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We demonstrate the linear frequency conversion of ferromagnetic resonance (FMR) frequency by optically

excited elastic waves in a thin metallic film on dielectric substrates. Time-resolved probing of the magnetization

directly witnesses magnetoelastically driven parametric second-harmonic generation, sum- and difference-

frequency mixing from two distinct frequencies, as well as excitation of parametric resonances. Starting from

the Landau-Lifshitz-Gilbert equations, we derive an analytical equation of an elastically driven (nonlinear)

parametric oscillator and show that frequency mixing is dominated by the parametric modulation of the linear

FMR oscillator.

DOI: 10.1103/PhysRevB.95.060409

Parametric behavior emerges in a wide range of periodically

driven systems when their parameters are periodically mod-

ulated [1]. Examples can be found in nano-optomechanical

[2–4] and microelectromechanical systems [5], (spin) wave

dynamics [6], quantum circuitry [7], energy harvesting appli-

cations [8], and in line with our current report, magnetome-

chanical systems [9] including spin pumping capabilities [10].

The utility of parametric behavior has been shown for

quantum limited detection, noise floor reduction, or low noise

amplification of small signals [2,7].

Parametric phenomena in magnetization dynamics have

also been extensively studied in the framework of spintronic

and magnonic applications [11], where the downconversion

of a microwave-driven uniform precession can generate two

counterpropagating spin waves of varying frequency and

wave vector. The onset of parametric behavior in these

cases is monitored via the enhanced damping and linewidth

changes of the ferromagnetic resonance (FMR) precessional

motion. Furthermore, time domain probing of FMR precession

modulated with multiple microwave electromagnetic fields

leads to seeded parametric downconversion [12]. Additional

studies along these lines have resulted in the generation and

detection of a range of frequency mixing processes of both

uniform precessional modes as well as higher energy spin

waves [13–15], including frequency up- and downconversion.

Looking beyond microwave excitation, the overlapping

frequency range of (surface) acoustic waves and magnetization

precession provides for a unique opportunity to study their

interactions and to explore physical processes where coherent

elastic deformations could provide the necessary parametric

modulation to drive complex magnetization dynamics. In re-

cent years, magnetoelastic interactions have seen a resurgence

of interest, and linear coupling between these degrees of

freedom has been demonstrated [16–21] as well as one report

of nonlinear effects [22].
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An externally driven parametric oscillator is a classic ex-

ample of a linear system with time-varying parameters, which

can produce new frequencies without nonlinear interactions.

In this Rapid Communication we present experimental evi-

dence of the linear magnetoelastic frequency mixing between

multiple coherent elastic deformations and the magnetization

precession in a thin ferromagnetic film.

To explain our results, we perform analytical calculations

of the Landau-Lifshitz-Gilbert equation, subject to the peri-

odic excitation of a large amplitude, coherent elastic wave

and show that the resulting dynamics can be described by

an extended Mathieu equation for a nonlinear parametric

oscillator. Simulation results based on our theory, where the

nonlinear terms are neglected, show excellent correspondence

with experimental results and allow us to identify a range of

upconversion responses (enumerated below) as well as the

downconverted precessional response commonly associated

with parametric modulation.

The enabling feature of the present research is our recent

demonstration of a simple optical technique that is able

to generate multiple elastic waves utilizing the all-optical

ultrafast transient grating (TG) technique [23], which facil-

itates the excitation and detection of multiple distinct elastic

perturbations that propagate along the surface of a magnetic

thin film. In our recent reports, we have identified them as

the Rayleigh surface acoustic wave (SAW) and the surface

skimming longitudinal wave (SSLW), oscillating at distinct

frequencies ωSAW and ωSSLW . These acoustic transients inter-

act simultaneously with the FMR precession in a nickel film.

Varying the applied magnetic field and underlying substrate

material allows us to engineer the frequencies and relative

elastic excitation strength of the two waves, to experimentally

observe sum and difference frequency generation (SHG and

DFG at ω± = ωSSLW ± ωSAW , respectively) and second-

harmonic generation (SHG, both for ωSHG = ωSAW + ωSAW

and ωSHG = ωSSLW + ωSSLW ).

In the TG geometry the sample is excited by two, spatially

and temporally coincident optical pulses generating a spa-

tially periodic, instantaneous excitation. Due to thermoelastic
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FIG. 1. (a) The time-resolved Faraday rotation for three rep-

resentative applied fields, exhibiting a range of magnetoelastic

responses. (b) The Fourier spectra of Faraday time traces vary

strongly with the applied magnetic field, and show maxima when

resonant with the elastic driving fields (linear response) as well as

at their sum and difference frequencies. Magnetoelastic frequency

mixing is observed at the second-harmonic frequency of the Rayleigh

surface acoustic wave (SAW) and difference frequency with a weaker

surface skimming longitudinal wave (SSLW) wave. (c) The numerical

solution of the parametric oscillator equation [Eq. (1)] evidences

the same behavior. The white solid line marks the FMR frequency

�0(H )/2π , while vertical dashed lines identify the time traces in (a).

mechanisms, large amplitude elastic waves propagate along

the surface of the film (as well as into the bulk of the

film). A time-delayed probe measures the magnetization of

the sample based on the rotation of the polarization of the

transmitted beam (Faraday configuration), and is sensitive

to the out-of-plane component of the magnetization as it

precesses under the action of the elastic waves.

As an initial demonstration of magnetoelastic nonlinear-

ities, we revisit the Ni/MgO sample configuration we first

described in Janušonis et al. [24]. On this substrate, the TG

excitation leads to a strong Rayleigh SAW and a barely visible

SSLW (see, e.g., [25]). Figure 1(a) shows the dependence

of the magnetization precession amplitude (Faraday rotation,

vertically offset) on the magnitude H of the in-plane applied

external magnetic field tilted by angle φ = 30◦ with respect to

the TG wave vector. The magnetic field allows for tuning the

thin-film FMR frequency following the Kittel formula �0 =
γμ0

√
H (H + M0), where M0 is the saturation magnetization

in nickel and γ is the gyromagnetic ratio. For ease of

visualization, the spectral amplitude of Fourier transforms of

individual scans taken over the entire range of magnetic field

are displayed in a two-dimensional map as shown in Fig. 1(b).

Within the range of magnetic field up to 1000 G, the FMR

frequency can be tuned to the underlying elastic frequencies

(2.55 GHz for the SAW and weakly at 4.35 GHz for the SSLW),

their difference (1.8 GHz) and sum (6.9 GHz) frequencies, as

well as the SAW second-harmonic frequency (5.10 GHz). The

elastic frequencies are determined by the underlying substrate

material and are fixed once a TG period � is experimentally

selected and shown here for the case of � = 2.2 μm. For this

combination of metal and substrate, the elastic amplitude of

the SAW is far larger than that of the SSLW, resulting in a

large precession signal for the linear response at 2.55 GHz

and its second harmonic (5.10 GHz), and far weaker sum and

difference frequency mixing signals with the weak SSLW.

We therefore consider this as a monochromatic elastic wave

(SAW) with a small additional contribution of the SSLW.

Theoretical analysis of elastically driven Landau-Lifshitz-

Gilbert equations [27] shows that a relatively moderate value

of magnetostriction coefficient b1 = 1.5 × 105 J/m3 in nickel

results in a small-angle FMR precession around the external

magnetic field (applied in the xy plane). The linearization

of Landau-Lifshitz-Gilbert equations in the vicinity of the

equilibrium magnetization direction (see the Supplemental

Material [26] for derivation) leads to an equation of a driven

parametric oscillator,

d2m

dt2
+ Ŵ0

dm

dt
+

[

�2
0 + �2

1exx(t)
]

m = F0exx(t) (1)

for the in-plane component m = My(t)/M0 of the time-

dependent magnetization vector
−→
M (t). The dominant term

exx(t) of the elastic strain represents a sum of two contri-

butions: a large amplitude, time periodic, SAW excitation

at frequency ωSAW and a rapidly decaying SSLW excitation

in line with our previous Green’s function calculation of the

elastic response [25].

Equation (1) represents an approximation of a more

complicated equation [Eq. (4) in the Supplemental Material].

A detailed analysis shows that the damping term Ŵ(t) =
Ŵ0 + Ŵ1exx(t) is modulated by the elastic strain exx(t) as well

and that there exist high-order nonlinear terms proportional

to m2exx and m dm
dt

exx . However, the dominant terms in the

sense of frequency mixing are the parametric modulation

of FMR frequency �2(t) = �2
0 + �2

1exx(t) and the external

driving force F0exx(t). An intrinsic property of our method-

ology is that the parametric modulation �2
1(H,φ)exx(t) =

γ 2μ0b1

M0
(H + M0 − [3H + 2M0] cos2 φ)exx(t) and the external

driving force F0(H,φ)exx(t) = γ 2μ0b2

2M0
(H + M0) sin 2φexx(t)

are both proportional to the strain amplitude exx(t).

However, their ratio F0/�2
1 ∝ (H + M0) sin 2φ/[H + M0 −

(3H + 2M0) cos2 φ], which determines the relative strength

of parametric modulation to driving force, does not depend
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FIG. 2. (a) Horizontal cross sections of experimental [Fig. 1(b)]

plots corresponding to SAW and SSLW frequencies as well

as their difference (SSLW − SAW) and SAW second-harmonic

(SAW+SAW) frequencies. The dashed line shows the SAW

Lorentzian L(ω). (b) The strongest nonlinear mixing signal

(SAW+SAW) is well approximated by an analytical approximation

[Eq. (2)]; it displays two maxima corresponding to the resonances

�0(H = 150 G) = ω and �0(H = 520 G) = 2ω.

on strain and can be adjusted by either changing the mag-

nitude of the applied field, H , and/or the orientation φ of

the external magnetic field with respect to the TG wave

vector.

In Fig. 1(c), we show the results of the numerical solution

of Eq. (1). The solution of the equation results in a time-,

angle-, and field-dependent time trace, which is subsequently

Fourier transformed and displayed as a spectral amplitude. In

comparison to Fig. 1(b), we note the exceptional similarity

between the experimental data and the calculated response,

and in particular the appearance of harmonics of the under-

lying elastic waves. In the simulation, the SAW and SSLW

frequencies are a posteriori extracted from the experimental

data and the SSLW amplitude and decay time are calculated

by the Green’s function formalism [23]. The parametrically

driven upconversion and downconversion are the results of the

simulation.

Figure 2(a) shows the dependence of the Fourier spectra

in Fig. 1(b) on the magnetic field at selected frequencies

corresponding to the acoustic SAW, and SSLW, as well as

the parametrically driven responses of SSLW − SAW and

SAW+SAW frequencies. The strongest SAW signal displays

a resonance at H = 250 G. As discussed previously for

this material heterostructure, the largest signal corresponds

to the SAW excitation which is well approximated by a

Lorentzian line shape (dotted line in the figure). In Fig. 2(b)

we take a closer look at the dependence of the SHG signal

(SAW+SAW) at 5.10 GHz as a function of the magnetic

field, which displays two pronounced maxima corresponding

to the �0 = ω and �0 = 2ω, both in the experiment and

in the numerical simulation. Here ω denotes the frequency

of the surface acoustic wave. In order to understand the

physical origin of this dependence we have applied first-order

perturbation theory to Eq. (1) assuming exx(t) to be a small

parameter. Assuming a monochromatic elastic driving force

(SAW only) exx(t) = exx,0exp(iωt) we obtained the following

analytical expression for the first-order perturbation correction

FIG. 3. (a) On glass substrates, two strong elastic waves are gen-

erated (SAW and SSLW) allowing the observation of sum frequencies

at SAW+SSLW (7.8 GHz) and SSLW+SSLW (10.2 GHz) in addition

to the linearly activated precession at 2.7 and 5.1 GHz. Additionally,

conventional parametric resonances at 1/2, 3/2, and 5/2 of SAW

frequency are witnessed. (b) The attribution of these frequencies is

unambiguously verified by the analysis of vertical cross sections for

several values of magnetic field, providing a ±0.1 GHz error bar for all

frequencies. (c) Dispersion relations for several grating periodicities.

The resultant slope indicates the velocity of the excitation, which

for the two lower modes, correspond to the propagation velocity of

the underlying elastic waves. For the sum frequencies, the extracted

“velocities” indicate that higher precessional frequencies always

occur at the sum of the lower elastic responses.
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oscillating at frequency 2ω:

m(2ω) ∝
1

�2
0 − ω2 + iωŴ0

�2
1

�2
0 − 4ω2 + 2iωŴ0

, (2)

which represents a product of two Lorentzians L(ω) and

L(2ω). Therefore, in analogy to nonlinear optics [28] the

spectral dependence of the second-order susceptibility dis-

plays two resonances at frequencies ω and 2ω, respectively.

However, whereas in nonlinear optics SHG is caused by

χ (2) nonlinearities in the wave equation, in magnetoelastics it

originates from the joint action of the parametric modulation

of the FMR frequency and periodic external driving, both at

the same frequency ω.

The above analytical treatment neglects the second driving

frequency at the SSLW, which is necessary to explain the sum

and difference frequency wave mixing. In contrast to the long-

lived SAW, the amplitude of the SSLW rapidly decays on a time

scale of about 1–3 ns, depending on the elastic constants of

the substrate, TG wavelength, and nickel thickness. However,

replacing the first Lorentzian L(ω) in Eq. (2) by a sum of two

Lorentzians, L(ω) + L(ωSSLW ), allows one to approximate the

experimental data for SSLW − SAW in Fig. 2(a) as well.

Engineering the elastic properties of the dielectric substrate

can be used to enhance existing, or create additional parametric

responses. In contrast to the MgO substrate, where the SAW

excitation dominates, a similar nickel/glass structure displays

markedly different behavior due to the strong contribution of

the SSLW excitation [25], providing additional opportunities

to tune the nonlinear responsivity. As a demonstration, we

perform the same measurements on the Ni/glass structure

with a 1.1 μm period, which results in a more efficient

magnetoelastic frequency mixing as shown in Fig. 3(a). In

addition to the linear SAW and SSLW excitations, there now

exists two responses at 7.8 and 10.2 GHz which we recognize

as the precession response due to the sum frequencies of the

underlying elastic waves, SAW+SSLW and SSLW+SSLW

(due to the particularities of the elastic properties of the

glass, SAW+SAW excitation overlaps nearly perfectly with

the linear SSLW response and is thus not evident). In addition

to these sum frequencies, the response on glass is marked

by the appearance of precessional amplitude at parametric

resonances occurring at 1/2, 3/2, and 5/2 of the SAW

frequency as indicated in the figure. The data in Fig. 3 illustrate

the effect for a magnetic field angle of φ = 7.5◦ (magnetic field

nearly collinear to the TG wave vector), where parametric

driving dominates. Likewise, turning the magnetic field angle

to larger values suppresses the parametric response as shown

in the Supplemental Material for φ = 60◦.

Finally, we aggregate the results of several grating pe-

riodicities (1.1, 1.7, 2.2, 3.3, and 4.4 μm) on the glass

substrate, all of which show sum-frequency generation, to

show the scaling of precessional frequency as a function of

grating wave number. The extracted velocities for the two

lower branches are 3000 ± 125 and 5900 ± 110 m/s in line

with our previous measurement and published data for the

Rayleigh SAW and longitudinal velocity in glass. For the

two upper branches, we extract values of 8900 ± 230 and

11 800 ± 300 m/s which overlap, within errors, with the sum

frequencies SAW+SSLW and SSLW+SSLW. Velocity values

are obtained by zero-intercept linear fits of the dispersion

curves, while the horizontal and vertical error bars on the

data account for the uncertainty in excitation grating period

and frequency uncertainty due to the finite measurement time,

respectively. The dispersion relations should be understood

in the framework of elastic propagation and the resonant

precession that they drive. While the two lower branches

represent both elastic velocity and precessional frequency, the

upper branches should only be associated with the precession

of magnetization at the sum frequencies of the underlying

elastic waves.

In summary, we have demonstrated the general feature of

parametric excitation of magnetization precession under the

action of a driving elastic field. Under an applied field, the

particularities of the response can be tuned to accentuate or

amplify either the sum, difference, or parametric resonance

frequencies. The range of responses can be further selected

by a careful choice of substrate material, which selects the

relative strengths of the active elastic waves. To corrobo-

rate our experimental results, we calculate the response of

magnetization under the action of elastic waves to arrive

at the equation for a parametric oscillator. Numerical and

analytical calculations find excellent qualitative agreement

to the data. This initial demonstration opens the door to

more complex elastic wave [29] control over magnetization

that could herald the emergence of extremely broadband,

widely tunable, control of magnetization precession, including

magnetization reorientation, and elastic activation of quantized

magnonic modes. Furthermore, the presented methodology

can be used to investigate novel materials with unknown mag-

netoelastic properties. Thin films of magnetic MAX phases

with negligible magnetocrystalline anisotropy and possibly

high magnetostrictive coupling could be good candidates for

future research [30].
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