
https://doi.org/10.1007/s10596-019-09850-7

ORIGINAL PAPER

Parametric generation of conditional geological realizations using
generative neural networks

Shing Chan1 · Ahmed H. Elsheikh1

Received: 17 July 2018 / Accepted: 18 June 2019

© The Author(s) 2019

Abstract

Deep learning techniques are increasingly being considered for geological applications where—much like in computer

vision—the challenges are characterized by high-dimensional spatial data dominated by multipoint statistics. In particular,

a novel technique called generative adversarial networks has been recently studied for geological parametrization and

synthesis, obtaining very impressive results that are at least qualitatively competitive with previous methods. The method

obtains a neural network parametrization of the geology—so-called a generator—that is capable of reproducing very

complex geological patterns with dimensionality reduction of several orders of magnitude. Subsequent works have addressed

the conditioning task, i.e., using the generator to generate realizations honoring spatial observations (hard data). The

current approaches, however, do not provide a parametrization of the conditional generation process. In this work, we

propose a method to obtain a parametrization for direct generation of conditional realizations. The main idea is to simply

extend the existing generator network by stacking a second inference network that learns to perform the conditioning. This

inference network is a neural network trained to sample a posterior distribution derived using a Bayesian formulation of

the conditioning task. The resulting extended neural network thus provides the conditional parametrization. Our method is

assessed on a benchmark image of binary channelized subsurface, obtaining very promising results for a wide variety of

conditioning configurations.

Keywords Parametrization · Deep learning · Geological models · Generative models · Multipoint geostatistics

1 Introduction

The large scale nature of geological models makes reservoir

simulation an expensive task, prompting numerous works

on parametrization methods that can preserve complex geo-

logical characteristics required for accurate flow modeling.

A wide variety of methods exist including zonation [1, 2],

PCA-based methods [3–5], SVD methods [6, 7], discrete

cosine transform [8, 9], level set methods [10–12], and dic-

tionary learning [13, 14]. Very recently, a new method from

� Shing Chan

sc41@hw.ac.uk

Ahmed H. Elsheikh

a.elsheikh@hw.ac.uk

1 Heriot-Watt University, Edinburgh, UK

the machine learning community called generative adver-

sarial networks [15] has been investigated [16–22] for the

purpose of parametrization, reconstruction, and synthesis of

geological properties, obtaining very competitive results in

the visual quality of the generated images compared with

previous methods. This adds to the recent trend in apply-

ing machine learning techniques [23–29] to leverage rapid

advances in the field as well as the increasing availabil-

ity of data and computational resources that enable these

techniques to be effective.

Generative adversarial networks (GAN) is a novel

technique for training a neural network to sample from a

distribution that is unknown and intractable, by only using

a dataset of realizations from this distribution. The result is

a neural network parametrization called a generator, which

is capable of generating new realizations from the target

distribution—in our case, geological images—using a very

efficient representation. Recent works show that using the

Computational Geosciences (2019) 23:925–952

/ Published online: 13 July 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-019-09850-7&domain=pdf
mailto: sc41@hw.ac.uk
mailto: a.elsheikh@hw.ac.uk

generator to parametrize the geology is very effective in

preserving high-order flow statistics [18, 22], two-point

spatial statistics [16, 19], and morphology [16], all while

achieving dimensionality reduction of several orders of

magnitude.

Subsequent works on GAN focused on the problem

of conditioning the generator: given a generator trained

on unconditional realizations, the task is to generate

realizations conditioned to spatial observations (hard data).

In [20, 21], an image inpainting technique was used

which adopts a sampling by optimization approach, i.e.,

it requires solving an optimization problem for each

conditional realization that is generated. The method

obtained very good results—in particular, [20] reported

superior performance in many aspects compared to standard

geomodeling tools. However, sampling by optimization

can be expensive if realizations need to be continuously

generated during deployment, e.g., for history matching

or uncertainty quantification. An alternative approach was

presented in [19], where the authors addressed conditioning

using a Bayesian framework and performed Markov chain

Monte Carlo to sample conditional realizations. Neither of

these approaches, however, provides a parametrization for

the conditional sampling process. As the authors in [19,

20] express, it is of interest to obtain such parametrization

to directly sample conditional realizations without running

optimizations or Monte Carlo methods.

In this work, we propose a method to obtain a

parametrization to directly sample conditional realizations.

The main idea is to simply extend the existing generator

network by stacking a second inference network that

performs the conditioning. This inference network is a

neural network trained to sample a posterior distribution,

derived using a Bayesian formulation of the conditioning

task. The resulting extended neural network thus provides

the conditional parametrization; hence, direct conditional

sampling can be done very efficiently. We assess our method

on the benchmark image of [30], finding positive results for

a wide variety of conditioning configurations.

Note that although previous works [16, 19, 20] study

applications of GAN mainly in the context of geomodeling

and multipoint geostatistical simulations, here we empha-

size on the effectiveness of GAN—and neural networks in

general—for parametrization and dimensionality reduction,

highlighting their ability to learn efficient representations

for complex and high-dimensional data. The rest of this

work is organized as follows: In Section 2, we describe

parametrization using generative adversarial networks, and

the Bayesian formulation of the conditioning problem. We

introduce our method in Section 3 where we describe how

the inference network is obtained. In Section 4, we show

results for unconditional and conditional parametrization of

binary channelized subsurface images. We discuss related

work in Section 5 including other alternatives to train the

inference network, and conclude our work in Section 6.

2 Background

In this section, we discuss the importance of parametrization

for subsurface simulations (Section 2.1), we describe

generative adversarial networks (Section 2.2), and we

describe the Bayesian formulation of the conditioning

problem (Section 2.3).

2.1 Parametrization

Parametrization is useful in subsurface simulations where

the large number of uncertain variables are highly correlated

and redundantly represented as a consequence of the grid

Fig. 1 An index of words

provides all plausible

arrangement of letters (top row).

Similarly, a geological

parametrization provides all

plausible realizations of the

subsurface (bottom row)

Comput Geosci (2019) 23:925–952926

Fig. 2 Generative adversarial

networks

discretization. One useful analogy to parametrization is an

index of words or a dictionary: Consider the task of inferring

the content of a book using only indirect information such

as the frequency of letters. A priori, this task would need

to consider any possible arrangement of letters however

implausible (top row, left of Fig. 1). On the other hand,

since most books consist of words, we know that most

arrangements are unlikely and can be quickly discarded. The

task, although still difficult, is suddenly much easier with

the inclusion of this prior information via an index of words

(top row, right of Fig. 1). Likewise, consider the task of

inferring the subsurface from indirect information such as

the oil production history. Without any other information,

attempting to deliberately model the subsurface to match

the production history would almost certainly result in

unrealistic images (bottom row, left of Fig. 1). On the

other hand, we know that real subsurface images are not

completely random but instead tend to exhibit clear spatial

correlations. By using a suitable parametrization of the

subsurface, we can embed this information and narrow our

search to only the plausible realizations (bottom row, right

of Fig. 1), thus reducing the number of simulations required

in uncertainty quantification and inversion problems.

Let the random vector y ∈ Rny represent plausible

subsurface images. Parametrization aims to construct a

well-behaved function G : Rnz → Rny such that y = G(z)

where z ∈ Rnz (normally nz ≪ ny) is a latent random

vector with known pre-defined distribution (for example,

z ∼ N (0, I)). Generally, strictly achieving y = G(z)

for complex and high-dimensional y is hard; hence, many

methods settle for replicating simple statistics of y such as

the mean and covariance. For example, in a parametrization

based on principal component analysis, G is an affine

transformation

G(z) = Az + b

where A, b are fitted so that G(z), z ∼ N (0, I) preserves

the sample mean and covariance estimated from an available

dataset {y1, · · · , yn} of realizations of y. Note that for nature

this parametrization is often too simplistic, resulting in

unrealistic realizations that are overly smooth in practice.

In this work, we use a parametrization based on deep

neural networks:

G(z) = fl ◦ fl−1 ◦ · · · ◦ f1(z), fi(x) = σi(Aix + bi) (1)

where ◦ denotes composition (f2 ◦ f1(x) = f2(f1(x))),

and σi denotes a component-wise non-linearity1. This is

motivated by the high expressive power of deep neural

networks as it is now evident from the state-of-the-art results

in computer vision (see e.g. [31, 32] for recent examples).

In addition to the more flexible parametrization, instead

of training the weights Ai, bi to preserve only mean and

covariance as in principal component analysis, we leverage

once more the expressive power of neural networks and

let a second neural network learn and decide the relevant

statistics directly from the dataset. This is possible due to

a recent technique called generative adversarial networks,

described below in Section 2.2.

1The non-linearity adds expressivity; otherwise, the composition

reduces to an affine transformation. Typical choices include tanh(x),

max(0, x), and sigmoid(x).

Comput Geosci (2019) 23:925–952 927

Fig. 3 Illustration of

methodology, G ◦ I

2.2 Generative adversarial networks

We use generative adversarial networks to obtain the

(unconditional) parametrization of the geology. This

method can be used to obtain a parametrization of a gen-

eral random vector given a dataset of its realizations. Let

the random vector y ∈ Rny represent the uncertain sub-

surface property of interest, where ny is very large (e.g.,

permeability discretized by the simulation grid). This ran-

dom vector follows a distribution y ∼ Py that is unknown

and possibly intractable (e.g., distribution of plausible chan-

nelized permeability images). Instead, we are only given a

dataset of realizations {y1, · · · , yN } of the random vector

(e.g., a set of permeability realizations deemed representa-

tive of the area under study). Using this training dataset, we

aim to find a parametrization for y: Consider now a latent

random vector z ∈ Rnz with nz ≪ ny and z ∼ pz where

pz is manually chosen to be easy to sample from (e.g., a

multivariate normal or uniform distribution); and a neural

network Gθ : Rnz → Rny , that we call a generator, where θ

denotes the weights of the neural network. We aim to deter-

mine θ so that y = Gθ (z). In other words, let Pθ denote

the distribution induced by Gθ (i.e., Gθ (z) ∼ Pθ), which

depends on θ ; the goal is to determine θ so that Pθ = Py .

A difficulty with the problem statement above is that

Py is completely unknown (we only have realizations of y)

and Pθ is unknown and intractable (even if pz is simple,

Gθ is a neural network with several non-linearities). On the

other hand, sampling from these distributions is easy: For

Py , we “sample” by drawing realizations from the training

set, assuming the set is large enough to be representative.

For Pθ , we simply sample z ∼ pz and evaluate Gθ (z). We

therefore have two distributions that we can sample from but

we cannot model analytically, and yet we need to optimize

Pθ to approximate Py . Informally, we need to teach the

generator Gθ to generate plausible realizations.

Following this observation, the seminal work in [15]

(see also [33]) introduces the idea of using a classifier

neural network Dψ : Rny → [0, 1] called a discriminator,

with weights ψ , to assess the plausibility of generated

realizations. The discriminator Dψ is trained to distinguish

between “fake” (from generator) and “real” (from training

dataset) realizations, and it essentially outputs a probability

estimate. The aim of the generator is then to fool the

discriminator (see Fig. 2); hence, the discriminator and the

generator are adversaries. The discriminator is trained to

solve a binary classification problem by maximizing the

following loss:

L(ψ, θ) := Ey∼Py
log Dψ (y) + Eỹ∼Pθ

log(1 − Dψ (ỹ))

≈ 1

M

M
∑

i=1

log Dψ (yi) + 1

M

M
∑

i=1

log(1 − Dψ (Gθ (zi))

(2)

which is in essence a binary classification score. The

expectations in the expression above are approximated by

taking a batch of M ≤ N realizations from the training set

for the first term, and sampling M realizations z1, · · · , zM

from pz for the second term.

The generator on the other hand is trained to minimize

the same loss. Thus, an adversarial game is created where G

and D optimize the loss in opposite directions,

min
θ

max
ψ

L(ψ, θ) (3)

Comput Geosci (2019) 23:925–952928

In practice, this optimization is performed alternately using

stochastic gradient descent, where the gradients with respect

to θ and ψ are obtained using automatic differentiation

algorithms. The equilibrium is reached when G effectively

learns to approximate Py and D is 1
2

in the support of

Py (coin toss scenario). It is shown in [15] that in the

infinite capacity setting, the process minimizes the Jensen-

Shannon divergence between Pθ and Py . Once trained, we

can discard the discriminator and keep the generator as our

parametrization.

Note that the method is very general and directly

applicable in practice to all types of geological models

including multi-facies and multimodal geology, since

minimal assumptions are imposed on Py and Pθ as

we do not need to model them explicitly. We only

require realizations {y1, · · · , yN } from the unknown target

distribution Py and the discriminator is in charge of

inferring it from the realizations.

Variations of GAN Stability issues with the original formu-

lation of GAN led to numerous works to improve and gen-

eralize the method (see e.g. [34–37] and references therein).

One line of research generalizes GAN in the framework of

integral probability metrics [38]: Given two distributions P

and Q, and a class of real valued functions D, an integral

probability metric measures the discrepancy between P and

Q as follows:

dD(P,Q) = sup
D∈D

{Ey∼PD(y) − Eỹ∼QD(ỹ)}

Note the slight similarity with Eq. 2. In comparison, this

new formulation2 drops the logarithms and performs the

optimization within a class D ∋ D that may be more

general, i.e., not necessarily limited to classifier functions.

The choice of D is important and leads to different

flavors of GAN. For example, when D is a ball in a

Reproducing Kernel Hilbert Space, dD is the Maximum

Mean Discrepancy (MMD GAN) [39, 40]. When D is a

set of 1-Lipschitz functions, dD is the Wasserstein distance

(WGAN) [41, 42]. When D is a Lebesgue ball, we obtain

Fisher GAN [43], and when D is a Sobolev ball, we obtain

Sobolev GAN [44] (see [44, 45] for further discussion).

Our unconditional generator is trained using the Wasserstein

formulation (see also our recent work [18, 22]).

2Actually, this formulation precedes GAN by almost two decades [38],

although it is introduced in a different context within probability

theory. The connection was drawn recently and led to the numerous

works mentioned.

2.3 Conditioning to observations

Given a pre-trained generator G, we aim to generate

realizations conditioned to spatial observations (hard data),

i.e., find z such that G(z) honors the observations. Let dobs

denote the observations and d(z) = G(z)obs the values at

the observed locations given G(z). Under the probabilistic

framework, we can formulate the problem as finding z∗ that

maximizes its posterior probability given observations,

z∗ = arg max
z

p(z|dobs) (4)

From Bayes’ rule and applying logarithms,

p(z|dobs) ∝ p(dobs|z)p(z)

− log p(z|dobs) = − log p(dobs|z) − log p(z) + const.

For the prior p(z), a natural choice is pz for which the

generator has been trained. In most applications (and in

ours), this is the multivariate standard normal distribution,

then p(z) ∝ exp(− 1
2
‖z‖2). For the likelihood p(dobs|z), we

take the general assumption of i.i.d. Gaussian measurement

noise, p(dobs|z) ∝ exp(− 1
2σ 2 ‖d(z) − dobs‖2) where σ is

the measurement standard deviation. Then, the optimization

in Eq. 4 can be written as

z∗ = arg min
z

L(z) (5)

where

L(z) := − log p(z|dobs)
(×2λ)= ‖d(z) − dobs‖2 + λ‖z‖2

= ‖G(z)obs − dobs‖2 + λ‖z‖2 (6)

where we multiplied everything by λ = σ 2 and

discarded the irrelevant constant. One way to draw different

conditional realizations is to optimize Eq. 5 repeatedly using

a local optimizer and different initial guesses for z, as

performed in [20, 21]. Another approach is to sample the

full posterior using Markov chain Monte Carlo methods as

performed in [19].

3 Conditional generator for geological
realizations

As mentioned in Section 2.3, one way to sample multiple

realizations conditioned to observations is to solve Eq. 5

repeatedly using local optimization with different initial

guesses [20, 21]. However, this approach can be expensive

if a large number of realizations need to be continuously

generated in deployment, e.g., for uncertainty quantification

and inversion problems, and it also may not cover

Comput Geosci (2019) 23:925–952 929

the full solution space. Another approach is to use

Markov chain Monte Carlo methods—assuming the latent

vector is of moderate size—to sample the full posterior

distribution [19]. Neither approach, however, provides

a parametrization of the sampling process. That is,

we no longer have a functional relationship ycond =
Gcond(w), w ∼ pw, where ycond denotes the conditional

geology and pw is some fixed distribution.

Here we propose a method to obtain a conditional

parametrization for direct and parametric sampling of

conditional realizations. The idea is to extend the existing

generator G ◦ I =: Gcond where I is another neural

network—called the inference network—that performs the

conditioning, as illustrated in Fig. 3. The inference network

is trained to sample the Bayesian posterior p(z|dobs) derived

in Section 2.3. Let Iφ : Rnw → Rnz where φ denotes

the weights of the neural network to be determined. Iφ

maps from yet another random vector w ∈ Rnw , w ∼
pw with manually chosen pw (we can naturally choose

pw = pz and nz = nw), to the conditional latent vector

z|dobs ∼ p(z|dobs). Let qφ denote the distribution density

induced by Iφ , which depends on φ. This density function

is unknown and intractable (Iφ is a neural network with

several non-linearities), but is easy to sample from since it

only requires sampling w ∼ pw and evaluating Iφ(w). The

Kullback-Leibler divergence from p(·|dobs) to qφ gives us

DKL(qφ ‖ p(·|dobs)) = Ez∼qφ log
qφ(z)

p(z|dobs)

= Ez∼qφ − log p(z|dobs)+Ez∼qφ log qφ(z)

= Ez∼qφL(z) + Ez∼qφ log qφ(z) + const.

(7)

The first term is the expected loss under the induced

distribution qφ , with the loss defined in Eq. 6. It can be

approximated as

E
z∼qφ

L(z) ≈ 1

M

M
∑

i=1

L(Iφ(wi)) (8)

by sampling M realizations w1, · · · , wM from pw. The

second term, however, is more difficult to evaluate since

we lack the unknown and intractable qφ . The second term

is also called the (negative) entropy of qφ , usually denoted

H(qφ) := −Ez∼qφ log qφ(z). Fortunately, there are sample

estimators Ĥ for H , so we can estimate it from a sample

{z1, · · · , zM}, zi = Iφ(wi). We use the Kozachenko-

Leonenko estimator [46, 47],

Ĥ ({zi, · · · , zM}) = nz

M

M
∑

i=1

log ρ(zi) + const. (9)

where ρ(zi) is the distance between zi and its kth nearest

neighbor in the sample. A good rule of thumb is k ≈√
M [47]. Intuitively, the entropy estimator measures how

spread the elements of the sample are. If the entropy term

were not present, minimizing Eq. 7 would reduce to finding

the maximum a posteriori estimate, instead of sampling the

full posterior.

To train the inference network Iφ , we minimize

DKL(qφ ‖ p(·|dobs)) (Eq. 7) using automatic differentiation

algorithms. Once trained, we obtain our conditional

parametrization Gcond = G ◦ I : Rnw → Rny . Note that we

now map from a new source distribution w ∼ pw, although

we can simply pick pw = pz. Sampling conditional

realizations is done very efficiently by directly sampling

w ∼ pw and forward-passing through G ◦ I .

We summarize the training steps of the inference network

in Algorithm 1. Note that we show a simple gradient

descent update (line 7); however, it is more common to use

dedicated schemes for neural networks such as Adam [48]

or RMSProp [49].

Note that the inference network I is relatively easy to

train compared with the generator G which is based on

GAN. The network I is also usually small and the relative

increase in evaluation cost of the composition G ◦ I is not

significant. We find this to be the case in our experiments.

Algorithm 1 Inference network Iφ training.

Require: Negative log-posterior L(z) = − log p(z|dobs).

In our case (Equation 6), L(z) = ‖G(z)obs − dobs‖2 +
λ‖z‖2, batch size M , learning rate η, source distribution

pw (usually equal to pz).

1: while φ has not converged do

2: Sample {w1, · · · , wM} ∼ pw

3: Get {z1, · · · , zM}, zi = Iφ(wi)

4: Get {ρ1, · · · , ρM}, ρi = distance from zi to its kth

nearest neighbor

5: ∇φEL ← 1
M

∑M
i=1 ∇φL(zi)

6: ∇φĤ ← nz

M

∑M
i=1 ∇φ log ρi

7: φ ← φ − η(∇φEL − ∇
φĤ

)

8: end while

4 Numerical experiments

We train generative adversarial networks to obtain a

parametrization of binary channelized subsurface images

based on the benchmark image of [30]. We then condition

the parametrization for a variety of configurations using

Comput Geosci (2019) 23:925–952930

Fig. 4 Unconditional realizations. a G(z). b snesim. c Multidimensional scaling visualization

our method described in Section 3. Finally, we also include

in Appendix C a side experiment as a sanity check of the

proposed method where we train neural samplers for simple

mixture of Gaussians. All our numerical experiments are

implemented using PyTorch [50], an open-source Python

package for automatic differentiation that provides tools to

facilitate the construction and training of neural network

models. Our implementation code is available in our

repository3.

3https://github.com/chanshing/geocondition

4.1 Unconditional parametrization

We train a generator G : R30 → R64×64 using a dataset

of 1000 realizations of size 64 × 64 of binary channelized

subsurface images. The realizations were obtained using the

snesim algorithm [30, 51] provided within the Stanford

geostatistical modeling software [52], using the benchmark

image from [30] as the reference image4. A few snesim

realizations are shown in Fig. 4b.

4Also referred to as a training image in the geostatistics literature,

although we avoid the term so that it is not confused with the images

of the training set used to train the neural network.

Comput Geosci (2019) 23:925–952 931

https://github.com/chanshing/geocondition

Table 1 Unconditional

realizations. ANODI scores

(inconsistency/diversity)

×1 ×1/2 ×1/4 ×1/8

Patch sampling 0.0220/0.0360 0.0594/0.0900 0.2329/0.3098 0.6055/0.6527

G 0.0286/0.0385 0.0671/0.1002 0.2500/0.3239 0.6133/0.6596

snesim 0.0279/0.0353 0.0648/0.0934 0.2551/0.3389 0.6165/0.6608

4.1.1 Architecture design

The latent vector size nz = 30 was chosen using principal

component analysis as a heuristic, where the number of

eigencomponents required to retain 75% of the variance

is used as a reference. This results in a dimensionality

reduction of two orders of magnitude—from 64 × 64 to

30. The latent vector is sampled from the standard normal

distribution, z ∼ N (0, I). Since the data is binary, it is

reasonable to embed this knowledge into the neural network

design using a suitable non-linearity in the output layer of

the neural network. We use σ = tanh, where we adopt 1

to denote channel material, and −1 to denote background

material. Note that attempting to use a hard threshold here

would render G discontinuous and introduce issues in the

training. It can also be an issue in inversion problems during

deployment. The rest of the neural network architecture

(shapes of Ai, bi , non-linearity σi , number of layers l, etc.—

see Eq. 1) is designed according to the template provided

in [34]. This template is the result of experimentation,

heuristics, and experience. In particular, an important design

choice is the use of convolutional layers. These are sparse

matrices Ai that follow a certain structure that makes

them effective for spatial data. A brief description of

convolutional layers is provided in Appendix E. Further

details of the generator architecture and training is given

in Appendix A.1.

4.1.2 Quality assessment

Realizations generated by the parametrization G are shown

in Fig. 4a. We also show snesim realizations in Fig. 4b. We

can already see from the figure that the parametrization is

at least visually competitive with previous parametrization

methods. The realizations of the parametrization are

virtually indistinguishable from snesim, recreating crisp

and clear channels from the reference (note that no

thresholding has been performed). We next assess the results

quantitatively.

Previous works have assessed the effectiveness of

GAN-based parametrization using a variety of tools.

Two-point probability functions, morphological measures,

and effective porosity were assessed in [16]. Two-point

probability and cluster functions, and fractions of facies

were assessed in [19]. In our previous work [18],

we assessed the effectiveness of the parametrization

for preserving high-order flow statistics in uncertainty

quantification. Here we add to the assessment using the

method of analysis of distances (ANODI) [53] which

captures multipoint statistics, providing a more reliable

measure of quality for complex data where two-point

statistics are insufficient. We also apply multidimensional

scaling for visualization.

The ANODI method aims to capture multipoint statistics

by comparing multipoint histograms at different resolutions.

It computes an inconsistency score (how well it matches

the statistics of the reference image) and a diversity score

(variability between realizations)—therefore, we want low

inconsistency and high diversity. Multidimensional scaling

is a method that aims to project a set of high-dimensional

objects to low dimensions in a way that preserves the

distances between the objects. Although some information

may be lost in the projection, the method provides a useful

way of visualizing high-dimensional objects (e.g., images)

using a scatter-plot. The notion of distance between images,

as adopted in [53], is the Jensen-Shannon divergence

between multipoint histograms of patterns extracted from

the images within a window size.

We perform the analysis at four resolutions: ×1

(original), ×1/2, ×1/4, and ×1/8 resolution (i.e., at 64 ×
64, 32 × 32, 16 × 16, and 8 × 8). We use a window

size of 4 × 4 and sets of 100 realizations for the analysis.

Importantly, note that the snesim realizations are fresh

realizations, i.e not from the training dataset: Ultimately, we

aim to plug the parametrization into a reservoir simulator,

for which we are assuming that the parametrization

replicates the data generating process. Therefore, the

comparison is made against out-of-sample realizations to

see if the parametrization generalizes. For multidimensional

dimensional scaling, we use the SMACOF [54] algorithm

with 300 iterations and tolerance of 10−3.

For the analysis, we need to binarize the realizations

generated by the parametrization which are continuous by

design. For this, we use Otsu’s thresholding method [55].

We also apply small object removal processing on the

images to remove possible isolated pixels. Note that we

Comput Geosci (2019) 23:925–952932

Fig. 5 Assessment of

memorization of G. a Nearest

neighbors for 50 generated

realizations. b Interpolation in

the latent space

do not apply thresholding nor any other post-processing on

the displayed images in this work. Finally, since it can be

difficult to gauge the differences in the ANODI scores, we

include “patch sampling” method (i.e., drawing patches of

64 × 64 from the reference image) into the analysis to serve

as a third point of comparison.

We show the ANODI scores and multidimensional

scaling visualizations in Table 1 and Fig. 4c, respectively.

Comput Geosci (2019) 23:925–952 933

Fig. 6 Example A. Conditional realizations. a G ◦ I (w). b snesim. c Multidimensional scaling visualization

The patch sampling procedure understandably produces the

highest consistency (lowest inconsistency), although it is

also slightly less diverse. Regarding the parametrization, we

find that the scores for snesim and G are relatively very

close across all resolutions, suggesting that G effectively

learned to replicate the data generating process. The

multidimensional scaling visualization in Fig. 4c further

supports this result, showing a very good overlap in the

scatter-plots of snesim and G. The scatter plots are

also well spread and centered around the reference image,

verifying the good performance of both methods.

4.1.3 Memorization

To verify that the parametrization is not simply memorizing

the training dataset, we find the nearest neighbor in the

Comput Geosci (2019) 23:925–952934

Fig. 7 Example B. Conditional realizations. a G ◦ I (w). b snesim. c Multidimensional scaling visualization

dataset for each of 50 generated realizations. To further

verify that the generator is not simply learning trivial

transformations, we data-augment our training dataset with

horizontal and vertical flips, as well as 10 and −10

degrees rotation and shearing (with reflection filling at the

boundaries). This results in 35 additional variations for each

image in the dataset. Finally, to capture small translations,

we apply a Gaussian blur to the images before computing

the Euclidean distance.

The 50 realizations along with the nearest neighbors are

shown in Fig. 5a. We see that there is no perfect match

despite the heavy data augmentation, verifying that the

parametrization is capable of generating novel realizations

that are not mere rotations, translations, shearing and flips

of images from the dataset. The lack of memorization can be

justified by the fact that the generator never has direct access

to the training dataset (see Eq. 2). Instead, the generator

only obtains indirect information about the dataset via the

Comput Geosci (2019) 23:925–952 935

Fig. 8 Example C. Conditional realizations. a G ◦ I (w). b snesim. c Multidimensional scaling visualization

discriminator (i.e., through its gradients). This is similar

to principal component analysis where the parametrization

is only informed about the dataset covariance. In the case

of GAN, the relevant dataset statistics are automatically

discovered and informed by the discriminator.

Finally, we provide a further verification by performing

an interpolation in the latent space in Fig. 5b. If G is

simply memorizing the dataset, we would expect to see

sudden jumps from one image of the dataset to another,

with implausible images in between as we interpolate in the

latent space. We instead effectively find smooth transitions

between plausible outputs. The smoothness is also justified

by the fact that G is continuous and piecewise differentiable

by design (see Eq. 1). Note also that the smoothness is

critical in practice for efficient exploration of the solution

space during deployment, e.g., for inversion and uncertainty

quantification tasks.

4.2 Conditional parametrization

We now obtain conditional generators for 9 conditioning

configurations, ranging from 16 to 49 spatial observations

Comput Geosci (2019) 23:925–952936

Fig. 9 Example D. Conditional realizations. a G ◦ I (w). b snesim. c Multidimensional scaling visualization

(hard data). The configurations are detailed in Table 4.

These indicate the presence or absence of channels at

different locations of the domain. For each configuration

dobs, we derive the Bayesian posterior p(z|dobs) as

described in Section 2.3, and train an inference network to

sample from it as described in Section 3. We assume λ = 0.1

in Eq. 6 in all our test cases. Note that we use a Gaussian

likelihood function in the Bayesian formulation, although

one could also consider the binomial distribution for binary

data. Also note that due to the Bayesian framework adopted

here—i.e., that the observations are noisy—we cannot fully

guarantee that conditioning is strictly honored, but only that

it is honored with high probability.

4.2.1 Architecture design—inference network

The inference network Iφ : R30 → R30 is a fully connected

neural network with several layers. We naturally use nw =
nz = 30 and pw = pz = N (0, I) (so that if no conditioning

were present, Iφ should learn a distribution-preserving

Comput Geosci (2019) 23:925–952 937

Fig. 10 Example E. Conditional realizations. a G ◦ I (w). b snesim. c Multidimensional scaling visualization

function such as the identity function). To simplify the

presentation, we perform minimal hyperparameter tuning—

that is, we use the same neural network architecture and

optimization parameters for all 9 test cases. In practice,

one should perform hyperparameter optimization for each

problem at hand. For the non-linearity, we use scaled

exponential linear units [56]. No non-linearity is applied

in the output layer. Further details of the architecture and

training are given in Appendix A.2. Once I is trained, we

use G ◦ I to generate conditional realizations.

4.2.2 Quality assessment—conditional realizations

We show conditional realizations generated by G◦I for each

test case in Figs. 6, 7, 8, 9, 10, 11, 12, 13, and 14. We also

include conditional realizations obtained using snesim for

Comput Geosci (2019) 23:925–952938

Fig. 11 Example F. Conditional realizations. a G ◦ I (w). b snesim. c Multidimensional scaling visualization

comparison. Over the images, we indicate the conditioning

using blue dots to denote channel material and orange

crosses to denote background material. Overall, we observe

that G ◦ I generates good conditioning results maintaining

the plausibility of the realizations. We also show in Fig. 15

the output of the inference network I for each test case

to visualize the distribution change (for no conditioning,

the distribution is normal). Since it is cumbersome to

visualize the distribution for the 30 components of z, we

show pairwise scatter plots only for the first and last two

components.

Assessment using analysis of distances We perform a

quantitative assessment as in the unconditional case, using

the ANODI method and multidimensional scaling on sets

of 100 realizations. We keep the “patch sampling” method

Comput Geosci (2019) 23:925–952 939

Fig. 12 Example G. Conditional realizations. a G ◦ I (w). b snesim. c Multidimensional scaling visualization

for the multidimensional scaling visualization. The results

are shown in Figs. 6, 7, 8, 9, 10, 11, 12, 13, and 14

and Table 2. In terms of the ANODI scores, we find that

whenever one method generates more plausible images

(lower inconsistency), it also tends to be less diverse, and

vice versa—this is the usual trade-off in image synthesis.

Overall, we find that snesim produces more diverse

realizations whereas G ◦ I emphasizes on plausibility.

This is reasonable since G ◦ I ⊂ G, i.e., an output

of G ◦ I is an output of G; therefore, the conditional

realizations cannot deviate too much from the reference

spatial statistics. Also for this reason, we find that the

outputs of G ◦ I and snesim are most different when

the conditioning statistics are in less agreement with the

reference spatial statistics. This is evident in Fig. 14, and

to a lesser extent Figs. 6 and 8. In Fig. 8 we enforce a

Comput Geosci (2019) 23:925–952940

Fig. 13 Example H. Conditional realizations. a G ◦ I (w). b snesim. c Multidimensional scaling visualization

diagonal channel, finding that G ◦ I generates plausible but

noticeably less diverse realizations compared to snesim.

The difference is more pronounced in Fig. 14 where we

densely enforce vertical channels and find a failure case

for G ◦ I , whereas snesim can handle this case despite

the implausibility of this conditioning (there are no vertical

channels in the reference image). In other words, if the

conditioning is in far disagreement with the reference

spatial statistics, effective conditional parametrization may

be difficult since G is tied to the reference statistics. In the

snesim algorithm, deliberate conditioning and diversity

can be achieved regardlessly since the conditioning is

trivially imposed and the stochasticity is intrinsic to the

synthesis process.

Finally, when the conditioning is in good agreement with

the reference spatial statistics as in the remaining cases, we

Comput Geosci (2019) 23:925–952 941

Fig. 14 Example I. Conditional realizations. a G ◦ I (w). b snesim. c Multidimensional scaling visualization

observe that G ◦ I generates realizations that are visually

comparable with snesim. Note that in practice, we always

aim to use a reference image whose spatial statistics are in

good agreement with the spatial observations; otherwise, the

reference image may not be representative of the area under

study. Also note that although we compare our method

against a multipoint geostatistical simulator, our emphasis

is on parametrization. Lastly, we mention that the present

results could be further improved with hyperparameter

tuning for each individual test case.

Assessment using the discriminator We demonstrate an

alternative approach to assess the quality of the generated

realizations using the discriminator D that is made available

after training generative adversarial networks to obtain

G. Recall that the discriminator outputs a score that

estimates the probability of a realization being “real”

(see Section 2.2), with higher scores corresponding to

higher probability. We can therefore use the discriminator to

assess the quality of the generated realizations. We evaluate

the discriminator on the same sets of 100 realizations used

Comput Geosci (2019) 23:925–952942

Fig. 15 Visualizing the distribution of z|dobs. a Example A. b Example B. c Example C. d Example D. e Example E. f Example F. g Example G.

h Example H. i Example I.

before in the ANODI assessment, and plot the histogram of

the scores in Fig. 16. Overall, we verify that this assessment

at least arrives at the same qualitative conclusions as the

ANODI assessment. For a quantitative summary report, one

can consider summary statistics of the scores such as the

mean and variance as measures of plausibility and diversity,

respectively. Another option is to report the Jensen-Shannon

divergence with respect to some reference histogram.

5 Related work

There is increasing interest in applying deep learning

techniques in geological applications to leverage recent

advances in the field as well as the increasing availability

of data and computational resources that make these

techniques effective. In particular, we expect to see

more applications of generative adversarial networks

Comput Geosci (2019) 23:925–952 943

Table 2 Example A. ANODI scores (inconsistency/diversity)

×1 ×1/2 ×1/4 ×1/8

G ◦ I 0.0353/0.0314 0.0822/0.0961 0.3347/0.3974 0.6857/0.6466

snesim 0.0374/0.0359 0.0868/0.1104 0.3474/0.4539 0.6703/0.6827

G ◦ I 0.0309/0.0325 0.0773/0.0952 0.3184/0.3707 0.6654/0.6500

snesim 0.0246/0.0268 0.0578/0.0721 0.2804/0.3363 0.5995/0.5981

G ◦ I 0.0263/0.0337 0.0619/0.0857 0.2467/0.3097 0.6446/0.6332

snesim 0.0278/0.0369 0.0670/0.1035 0.2815/0.3809 0.6394/0.6758

G ◦ I 0.0353/0.0297 0.0834/0.0861 0.3573/0.3721 0.6694/0.6433

snesim 0.0381/0.0286 0.0948/0.0921 0.3693/0.3972 0.6703/0.6632

G ◦ I 0.0252/0.0286 0.0583/0.0738 0.2553/0.2866 0.6316/0.6105

snesim 0.0264/0.0275 0.0599/0.0743 0.2496/0.3084 0.6510/0.6546

G ◦ I 0.0306/0.0365 0.0785/0.1089 0.3464/0.4237 0.6612/0.6410

snesim 0.0283/0.0327 0.0686/0.0928 0.2844/0.3632 0.6733/0.6787

G ◦ I 0.0232/0.0170 0.0487/0.0345 0.1929/0.1464 0.5003/0.1698

snesim 0.0207/0.0211 0.0446/0.0508 0.1967/0.2009 0.5273/0.4325

G ◦ I 0.0365/0.0289 0.0716/0.0749 0.3092/0.3129 0.6570/0.5101

snesim 0.0331/0.0243 0.0710/0.0732 0.2943/0.3599 0.6656/0.6201

G ◦ I 0.0299/0.0310 0.0817/0.0830 0.3051/0.2339 0.6396/0.3698

snesim 0.0364/0.0351 0.0964/0.1288 0.3512/0.4308 0.6518/0.6645

We highlight in italics the best scores between G and snesim

(GAN) [15] in geology following successful results from

recent works [16–21]. In [19], conditioning is addressed

using a Bayesian formulation and performing Markov

chain Monte Carlo to sample the corresponding posterior

distribution. In [20, 21], the authors address conditioning

using the inpainting technique from [57], which is

equivalent to a Bayesian formulation using a “neural

network prior” (see Appendix D for more details), and the

sampling is done using local optimization. Our approach

is closer to [19] in that we use a simple prior and aim

to sample the full posterior, with the difference that the

sampling is carried out by a neural network and we obtain

a parametrization for the sampling process. Our approach

is motivated by [58] where the authors trained a neural

network to perform texture synthesis. Such authors used

the sample entropy estimator for case k = 1 (nearest

neighbor, see Eq. 9). The entropy estimator used in our work

is a generalization introduced in [47]. A similar estimator

based on random distances is used in [59] in the context

of texture synthesis. In the context of generative modeling,

[60] used a closed-form expression of the entropy term

when using batch normalization [61]. Other alternatives

to train neural samplers include normalizing flow [62],

autoregressive flow [63], and Stein discrepancy [64].

These are all alternatives worth exploring in future

work. Also related to our work include [65, 66] where

the authors optimize the latent space to condition on

labels/classes.

Comput Geosci (2019) 23:925–952944

Fig. 16 Histograms of discriminator scores

6 Conclusion

We introduced a method to obtain a conditional

parametrization by extending an existing unconditional

parametrization, enabling reusability as well as direct

and parametric sampling of conditional realizations. The

parametrization considered in this work was based on

deep neural networks motivated by their ability to express

complex high-dimensional data such as natural images,

including geological subsurface images. The unconditional

parametrization G was obtained using generative adversar-

ial networks (GAN) [15], and the post hoc conditioning

was done by training a second neural network I to sample

a Bayesian posterior, resulting in G ◦ I as the conditional

parametrization.

We applied the method to parametrize binary chan-

nelized images using the benchmark image of [30]. In

previous works, unconditional parametrization based on

GAN was assessed using mostly two-point statistics tools.

Here we added to the assessment using the analysis of

distances method [53] which captures multipoint statis-

tics. We found very positive results for the unconditional

case, supporting previous results showing that G can effec-

tively replicate the data generating process (in our case, the

snesim [30] algorithm) while achieving dimensionality

reduction of two orders of magnitude. Post-hoc condi-

tional parametrization was explored for a variety of con-

figurations. We found that G ◦ I produces very plausible

realizations with good conditioning results, but the effec-

tiveness may depend on the conditioning. Specifically, if

the observations are in far disagreement with the reference

Comput Geosci (2019) 23:925–952 945

spatial statistics, effective conditioning may be difficult.

For observations that agree with the reference spatial statis-

tics, we found that the parametrization produces comparable

results.

Possible future works include studying alternative

training methods for the inference network as mentioned

in Section 5, and further assessments with other images and

in large scale settings.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link

to the Creative Commons license, and indicate if changes were

made.

Appendix A: Implementation details

This section describes training and hyperparameters of the

neural network models. See [67] for a practical guide on

training neural networks.

A.1 Generator neural network

The generator G : R30 → R64×64 is a deep convolutional

neural network based on the template provided in [34].

The generator architecture consists of stacks of (transposed)

convolutional layers (see Appendix E) together with batch

normalization layers [61]. Batch normalization is the

operation of normalizing the intermediate layer results

to have zero mean and unit variance, which drastically

improves optimization of deep neural networks [61]. For

the non-linearity, we use rectified linear units (ReLU,

σ(x) = max(0, x)) in the intermediate layers, and σ(x) =
tanh(x) in the last layer to constrain the output in [−1, 1].
The architecture is summarized in Table 3a. We train

G using the Wasserstein formulation of GAN introduced

in [41] with the proposed default hyperparameters. The

optimization is performed using the Adam [48, 68]

method with learning rate of 10−4 and batch size of

32. Our generator converges in approximately 20,000

iterations, taking around 30 minutes using a Nvidia GeForce

GTX Titan X GPU. For deployment, it can generate

approximately 5500 realizations per second using the

GPU.

A.2 Inference neural network

We use the same inference network architecture I : R30 →
R30 for all our conditioning experiments. The architecture is

simply a stack of fully connected layers with constant-size

intermediate layers. More specifically, we first transform

the input from size 30 to size 512, then apply several more

intermediate transformations preserving the size, and finally

apply a transformation to bring the size back from 512 to

30 in the output layer. For the non-linearity, we use scaled

exponential linear units (SeLU) [56], which are the current

default option for deep fully connected networks: σ(x) =
λx if x > 0, otherwise σ(x) = λα(ex − 1), where constants

λ, α are given in [56]. No non-linearity is applied in the

output layer (we do not need to bound the output as in

the case of the generator). We experimented with different

numbers of layers. Perhaps not surprisingly, we found that

deeper architectures tended to produce better results in

general. In our work, we settled with 5 intermediate layers.

The architecture is summarized in Table 3b. We optimize

I using the Adam method with learning rate of 10−4

and batch size of 64 for all the test cases. The network

converges in between 1000 and 10,000 iterations, depending

on the conditioning, taking between seconds and a few

minutes to train using a Nvidia GeForce GTX Titan X

GPU. For deployment, the conditional generator G ◦ I can

generate approximately 5500 realizations per second using

the GPU—we do not see significant increase in generation

time from G to G ◦ I .

Table 3 Neural network parametrization. ConvT, transposed convo-

lution, the triplet indicates (filter size, stride, padding); BN, batch

normalization; FC, fully connected

State size Layer

(a) Generator architecture

30 × 1 × 1 ConvT(4,1,0), BN, ReLU

512 × 4 × 4 ConvT(4,2,1), BN, ReLU

256 × 8 × 8 ConvT(4,2,1), BN, ReLU

128 × 16 × 16 ConvT(4,2,1), BN, ReLU

64 × 32 × 32 ConvT(4,2,1), Tanh

1 × 64 × 64 –

(b) Inference network architecture

30 FC, SeLU

512 FC, SeLU

.

.

.
.
.
.

512 FC, SeLU

512 FC

30 –

Comput Geosci (2019) 23:925–952946

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Appendix B: Conditioning settings

The conditioning settings are summarized in Table 4.

Table 4 Conditioning

configuration for each test

case. The pair (i, j) denotes

cell indices (row and column,

respectively), and val = 1

indicates channel material,

while val = 0 indicates

background material

Appendix C: Mixture of Gaussians

The proposed method described in Section 3 can be used

to train a general neural sampler. In this side section, we

perform a simple sanity check by assessing the method on

a toy problem where we train neural networks to sample

mixture of Gaussians. Concretely, we train fully connected

neural networks Iφ : Rnw → Rnz to sample simple 1D and

2D mixture of Gaussians, with nz = nw = 1 in the 1D case,

and nz = nw = 2 in the 2D case. The source distribution pw

Comput Geosci (2019) 23:925–952 947

Fig. 17 Results of Iφ trained to

generate mixture of Gaussians. a

Mixture of three 1D Gaussians.

The blue line indicates the target

distribution, and the normalized

histogram corresponds to

generated values. b Mixture of

three 2D Gaussians. The contour

lines indicate the target

distribution, and the scattered

points correspond to generated

values

is the standard normal in both cases. Results are summarized

in Fig. 17.

The first example (Fig. 17a) is a mixture of three 1D

Gaussians, with centers μ1 = −1, μ2 = 2, and μ3 = 6,

and standard deviations σ1 = 1, σ2 = 2, and σ3 =
0.5, respectively. The density of the Gaussian mixture is

indicated along with a histogram for 1000 points generated

by the neural network at an early stage of the training (100

iterations), and at convergence (1000 iterations). The second

example (Fig. 17b) is a mixture of three 2D Gaussians, with

centers μ1 = (−1, −1), μ2 = (1, 2) and μ3 = (2, −1), and

covariances
1 =
(

1 −0.5

−0.5 1

)

,
2 =
(

1.5 0.6

0.6 0.8

)

, and

3 =
(

1 0

0 1

)

, respectively. We plot the contour lines of

the density of the Gaussian mixture. We also show a scatter-

plot of 4000 points generated by the neural network at an

early stage of the training (20 iterations), and at convergence

(1000 iterations). In both test cases, we can verify that

the neural network effectively learns to transport points

from the standard normal distribution to the mixture of

Gaussians.

Appendix D: Comparison with related work
based on inpainting

In image processing, image inpainting is used to fill

incomplete images or replace a subregion of an image (e.g.,

a face with eyes covered). The recent GAN-based inpainting

technique employed in [20, 21] uses an optimization

approach with the following loss:

L(z) = ‖G(z)obs − dobs‖2 + λ log(1 − D(G(z))) (10)

The second term in this loss function is referred to as the

perceptual loss and is the same second term in the GAN

loss in Eq. 2, which is the classification score on synthetic

realizations. Compare Eq. 10 with Eq. 6: While our

Bayesian posterior uses a simple Gaussian prior, the prior

in Eq. 10 (the perceptual loss) involves the discriminator D

used during the GAN training. We argue that the Gaussian

prior can be equally effective, as long as the GAN training

has converged successfully: If G and D are at convergence,

then G(z) always produces plausible realizations for z ∼ pz

where pz is the chosen latent distribution, and D is 1/2

for all realizations of G(z). In such scenario, the perceptual

Comput Geosci (2019) 23:925–952948

loss should then act as a regularization term that drives z

towards regions of high density of the latent distribution pz,

therefore having a similar effect to using pz as the prior.

For example, let us consider z ∼ U [0, 1] and y ∼
U [1, 3]. An optimal generator would be G(z) = 2z + 1 and

an optimal discriminator D(y) = 1/2 for y ∈ [1, 3] and

D(y) = 0 otherwise. Then, D(G(z)) = 1/2 for z ∈ [0, 1],
and D(G(z)) = 0 otherwise, which is precisely the density

function of z ∼ U [0, 1] scaled by 1/2. Therefore, in this

example the perceptual loss and pz as prior would have

the same effect. Nevertheless, in practice the perceptual

loss can be very useful when G and D are not exactly

optimal and there exist bad realizations from G. In that

case, the perceptual loss can help the optimization to find

good solutions. In our work, we found our Gaussian prior

to be sufficient while removing a layer of complexity in the

optimization.

Appendix E: Convolutional neural networks

We provide a very brief description by example of

convolutional neural networks (see [69, 70] for further

details or [71] for a more practical treatment). Let u =
(u1, u2, u3, u4) and a = (a1, a2). Let us call a a filter. To

convolve the filter a on u is to compute the output vector v

with components vi = uia1 +ui+1a2 for i = 1, · · · , 3. The

operation is illustrated as a neural network layer in Fig. 18a.

In this example, the convolution has a stride of 1 (at which

the filter is swept), but in general it can be any positive

integer.

We also show the matrix A associated with this

operation—it is easy to verify that v = Au. We see that

the associated matrix is sparse and diagonal-constant, which

is the appeal of using convolutional layers. This structural

constraint achieves two things: it drastically reduces the

number of free weights, and it does so by assuming a

locality prior. This locality prior turns out to be useful in

practice, since nearby events in natural phenomena (natural

images, speech, text, etc.) tend to be correlated.

Compare the convolutional layer with the fully connected

layer shown in Fig. 18b: In the fully connected case, the

associated matrix is dense, resulting in 12 free weights

whereas the convolution layer has only 2 for the same

layer sizes. This difference is greatly amplified in practice

where inputs/outputs are large (e.g., images), making

convolutional layers a much more efficient architecture.

Note that in practice we use deep architectures, i.e.,

several stacks of convolutional layers, therefore the full

connectivity can be recovered if necessary, although now

Fig. 18 Neural network layers

and respective transformation

matrices

Comput Geosci (2019) 23:925–952 949

with an embedded locality prior along with a hierarchy in

the influence of the weights.

Note that the example considered above would always

result in a smaller output vector size. If the opposite effect

is desired, a simple solution is to transpose the matrix

A. For this reason, this operation is called a transposed

convolution. Several stacks of transposed convolutions are

typically used in generators and decoders to upsample the

small latent vector to the full-size output image. In classifier

neural networks, normal convolutions are used instead to

downsample the large image to a single number indicating

a probability.

Our brief description can be readily extended to 2D and

3D arrays with corresponding multidimensional filters. For

example, for a 2D input the filters are of rectangular shape

and can be swept horizontally and vertically. See [71] for

further practical details.

Appendix F: Computational complexity

Let N denote the dataset size and d the dimension of

each realization. Fast PCA methods based on singular

value decomposition can achieve a complexity of O(N2d).

This complexity is favorable in geology where N ≪ d,

i.e., we have a small number of very large realizations

(although it still grows quadratically with the number

of realizations). For our present method, reporting the

computational complexity is less straightforward since it

is highly problem-dependent. To illustrate the difficulties,

we discuss in the following the computational complexity

of a classifier neural network—similar arguments apply to

encoders, generators and decoders.

Computing the computational complexity of neural

network models is cumbersome since it fully depends on

the architecture, which in turn depends on the learning

difficulty of the problem at hand. For example, in the simple

case that the dataset is linearly separable, a classifier neural

network of the form f (x) = σ(wT x + b), with w, b to

be determined, is enough to correctly classify all points of

the dataset. The evaluation cost of this neural network is

simply O(d), hence the training cost is O(T d) (when using

stochastic gradient descent as normally done), where T is

the number of update iterations. Note that this expression

does not depend on N , although in practice T is at most

linear in N , e.g., when performing multiple passes through

the dataset until convergence, but note that the training

can also converge even before a single pass through the

dataset (which happens on massive datasets). Hence, neural

networks are very favorable in the big data setting, i.e., when

N is very large.

The estimated evaluation cost of O(d) is overly

optimistic since in practice we use deep architectures to deal

with complex datasets that are not linearly separable. If the

architecture is instead f (x) = σ(Al(· · · σ(A2(σ (A1x +
b1) + b2)) · · ·) + bl), where each Ai is a d × d matrix,

then the evaluation cost of this architecture is roughly

O(d2) (we omit the number of layers l since this is a

constant factor and l ≪ d). However, this estimate is now

overly pessimistic: First, in practice the Ai are not shape-

preserving, instead they decrease very quickly in size while

exponentially compressing the input (e.g., A1 is of size

d × d
2

, A2 is of size d
2

× d
4

). Second, the matrices Ai

are rarely full since convolutional layers are used instead

(see Appendix E), resulting in very sparse matrices that are

several orders of magnitude lighter. Modern architectures

use several stacks of exponentially decreasing convolutional

layers, while fully connected layers are avoided or used

only sparingly (and for small inputs/outputs). The over-

all effect is a drastic reduction in the computational

complexity, from O(d2) to O(kd) where k is a factor that is

determined by the architecture. The corresponding training

complexity is then O(T kd). Note that although k < d in

practice, k can still be sizable. On the other hand, k =
1 is also possible as just mentioned. Ultimately, k will

depend on the learning difficulty of the problem. In most

models encountered in the literature, k grows sublinearly

with d.

Perhaps more importantly is the human time, rather

than computational time, that is involved in optimizing the

dozens of hyperparameters—in particular the architecture

design—for which automation is currently limited. As

mentioned before, designing the architecture is heavily

based on experience, heuristics, and experimentation which

incur high costs in terms of engineering time. The

justification of such costs will ultimately depend on the

lifespan of the model, since the model needs to be

constructed only once but can be deployed for a long time

(e.g., history matching) or virtually indefinitely (e.g., most

applications in internet companies such as recommender

systems, visual and voice recognition, language translation).

Automatic architecture search is an ongoing area of research

(see e.g. [72, 73] and references therein).

References

1. Jacquard, P.: Permeability distribution from field pressure data.

Soc. Pet. Eng. https://doi.org/10.2118/1307-PA (1965)

2. Jahns, H.O.: A rapid method for obtaining a two-dimensional

reservoir description from well pressure response data. Soc. Pet.

Eng. https://doi.org/10.2118/1473-PA (1966)

3. Sarma, P., Durlofsky, L.J., Aziz, K.: Kernel principal component

analysis for efficient, differentiable parameterization of multipoint

geostatistics. Math. Geosci. 40(1), 3–32 (2008)

4. Ma, X., Zabaras, N.: Kernel principal component analysis for

stochastic input model generation. J. Comput. Phys. 230(19),

7311–7331 (2011)

Comput Geosci (2019) 23:925–952950

https://doi.org/10.2118/1307-PA
https://doi.org/10.2118/1473-PA

5. Vo, H.X., Durlofsky, L.J.: Regularized kernel PCA for the efficient

parameterization of complex geological models. J. Comput. Phys.

322, 859–881 (2016)

6. Shirangi, M.G., Emerick, A.A.: An improved TSVD-based

Levenberg–Marquardt algorithm for history matching and com-

parison with Gauss–Newton. J. Pet. Sci. Eng. 143, 258–271

(2016)

7. Tavakoli, R., Reynolds, A.C.: Monte Carlo simulation of

permeability fields and reservoir performance predictions with

SVD parameterization in RML compared with EnKF. Comput.

Geosci. 15(1), 99–116 (2011)

8. Jafarpour, B., McLaughlin, D.B.: Reservoir characteriza-

tion with the discrete cosine transform. Soc. Petrol. Eng.

https://doi.org/10.2118/106453-PA (2009)

9. Jafarpour, B., Goyal, V.K., McLaughlin, D.B., Freeman, W.T.:

Compressed history matching: exploiting transform-domain spar-

sity for regularization of nonlinear dynamic data integration

problems. Math. Geosci. 42(1), 1–27 (2010). ISSN 1874-8953.

https://doi.org/10.1007/s11004-009-9247-z

10. Moreno, D., Aanonsen, S.I.: Stochastic facies modelling using

the level set method. In: EAGE Conference on Petroleum

Geostatistics (2007)

11. Dorn, O., Villegas, R.: History matching of petroleum reservoirs

using a level set technique. Inverse Prob. 24(3), 035015 (2008).

http://stacks.iop.org/0266-5611/24/i=3/a=035015

12. Chang, H., Zhang, D., Lu, Z.: History matching of facies

distribution with the EnKF and level set parameterization.

J. Comput. Phys. 229(20), 8011–8030 (2010). ISSN 0021-

9991. https://doi.org/10.1016/j.jcp.2010.07.005. http://www.

sciencedirect.com/science/article/pii/S0021999110003748

13. Khaninezhad, M.M., Jafarpour, B., Li, L.: Sparse geologic

dictionaries for subsurface flow model calibration: part i.

Inversion formulation. Adv. Water Resour. 39, 106–121 (2012)

14. Khaninezhad, M.M., Jafarpour, B., Li, L.: Sparse geologic

dictionaries for subsurface flow model calibration: part ii.

Robustness to uncertainty. Adv. Water Resour. 39, 122–136

(2012)

15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Bing, X.u., Warde-

Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative

adversarial nets. In: Advances in Neural Information Processing

Systems, pp. 2672–2680 (2014)

16. Mosser, L., Dubrule, O., Blunt, M.J.: Reconstruction of three-

dimensional porous media using generative adversarial neural

networks. arXiv:1704.03225 (2017)

17. Mosser, L., Dubrule, O., Blunt, M.J.: Stochastic reconstruction

of an oolitic limestone by generative adversarial networks.

arXiv:1712.02854 (2017)

18. Chan, S., Elsheikh, A.H.: Parametrization and generation

of geological models with generative adversarial networks.

arXiv:1708.01810 (2017)

19. Laloy, E., Hérault, R., Jacques, D., Linde, N.: Training-image

based geostatistical inversion using a spatial generative adversarial

neural network. Water Resour. Res. 54(1), 381–406 (2018)

20. Dupont, E., Zhang, T., Tilke, P., Liang, L., Bailey, W.: Generating

realistic geology conditioned on physical measurements with

generative adversarial networks. arXiv:1802.03065 (2018)

21. Mosser, L., Dubrule, O., Blunt, M.J.: Conditioning of three-

dimensional generative adversarial networks for pore and

reservoir-scale models. arXiv:1802.05622 (2018)

22. Chan, S., Elsheikh, A.H.: Parametrization of stochastic inputs

using generative adversarial networks with application in geology.

arXiv:1904.03677 (2019)

23. Marçais, J., de Dreuzy, J.-R.: Prospective interest of deep

learning for hydrological inference. Groundwater 55(5), 688–692

(2017)

24. Nagoor Kani, J., Elsheikh, A.H.: DR-RNN: a deep residual

recurrent neural network for model reduction. arXiv:1709.00939

(2017)

25. Klie, H., et al.: Physics-based and data-driven surrogates for

production forecasting. In: SPE Reservoir Simulation Symposium.

Society of Petroleum Engineers (2015)

26. Stanev, V.G., Iliev, F.L., Hansen, S., Vesselinov, V.V., Alexandrov,

B.S.: Identification of release sources in advection–diffusion

system by machine learning combined with Green’s function

inverse method. Appl. Math. Model. 60, 64–76 (2018)

27. Sun, W., Durlofsky, L.J.: A new data-space inversion procedure for

efficient uncertainty quantification in subsurface flow problems.

Math. Geosci. 49(6), 679–715 (2017)

28. Zhu, Y., Zabaras, N.: Bayesian deep convolutional encoder-

decoder networks for surrogate modeling and uncertainty quantifi-

cation. J. Comput. Phys. 366, 415-447 (2018)

29. Valera, M., Guo, Z., Kelly, P., Matz, S., Cantu, A., Percus,

A.G., Hyman, J.D., Srinivasan, G., Viswanathan, H.S.: Machine

learning for graph-based representations of three-dimensional

discrete fracture networks. arXiv:1705.09866 (2017)

30. Strebelle, S.B., Journel, A.G.: Reservoir modeling using multiple-

point statistics. In: SPE Annual Technical Conference and

Exhibition. Society of Petroleum Engineers (2001)

31. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for

high fidelity natural image synthesis. arXiv:1809.11096 (2018)

32. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive

growing of gans for improved quality, stability, and variation.

arXiv:1710.10196 (2017)

33. Schmidhuber, J.: Learning factorial codes by predictability

minimization. Neural Comput. 4(6), 863–879 (1992)

34. Radford, A., Metz, L., Chintala, S.: Unsupervised representation

learning with deep convolutional generative adversarial networks.

arXiv:1511.06434 (2015)

35. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford,

A., Chen, X.: Improved techniques for training gans. In: Advances

in Neural Information Processing Systems, pp. 2234–2242 (2016)

36. Arjovsky, M., Bottou, L.: Towards principled methods for training

generative adversarial networks. arXiv:1701.04862 (2017)

37. Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y.: Generaliza-

tion and equilibrium in generative adversarial nets (GANs).

arXiv:1703.00573 (2017)

38. Müller, A.: Integral probability metrics and their generating

classes of functions. Adv. Appl. Probab. 29(2), 429–443 (1997)

39. Gretton, A., Borgwardt, K.M., Rasch, M., Schölkopf, B., Smola,

A.J.: A kernel method for the two-sample-problem. In: Advances

in Neural Information Processing Systems, pp. 513–520 (2007)

40. Dziugaite, G.K., Roy, D.M., Ghahramani, Z.: Training generative

neural networks via maximum mean discrepancy optimization.

arXiv:1505.03906 (2015)

41. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN.

arXiv:1701.07875 (2017)

42. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville,

A.C.: Improved training of Wasserstein GANs. In: Advances in

Neural Information Processing Systems, pp. 5769–5779 (2017)

43. Mroueh, Y., Sercu, T.: Fisher GAN. In: Advances in Neural

Information Processing Systems, pp. 2510–2520 (2017)

44. Mroueh, Y., Li, C.-L., Sercu, T., Raj, A., Cheng, Y.: Sobolev GAN.

arXiv:1711.04894 (2017)

45. Mroueh, Y., Sercu, T., Goel, V.: Mcgan: mean and covariance

feature matching GAN. arXiv:1702.08398 (2017)

46. Kozachenko, L.F., Leonenko, N.N.: Sample estimate of the

entropy of a random vector. Problemy Peredachi Informatsii

23(2), 9–16 (1987)

47. Goria, M.N., Leonenko, N.N., Mergel, V.V., Inverardi, P.LN.: A

new class of random vector entropy estimators and its applications

Comput Geosci (2019) 23:925–952 951

https://doi.org/10.2118/106453-PA
https://doi.org/10.1007/s11004-009-9247-z
http://stacks.iop.org/0266-5611/24/i=3/a=035015
https://doi.org/10.1016/j.jcp.2010.07.005
http://www.sciencedirect.com/science/article/pii/S0021999110003748
http://www.sciencedirect.com/science/article/pii/S0021999110003748
http://arxiv.org/abs/1704.03225
http://arxiv.org/abs/1712.02854
http://arxiv.org/abs/1708.01810
http://arxiv.org/abs/1802.03065
http://arxiv.org/abs/1802.05622
http://arxiv.org/abs/1904.03677
http://arxiv.org/abs/1709.00939
http://arxiv.org/abs/1705.09866
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1703.00573
http://arxiv.org/abs/1505.03906
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1711.04894
http://arxiv.org/abs/1702.08398

in testing statistical hypotheses. J. Nonparametr. Stat. 17(3), 277–

297 (2005)

48. Kingma, D., Ba, J.: Adam: a method for stochastic optimization.

arXiv:1412.6980 (2014)

49. Tieleman, T., Hinton, G.: Lecture 6.5-RMSprop: divide the gradi-

ent by a running average of its recent magnitude. COURSERA:

Neural Networks for Machine Learning 4(2). https://www.cs.

toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf (2012)

50. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,

Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic

differentiation in PyTorch. NIPS Autodiff Workshop (2017)

51. Strebelle, S.: Conditional simulation of complex geological

structures using multiple-point statistics. Math. Geol. 34(1), 1–21

(2002)

52. Remy, N., Boucher, A., Wu, J.: Sgems: Stanford geostatistical

modeling software. Software Manual (2004)

53. Tan, X., Tahmasebi, P., Caers, J.: Comparing training-image based

algorithms using an analysis of distance. Math. Geosci. 46(2),

149–169 (2014)

54. Borg, I., Groenen, P.: Modern multidimensional scaling: theory

and applications. J. Educ. Meas. 40(3), 277–280 (2003)

55. Otsu, N.: A threshold selection method from gray-level his-

tograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

56. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-

normalizing neural networks. In: Advances in Neural Information

Processing Systems, pp. 971–980 (2017)

57. Yeh, R., Chen, C., Lim, T.Y., Hasegawa-Johnson, M., Do, M.N.:

Semantic image inpainting with perceptual and contextual losses.

arXiv:1607.07539 (2016)

58. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Improved texture

networks: maximizing quality and diversity in feed-forward

stylization and texture synthesis. In: Proceedings of CVPR (2017)

59. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.-H.:

Diversified texture synthesis with feed-forward networks. In:

Proceedings of CVPR (2017)

60. Kim, T., Bengio, Y.: Deep directed generative models with energy-

based probability estimation. arXiv:1606.03439 (2016)

61. Ioffe, S., Szegedy, C.: Batch normalization: accelerating

deep network training by reducing internal covariate shift.

arXiv:1502.03167 (2015)

62. Rezende, D.J., Mohamed, S.: Variational inference with normaliz-

ing flows. arXiv:1505.05770 (2015)

63. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever,

I., Welling, M.: Improved variational inference with inverse

autoregressive flow. In: Advances in Neural Information Process-

ing Systems, pp. 4743–4751 (2016)

64. Wang, D., Liu, Q.: Learning to draw samples: with appli-

cation to amortized mle for generative adversarial learning.

arXiv:1611.01722 (2016)

65. Nguyen, A., Yosinski, J., Bengio, Y., Dosovitskiy, A., Clune, J.:

Plug & play generative networks: conditional iterative generation

of images in latent space. arXiv:1612.00005 (2016)

66. Engel, J., Hoffman, M., Roberts, A.: Latent constraints: learning

to generate conditionally from unconditional generative models.

arXiv:1711.05772 (2017)

67. Bengio, Y.: Practical recommendations for gradient-based training

of deep architectures. In: Neural Networks: Tricks of the Trade,

pp. 437–478. Springer (2012)

68. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and

beyond. International Conference on Learning Representations

(2018)

69. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing

neural network model for a mechanism of visual pattern

recognition. In: Competition and Cooperation in Neural Nets,

pp. 267–285. Springer (1982)

70. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard,

R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to

handwritten zip code recognition. Neural Comput. 1(4), 541–551

(1989)

71. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep

learning. arXiv:1603.07285 (2016)

72. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas,

N.: Taking the human out of the loop: a review of Bayesian

optimization. Proc. IEEE 104(1), 148–175 (2016)

73. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement

learning. arXiv:1611.01578 (2016)

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Comput Geosci (2019) 23:925–952952

http://arxiv.org/abs/1412.6980
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1607.07539
http://arxiv.org/abs/1606.03439
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1611.01722
http://arxiv.org/abs/1612.00005
http://arxiv.org/abs/1711.05772
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1611.01578

	Parametric generation of conditional geological realizations using generative neural networks
	Abstract
	Introduction
	Background
	Parametrization
	Generative adversarial networks
	Conditioning to observations

	Conditional generator for geological realizations
	Numerical experiments
	Unconditional parametrization
	Architecture design
	Quality assessment
	Memorization

	Conditional parametrization
	Architecture design—inference network
	Quality assessment—conditional realizations
	Assessment using analysis of distances
	Assessment using the discriminator

	Related work
	Conclusion
	Open Access
	Appendix 1 A: Implementation details
	A.1 Generator neural network
	A.2 Inference neural network
	Appendix B: Conditioning settings
	Appendix C: Mixture of Gaussians
	Appendix D: Comparison with related work based on inpainting
	Appendix E: Convolutional neural networks
	Appendix F: Computational complexity
	References
	Publisher's note

