step edge� but the K�L residue decays marginally faster� The displayed roof edge manifold is

parameterized by orientation and intrapixel displacement for a �xed blurring value�
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��� Line

The line consists of a pair of parallel step edges separated by a short distance� namely� the
width w of the line �Hueckel ��� �Lenz ���� Our line model is illustrated in Figure ��a
�
In our de
nition� we assume that the intensity steps are both of the same magnitude� It
is possible� to generalize this model to lines with arbitrary brightness on either side with
the addition of one extra parameter �Hueckel ���� This line model has � parameters and is
formally expressed as�

FL�x� y A�B� 	� 
� w� �
 � f �A!B �u�z!w��
�B �u�z�w��

� g�x� y �
� a�x� y
 g � s�x� y

���


The ranges of the parameters 
 and � are exactly as for the roof edge 
 � ��
p
�
� �

p
�
� ��

and � � ����� ����� Given the brightness symmetry in our line model� the orientation range
can be halved to 	 � ��o� ���o�� We restrict the line width to w � ����� ����� In the line
model too� the brightness parameters A and B are free and can be removed through the
normalization procedures presented in section ���� Again� during detection� A and B can
be recovered from the normalization coe	cients � and ��

The result of applying the Karhunen�Lo�eve expansion is somewhat di�erent from
those for the previous features� Most signi
cant is the lower rate of decay in the residue
as seen from Figure ��d
� To reduce the residue to ��# we require � eigenvectors� and
to reduce it to �# we need ��� By this measure the line is a considerably more complex
feature than an edge� However� the data compression factor is still large� and in the range
of ���� It is interesting to note that the line manifold in Figure ��e
 has the structure of a
M$obius band� This results from the following symmetry in the line model�

FL�x� y A�B� 	! ���o� 
� w� �
 � FL�x� y A�B� 	��
�w� �
 ���


��� Corner

The corner is a common and hence important image feature �Nobel ���� In our corner
model� shown in Figure ��a
� 	� is the angle of one of the edges of the corner� and 	� the
angle subtended by the corner itself� The corner lies at the intersection of its edges at
angles 	� and ���o ! 	�! 	�� as illustrated in Figure ��b
� Mathematically� this intersection
can be expressed as the product of two unit step functions� The complete corner model
has � parameters and is written as�

FC�x� y A�B� 	�� 	�� �
 � f �A!B�u�z�	�

�u�z����o!	�!	�


� g�x� y �
� a�x� y
 g � s�x� y

���


where� z�	
 � y � cos 	 � x � sin 	� The parameter ranges used are� 	� � ��o� ���o�� 	� �
���o� ���o�� and � � ����� ����� Again� brightness normalization eliminates the parameters
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(a) Line model (b) Plan view
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(c) First 8 eigenvectors (d) Decay of the K-L residue
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Figure �� The line is of width w and brightness A�B� and has regions of brightness A on both

sides� In addition� it has the orientation parameter �� the localization parameter �� and the blur

parameter �� 
 eigenvectors are need to capture 	
� of the feature content and �� eigenvectors

for 	
�� By this measure the line is a considerably more complex feature than an edge� The line

manifold has the structure of a M�obius band�
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A and B� The decay of the K�L residue� as in Figure ��d
� is similar to that of the line�
In this case� � eigenvectors reduce the residue to ��#� and �� eigenvectors are needed to
reduce it to �#� The corner manifold has a rather interesting shape� as in Figure ��e
�

��� Circular Disc

Our 
nal example is the circular disc� illustrated in Figure ��a
 and Figure ��b
� The
parameters of the circular disc are its radius r� the direction 	 of the center P of the disc
from the origin� its localization 
� and the blurring �� The brightness values inside and
outside the disc are A!B and A� respectively� Formally� the corner model can be expressed
as�

FCD�x� y A�B� 	� 
� r� �
 � �A ! B � u�r � d�x� y


 � g�x� y �
 ���


where� d�x� y
 �
p

��x ! �r � 

 sin 	
� ! �y � �r � 

 cos 	
�
� is the distance of the point�

P� from �x� y
� The parameter ranges are� 	 � ��o� ���o�� 
 � ��
p
�
� �

p
�
� �� r � ����� ������ and

� � ����� ����� Again� brightness normalization removes the e�ects of A and B� The decay
of the K�L residue� as seen from Figure ��d
� is slightly slower than for the step edge� In
this case� we need � eigenvectors to reduce the residue to ��# of the information� and ��
eigenvectors to reduce it to below �#� The 
rst � eigenvectors are shown in Figure ��c
�
and the manifold in Figure ��e
�

� Feature Detection and Parameter Estimation

We now describe the details of feature detection and parameter estimation� Given a point
corresponding to the pixel intensity values in a novel feature window� feature detection
requires 
nding the closest point on the parametric manifold� If the distance between the
novel point and the closest manifold point is su	ciently small� we declare the presence of
the feature� The parameters of the closest manifold point are then used as estimates of
the scene feature�s parameters� Alternatively� if the distance between the novel point and
the manifold is too large� we assert the absence of the feature� We approximate the closest
manifold point by 
rst sampling the manifold� and then performing a search for the closest
sample point� So long as we sample densely enough� this yields a su	ciently good estimate
of the closest manifold point� In this section� we 
rst discuss how to sample the manifold�
and then present our search algorithm� We conclude this section by discussing e	ciency�

��� Sampling the Parametric Manifold

As we saw in the previous section� after parameter reduction by brightness normalization�
we are typically left with a manifold of dimension in the range ���� We sample each

��
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(c) First 8 eigenvectors

Figure �� The corner is described by the brightness values �A and A � B� inside and outside

the corner� the angles �� and �� made by its edges� and the blur parameter �� � eigenvectors are

needed to preserve 	
� of the information and �� eigenvectors for 	
�� The corner manifold is

shown for a particular value of ��
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(a) Circular disc model (b) Plan view

(e) Circular disc parametric manifold
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Figure �� The circular disc is described by the brightness parameters A and B� the radius r of

the disc� the angle � subtended by the center of disc� the localization �� and the blur parameter

�� � eigenvectors are needed to preserve 	
� of the information� and �� eigenvectors for 	
��

The displayed disc manifold is for �xed values of � and r�
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Feature Step Edge Roof Edge Line Corner Circular Arc

No. Points 46368 52250 55440 50196 55440
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Figure �� Automatically generated sampling intervals for the � features� The intervals are gen�

erated by attempting to ensure that the appearance change between each pair of neighboring

sample points is the same� while at the same time trying to limit the total to approximately

�
�


 sample points� These �gures may be used to assess the importance of each parameter to

the model�

parameter independently and uniformly� that is� at equally spaced intervals across its range�
Then� the Cartesian product of the parameter sample points is taken and used to sample
the manifold� If the dimension of the manifold is k� the result is sampling at a k�dimensional
mesh of parameter values� For example� we might sample the step edge�s angle 	 every
�o� the localization 
 every ��� pixels� and the blurring parameter � every ��� pixels� This
leaves one question unanswered� How densely should we sample each parameter�

The answer depends on the e�ect that varying each parameter has on the appearance
of the feature� If a particular parameter causes the appearance �distance traveled on the
manifold
 to vary rapidly� we should sample it densely in order to capture the full variation
in appearance� If varying a parameter results in only a small change in appearance� then
there is little use in sampling it densely� since noise in the image will fundamentally limit
the accuracy with which we can estimate that parameter anyway� As a rough guideline�
we should aim for the change in appearance between two neighboring sample points to be
approximately the same as the change in appearance we can expect due to noise�

In practice� estimating the e�ect of noise may be di	cult� Instead we would rather
specify the number of sample points that we can a�ord to use� either for time or space
complexity reasons� We then desire the most uniform and dense sampling of the manifold
that uses approximately the correct number of samples� In Figure �� we present the output
of a program that automatically estimates the rate of change of appearance with respect
to each parameter� and then uses these estimates to derive sampling intervals for each
parameter� The input to the program was the request to generate manifold samplings�
each containing approximately ������ sample points� The output is displayed in a separate
column for each feature and consists of the sampling interval determined for each parameter�

Figure � may be used to calculate the relative importance of the parameters to the
models� We illustrate this with an example� although similar calculations may be done for
other pairs of parameters� From the 
gure� we can see that for the step edge� varying 
 by

��



����� pixels has the same e�ect as varying 	 by �����o� So� assuming that we may scale
this linearly� which is a reasonable approximation� varying 
 by ���� has a similar e�ect
to varying 	 by ����� � 	�
�

	�	��

 ��o� Since� ���� is half of the interval through which 


varies� the importance of 
 to the parametric representation of the step edge model can
be seen to be approximately equivalent to ��o of 	� A similar calculation for � shows it
to be equivalent to approximately �o of 	� A quick glance through Figure � shows all the
parameters to be of high importance to the parametric representations of their respective
features� Possible exceptions are the burring parameters of the line and the corner�

��� Search for the Closest Manifold Point

The general problem of 
nding the nearest neighbor to a given novel point in a high dimen�
sional space is well studied in computational geometry� The paper by Yinailos �Yianilos ���
contains a comprehensive bibliography of work on nearest neighbor search� Rather than
using any of the general purpose techniques mentioned in �Yianilos ���� we attempt to take
advantage of the properties of the feature manifolds and develop a less general but faster
search technique� We used a heuristic coarse�to�
ne search� which relies upon� and takes
advantage of� the locally smooth behavior of the feature manifolds� The search does not
guarantee 
nding the closest point for pathological manifolds� but we found empirically
that is performs very well for the � example features� In particular� for the manifolds sam�
pled at ������ points� the heuristic search results in a speed�up by a factor of ������ times�
over linear search through the ������ points�

The coarse�to�
ne search is conceptually very simple� We sample the manifold sev�
eral times� giving a sequence of meshes� from a very coarse one up to the 
nest one� The

nest mesh is the one we really wish to search� We begin by 
nding the closest point on
the coarsest mesh by using a brute force linear search� This does not cost much in terms of
time since the coarsest mesh does not contain many points� We then move to the next 
ner
mesh� We search this mesh locally in the region of the result of the previous level� This
search is also a linear brute force search� It again does not cost much since it is only a local
search� and on a relatively coarse mesh� We repeat this for each mesh in turn� reducing
the size of the local search at each step� until we reach the 
nest mesh� The result at the

nest search gives us the answer we are looking for�

��� Further E�ciency Improvements

On a standard single�processor workstation with no additional hardware� the coarse�to�

ne search for a ��D manifold in a ���D space that is sampled at ������ points� takes
approximately �ms� So� applying to every pixel in a ��� � ��� image takes around �mins�
Even this 
gure is not totally unreasonable for some applications� however it is by no means
the best we can do in terms of e	ciency�

��



Rejection We do not need to apply the coarse�to�
ne search at every pixel in the image�
The idea of doing this is as old as edge detection itself� and is explicitly mentioned
in �Hueckel ���� Combining a variety of techniques� we have already reduced the
time to process a ��� � ��� image to less than a minute� In particular� we currently
threshold on the magnitude� �� obtained during normalization� This approach is
similar to Moravec�s interest operator �Moravec ���� used to predict the usefulness
of stereo correspondence matches� We also threshold on the distance from the K�L
subspace� Since� this is �approximately
 a lower bound on the distance from the
manifold� if the distance from the K�L subspace is too large� we can immediately
decide that the pixel does not contain the feature� and so avoid the search� Using the
techniques in �Baker and Nayar ���� we can even avoid most of the cost of computing
the distance from the K�L subspace� The distance from the K�L subspace has been
used in the past for various classi
cation purposes� for example in the 
eld of face
recognition �Pentland et al� ���� where it is termed the distance from face�feature
space�

Parallel Implementation Feature detection is inherently a parallelizable task� As high
performance multi�processor workstations become commonplace� the times mentioned
above may easily be cut by factors on the order of �� or more� Also� it is reasonable
to expect performance increases for the individual processors� further increasing the
overall performance� Real�time performance� already achievable on todays fastest
machines� will be possible on desktop machines within a few years�

� Experimental Results

Assessing the performance of a feature detector is rarely addressed in a satisfactory man�
ner� Of the papers that do comprehensively investigate detector performance� we strongly
recommend both �Nalwa and Binford ��� and �Abdou and Pratt ���� The monograph by
Pratt �Pratt ��� also contains a thorough discussion of proposed techniques� We highlighted
� ways to evaluate the performance of feature detectors�

�� Statistically compare the rates of occurrence of false positives and false negatives�

�� Compare the accuracy of parameter estimation also using statistical tests�

�� Subjectively compare detector outputs applied to real and�or synthetic images�

�� Compare measures that combine feature detection rates with parameter estimation
accuracy� One example is Pratt�s Figure of Merit �Pratt ����

In the next three subsections� we explore the 
rst three methods in turn� We chose not to
investigate any composite measures� even though we favor the use of standard performance

��



tests� We wish to emphasize the distinction between detection and parameter estimation�
and so treat each task independently�

��� Feature Detection Rates

We begin by statistically comparing our step edge detector with both the Canny �Canny ���
and Nalwa�Binford �Nalwa and Binford ��� detectors� A totally fair comparison constitutes
a very di	cult undertaking and warrants a detailed study in itself� For reasons of consis�
tency with previous work� we follow the approach in �Nalwa and Binford ����

The 
rst di	culty is that� each detector is based on its own model of an edge� Our
model and the Nalwa�Binford model are closely related� but comparison with the di�erential
invariant based Canny operator is problematic� Since we took great care modeling both
the features and the imaging system� we used our step edge model in the comparison�
For fairness however� we changed the details slightly� Both the Canny and Nalwa�Binford
detectors assume a constant blur�scale� so we 
xed the value of � in the step edge model
to be ��� pixels� Secondly� the Nalwa�Binford detector is based on a square �� � window�
as is Canny for the implementation that we used� Hence� we changed the window of our
detector to be a square window containing N � �� pixels� rather than the �� pixel disc
window used earlier�

Another issue is the lack of a model for a characteristic �not edge� �Nalwa ����
Whereas it is simple to generate ideal edges� add noise� and then apply the detector to
estimate false positives� generating not edges that we can use to estimate false positives
requires some model of a not edge� We resolve this� as in �Nalwa and Binford ���� by taking
a constant intensity window as our not edge� and then adding white zero�mean Guassian
noise� After the normalizations in subsection ���� this is �almost
 equivalent to picking a
�not edge� uniformly at random from the surface of the unit sphere in the N �dimensional
Hilbert Space� upon which the edge manifold lies �Knuth ����

In Figure � we compare the detection performance of the three edge detectors� For
each pair of S�N�R� and detector� we plot a curve of false positives against false negatives
obtained by varying the threshold inherent in each detection algorithm� The Canny oper�
ator thresholds on the gradient magnitude� the Nalwa�Binford detector thresholds on the
estimated step size� and our approach thresholds on the distance from the parametric man�
ifold� As described before� the rate of false positives is obtained by applying the detector
to a constant intensity window with noise added� The rate of false negatives is obtained
by applying the detectors to noisy step edges�

The closer a curve lies to the origin in Figure �� the better the performance� Hence�
we can see that both the Canny detector and our detector do increasingly well as the S�N�R�
increases� In fact� for low levels of noise the Canny detector does marginally better than our
technique� There are a number of potential explanations for this� One possibility is that
when we generate constant intensity windows with a low level of noise� there is a non�zero
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Figure �� A comparison of edge detection rates� The Canny �C�� Nalwa�Binford �N�B�� and

parametric manifold �PM� detectors are compared for S�N�R� � ��
� ��
� and ��
� We plot false

positives against false negatives� For each detector and S�N�R�� the result is a curve parameterized

by the threshold inherent in that detector� The closer a curve lies to the origin� the better the

performance� We see that the Canny detector and the parametric manifold technique perform

similarly� with the Canny detector doing marginally better for low levels of noise� The results

for the Nalwa�Binford detector �which are consistent with the results presented in �Nalwa and

Binford 
��� are completely di�erent�

probability that the result is approximately a step edge� but with a small value for the step
parameter B� Due to our normalization procedure� such an input will be detected as an
edge by our scheme� but not by Canny since the step size is too small� Strictly speaking� in
terms of our model this is not a false positive� but is registered as such in our experimental
results� If our reasoning is correct� we would expect to see Canny doing increasingly better
than our technique as the noise level is reduced� This is consistent with Figure ��

Our results for the Nalwa�Binford detector are consistent� with those described
in �Nalwa and Binford ���� Applied to real images� the Nalwa�Binford detector does not
perform as poorly as Figure � might indicate� This highlights the di	culty in statistically
comparing edge detectors� The poor Nalwa�Binford results are probably due to thresholding
on the step�size� They may well be completely di�erent if we 
x the step�size threshold�

�We did use step ��� of the Nalwa
Binford algorithm� The inclusion of this step does not radically alter
the performance� See �Nalwa and Binford ��� for a discussion of the exact details of how step ��� e�ects
the results�

��



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

"corner_9x9"
"line_9x9"

"roof_edge_9x9"
"step_edge_9x9"

"arc_9x9"

   False
negatives

False positives

0.8

0.6

0.4

0.2

0
0.80.60.40.20

Circular disc

Step edge

Line

Roof edge

Corner

Figure �� A comparison of feature detection rates for our � example features� All results are for

S�N�R� � ��� and for a disc shaped window containing �	 pixels� We see that the step edge and

circular disc are less noise sensitive than the other features� Note however that the noise sensitivity

of all features may be reduced by increasing the size of the window� Further� for S�N�R� around

��
 and above� all the feature detectors perform with very little error� Hence� we claim success in

our aim of �nding a general purpose approach to parametric feature detection�

and vary a tanh�
t threshold� Further investigation is outside the scope of this paper�

Next� in Figure � we compare the detection rates of our � example features� The rates
of occurrence of false positives and false negatives are estimated in exactly the same method
as above� In the 
gure� the plots are all for a S�N�R� of ���� and for a disc shaped window
comprising �� pixels� We see that the performances of the step edge and the circular disc
are superior to that of the other � features� Since the de
nition of the S�N�R� is radically
di�erent for the roof edge� little should be read into its relatively poor performance� We
do conclude� however� that the corner and line are more sensitive to noise than the other
features� One method of reducing the noise sensitivity is to use a slightly larger window�
If we increase the window size to a disc containing �� pixels� the performance is greatly
enhanced� We also found that the performance of each of the � feature detectors improves
with the S�N�R� exactly as it did for the step edge in Figure �� For S�N�R� 
 ��� and above�
all the detectors perform almost without error� From these �unshown
 results for medium
to low levels of noise� we conclude success in our goal of developing a feature detection
technique applicable to arbitrary parameterized features�
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Figure �� A comparison of edge detector orientation estimation accuracy� We took a synthesized

step edge� added noise to it� and then applied the edge detectors� We plot the r�m�s� error of the

orientation estimate against the S�N�R� We can see that for high levels of noise �low S�N�R�� the

accuracy is limited by the noise� As the noise level decreases� the parametric manifold approach

outperforms both the Nalwa�Binford and Canny detectors�

��� Parameter Estimation Accuracy

Compared to feature detection robustness� assessing the performance of parameter estima�
tion is relatively straightforward� Generalizing the procedure in �Nalwa and Binford ����
we randomly generate a set of feature parameters� synthesize a feature with these parame�
ters� add a certain amount of noise� apply the detector� and then measure the accuracy of
the estimated parameters� If we repeat this procedure a statistically meaningful number of
times� the results should give a very good indication of parameter estimation performance
when applied to a real image� The issue of which model we should use to generate the
features is still somewhat problematic� However� for the same reason as before� we will use
our feature models to generate the synthetic features�

In Figure � we compare the performance of our step edge detector with that of the
Canny detector �Canny ��� and the Nalwa�Binford �Nalwa and Binford ��� detector� For
fairness� as above we used the parametric step edge detector computed for a � � � square
window� and with the blurring parameter 
xed at ��� pixels� In the 
gure� we plot the r�m�s�
error in the estimate of the orientation 	 against the S�N�R� The plot is consistent with the
performance 
gures for the Nalwa�Binford detector presented in �Nalwa and Binford ����
We see that for low S�N�R� the performance of all detectors is limited by the noise� For
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Figure ��� A comparison of the examples features� Since all � features have an orientation

parameter� we use it to compare the performance� We plot the �r�m�s�� orientation estimation error

against the S�N�R� The graph shows that the performance for all � features is approximately the

same� From this we conclude success in our goal of developing a parameter estimation technique

applicable to general parametric features�

low noise levels� our detector is only restricted by how densely the manifold is sampled�
Hence� it out performs both of the other detectors� If we plot a similar graph for the
parameter 
� we 
nd the behavior to be similar� In this case however� the performance of
the Nalwa�Binford detector and the parametric manifold technique are very similar� but
with the Nalwa�Binford detector doing marginally better�

Next we compare the performance of our � features� Since all the feature models
have an orientation parameter� in Figure �� we plot the r�m�s� error in orientation error
against the S�N�R� Note that� as before direct comparison of the roof edge results with
those for the other features is somewhat di	cult due the di�erent de
nition of the S�N�R�
From Figure ��� we see the behavior to be qualitatively the same for all the features�
Further� the graphs for the line� step edge� and circular disc are almost identical� Only
for the corner and roof edge is the decay in parameter estimation accuracy slightly slower�
Although we do not have space to include them� the plots of estimation accuracy for the
other parameters �including those involved in normalization
 are all very similar� From
this� we conclude success� The parametric manifold technique yields parameter estimation
accuracy� comparable with the best available edge detection techniques� but for arbitrarily
de
ned parametric scene features�
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Figure ��� The application of our � feature detectors to a synthetic image� For the �rst time�

we are able to completely detect and discriminate all � example features in the same image using

the same technique�

��� Application to images

In Figures ���b
��f
 we display the results of applying the � example detectors to the
synthetic image in Figure ���a
� The synthetic image is of size ��� � ��� pixels and
contains a pentagonal region �intensity ���
� a circular disc �radius ��� pixels� intensity
���
� a line �width ��� pixels� intensity ���
� and a roof edge �slope � intensity levels
per pixel
� The background intensity is ���� The image was 
rst blurred with Guassian
smoothing �� � ��� pixels
 and then we added white zero�mean Gaussian �� � ��� pixels

noise� At pixels where two feature detectors both register the presence of a feature� we
choose the one with the closer manifold� As can be seen from Figure ��� all of our detectors
perform very well� For the 
rst time� as far as we are aware� we are able to detect in a
single image � di�erent features� Further� the technique may easily be generalized to other
user�de
ned parametric features�

We further demonstrate the versatility of our parametric manifold technique by
applying the corner detector to a real image� In Figure ��� we have superimposed the
output of the corner detector on top of the image to which it was applied� The image is
of size ��� � ��� pixels� which the corner detector took ���� seconds to process� As can
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Figure ��� The corner detector applied to a real image� We have reduced the intensity of

the original image� and then superimposed the detected corners as high intensity points� The

parametric corner detector can be seen to perform very well� detecting all the corners of angle

within the correct range� The processing time for the �
�� ��� image was ���� seconds�

be seen in the 
gure� the results are very good�� Almost all of the corners are detected�
The corners missing on the left hand object are not detected only because their angles are
greater than ���o� Remember that in our parametric de
nition of a corner� the range of
the angle subtended by the corner was ���o� ���o�� There are some false positives on the
other object� A couple lie on the circular disc� Discriminating circular discs and corners is
a di	cult task due to the inherent similarity in their appearance for larger radius discs and
higher angle corners� There are a couple of other false positives lying in the body of the
right hand object� caused by the texture of the wood that the object is made from� Two
other corners are detected on the �shoulder� of the right object� which have angles slightly
greater the ���o�

� Discussion

What we have put forth is a general mechanism for generating detectors of parameterized
features� The techniques we have developed are modular in nature� allowing a user to
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design a detector for a new feature by simply de
ning its model� This is in strong contrast
to previous approaches to feature detection where each feature was treated as a separate
visual entity that deserves its own detailed analysis� Our detailed modeling of features and
the artifacts induced by the imaging system have enabled accurate estimation of feature
parameters� Though the 
ve features we experimented with are well�known ones� in prin�
ciple� any parametrized feature lies within the scope our framework� Given the generality
and performance of our detectors� we have initiated the development of a comprehensive
software package that would allow detector design and application with minimal user in�
teraction�

When multiple detectors are applied to an image� the result is a rich description
of the scene� However� to extract high�level primitives from this description� such as�
continuous lines and curves� the feature parameters need to be further analyzed� This
could be achieved using a relaxation scheme �Rosenfeld et al� ���� While previous relaxation
algorithms have assumed a single feature in the image� often the edge� powerful constraints
result from the use of multiple feature detectors� For instance� a corner cannot exist in
isolation and must have edges in its vicinity� Multi�feature relaxation could turn out to be
an interesting problem�

From a computational perspective� all features are dealt with in essentially the same
manner in our detection scheme� The normalizations� subspace projections� and search
techniques are consistent across features� This allows us to explore a parallel multi�processor
hardware architecture where each processor is dedicated to the detection and parameter
estimation of a single feature� Then� the addition of a new feature detector would only
involve the addition of a single processor to the architecture� A relaxation processor would
take the outputs of all the detection processors to generate high�level primitives� We hope
to pursue the implementation of such a feature detection machine�
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