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In this paper we present a parametric model for automatic color naming where each color category is modeled
as a fuzzy set with a parametric membership function. The parameters of the functions are estimated in a
fitting process using data derived from psychophysical experiments. The name assignments obtained by the
model agree with previous psychophysical experiments, and therefore the high-level color-naming information
provided can be useful for different computer vision applications where the use of a parametric model will
introduce interesting advantages in terms of implementation costs, data representation, model analysis, and
model updating. © 2008 Optical Society of America
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1. INTRODUCTION
Color is a very important visual cue in human perception.
Among the various visual tasks performed by humans
that involve color, color naming is one of the most com-
mon. However, the perceptual mechanisms that rule this
process are still not completely known [1]. Color naming
has been studied from very different points of view. The
anthropological study of Berlin and Kay [2] was a starting
point that stimulated much research about the topic in
the subsequent decades. They studied color naming in dif-
ferent languages and stated the existence of universal
color categories. They also defined the set of 11 basic cat-
egories that have the most evolved languages. These are
white, black, red, green, yellow, blue, brown, purple, pink,
orange, and gray. Since then, several studies have con-
firmed and extended their results [3–6].

In computer vision, color has been numerically repre-
sented in different color spaces that, unfortunately, do not
easily derive information about how color is named by hu-
mans. Hence a computational model of color naming
would be very useful for several tasks such as segmenta-
tion, retrieval, tracking, or human–machine interaction.
Although some models based on a pure tessellation of a
color space have been proposed [7–9], the most accepted
framework has been to consider color naming as a fuzzy
process; that is, any color stimulus has a membership
value between 0 and 1 to each color category. Kay and
McDaniel [10] were the first to propose a theoretical fuzzy
model for color naming. Later, some approaches from the
computer vision field adopted this point of view. Lammens
[11] developed a fuzzy computational model where the
membership to the color categories was modeled by a
variant of the Gaussian function that was fitted to Berlin
and Kay’s data. In recent years, more complex and com-
plete models have been proposed. Mojsilovic [12] defined a
perceptual metric derived from color-naming experiments
and proposed a model that also takes into account other
perceptual issues such as color constancy and spatial av-

eraging. Seaborn et al. [13] have developed a fuzzy model
based on the application of the fuzzy k-means algorithm
to the data obtained from the psychophysical experiments
of Sturges and Whitfield [14]. More recently, van den
Broek et al. [15] have proposed a categorization method
based on psychophysical data and the Euclidean distance.
Apart from Lammens’ model, the rest are nonparametric
models.

In this paper we present a fuzzy color-naming model
based on the use of parametric membership functions
whose advantages are discussed later in Section 2. The
main goal of this model is to provide high-level color de-
scriptors containing color-naming information useful for
several computer vision applications [16–19].

The paper is organized as follows. In Section 2, we ex-
plain the fuzzy framework and present our parametric
approach. Next, in Section 3, we detail the process fol-
lowed to estimate the parameters of the model. Section 4
is devoted to discussing the results obtained and, finally,
in Section 5, we present the conclusions of this work.

2. PARAMETRIC MODEL

The essential contribution of this paper is to take a fur-
ther step toward building computational engines to auto-
mate the color categorization task. As similarly done in
previous works, such as Mojsilovic in [12] or Seaborn
et al. in [13], we present the color-naming task as a deci-
sion problem formulated in the frame of the fuzzy-set
theory [20]. Whereas in the first work a nearest neighbor
classifier is used, in the second one a fuzzy k-means algo-
rithm is used. The essential difference of our proposal re-
lies on the definition of a parametric model; that is, we
propose a set of tuneable parameters that analytically de-
fine the shape of the fuzzy sets representing each color
category. Parametric models have been previously used to
model color information [21], and the suitability of such
an approach can be summed up in the following points:

2582 J. Opt. Soc. Am. A/Vol. 25, No. 10 /October 2008 Benavente et al.

1084-7529/08/102582-12/$15.00 © 2008 Optical Society of America



Inclusion of prior knowledge. Prior knowledge about
the structure of the data allows us to choose the best
model on each case. However, this could turn into a dis-
advantage if a nonappropriate function for the model is
selected.

Compact categories. Each category is completely de-
fined by a few parameters, and training data do not need
to be stored after an initial fitting process. This implies
lower memory usage and less computation time when the
model is applied.

Meaningful parameters. Each parameter has a mean-
ing in terms of the characterization of the data, which al-
lows us to modify and improve the model by just adjusting
the parameters.

Easy analysis. As a consequence of the previous point,
the model can be analyzed and compared by studying the
values of its parameters.

Considering the perceptual spaces derived from previ-
ous works and from psychophysical data, we have fitted
color membership using a triple-sigmoid function [see Eq.
(11)] for the eight basic chromatic categories (Red, Or-
ange, Brown, Yellow, Green, Blue, Purple, and Pink). To
this end, we have worked on the CIELab color space,
since it is a quasi-perceptually-uniform color space where
a good correlation between the Euclidean distance be-
tween color pairs and the perceived color dissimilarity can
be observed. It is likely that other spaces could be suitable
whenever one of the dimensions correlates with color
lightness and the other two with chromaticity compo-
nents. In this paper, we will denote any color point in such
a space as s= �I ,c1 ,c2�, where I is the lightness and c1 and
c2 are the chromaticity components of the color point.

Ideally, color memberships should be modeled by three-
dimensional functions, i.e., functions defined by R

3

→ �0,1�, but unfortunately it is not easy to infer precisely
the way in which color-naming data are distributed in the
color space, and hence finding parametric functions that
fit these data is a very complicated task. For this reason,
in our proposal the three-dimensional color space has
been sliced into a set of NL levels along the lightness axis
(see Fig. 1), obtaining a set of chromaticity planes over
which membership functions have been modeled by two-
dimensional functions. Therefore, any specific chromatic
category will be defined by a set of functions, each one de-

pending on a lightness component, as is expressed later in
Eq. (12). Achromatic categories (Black, Gray, and White)
will be given as the complementary function of the chro-
matic ones but weighted by the membership function of
each one of the three achromatic categories. To go into the
details of the proposed approach, we will first give the ba-
sis of the fuzzy framework, and afterward we will pose
the considerations on the function shapes for the chro-
matic categories. Finally, the complementary achromatic
categories will be derived.

A. Fuzzy Color Naming
A fuzzy set is a set whose elements have a degree of mem-
bership. In a more formal way, a fuzzy set A is defined by
a crisp set X, called the universal set, and a membership
function, �A, which maps elements of the universal set
into the [0, 1] interval, that is, �A :X→ �0,1�.

Fuzzy sets are a good tool to represent imprecise con-
cepts expressed in natural language. In color naming, we
can consider that any color category, Ck, is a fuzzy set
with a membership function, �Ck

, which assigns, to any
color sample s represented in a certain color space, i.e.,
our universal set, a membership value �Ck

�s� within the
[0,1] interval. This value represents the certainty we have
that s belongs to category Ck, which is associated with the
linguistic term tk.

In our context of color categorization with a fixed num-
ber of categories, we need to impose the constraint that,
for a given sample s, the sum of its memberships to the n

categories must be the unity

�
k=1

n

�Ck
�s� = 1 with �Ck

�s� � �0,1�, k = 1, . . . ,n.

�1�

In the rest of the paper, this constraint will be referred to
as the unity-sum constraint. Although this constraint
does not hold in fuzzy-set theory, it is interesting in our
case because it allows us to interpret the memberships of
any sample as the contributions of the considered catego-
ries to the final color sensation.

Hence, for any given color sample s, it will be possible
to compute a color descriptor, CD, such as

CD�s� = ��C1
�s�, . . . ,�Cn

�s��, �2�

where each component of this n-dimensional vector de-
scribes the membership of s to a specific color category.

The information contained in such a descriptor can be
used by a decision function, N�s�, to assign the color name
of the stimulus s. The most easy decision rule we can de-
rive is to choose the maximum from CD�s�:

N�s� = tkmax
�kmax = arg max

k=1,. . .,n

��Ck
�s��, �3�

where tk is the linguistic term associated with color cat-
egory Ck.

In our case the categories considered are the basic cat-
egories proposed by Berlin and Kay, that is, n=11, and
the set of categories is

Fig. 1. Scheme of the model. The color space is divided into NL

levels along the lightness axis.
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Ck � �Red,Orange,Brown,Yellow,Green,Blue,Purple,

Pink,Black,Gray,White�. �4�

B. Chromatic Categories
According to the fuzzy framework defined previously, any
function we select to model color categories must map val-
ues to the [0,1] interval, i.e., �Ck

�s�� �0,1�. In addition,
the observation of the membership values of psychophysi-
cal data obtained from a color-naming experiment [22]
made us hypothesize about a set of necessary properties
that membership functions for the chromatic categories
should fulfill:

• Triangular basis. Chromatic categories present a pla-
teau, or area with no confusion about the color name, with
a triangular shape and a principal vertex shared by all
the categories.

• Different slopes. For a given chromatic category, the
slope of naming certainty toward the neighboring catego-
ries can be different on each side of the category (e.g.,
transition from blue to green can be different from that
from blue to purple).

• Central notch. The transition from a chromatic cat-
egory to the central achromatic one has the form of a
notch around the principal vertex.

In Fig. 2 we show a scheme of the preceding conditions
on a chromaticity diagram where the samples of the color-
naming experiment have been plotted.

After considering different membership functions
[23–25] that fulfilled some of the previous properties, we
have defined a new variant of them, the triple sigmoid
with elliptical center (TSE), as a two-dimensional func-
tion, TSE :R2→ �0,1�. The definition of the TSE starts
from the one-dimensional sigmoid function:

S1�x,�� =
1

1 + exp�− �x�
, �5�

where � controls the slope of the transition from 0 to 1
[see Fig. 3(a)].

This can be extended to a two-dimensional sigmoid
function, S :R2→ �0,1�, as

S�p,�� =
1

1 + exp�− �uip�
, i = 1,2, �6�

where p= �x ,y�T is a point in the plane and vectors u1

= �1,0� and u2= �0,1� define the axis in which the function
is oriented [see Fig. 3(b)].

By adding a translation, t= �tx , ty�, and a rotation, �, to
the previous equation, the function can adopt a wide set
of shapes. In order to represent the formulation in a com-
pact matrix form, we will use homogeneous coordinates
[26]. Let us redefine p to be a point in the plane expressed
in homogeneous coordinates as p= �x ,y ,1�T, and let us de-
note the vectors u1= �1,0,0� and u2= �0,1,0�. We define
S1 as a function oriented in axis x with rotation � with
respect to axis y, and S2 as a function oriented in axis y

with rotation � with respect to axis x:

Si�p,t,�,�� =
1

1 + exp�− �uiR�Ttp�
, i = 1,2, �7�

where Tt and R� are a translation matrix and a rotation
matrix, respectively:

Tt = 	
1 0 − tx

0 1 − ty

0 0 1

, R� = 	

cos��� sin��� 0

− sin��� cos��� 0

0 0 1

 . �8�Fig. 2. (Color online) Desirable properties of the membership

function for chromatic categories. In this case, on the blue
category.

Fig. 3. (Color online) (a) Sigmoid function in one dimension. The
value of � determines the slope of the function. (b) Sigmoid func-
tion in two dimensions. Vector ui determines the axis in which
the function is oriented.
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By multiplying S1 and S2, we define the double-sigmoid
(DS) function, which fulfills the first two properties pro-
posed before:

DS�p,t,�DS� = S1�p,t,�y,�y�S2�p,t,�x,�x�, �9�

where �DS= ��x ,�y ,�x ,�y� is the set of parameters of the
DS function. Functions S1, S2, and DS are plotted in Fig.
4.

To obtain the central notch shape needed to fulfill the
third proposed property, let us define the elliptic-sigmoid
(ES) function by including the ellipse equation in the sig-
moid formula:

ES�p,t,�
ES

�

=
1

1 + exp�− �
e�	u1R

�
T

t
p

e
x



2

+ 	u2R
�
T

t
p

e
y



2

− 1�
, �10�

where �ES= �ex ,ey ,� ,�e� is the set of parameters of the ES
function, ex and ey are the semiminor and semimajor axes,
respectively, � is the rotation angle of the ellipse, and �e

is the slope of the sigmoid curve that forms the ellipse
boundary. The function obtained is an elliptic plateau if �e

is negative and an elliptic valley if �e is positive. The sur-
faces obtained can be seen in Fig. 5.

Finally, by multiplying the DS by the ES (with a posi-
tive �e), we define the TSE as

TSE�p,�� = DS�p,t,�DS�ES�p,t,�ES�, �11�

where �= �t ,�DS ,�ES� is the set of parameters of the TSE.
The TSE function defines a membership surface that

fulfills the properties defined at the beginning of Subsec-
tion 2.B. Figure 6 shows the form of the TSE function.

Hence, once we have the analytic form of the chosen
function, the membership function for a chromatic cat-
egory �Ck

is given by

Fig. 4. (Color online) Two-dimensional sigmoid functions. (a) S1,
sigmoid function oriented in the x-axis direction (b) S2, sigmoid
function oriented in the y-axis direction. (c) DS, product of two
differently oriented sigmoid functions generates a plateau with
some of the properties needed for the membership function.

Fig. 5. (Color online) Elliptic-sigmoid function ES�p ,t ,�ES�. (a)
ES for �e�0 and (b) ES for �e�0.

Fig. 6. (Color online) TSE function.

Benavente et al. Vol. 25, No. 10 /October 2008 /J. Opt. Soc. Am. A 2585



�Ck
�s� = �

�Ck

1 = TSE�c1,c2,�Ck

1 � if I � I1

�Ck

2 = TSE�c1,c2,�Ck

2 � if I1 � I � I2,

] ]

�
Ck

NL = TSE�c1,c2,�
Ck

NL� if INL−1 � I
� �12�

where s= �I ,c1 ,c2� is a sample on the color space, NL is the
number of chromaticity planes, �Ck

i is the set of param-
eters of the category Ck on the ith chromaticity plane, and
Ii are the lightness values that divide the space into the
NL lightness levels.

By fitting the parameters of the functions, it is possible
to obtain the variation of the chromatic categories
through the lightness levels. By doing this for all the cat-
egories, it will be possible to obtain membership maps;
that is, for a given lightness level we have a membership
value to each category for any color point s= �I ,c1 ,c2� of
the level. Notice that since some categories exist only at
certain lightness levels (e.g., brown is defined only for low
lightness values and yellow only for high values), on each
lightness level not all the categories will have member-
ships different from zero for any point of the level. Figure
7 shows an example of the membership map provided by
the TSE functions for a given lightness level, in which
there exist six chromatic categories. The other two chro-
matic categories in this example would have zero mem-
bership for any point of the level.

C. Achromatic Categories
The three achromatic categories (Black, Gray, and White)
are first considered as a unique category at each chroma-
ticity plane. To ensure that the unity-sum constraint is
fulfilled (i.e., the sum of all memberships must be one), a
global achromatic membership, �A, is computed for each
level as

�A
i �c1,c2� = 1 − �

k=1

nc

�Ck

i �c1,c2�, �13�

where i is the chromaticity plane that contains the
sample s= �I ,c1 ,c2� and nc is the number of chromatic cat-
egories (in our case, nc=8). The differentiation among the
three achromatic categories must be done in terms of
lightness. To model the fuzzy boundaries among these

three categories, we use one-dimensional sigmoid func-
tions along the lightness axis:

�ABlack
�I,�Black� =

1

1 + exp�− �b�I − tb��
, �14�

�AGray
�I,�Gray� =

1

1 + exp��b�I − tb��

1

1 + exp�− �w�I − tw��
,

�15�

�AWhite
�I,�White� =

1

1 + exp��w�I − tw��
, �16�

where �Black= �tb ,�b�, �Gray= �tb ,�b , tw ,�w�, and �White

= �tw ,�w� are the set of parameters for Black, Gray, and
White, respectively. Figure 8 shows a scheme of this divi-
sion along the lightness axis.

Hence, the membership of the three achromatic catego-
ries on a given chromaticity plane is computed by weight-
ing the global achromatic membership [Eq. (13)] with the
corresponding membership in the lightness dimension
[Eqs. (14)–(16)]:

�Ck
�s,�Ck

� = �A
i �c1,c2��ACk

�I,�Ck
�,

9 � k � 11, Ii � I � Ii+1, �17�

where i is the chromaticity plane in which the sample is
included and the values of k correspond to the achromatic
categories [see Eq. (4)]. In this way we can assure that the
unity-sum constraint is fulfilled on each specific chroma-
ticity plane,

�
k=1

11

�C
k
i �s� = 1, i = 1, . . . ,NL, �18�

where NL is the number of chromaticity planes in the
model.

3. FUZZY-SETS ESTIMATION

Once we have defined the membership functions of the
model, the next step is to fit their parameters. To this end,
we need a set of psychophysical data, D, composed of a set
of samples from the color space and their membership
values to the 11 categories,

Fig. 8. Sigmoid functions are used to differentiate among the
three achromatic categories

Fig. 7. (Color online) TSE function fitted to the chromatic cat-
egories defined on a given lightness level. In this case, only six
categories have memberships different from zero.
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D = ��si,m1
i , . . . ,m11

i ��, i = 1, . . . ,ns, �19�

where si is the ith sample of the learning set, ns is the
number of samples in the learning set, and mk

i is the
membership value of the ith sample to the kth category.

Such data will be the knowledge basis for a fitting pro-
cess to estimate the model parameters, taking into ac-
count our unity-sum constraint given in Eq. (18). In this
case, the model will be estimated for the CIELab space,
since it is a standard space with interesting properties.
However, any other color space with a lightness dimen-
sion and two chromatic dimensions would be suitable for
this purpose.

A. Learning Set
The data set for the fitting process must be perceptually
significant; that is, the judgements should be coherent
with results from psychophysical color-naming experi-
ments and the samples should cover all the color space. At
present, there are no color-naming experiments providing
fuzzy judgements. We proposed a fuzzy methodology for
that purpose in [22], but the sampling of the color space is
not large enough to fit the presented model.

Thus, to build a wide learning set, we have used the
color-naming map proposed by Seaborn et al. in [13]. This
color map has been built by making some considerations
on the consensus areas of the Munsell color space pro-
vided by the psychophysical data from the experiments of
Sturges and Whitfield [14]. Using such data and the fuzzy
k-means algorithm, this method allows us to derive the
memberships of any point in the Munsell space to the 11
basic color categories.

In this way, we have obtained the memberships of a
wide sample set, and afterward we have converted this
color sampling set to their corresponding CIELab repre-
sentation. Our data set was initially composed of the 1269
samples of the Munsell Book of Color [27]. Their reflec-
tances and CIELab coordinates, calculated by using the
CIE D65 illuminant, are available at the Web site of the
University of Joensuu in Finland [28]. In order to avoid
problems in the fitting process due to the reduced number
of achromatic and low-chroma samples, the set was com-
pleted with 18 achromatic samples (from value=1 to
value=9.5 at steps of 0.5), 320 low-chroma samples (for
values from 2 to 9, hue at steps of 2.5, and chroma=1),
and 10 samples with value=2.5, and chroma=2 (hues
5YR, 7.5YR, 10YR, 2.5Y, 5Y, 7.5Y, 10Y, 2.5GY, 5GY, and
7.5GY). The CIELab coordinates of these additional
samples were computed with the Munsell Conversion
software (Version 6.5.10). Therefore, the total number of
samples of our learning set is 1617. Hence, with such a
data set we accomplish the perceptual significance re-
quired for our learning set. First, by using Seaborn’s
method, we include the results of the psychophysical ex-
periment of Sturges and Whitfield, and, in addition, it
covers an area of the color space that suffices for our pur-
pose.

B. Parameter Estimation
Before starting with the fitting process, the number of
chromaticity planes and the values that define the light-
ness levels [see Eq. (12)] must be set. These values de-

pend on the learning set used and must be chosen while
taking into account the distribution of the samples from
the learning set. In our case, the number of planes that
delivered best results was found to be 6, and the values
that define the levels were selected by choosing some local
minima in the histogram of samples along the lightness
axis. Figure 9 shows the samples’ histogram and the val-
ues selected. However, if a more extensive learning set
were available, a higher number of levels would possibly
deliver better results.

For each chromaticity plane, the global goal of the fit-

ting process is finding an estimation of the parameters, �̂j,
that minimizes the mean squared error between the
memberships from the learning set and the values pro-
vided by the model:

�̂j = arg min
�j

1

ncp
�
i=1

ncp

�
k=1

nc

��Ck

j �si,�Ck

j � − mk
i �2, j = 1, . . . ,NL,

�20�

where �̂j= ��̂C1

j , . . . , �̂Cnc

j � is the estimation of the param-

eters of the model for the chromatic categories on the jth
chromaticity plane, �Ck

j is the set of parameters of the cat-
egory Ck for the jth chromaticity plane, nc is the number
of chromatic categories, ncp is the number of samples of
the chromaticity plane, �Ck

j is the membership function of
the color category Ck for the jth chromaticity plane, and
mk

i is the membership value of the ith sample of the
learning set to the kth category.

The previous minimization is subject to the unity-sum
constraint:

�
k=1

11

�Ck

j �s,�Ck

j � = 1, ∀ s = �I,c1,c2� � Ij−1 � I � Ij,

�21�

which is imposed to the fitting process through two as-
sumptions. The first one is related to the membership
transition from chromatic categories to achromatic cat-
egories:

Assumption 1: All the chromatic categories in a chro-
maticity plane share the same ES function, which models
the membership transition to the achromatic categories.
This means that all the chromatic categories share the set
of estimated parameters for ES:

Fig. 9. (Color online) Histogram of the learning set samples
used to determine the values that define the lightness levels of
the model.
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�ESCp

j = �ESCq

j , tCp

j = tCq

j , ∀ p,q � �1, . . . ,nc�,

�22�

where nc is the number of chromatic categories.
The second assumption refers to the membership tran-

sition between adjacent chromatic categories:
Assumption 2: Each pair of neighboring categories, Cp

and Cq, share the parameters of slope and angle of the DS
function, which define their boundary:

�
y

Cp = �
x

Cq, �
y

Cp = �
x

Cq − �	

2
� , �23�

where the superscripts indicate the category to which the
parameters correspond.

These assumptions considerably reduce the number of
parameters to be estimated. Hence, for each chromaticity
plane, we must estimate 2 parameters for the translation,
t= �tx , ty�, 4 for the ES function, �ES= �ex ,ey ,� ,�e�, and a
maximum of 2
nc for the DS functions, since the other
two parameters of �DS= ��x ,�y ,�x ,�y� can be obtained
from the neighboring category [Eq. (23)].

Hence, following the two previous assumptions, the pa-
rameters of the chromatic categories at each chromaticity

plane, �̂Ck

j = �t̂j , �̂DSCk

j , �̂ES
j �, with k=1, . . . ,nc, are estimated

in two steps:
1. According to assumption 1, we estimate the param-

eters of a unique ES function, t̂j and �̂ES
j , for each chroma-

ticity plane by minimizing:

�t̂j, �̂ES
j � = arg min

tj,�ES
j

1

ncp
�
i=1

ncp �ES�si,t
j,�ES

j � − �
k=9

11

mk
i�2

,

�24�

where ncp is the number of samples from the learning set
in the jth chromaticity plane and mk

i is the membership to
the kth category of the ith sample for values of k between
9 and 11, which correspond to the achromatic categories
according to Eq. (4).

2. Considering assumption 2 allows us to estimate the

rest of the parameters, �̂DSCk

j , of each color category by

minimizing the following expression for each pair of
neighboring categories, Cp and Cq:

��̂DSCp

j , �̂DSCq

j � = argmin
�DSCp

j ,�DSCq

j
�
i=1

ncp

���Cp

j �si,�Cp

j � − mp
i �2

+ ��Cq

j �si,�Cq

j � − mq
i �2�, �25�

where �Ck

j = �t̂j ,�DSCk

j , �̂ES
j �.

Once all the parameters of the chromatic categories
have been estimated for all the chromaticity planes, the
parameters used to differentiate among the three achro-

matic categories, �̂A= ��̂C9
, �̂C10

, �̂C11
� are estimated by

minimizing the expression

�̂A = arg min
�A

�
i=1

ns

�
k=9

11

��Ck
�si,�Ck

� − mk
i �2, �26�

where ns is the number of samples in the learning set and
the values of k correspond to the three achromatic catego-
ries, that is, C9=Black, C10=Gray, and C11=White [see
Eq. (4)].

All the minimizations to estimate the parameters are
performed by using the simplex search method proposed
in [29]. After the fitting process, we obtain the parameters
that completely define our color-naming model and that
are presented and discussed in the next section.

4. RESULTS AND DISCUSSION

The essential result of this work is the set of parameters
of the color-naming model that are summarized in Table
1.

The evaluation of the fitting process is done in terms of
two measures. The first one is the mean absolute error
�MAEfit� between the learning set memberships and the
memberships obtained from the parametric membership
functions:

MAEfit =
1

ns

1

11�
i=1

ns

�
k=1

11

�mk
i − �Ck

�si��, �27�

where ns is the number of samples in the learning set, mk
i

is the membership of si to the kth category, and �Ck
�si� is

the parametric membership of si to the kth category pro-
vided by our model.

The value of MAEfit is a measure of the accuracy of the
model fitting to the learning data set, and in our case the
value obtained was MAEfit=0.0168. This measure was
also computed for a test data set of 3149 samples. To build
the test data set, the Munsell space was sampled at hues
1.25, 3.75, 6.25, and 8.75; values from 2.5 to 9.5 at steps of
1 unit; and chromas from 1 to the maximum available
with a step of 2 units. As in the case of the learning set,
the memberships of the test set that were considered the
ground truth were computed with Seaborn’s algorithm.
The corresponding CIELab values to apply our paramet-
ric functions were computed with the Munsell Conversion
software. The value of MAEfit obtained was 0.0218, which
confirms the accuracy of the fitting that allows the model
to provide membership values with very low error even
for samples that were not used in the fitting process.

The second measure evaluates the degree of fulfillment
of the unity-sum constraint. Considering as error the dif-
ference between the unity and the sum of all the member-
ships at a point, pi, the measure proposed is

MAEunitsum =
1

np
�
i=1

np �1 − �
k=1

11

�Ck
�pi�� , �28�

where np is the number of points considered and �Ck
is

the membership function of category Ck.
To compute this measure, we have sampled each one of

the six chromaticity planes with values from −80 to 80 at
steps of 0.5 units on both the a and b axes, which means
that np=153,600. The value obtained for MAEunitsum

=6.41e−04 indicates that the model provides a great ful-
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fillment of that constraint, making the model consistent
with the proposed framework.

Hence, for any point of the CIELab space we can com-
pute the membership to all the categories and, at each
chromaticity plane, these values can be plotted to gener-
ate a membership map. In Fig. 10 we show the member-
ship maps of the six chromaticity planes considered, with
the membership surfaces labeled with their correspond-
ing color terms.

In many previous works on color naming, results have
been evaluated in terms of the categorization of the Mun-
sell space [2,11,13,30]. To be able to compare our results
to the previous ones, we will also categorize the Munsell
space by applying the maximum criteria [Eq. (3)] as a de-
cision rule to assign a color name to each chip of the Mun-
sell data set.

To evaluate the plausibility of the model with psycho-
physical data, we compare our categorization to the re-
sults reported in two works of reference: the study of Ber-

lin and Kay [2] and the experiments of Sturges and
Whitfield [14]. Figure 11 shows the boundaries found by
Berlin and Kay in their work, superimposed on our cat-
egorization. Samples inside these boundaries assigned
with a different name by our model are marked with a
cross. As can be seen, there are a total of 17 samples out of
210 inside Berlin and Kay’s boundaries with a different
name. The errors are concentrated on certain boundaries,
namely, green-blue, blue-purple, purple-pink, and purple-
red.

The comparison to Sturges and Whitfield’s results is
presented in Fig. 12. In Sturges and Whitfield’s experi-
ment the samples labeled with the same name by all the
subjects defined the consensus areas for each category.
Among these samples, the fastest-named sample for each
category was its focus. These areas are superimposed over
our categorization to show that all the consensus and fo-
cal samples from Sturges and Whitfield’s experiment are
assigned the same name by our model.

Table 1. Parameters of the Triple-Sigmoid with Elliptical Center Model
a

Achromatic axis

Black–Gray boundary tb=28.28 �b=−0.71

Gray–White boundary tw=79.65 �w=−0.31

Chromaticity plane 1 Chromaticity plane 2

ta=0.42 ea=5.89 �e=9.84 ta=0.23 ea=6.46 �e=6.03

tb=0.25 eb=7.47 �=2.32 tb=0.66 eb=7.87 �=17.59

�a �b �a �b �a �b �a �b

Red −2.24 −56.55 0.90 1.72 Red 2.21 −48.81 0.52 5.00

Brown 33.45 14.56 1.72 0.84 Brown 41.19 6.87 5.00 0.69

Green 104.56 134.59 0.84 1.95 Green 96.87 120.46 0.69 0.96

Blue 224.59 −147.15 1.95 1.01 Blue 210.46 −148.48 0.96 0.92

Purple −57.15 −92.24 1.01 0.90 Purple −58.48 −105.72 0.92 1.10

Pink −15.72 −87.79 1.10 0.52

Chromaticity plane 3 Chromaticity plane 4

ta=−0.12 ea=5.38 �e=6.81 ta=−0.47 ea=5.99 �e=7.76

tb=0.52 eb=6.98 �=19.58 tb=1.02 eb=7.51 �=23.92

�a �b �a �b �a �b �a �b

Red 13.57 −45.55 1.00 0.57 Red 26.70 −56.88 0.91 0.76

Orange 44.45 −28.76 0.57 0.52 Orange 33.12 −9.90 0.76 0.48

Brown 61.24 6.65 0.52 0.84 Yellow 80.10 5.63 0.48 0.73

Green 96.65 109.38 0.84 0.60 Green 95.63 108.14 0.73 0.64

Blue 199.38 −148.24 0.60 0.80 Blue 198.14 −148.59 0.64 0.76

Purple −58.24 −112.63 0.80 0.62 Purple −58.59 −123.68 0.76 5.00

Pink −22.63 −76.43 0.62 1.00 Pink −33.68 −63.30 5.00 0.91

Chromaticity plane 5 Chromaticity plane 6

ta=−0.57 ea=5.37 �e=100.00 ta=−1.26 ea=6.04 �e=100.00

tb=1.16 eb=6.90 �=24.75 tb=1.81 eb=7.39 �=−1.19

�a �b �a �b �a �b �a �b

Orange 25.75 −15.85 2.00 0.84 Orange 25.74 −17.56 1.03 0.79

Yellow 74.15 12.27 0.84 0.86 Yellow 72.44 16.24 0.79 0.96

Green 102.27 98.57 0.86 0.74 Green 106.24 100.05 0.96 0.90

Blue 188.57 −150.83 0.74 0.47 Blue 190.05 −149.43 0.90 0.60

Purple −60.83 −122.55 0.47 1.74 Purple −59.43 −122.37 0.60 1.93

Pink −32.55 −64.25 1.74 2.00 Pink −32.37 −64.26 1.93 1.03

a
Angles are expressed in degrees, and subscripts x and y are changed to a and b, respectively, in order to make parameter interpretation easier, since parameters in this work

have been estimated for the CIELab space.
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Fig. 10. (Color online) Membership maps for the six chromaticity planes of the model.

Fig. 11. (Color online) Comparison between our model’s Munsell categorization and Berlin and Kay’s boundaries. Samples named dif-
ferently by our model are marked with a cross.
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The analysis done to our TSE model (TSEM) was also
performed on some previous categorizations. These are
obtained by Lammens’s Gaussian model (LGM) [11], an
English speaker presented by MacLaury (MES) in [30],
Seaborn’s fuzzy k-means model (SFKM) [13], and our pre-
vious TS model (TSM) [24]. The results are summarized
in Table 2.

As can be seen in the table, the results of our TSEM
equal the previous best of Seaborn’s nonparametric model
but add the advantages of having a parametric model
that have been previously discussed in Section 2. Notice
that although the learning process of both models was
based on data derived from Sturges’s results, they are the
most consistent with Berlin and Kay’s experiments and
are also better than the results of the English speaker’s
categorization, which shows the variability of the prob-
lem, since any individual subject’s judgements will nor-
mally differ from those of a color-naming experiment.

5. CONCLUSIONS

In this paper we have proposed a parametric fuzzy model
for color naming based on the definition of the TSE as a
membership function. The use of a parametric model in-
troduces several advantages with respect to previous non-
parametric approaches. These advantages, which have
been discussed in Section 2, include a reduction in the
implementation costs in terms of memory and computa-
tion time; a compact data representation; and simplicity
for model analysis, since each parameter has a meaning

in terms of the characterization of the data and, conse-
quently, the model can be easily updated by just tuning
some of the parameters.

The model has been conceived for any color space with
two chromatic dimensions and a lightness dimension, but
in the present work the parameters have been estimated
for the CIELab space. The estimation process includes
some constraints to assure the fulfillment of our imposed
constraint that the memberships sum for any point must
be one. The result is the set of parameters that defines a
model that achieves a low fitting error to both the learn-
ing and test data sets and also fulfills the unity-sum con-
straint. The evaluation of the model when compared to
previous results from the color-naming experiments of
Berlin and Kay, and Sturges and Whitfield demonstrates
that our model is plausible with these psychophysical
data.

Hence, the memberships to the 11 basic color categories
can be obtained for any point in the CIELab space to pro-
vide a color-naming descriptor with meaningful informa-
tion about how humans name colors. The results are
promising and have many applications to different com-
puter vision tasks, such as image description, indexing,
and segmentation, among others, where inclusion of this
high-level information might improve their performance.
The proposed representation of color information could
also be used as a more perceptual measure of similarity
for color, instead of the Euclidean distance in color spaces.

However, it must be pointed out that the model has
been fitted to data derived from psychophysical experi-

Table 2. Comparison of Different Munsell Categorizations to the Results from Color-Naming Experiments

of Berlin and Kay [2] and Sturges and Whitfield [14]

Model

Berlin and Kay Data Sturges and Whitfield Data

Coincidences Errors % Errors Coincidences Errors % Errors

LGM 161 49 23.33 92 19 17.12

MES 182 28 13.33 107 4 3.60

TSM 185 25 11.90 108 3 2.70

SFKM 193 17 8.10 111 0 0.00

TSEM 193 17 8.10 111 0 0.00

Fig. 12. (Color online) Consensus areas and focus from Sturges and Whitfield’s experiment superimposed on our model’s categorization
of the Munsell array.
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ments where a homogeneous color area is shown to an ob-
server who has been adapted to the scene illuminant, and
therefore the name assignment has been done under ideal
conditions where influences from neither the illuminant
nor the surround of the observed area have any effect on
the naming process. In practice, the color-name assign-
ment is a content-dependent task, and therefore percep-
tual considerations about the surround influence must be
taken into account. The model we have proposed is as-
sumed to work on perceived images, that is, images where
the effects of perceptual adaptation to the illuminant and
to the surround have been previously considered in a pre-
processing step. Hence, the application of a color con-
stancy algorithm can provide images under a canonical il-
luminant, thus simulating an adaptation process to the
illuminant [31–33]. On the other hand, induction opera-
tors take into account the influence of the color surrounds
in the final color representations as proposed in [34,35].

Another fact that must be considered is that since
Sturges and Whitfield’s experiments were done with
physical color samples, the data used to fit the model re-
duce the space that occupy some categories (e.g., red) due
to the limitations in the production of some colors with
pigments. Hence, if the model is applied to other kinds of
stimuli, e.g., lights, some errors could appear. This prob-
lem has already been detected in previous works [36].

One limitation of the model is the reduced vocabulary
of color names that are considered. However, this vocabu-
lary could be easily extended by using the fuzzy informa-
tion provided by the model. Hence, compound nouns could
be used for samples with a membership of 0.5 to two cat-
egories (e.g., samples with memberships 0.5 to green and
0.5 to blue could be named as blue-green), or the “-ish”
suffix could be used on samples with a high membership
to a category and up to a certain membership to another
(e.g., samples with memberships 0.7 to green and 0.3 to
blue could be named as bluish green). Nonetheless, the 11
basic categories considered will normally be enough for
most of the applications the model can have, as psycho-
physical experiments have demonstrated that humans
tend to use basic terms more frequently, more consis-
tently, and faster than nonbasic color terms [3,4].

It would also be interesting to obtain a wider set of data
from a fuzzy psychophysical experiment covering an area
of the color space as wide as possible and thus avoiding
undersampling problems. With these psychophysical
data, the proposed model could be improved on several
points. First, it would be desirable to relax or even elimi-
nate the first assumption done in the fitting process to al-
low for the membership transition from chromatic catego-
ries to the achromatic center to be different for each
category. Second, the division of the color space into dif-
ferent lightness levels should be removed. Observation of
the membership maps of the TSE model (Fig. 10) allows
us to detect some tendencies in the evolution of the
boundaries between color categories across lightness lev-
els. Hence, the parameters of the membership functions
could be interpolated along the levels defined in the cur-
rent model to obtain the parameters of the membership
functions for any given value of lightness.

However, to do this, the estimation of some parameters
should be improved. We have noticed that for some cat-

egories, the � parameters do not vary across lightness, as
could be expected. Intuitively, we could think that the val-
ues of � should be lower for high and low lightness, where
colors are more easily confused, and therefore the transi-
tion from one color to another should be smoother and
higher for intermediate lightness levels, where there is
less uncertainty. However, some factors cause the evolu-
tion of � values to not always be as expected. The consen-
sus areas of Sturges and Whitfield’s experiment (areas
with no confusion between subjects) are assumed to have
membership 1. Intuitively, we could think that these con-
sensus areas should be larger in the intermediate light-
ness levels than in the extremes. However, this is not the
case, and the extension of these areas at different light-
ness is much more similar than we could expect. More-
over, the color solid provided by the CIELab space is
wider in the central levels of lightness than in the ex-
tremes. Hence, the consensus areas of Sturges and Whit-
field are more spread out in the central areas than in the
lower and higher levels of the lightness axis. This causes
the membership transitions between regions of member-
ship 1 to be smoother in the central lightness levels than
in the low and high lightness levels. In addition, the slic-
ing of the color space into different levels can also contrib-
ute to distortion of the boundaries, since all the samples
on each level are collapsed on a chromaticity plane where
memberships are modeled with our TSE functions. To
solve this, we are doing new psychophysical experiments
focused on the areas around boundaries in order to esti-
mate better the parameters that define the transitions be-
tween categories.

Nonetheless, the final goal should be to define three-
dimensional membership functions to model color catego-
ries. If a larger fuzzy data set were available, the mem-
bership distributions in the whole color space could be
analyzed to define the properties that three-dimensional
functions should fulfill to accurately model color catego-
ries in a way similar to what we did in this work for the
two-dimensional functions. Unfortunately, this seems not
to be an easy task.
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