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AbstractÐA new method for the representation, recognition, and interpretation of parameterized gesture is presented. By

parameterized gesture we mean gestures that exhibit a systematic spatial variation; one example is a point gesture where the relevant

parameter is the two-dimensional direction. Our approach is to extend the standard hidden Markov model method of gesture

recognition by including a global parametric variation in the output probabilities of the HMM states. Using a linear model of

dependence, we formulate an expectation-maximization (EM) method for training the parametric HMM. During testing, a similar EM

algorithm simultaneously maximizes the output likelihood of the PHMM for the given sequence and estimates the quantifying

parameters. Using visually derived and directly measured three-dimensional hand position measurements as input, we present results

that demonstrate the recognition superiority of the PHMM over standard HMM techniques, as well as greater robustness in parameter

estimation with respect to noise in the input features. Last, we extend the PHMM to handle arbitrary smooth (nonlinear) dependencies.

The nonlinear formulation requires the use of a generalized expectation-maximization (GEM) algorithm for both training and the

simultaneous recognition of the gesture and estimation of the value of the parameter. We present results on a pointing gesture, where

the nonlinear approach permits the natural spherical coordinate parameterization of pointing direction.

IndexTermsÐGesture recognition, hiddenMarkovmodels, expectation-maximization algorithm, time-seriesmodeling, computer vision.
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1 INTRODUCTION

CURRENT approaches to the recognition of human move-
ment work by matching an incoming signal to a set of

representations of prototype sequences. For example, a
typical gesture recognition system matches a sequence of
hand positions over time to a number of prototype gesture
sequences, each of which are learned from a set of
examples. To handle variations in temporal behavior, the
match is typically computed using some form of dynamic
time warping (DTW). If the prototype is described by
statistical tendencies, the time warping is often embedded
within a hidden Markov model (HMM) framework. When
the match to a particular prototype is above some threshold,
the system concludes that the gesture corresponding to that
prototype has occurred.

Consider, however, the problem of recognizing the

gesture pictured in Fig. 1 that accompanies the speech

ªI caught a fish. It was this big.º The gesture co-occurs

with the word ªthisº and is intended to convey the size of

the fish, a scalar quantity. The difficulty in recognizing this

gesture is that its spatial form varies greatly depending on

this quantity. A simple DTW or HMM approach would

attempt to model this important relationship as noise. We

call movements that exhibit meaningful, systematic varia-

tion parameterized movements.

In this paper, we will focus on gestures whose spatial
execution is determined by the parameter, as opposed to,
say, the temporal properties. Many hand gestures that
accompany speech are so parameterized. As with the ªfishº
example, hand gestures are often used in dialog to convey
some quantity that otherwise cannot be determined from
speech alone; it is the spatial trajectory or configuration of
the hands that reflect the quantity. Examples include
gestures indicating size, rotation, or direction.

Techniques that use fixed prototypes for matching are
not well-suited to modeling movements that exhibit such
meaningful variation. In this paper, we present a frame-
work which models spatially parameterized movements in
a such way that the recovery of the parameter of interest
and the computation of likelihood proceed simultaneously.
This ability allows the construction of more accurate
recognition systems.

We begin by extending the standard hidden Markov
model method of gesture recognition to include a global
parametric variation in the output probabilities of the states
of the HMM. Using a linear model of the relationship
between the parametric gesture quantity (for example, size)
and the means of probability density functions of the
parametric HMM (PHMM), we formulate an expectation-
maximization (EM) method for training the PHMM. During
testing, a similar EM algorithm allows the simultaneous
computation of the likelihood of the given PHMM generat-
ing the observed sequence and estimation of the quantify-
ing parameters. Using visually derived and directly
measured three-dimensional hand position measurements
as input, we present results on several movements that
demonstrate the superiority of PHMMs over standard
HMMs in recognizing parametric gestures and show
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improved robustness in estimating the quantifying para-
meter with respect to noise in the input features.

Last, we present an extension of the framework to handle
situations in which the dependence of the state output
distributions on the parameters is not linear. Nonlinear
PHMMs model the dependence using a three-layer logistic
neural network at each state. This model removes the
constraint that the mapping from parameterization to
output densities be linear; rather, only a smooth mapping
is required. The nonlinear PHMM is thus able to model a
larger class of gesture and movement than the linear
PHMM and, by the same token, the parameterization may
be chosen more freely in relation to the observation feature
space. The disadvantage of the nonlinear map is that closed-
form maximization of each iteration of the EM algorithm is
no longer possible. Instead, we derive a generalized EM
(GEM) technique based upon the gradient of the probability
with respect to the parameter to be estimated.

2 MOTIVATION AND PRIOR WORK

2.1 Using HMMs in Gesture Recognition

Hidden Markov models and related techniques have been
applied to gesture recognition tasks with success. Typically,
trained models of each gesture class are used to compute
each model's similarity to some novel input sequence. The
input sequence could be the last few seconds of data from a
variety of sensors, including hand position data derived
using computer vision techniques or other position tracking
methods. Typically, the classification of the input sequence
proceeds by computing the sequence's similarity to each of
the gesture class models. If probabilistic techniques are
used, these similarity measures take the form of likelihoods.
If the similarity to any gesture is above some threshold,
then the sequence is classified as the gesture for which the
similarity is greatest.

A typical problem with these techniques is determining
when the gesture began without classifying each subse-
quence up to the current time. One solution is to use

dynamic programming to match the sequence against a
model from all possible starting times of the gesture to the
current time. The best starting time is then chosen from all
possible starting times to give the best match average over
the length of the gesture. Dynamic time warping (DTW)
and Hidden Markov models (HMMs) are two techniques
based on dynamic programming. Darrell and Pentland [12]
applied DTW to match image template correlation scores
against models to recognize hand gestures from video. In
previous work [5], we represented gesture as a determinis-
tic sequence of states through some configuration or feature
space and employed a DTW parsing algorithm to recognize
the gestures. The states were found by first determining a
prototype gesture from a set of examples and then creating
a set of states in feature space that spanned the training set.

HMMs forego the construction of a prototype in
exchange for an expectation/maximization method of
determining a stochastic sequence of states to represent
gesture. Yamato et al. [32] first used HMMs in vision to
recognize tennis strokes. Schlenzig et al. [23] used HMMs
and a rotation-invariant image representation to recognize
hand gestures from video. Starner and Pentland [24]
applied HMMs to recognize ASL sentences, and Campbell
et al. [9] used HMMs to recognize Tai Chi movements. The
present work is based on the HMM framework, which we
summarize in the appendix.

None of the approaches mentioned above consider the
effect of a systematic variation of the gesture on the
underlying representation: The variation between instances
is treated as noise. When it is too difficult to approximate
the noise or the noise is systematic, it is often effective to
look for diagnostic features. For example, in [30], we
employed HMMs that model the temporal properties of
movement to recognize two broad classes of natural,
spontaneous gesture. These models were constructed in
accordance with natural gesture theory [18], [11]. Campbell
and Bobick [10] search for orthogonal projections of the
feature space to find the most diagnostic projections in
order to classify ballet steps. In each of these cases, the goal
is to eliminate the systematic variation rather than to model
it. The work presented here introduces a new method for
modeling such variation within an HMM paradigm.

2.2 Modeling Parametric Variations

In many gesture recognition contexts, it is desirable to
extract some auxiliary information, as well as recognize the
gesture. An interactive system might need to know in which
direction a user points, as well as recognize that the user
pointed. In human communication, sometimes how a
gesture is performed carries significant meaning. ASL, for
example, is subject to complex grammatical processes that
operate on multiple simultaneous levels [21].

One approach is to explicitly model the space of
variation exhibited by a class of signals. In [27], we apply
HMMs to the task of hand gesture recognition from video
by training an eigenvector basis set of the images at each
state. An image's membership to each state is a function of
the residual of the reconstruction of the image using the
state's eigenvectors. The state membership is thus invariant
to variance along the eigenvectors. Although not applied to
images directly, the present work is an extension of this
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Fig. 1. The gesture that accompanies the speech ªI caught a fish. It was
this big.º In its entirety, the gesture consists of a preparation phase in
which the hands are brought into the gesture space, a stroke phase
(depicted by the illustration) which co-occurs with the word ªthisº and,
finally, a retraction back to the rest-state (hands down and relaxed). The
distance between the hands conveys the size of the fish.



earlier work in that the goal is to recover a parameterization
of the systematic variation of the gesture.

Yacoob and Black [31], as well as Bobick and Davis [6],
model the variation within a class of human movement
using linear principal components analysis. The space of
variation is defined by a single linear transformation on the
whole movement sequence. They apply their technique to
show more robust recognition in the face of varying
walking direction and style. They do not address parameter
extraction.

Murase and Nayar [19] parameterize meaningful varia-
tion in the appearance of images by computing a
representation of the nonlinear manifold of the images in
an eigenspace of the images. Their work is similar to ours in
that training assumes that each input feature vector is
labeled with the value of the parameterization. In testing, an
unknown image is projected onto the manifold and the
parameterization is recovered. Their framework has been
used, for example, to recover the camera angle relative to a
known object in the field of view.

Recently, there has been interest in methods that dis-
cover parameterizations in an unsupervised way (so-called
latent parameterizations). In his ªfamily discoveryº para-
digm, Omohundro [20], for example, outlines a variety of
approaches to learning a nonlinear manifold in some
feature space representing systematic variation. One of
these techniques has been applied to the task of lip reading
by Bregler and Omohundro [7]. Bishop et al. [4] have also
introduced techniques to learn latent parameterizations.
Their system begins with an assumption of the dimension-
ality of the parameterization and uses an expectation-
maximization framework to compute a manifold represen-
tation. The present work is similarly concerned with
modeling ªfamiliesº of signals, but assumes that the
parameterization is given for the training set.

Last, we mention that, in the speech recognition
community, a number of models for speaker adaptation in
HMM-based speech recognition systems have been pro-
posed. Gales [14] for example, examines a number of
transformations on the means and covariances of HMM
output distributions. These transformations are trained
against a new speaker speaking a known utterance. Our
model is similar in that we use constrained transformations
of the model to match the data, but differs in that we are
interested in recovering the value of a meaningful para-
meter as the input occurs, rather than simply adapting to a
known input during a training phase.

2.3 Nonparametric Extensions

Before presenting our method for modeling parameterized
movements, it is worthwhile to consider two extensions of
the standard gesture recognition paradigm that attempt to
address the problem of recognizing these parameterized
classes.

The first approach relies on our ability to come up with
ad hoc methods to extract the value of the parameter of
interest. For the example of the fish-size gesture presented
in Fig. 1, one could design a procedure to recover the
parameter: Wait until the hands are in the middle of the
gesture space and have low velocity, then calculate the
distance between the hands. Similar approaches are used in

the ALIVE [13] and Perseus [17] systems. The typical

approach of these systems is to first identify static

configurations of the user's body that are diagnostic of the

gesture and, then, use an unrelated method to extract the

parameter of interest (for example, direction of pointing).

Manually constructed ad hoc procedures are typically used

to identify the diagnostic configuration, a task complicated

by the requirement that this procedure work through the

range of meaningful variation and also not be confused by

other gestures. Perseus, for example, understands pointing

gestures by detecting when the user's arm is extended. The

system then finds the pointing direction by computing the

line from the head to the user's hand.
The chief objection to such an approach is not that each

movement requires a new ad hoc procedure nor the

difficulty in writing procedures that recover the parameter

robustly, but the fact that they are only appropriate to use when

the gesture has already been labeled. As mentioned in the

introduction, a recognition system that abstracts over the

variation induced by the parameterization must model such

variation as noise or deviation from a prototype. The greater

the parametric variation, the less constrained the recogni-

tion prototype can be and the worse the detection results

become.
The second approach employs multiple DTW or HMM

models to cover the parameter space. Each DTW model or

HMM is associated with a point in parameter space. In

learning, the problem of allocating training examples

labeled by a continuous variable to one of a discrete set of

models is eliminated by uniting the models in a mixture of

experts framework [15]. In testing, the parameter is

extracted by finding the best match among the models

and looking up its associated parameter value. The

dependency of the movement's form on the parameter is

thus removed.
The most serious objection to this approach is that, as the

dimensionality of the parameter space increases, the large

number of models necessary to cover the space will place

unreasonable demands on the amount of training data.1 For

example, to recover a two-dimensional parameter with 4 bits

of accuracy would theoretically require 256 distinct HMMs

(assuming no interpolation). Furthermore, with such a set of

distinct HMMs, all of the models are required to learn the

same or similar dynamics (i.e., as modeled by the transition

matrix in the case of HMMs) separately, increasing the

amount of training data required. This can be embellished

somewhat by computing the value of the parameter as the

weighted average of all the models' associated parameter

values, where the weights are derived from the matching

process.
In the next section, we introduce parametric HMMs,

which overcome the problems with both approaches

presented above.
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1. In such a situation, it is not sufficient to simply interpolate the match
scores of just a few models in a high dimensional space since either 1) there
will be significant portions of the space for which there is no response from
any model or 2) in a mixture of experts framework, each model is called on
to model too much of the space and so is modeling the dependency on the
parameter as noise.



3 PARAMETRIC HIDDEN MARKOV MODELS

3.1 Defining Parameterized Gesture

Parametric HMMs explicitly model the dependence on the
parameter of interest. We begin with the usual HMM
formulation [22] and change the form of the output
probability distribution (usually a normal distribution or a
mixture model) to depend on the gesture parameter to be
estimated.

As in previous approaches to gesture recognition, we
assume that a given gesture sequence is modeled as being
generated by a first-order Markov finite state machine. The
state that the machine is in at time t and its output are
denoted qt and xt, respectively. The Markov property is
encoded by a set of transition probabilities, with aij �
P �qt � j j qtÿ1 � i� the probability of moving to state j at
time t given the system was in state i at time tÿ 1. In a
continuous density HMM, an output probability density
bj�xt� associated with each state j gives the probability of
the feature vector xt given the system is in state j at time t:
P �xt j qt � j�. Of course, the actual state of the machine at
any given time is unknown or hidden.

Given a set of training dataÐsequences known to be
generated by a single machineÐthe parameters of the
machine need to be estimated. In a simple Gaussian HMM,
the parameters are the aij, �̂�j, and �j.

2

In this paper, we define a parameterized gesture to be one
in which the output densities bj�xt� are a function of the
gesture parameter vector ��: bj�xt; ���. The dimension of ��

matches that of the degree of freedom of the gesture. For the
fish size gesture, it would be a scalar; for indicating a
direction in space, �� would have two dimensions.

Note that our definition of parameterized gesture only
modifies the spatial (or, more general, feature) variation
and does not model temporal variation. Our primary reason
for this is that the Viterbi parsing algorithm of the HMMs
essentially performs a dynamic time warp of the input
signal. In fact, part of the appeal of HMMs for gesture
recognition is its insensitivity to temporal variation. Un-
fortunately, this property means that it is difficult to restrict
the nature of the temporal variation (for example, a linear
scaling or uniform speed change). Recently, Yacoob and
Black [31] derived a method for recognizing global
temporal deformations of an activity; their method does
not, however, represent the explicit spatial parameter
variation.

Also, although �� is a global parameterÐit affects all
statesÐthe actual effect varies state to state. Therefore, the
effect of �� is local and will be set to maximize the total
probability of the training set. As we will show in the
experiments, if some state is best left unperturbed by ��, the
magnitude of the effect will automatically become small.

3.2 Linear Model

To realize the parameterization on ��, we modify the output
densities. The simplest useful model is a linear dependence
of the mean of the Gaussian on ��. For each state j of the
HMM, we have:

�̂�j���� � Wj��� ���j �1�

P �xt j qt � j; ��� � N �xt; �̂�j����;�j�; �2�

where the columns of the matrix Wj span a d-dimensional
hyperplane in feature space, where d is the dimension of ��.
For the example of the fish size gesture, if xt is embedded in
a six-dimensional space (e.g., the three-dimensional posi-
tion of each of the hands), then the dimension of Wj would
be 6� 1, and would represent the one-dimensional hyper-
plane (a line in six-space) along which the mean of the
output distribution moves as �� varies. For a pointing
gesture (two degrees of freedom) of one hand (a feature
space of three dimensions), W would be 3� 2. The
magnitude of the columns of W reflect how much the
mean of the density translates as the value of different
components of �� vary.

For a complete Bayesian estimate of ��, given an observed
sequence we would need to specify a prior distribution on
��. In the work presented here, we assume the distribution of
�� is finite-uniform, implying that the value of the prior P ����
for any particular �� is either a constant or zero. We therefore
can ignore it in the following derivations and simply use
bounds checking during testing to make sure that the
recovered �� is plausible, as indicated by the training data.

Note that �� is constant for the entire observation
sequence, but is free to vary from sequence to sequence.
When necessary, we write the value of �� associated with a
particular sequence k as ��k.

For readers familiar with graphical model representa-
tions of HMMs (for example, see [3]), Fig. 2 shows the
PHMM architecture as a Bayes network. The diagram
makes explicit the fact that the output nodes (labeled xt)
depend upon ��. Bengio and Frasconi's [2] Input Output
HMM (IOHMM) is a similar architecture that maps input
sequences to output sequences using a recurrent neural net,
which, by the Markov assumption, need only consider the
current and previous time steps of the input and output.
The PHMM architecture differs in that it maps a single
parameter value to an entire sequence. Thus, the parameter
provides a global constraint on the sequences and, so, the
PHMM testing phase must consider the entire sequence at
once. Later, we show how this feature provides robustness
to noise.

3.3 Training

Within the HMM paradigm of recognition, training entails
using known, segmented examples of the gesture sequence
to estimate the HMM parameters. The Baum-Welch form of
the expectation-maximization (EM) algorithm is used to
update the parameters such that the probability that the
HMM would produce the training set is maximized. For the
PHMM, training is similar except that there are the
additional parameters Wj to be estimated, and the value
of �� must be given for each training sequence. In this
section, we derive the EM update equations necessary to to
estimate the additional parameters. An appendix provides a
brief description of the Baum-Welch algorithm; for a
comprehensive discussion, see [22].

The expectation step of the Baum-Welch algorithm (also
known as the ªforward/backwardº algorithm) computes
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2. Technically, there are also the initial state parameters �j to be
estimated; in this work, we use causal topologies with a unique starting
state.



the probability that the HMM was in state j at time t given

the entire sequence x; the probability is denoted as tj. It is

convenient to consider the HMM parse of the observation

sequence as being represented by the matrix of values tj.

The forward component of the algorithm also computes the

likelihood of the observed sequence given the particular

HMM.
Let the set of parameters of the HMM be written as �;

these parameters are updated in the maximization step of the

EM algorithm. In particular, the parameters � are updated

by choosing a �0, a subset of �, to maximize the auxiliary

function Q��0 j ��. As explained in the appendix, Q is the

expected value of the log probability given the parse tj. �
0

may contain all the parameters in � or only a subset if

several maximization steps are required to estimate all the

parameters. In the appendix, we derive the derivative of Q

for HMMs:

@Q

@�0
�

X

t

X

j

tj

@
@�0 P �xt j qt � j; �0�

P �xt j qt � j; �0�:
�3�

The parameters � of the parameterized Gaussian HMM

include Wj, ���j, �j, and the Markov model transition

probabilities aij. Updating Wj and ���j separately has the

drawback that, when estimatingWj, only the old value of ���j

is available and, similarly, if ���j is estimated first, Wj is

unavailable. Instead, we define new variables:

Zj � Wj ���j

� �


k �
��k
1

� �

�5�

such that �̂�j � Zj
k. We then need only update Zj in the

maximization step for the means.
To derive an update equation for Zj, we maximize Q by

setting (3) to zero (selecting Zj as the parameters in �0) and

solving for Zj. Note that because each observation sequence

k in the training set is associated with a particular ��k, we can

consider all observation sequences in the training set before

updating Zj. Accordingly, we denote tj associated with

sequence k as ktj. Substituting the Gaussian distribution

and the definition of �̂�j � Zj
k into (3):

@Q

@Zj

� ÿ
1

2

X

k

X

t

ktj
@

@Zj

xkt ÿ �̂�j���k�
� �T

�ÿ1
j xkt ÿ �̂�j���k�
� �

� ÿ
1

2

X

k

X

t

ktj
@

@Zj

xT
kt�

ÿ1
j xkt ÿ 2�̂�T

j �
ÿ1
j xkt � �̂�T

j �
ÿ1
j �̂�j

h i

� ÿ
1

2

X

k

X

t

ktj ÿ2
@

@Zj

Zj
k

ÿ �T
�ÿ1

j xkt

�

�
@

@Zj

Zj
k

ÿ �T
�ÿ1

j Zj
k

�

� ÿ
1

2

X

k

X

t

ktj ÿ2
@

@Zj


k
TZj

T�ÿ1
j xkt

�

�
@

@Zj


k
T Zj

T�ÿ1
j Zj

� �


k

�

� �ÿ1
j

X

k

X

t

ktj xkt
k
T ÿ Zj
k
k

T
� �

;

where we use the identity @
@M

aTMb � abT . Setting this
derivative to zero and solving for Zj, we get the update
equation for Zj:

Zj �
X

k;t

ktjxkt

T
k

" #

X

k;t

ktj
k

T
k

" #ÿ1

: �6�

Once the means are estimated, the covariance matrices
�j are updated in the usual way:

�j �
X

k;t

ktj
P

t ktj
�xkt ÿ �̂�j���k���xkt ÿ �̂�j���k��

T
; �7�

as is the matrix of transition probabilities [22] (see also the
Appendix).

3.4 Testing

Recognition using HMMs requires evaluating the prob-
ability that a given HMM would generate an observed
input sequence. Recognizing a sequence consists of evalu-
ating this probability (known as the likelihood) of the
sequence for each HMM and, assuming equal priors,
selecting the HMM with the greatest likelihood. With
PHMMs, the probability is defined to be the maximum
probability with respect to the possible values of ��.
Compared to the usual HMM formulation, the parameter-
ized HMMs testing procedure is complicated by the
dependence of the parse on the unknown ��.

We desire the value of ��which maximizes the probability
of the observation sequence. Again, an EM algorithm is
appropriate: The expectation step is the same forward/
backward algorithm used in training. The estimation
component of the forward/backward algorithm computes
both the parse tj and the probability of the sequence, given
a value of ��. In the corresponding maximization step, we
update �� to maximize Q, the log probability of the sequence
given the parse tj. In the training algorithm, we knew ��

and estimated all the parameters of the HMM; in testing, we
fix the parameters of the machine and maximize the
probability with respect to ��.

To derive an update equation for ��, we start with the
derivative in (3) from the previous section and select �� as �0.
As with Zj, only the means �̂�j depend upon �� yielding:
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Fig. 2. Bayes network showing the conditional dependencies of the

PHMM.



@Q

@��
�

X

t

X

j

tj�xt ÿ �̂�j�����
T
�ÿ1

j

@�̂�j����

@��
�8�

Setting this derivative to zero and solving for ��, we have:

�� �
X

t;j

tjW
T
j �

ÿ1
j Wj

" #ÿ1
X

t;j

tjW
T
j �

ÿ1
j �xt ÿ ���j�

" #

: �9�

The values of tj and �� are iteratively updated until the
change in �� is small. With the examples we have tried, less
than 10 iterations are sufficient. Note that, for efficiency,
many of the inner terms of the above expression may be
cached. As mentioned in the training derivation, the
forward component of the expectation step also computes
the probability of the observed sequence given the PHMM.
That probability is the (local) maximum probability with
respect to �� and is used by the recognition system.

Recognition using PHMMs proceeds by computing for
each PHMM the value of �� that maximizes the likelihood of
the sequence. The PHMM with the highest likelihood is
selected. As we demonstrate in Section 4.2, in some cases it
may be possible to classify the sequence by the value of �� as
determined by a single PHMM.

4 RESULTS OF LINEAR MODEL

This section presents three experiments. The firstÐthe
example discussed in the introduction: ªI caught a fish. It
was this big.ºÐdemonstrates the ability of the testing EM
algorithm to recover the gesture parameter of interest. The
second compares PHMMs to standard HMMs in a gesture
recognition task to demonstrate a PHMM's ability to better
model this type of gesture. The final experimentÐa
pointing gestureÐdisplays the robustness of the PHMM
to noise in estimating the gesture parameter ��.

4.1 Experiment 1: Size Gesture

To test the ability of the parametric HMM to learn the
parameterization, 30 examples of the type depicted in Fig. 1
were collected using the Stereo Interactive Virtual Environ-
ment (STIVE) [1], a research computer vision system
utilizing wide baseline stereo cameras and flesh tracking
(see Fig. 3). STIVE is able to compute the three-dimensional
position of the head and hands at a frame rate of about
20Hz. The input to the gesture recognition system is a
sequence of six-dimensional vectors representing the
Cartesian location of each of the hands at each time step.

The 30 sequences averaged about 43 samples in length.
The actual value of ��, which, in this case, is interpreting the
size in inches, was measured directly by finding the point in
each sequence during which the hands were stationary and
then computing the distance between the hands. The value
of �� varied from 7.7 inches (a small fish) to 36.6 inches (a
respectable catch). This method of assessing �� is used as the
known value for training examples, and for the ªground
truthº in evaluating testing performance. For this experi-
ment, both the training and the testing data were manually
segmented; in experiment 3, we demonstrate the PHMMs
performing segmentation on an unsegmented stream of
data containing multiple gestures.

A PHMM was trained with 15 sequences randomly
selected from the pool of 30; we used six states as
determined by cross validation. The topology of the PHMM
was set to be causal (i.e., no transitions to previously visited
states, with no ªskip transitionsº [22]). In this example,
typically 10 iterations were required for convergence, when
the relative change in the total log probability for the
training examples was less than one part in one thousand.

Testing was performed with the remaining 15 sequences.
As described above, the size parameter �� was extracted
from each of the testing sequences via the EM algorithm
that estimates the probability of the sequence. We calcu-
lated the difference between the estimated value of �� and
the value computed by direct measurement.

Fig. 4 shows statistics on the parameter estimation for 50
random choices of the test and training sets. The PHMM
was retrained for each choice of test and training set. The
average absolute error over all test trials is about 0.16
inches, demonstrating that the PHMM has learned the
parameterization accurately. The experiment demonstrates
the validity of using the EM algorithm which maximizes
output likelihood as a mechanism for recovering ��.

It is interesting to consider the recovered Wj. Recall that,
for this example, Wj is a 6� 1 vector whose direction
indicates the linear path in six-space along which the mean
�̂�j moves as �� varies; the magnitude of Wj reflects the
sensitivity of the mean to variation in ��. Table 1 gives the
magnitude of the six Wj vectors for this experiment. The
absolute scale ofWj is determined by the units of the feature
measurements and the units of the gesture quantity ��. But,
the relative scale of the Wj demonstrates that the mean of
the middle states (for example, 3 and 4) is more sensitive to
�� than either the initial or final states. Fig. 5 shows how the
position of the states depends on ��. This agrees with our
intuition: The hands always start and return to the body; the
states that represent the maximal extent of the hands need
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Fig. 3. The Stereo Interactive Virtual Environment (STIVE) computer
vision system used to collect data in Section 4.1. Using flesh-tracking
techniques, STIVE computes the three-dimensional position of the head
and hands at a frame rate of about 20Hz. We used only the position of
the hands for the first two experiments.



to accommodate the variation in ��. The system automatically
learns which segment of the gesture is most diagnostic of ��.

4.2 Experiment 2: Recognition

Our second experiment is designed to illustrate the utility of
PHMMs in the recognition of gesture. We compare the
performance of the PHMM to that of the standard HMM
approach and demonstrate how the ability of the PHMM to
model systematic variation allows it to have smaller (and
more correct) estimates of noise.

Consider two variations of a pointing gesture: one in
which the hand moves straight away from the body at some
angle and another in which the hand moves from the body
with some angle and then changes direction midway
through the gesture. The latter gesture might co-occur with
the speech ªyou, go over there.º The first gesture we will call
point and the second direct. Point gestures are parameterized
by the angle of pointing direction (one parameter), while
direct gestures are parameterized by the initial pointing
angle to select an object and an angle to indicate the object's
direction of movement (two parameters). In this experi-
ment, we show that two HMMs are inadequate to
distinguish instances of the point family from instances of
the direct family, while a single PHMM is able to represent
both families and classify instances of each.

We collected 40 examples of each gesture class with a
Polhemus motion capture system, recording the horizontal
and depth components of hand-position. The subject was
positioned at arm's length away from a display. For each
point example, the subject started with hands at rest and
then pointed to a target on the display. The target would
appear from between 25� to the left of center and 25� to the
right of center along a horizontal line on the display. The
training set was collected to evenly sample the interval

� 2 �ÿ25; 25�. For each direct example, the subject similarly
pointed initially at a target ªXº and then, midway through
the gesture, switched to pointing at a target ªOº. Each ªXº
was again presented anywhere from �1 � 25� to the left to
25� to the right on the horizontal line. The ªOº was
presented at �2

�, drawn from the same range of angles, but
in which the absolute difference between �1 and �2 was at
least 10�. This restriction prevented any direct gesture from
looking like a point gesture.

Thirty of each set of sequences were used to train an
HMM for each gesture class. With 4-state HMMs, a
recognition performance of 60 percent was achieved on
the set of 20 test sequences. With 20 states, this performance
improved to only 70 percent.

Next, a PHMM was trained using all training examples
of both gesture classes. The PHMM was parameterized by
two variables �1 and �2. For each direct example, �1 and �2
were set to equal the angles used in driving the display to
collect the examples. For each point example, both �1 and �2
were set to equal the value of the single angle used in
collection. By using the same values used in driving the
display during collection, the use of an ad hoc technique to
label the training examples was avoided.

To classify each of the 20 testing examples, it suffices to
compare the value of �1 and �2 recovered by the PHMM
testing algorithm. We used the single PHMM trained as
above to recover parameter values. A training example was
classified as a point if the absolute difference in the
recovered values �1 and �2 was more than 5�. With this
classification scheme, perfect recognition performance was
achieved with a 4-state PHMM, where two HMMs could
only achieve a 70 percent recognition rate. The mean error
of the recovered values of �1 and �2 was about 4�. The
confusion matrices for the HMM and PHMM models are
shown in Fig. 6.

The difference in performance between the HMM and
PHMM is due to the fact that the HMM models the
systematic variation of each class of gestures as noise. The
PHMM is able to distinguish the two classes by recovering
the systematic variation present in both classes. Figs. 7a and
7b display the 1:0� ellipsoids of the Gaussian densities of
the states of the PHMM; Fig. 7a is for � � �15�; 15��, Fig. 7b
is for � � �15�;ÿ15��. Notice how the position of the means
has shifted. Figs. 7c and 7d display the 1:0� ellipsoids for
the states of the conventional HMM.

Note that, in Figs. 7c and 7d, the ellipsoids correspond-
ing to each state show how the HMM spans the examples
for varying values of the parameter. The PHMM explicitly
models the effects of the parameter. It is this ability of the

890 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999

Fig. 4. Parameter estimation results for the size gesture. Fifty random
choices of the test and training sets were used to compute mean and
standard deviation (error bars) on all examples. The HMM was retrained
for each choice of test and training set.

TABLE 1
The Magnitude of Wj

The magnitude of Wj is greater for the states that correspond to where
the hands are maximally extended (3 and 4). The position of the states is
most sensitive to ��, in this case, the size of the fish.



the PHMM to more accurately model parameterized

gesture that enhances its recognition performance.

4.3 Experiment 3: Robustness to Noise,
Bounds on ��

In our final experiment using the linear model, we

demonstrate the performance of the PHMM technique

under varying amounts of noise and show robustness in

the extraction of the parameter ��. We also demonstrate

using the bounds of the uniform distribution of �� to enhance

the recognition capability of the PHMM.

4.3.1 Pointing Gesture

Another gesture that requires multidimensional parameter-

ization is three-dimensional pointing. Our feature space is

the three-dimensional Cartesian position of the wrist as

measured by a Polhemus motion capture system. �� is a two-

dimensional vector reflecting the direction of pointing. If

the pointing direction is restricted to the hemisphere in

front of the user, the movement can be parameterized by

the �� � �x; y� position in a plane in front of the user (see
Fig. 8). This choice of parameterization is consistent with
requirement that the parameter be linearly related to the
feature space.

The Polhemus system records wrist position at a rate of
30Hz. Fifty pointing gesture examples were collected, each
averaging 29 time samples (about 1 second) in length. As
ground truth, we again directly measured the value of �� for
each sequence: The point at which the depth of the wrist
away from the user was found to be greatest. The position
of this point in the pointing plane was returned. The
horizontal coordinate of the pointing target varied from ÿ22

to �27 inches, while the vertical coordinate varied from ÿ4

to �31 inches.
An eight-state causal PHMM was trained using 20

sequences randomly selected from the pool of 50; again,
the choice of number of states was done via cross
validation. The remaining 30 sequences were used to test
the ability of the model to encode the parameterization. The
average error was computed to be about 0.37 inches
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Fig. 5. The state output density of the two-handed fish-size gesture. Each corresponds to either left or right hand position at a state (for clarity, only

the first four states are shown); (a) PHMM, �� � 19:0, (b) PHMM, �� � 45:0, (c) HMM. The ellipsoid shapes for the left hand is derived from the upper

3� 3 diagonal block of the full covariance matrices, and the lower 3� 3 diagonal block for the right hand.
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Fig. 6. Confusion matrices for the point and direct gesture models. Row headings are the ground truth classifications.

Fig. 7. The state output densities of the point and direct gesture models. (a) PHMM � � �15�; 15��, (b) PHMM � � �15�;ÿ15��, (c) point HMM with

training set sequences shown, (d) direct HMM with training set sequences.



(combined in x and y, an angular error of approximately
0.5�). The high level of accuracy can be explained by the
increase in the weights Wj in those states that are most
sensitive to variation in ��. When the number of training
examples was cut to five randomly selected sequences, the
error increased to 0.82 inches (about 1.1�), demonstrating
how the PHMM can exploit interpolation to reduce the
amount of training data necessary. The approach discussed
in Section 2.3 of tiling the parameter space with multiple
unrelated HMMs would require many more training
examples to match the performance of the PHMM on the
same task.

4.3.2 Robustness to Noise

Because of the impact of �� on all the states of the PHMM,
the entire sequence contributes evidence as to the value of ��.
For classes of movement in which there is systematic
variation throughout much the extent of the sequence, i.e.,
the magnitude of Wj is nontrivial for many j, PHMMs
should estimate �� more robustly than techniques that rely
on querying a single point in time.

To show this ability, we added various amounts of
Gaussian noise to both the training and test sets and, then,
estimated �� using the direct measurement procedure
outlined above and again with the PHMM testing EM
procedure. The PHMM was retrained for each noise
condition. For both cases, the average error in parameter
estimation was computed by comparing the estimated
value with the value as measured directly with no noise
present. The average error, shown in Fig. 9, indicates that
the parametric HMM is more robust to noise than the ad
hoc technique. We note that, while this particular ad hoc
technique is obviously brittle and does not attempt to filter
potential noise, it is analogous to techniques used by
previous researchers (for example, [17]) for real-world
applications.

4.3.3 Bounding ��

Using the pointing data, we demonstrate how the bounds
on the prior uniform density on �� can enhance recognition
capabilities. To test the model, a one minute sequence was
collected that contained a variety of movements, including
six pointing gestures distributed throughout. Using the
same trained PHMM described above, we applied it to a 30

sample (one second) sliding window on the sequence; this
is analogous to performing backward-looking causal
recognition (no presegmentation) for a fixed gesture
duration. Fig. 10a shows the log likelihood as a function
of time; the circled points indicate the peaks associated with
true pointing gestures. The value of both the recovered and
true �� are indicated for these peaks and reflect the small
errors discussed in the previous section. Note that, although
it would be possible to set a log probability threshold to
detect these gestures (e.g., ÿ250), there are many false peaks
that would approach this value.

However, if we look at the values of �� estimated for each
position of the sliding window, we can eliminate many of
the false peaks. Recall that we assume �� has a uniform prior
distribution over some allowed range. We can estimate that
range from the training data either by simply taking the
extremes of the training set, or by estimating the density
using a ML or MAP estimate [8]. Given such bounds, we
can postprocess the results of applying the PHMM by
eliminating those windows which select an illegal value of
��. Fig. 10b shows the result of such filtering using the
extremes of the training data as bounds. The improved
output would increase the robustness of any recognition
system employing these likelihoods.

4.3.4 Local vs. Global Maxima

One concern in the use of EM for optimization is that, while
each EM iteration will increase the probability of the
observations, there is no guarantee that EM will find the
global maximum of the probability surface. To show that
this is not a problem in practice for the point gesture testing,
we computed the log probability of a testing sequence for
all legal values of ��. This log probability surface, shown in
Fig. 11, is unimodal, such that for any reasonable initial
value of �� the testing EM will converge on the maximum
corresponding to the correct value of ��. The probability
surfaces of the other test sequences in our experiments are
similarly unimodal.3

5 NONLINEAR PHMMs

5.1 Nonlinear Dependencies

The model derived in the previous section is applicable only
when the output distributions of each state of the HMM are
linearly dependent upon ��. When the gesture parameter of
interest is a measure of Euclidean distance and the feature
space consists of coordinates in Euclidean space, the linear
model of Section 3.2 is appropriate.

When this relation does not hold, there are at least
three courses of action: 1) Find an analytical function
which when applied to the feature space makes the
dependence of the output distributions linear in ��, 2) find
some intermediate parameterization that is linear in the
feature space and then use some other technique to map

WILSON AND BOBICK: PARAMETRIC HIDDEN MARKOV MODELS FOR GESTURE RECOGNITION 893

3. Given the graphical model equivalent in Fig. 2, it is possible to exactly
solve for the best value of � using the standard inference algorithm [16]. The
computational complexity of that algorithm is equivalent to that of
evaluating the likelihood of the model for all value of �, where � is
discretized to some adequate precision. Particularly for multidimensional �,
the exact inference algorithm for Bayes nets will thus involve many more
computations than the EM algorithm outlined.

Fig. 8. The point gesture used in Section 4.3. The movement is
parameterized by the coordinates of the target �� � �x; y� within a plane
in front of the user. The gesture consists of a preparation phase, a stroke
phase (shown here), and a retraction.



to the final parameterization, and 3) use a more general
modeling technique, such as neural or radial basis
function networks, to model the parametric variation of
the state output densities with respect to ��.

The first option can be illustrated using the pointing
example. Suppose the preferred parameterization of direc-
tion is a spherical coordinate system. Clearly, one could
transform the Cartesian Polhemus data into spherical
coordinates yielding a linear, in fact trivial, mapping. The

only difficulty with this approach is that such an analytic

transformation between feature space and parameter space

must exist. When the parameterization is derived, say, from

a user's subjective rating, it may be difficult or impossible to

represent the feature's dependence on �� analytically,

especially without some insight as to how the user

subjectively rates the motion.
The second option involves finding an intermediate

parameterization that is linear in the feature space. For

example, a musical conductor might convey a dynamic by

sweeping out a distance with his or her arm. It may be

adequate to model the motion using a parametric HMM

with the distance as the parameter and, then, use some

additional technique to capture the nonlinearity in the

mapping from this distance to the intended dynamic. This

technique requires a fine knowledge of how the actual

physical movement conveys the quantity of interest.
The last option, employing more general modeling

techniques, is naturally suited to situations in which the

parameterization is nonlinear and no analytical form of the

parameterization is known. With a more complex model of

the dependence on �� (for example, a neural network), it may

not be possible to solve for �� analytically to obtain an

update rule for the training or testing EM algorithms. In

such a case, we may perform gradient descent to maximize

Q in the maximization step of the EM algorithm (which

would then be called a ªgeneralized expectation-maximiza-

tionº (GEM) algorithm). In the next section, we extend the

PHMM framework to use neural networks and GEM

algorithms to model nonlinear dependencies.
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Fig. 10. Recognition results are shown by the log probability of the windowed sequence beginning at each frame number. The true positive
sequences are labeled by the value of �� recovered by the EM testing algorithm and the ground truth value computed by direct measurement in
parentheses. (a) Maximum likelihood estimate. (b) Maximum a posteriori estimate for which a uniform prior probability on �� was determined by the
bounds of the training set. The MAP estimate was computed by simply disallowing sequences for which the EM estimate of �� is outside the uniform
density bounds. This postprocessing step is equivalent to establishing a prior on �� in the framework presented in the Appendix.

Fig. 9. Average error over the entire pointing test set as a function of
noise. The value of �� was estimated by an direct measurement and by a
parametric HMM retrained for each noise condition. The average error
was computed by comparing the estimate of �� to the value recovered by
direct measurement in the noise-free case.



5.2 Nonlinear Model

Nonlinear PHMMs replace the linear model of Section 3.2

with a logistic neural network with one hidden layer. There

is one neural network for each state whose function is to

map the value of �� to the output density parameters of that

state. As with linear PHMMs, the output of each state is

assumed to be Gaussian, with the variation of the density

encoded in the mean �̂�j:

P �xt j qt � j; ��� � N �xt; �̂�j����;�j�: �11�

The mean �̂�j���� is defined to be the output of the network

associated with state j:

�̂�j���� � W �2;j�g�W �1;j����� b�1;j�� � b�2;j�; �12�

where W �1;j� denotes the matrix of weights from the input

layer to the layer of hidden logistic units, b�1;j� the biases at

each input unit, and g��� the vector-valued function that

computes the logistic function of each component of its

argument. Similarly, W �2;j� and b�2;j� denote the weights and

biases for the output layer (see [3]). Fig. 12 illustrates the

network architecture and the associated parameters.

5.3 Training

As with linear PHMMs, the parameters of the nonlinear

PHMM are updated in the maximization step of the training

EM algorithm by choosing �0 to maximize the auxiliary

function Q��0 j ��. In the nonlinear PHMM, the parameters

� include the parameters of each neural network W �l;j�, b�l;j�,

as well as �j and transition probabilities aij.
The expectation step of the nonlinear PHMM is the same

as that of the linear PHMM. In the EM maximization step,

we maximize Q. From the appendix, we have

@Q

@�0
�

X

t

X

j

tj

@
@�0 P �xt j qt � j; �0�

P �xt j qt � j; �0�
; �13�

where we select �0 to include the weights and biases of the

jth neural network. For the Gaussian noise model, we have

@Q

@�0
�

X

K;t

tj�
ÿ1
j �xkt ÿ �̂�j�

@�̂�j���k�

@�0
: �14�

There is no way to solve for multilayer neural network

parameters directly (see [4] for a discussion of the credit

assignment problem); thus, we cannot set @Q
@�0 to zero and solve

for �0 analytically. We instead apply gradient ascent to

maximize Q. When the maximization step of EM algorithm

relies on a numerical optimization, the algorithm is referred

to as the ªgeneralized expectation-maximizationº (GEM)

algorithm.
Gradient descent applied to a multilayer neural network

may be implemented by the back-propagation algorithm

[3]. In such a network, we usually have a set of inputs xif g

and outputs yif g. We denote y� as the output of the

network, wl
ij the weight from the ith node at the lÿ 1 layer

to the jth node at the lth layer, zli �
P

j w
l
ijx

lÿ1
j is the

activation, xl
i � g�zli� is the output. The goal in the

application of neural networks for regression is to minimize

the total squared error J �
P

i�y
�
i ÿ yi�

2 by tuning the

network parameters w through gradient descent. The

derivative of the error with respect to wij is

@J

@wl
ij

�
@J

@zli

@zli
@wl

ij

� �lix
lÿ1
j ;

�15�

where

�li �
@J

@zli
� g0�zli�

X

j

�l�1
j wl�1

ij �16�

�Li � y�i ÿ yi: �17�

Back-propagation seeks to minimize J by ªback-propagat-

ingº the difference y�i ÿ yi from the last layer L through the

network. Network weights may be adjusted using, for

example, a fixed step-size �:
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Fig. 11. Log probability as a function of �� � �x; y� for a pointing test
sequence. The smoothness of the surface makes possible to use

iterative optimization techniques such as EM to find the maximum.

Fig. 12. Neural net architecture of the nonlinear PHMM used to map the
values of �� to �̂�. There is a separate network for each state j for which
the weights W �i;j�, i � 1; 2, and the biases b�i;j�, i � 1; 2, must be learned
in training.



�wl
ij � ��lix

lÿ1
j : �18�

In the case of the nonlinear PHMM, we can similarly
minimize the expected value of the ªerrorº term �xkt ÿ
�̂�j�

T
�ÿ1

j �xkt ÿ �̂�j� using back-propagation, thereby max-
imizing the likelihood P �xt j qt � j�:

J �
X

k;t;j

ktj�xkt ÿ �̂�j�
T
�ÿ1

j �xkt ÿ �̂�j�: �19�

From (16), we may thus derive a new ª� ruleº:

�li �
@J

@zli
� g0�zli�

X

j

�l�1
j wl�1

ij �20�

�Li � tj�
ÿ1
j �xkt ÿ �̂�j�: �21�

In each maximization step of the GEM algorithm, it is not
necessary to maximize Q completely. As long as Q is
increased for every maximization step, the GEM algorithm
is guaranteed to converge to a local maximum in the same
manner as EM. In our testing, we run the back-propagation
algorithm a fixed number of iterations for each GEM
iteration.

5.4 Testing

In testing, we desire the value of �� which maximizes the
probability of the observation sequence. Again, an EM
algorithm to compute �� is appropriate.

As in the training phase, we cannot maximize Q

analytically and, so, a GEM algorithm is necessary. To
optimize Q, we use a gradient ascent algorithm:

@Q

@��
�

X

t

X

j

tj�xt ÿ �̂�j�����
T
�ÿ1

j

@�̂�j����

@��
�22�

@�̂�j����

@��
� W �2;j���g0�W �1;j� � b�1;j���W �1;j�; �23�

where ���� forms the diagonal matrix from the components
of its argument and g0��� denotes the derivative of the
vector-valued function that computes the logistic function
of each component of its argument.

In the results presented in this paper, we use a gradient
ascent algorithm with adaptive step size [26]. In addition, it
was found necessary to constrain the gradient ascent step to
prevent the algorithm from wandering outside the bounds
of the training data, where the output of the neural
networks is essentially undefined. This constraint is im-
plemented by simply limiting any component of the step
that takes the value of �� outside the bounds of the training
data, established by the minimum and maximum �� training
values.

As with the EM training algorithm of the linear
parametric case, for all of our experiments less than 10
GEM iterations are required.

5.5 Easing the Choice of Parameterization

In Section 4.3, we presented an example of a pointing
gesture parameterized by projection of hand position onto
the plane parallel and in front of the user at the moment
that the arm is fully extended. The linear PHMM works

well since the projection is a linear operation over the range
of angles used in the experiment.

The nonlinear variant of the PHMM just introduced is
appropriate in situations in which the dependence of the
state output distributions on the parameter �� is not linear
and cannot be made linear easily with a known coordinate
transformation of the feature space.

In practice, a useful consequence of nonlinear modeling
for PHMMs is that the parameter space may be chosen
more freely in relation to the observation feature space. For
example, in a hand gesture recognition system, the natural
feature space may be the spatial position of the hand, while
a natural parameterization for a pointing gesture is the
spherical coordinates of the pointing direction (see Fig. 13).

The mapping from parameter to observations must be
smooth enough to be learned by neural networks with a
reasonable number of hidden units. While, in theory, a
three-layer logistic neural network with sufficiently many
hidden units and sufficient data is capable of computing
any smooth mapping, we would like to use as few hidden
units as possible and, so, choose our parameterization and
observation feature space to give simple, learnable maps.
Cross validation is probably the only practical automatic
procedure to evaluate parameter/observation feature space
pairings, as well as the number of hidden units in each
neural network. The computational complexity of such
approaches is a drawback of the nonlinear PHMM
approach.

In summary, with nonlinear PHMMs, we are free to
choose intuitive parameterizations but we must be careful
that it is possible to learn the mapping from parameters to
observation features given a particular observation feature
space.

6 RESULTS OF NONLINEAR MODEL

To test the performance of the nonlinear PHMM, we
conducted an experiment similar to the pointing experi-
ment of Section 4.3, but with a spherical coordinate
parameterization rather than the projection onto a plane
in front of the user.

We used a Polhemus motion capture system to record
the position of the user's wrist at a frame rate of 30Hz. Fifty
such examples were collected, each averaging 29 time
samples (about 1 second) in length. Thirty of the sequences
were randomly selected as the training set; the remaining 20
comprised the test set.

Before training, the value of the parameter �� must be set
for each training example, as well as for each testing
example, to evaluate the ability of the PHMM to recover the
parameterization. We directly measured the value of �� by
finding the point at which the depth of the wrist away from
the user was greatest. This point was transformed to
spherical coordinates (azimuth and elevation) via the
arctangent function. Fig. 13 diagrams the coordinate system.

Note that, for pointing gestures that are confined to a
small area in front of the user (as in the experiment
presented in Section 4.3), the linear parametric HMM
approach will work well enough since, for small values,
the tangent function is approximately linear. The pointing
gestures used in the present experiment were more broad,

896 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999



ranging from ÿ36� to �81� elevation and ÿ77� to �80�

azimuth.
An eight-state causal nonlinear PHMM was trained on

the 30 training examples. To simplify training, we con-
strained the number of hidden units of each state to be
equal; note that this is not required by the model but makes
choosing the number of hidden units via cross validation
easier. We evaluated performance on the testing set for
various numbers of hidden units and found that 10 hidden
units gave the best testing performance.

The average error over the testing set was computed to
be about 6:0� elevation and 7:5� azimuth. Inspection of the
surfaces learned by the logistic networks of the nonlinear
PHMM reveals that, as in the linear case, the input's
dependence on �� is most dramatic in the middle of the
sequence, the apex of the pointing gestures. The surface
learned by the logistic network at the state corresponding to
the apex captures the nonlinearity of the dependency (see
Fig. 14). For comparison, an eight-state linear PHMM was
trained on the same data and yielded an average error over
the same test set of about 14:9� elevation and 18:3� azimuth.

Last, we demonstrate detection performance of the
nonlinear PHMM on our pointing data. A one minute
sequence was collected that contained a variety of move-
ments, including six pointing movements, distributed
throughout. To simultaneously detect the gesture and
recover ��, we used a 30 sample (one second) sliding
window on the sequence. Fig. 15 shows the log probability
as a function of time and the value of �� recovered for a
number of recovered pointing gestures. All of the pointing
gestures were correctly detected and the value of ��

accurately recovered.

7 CONCLUSION

A new method for the representation and recognition of
parameterized gesture is presented. The idea is to para-
meterize the underlying output probabilities of the states of
an HMM. Because the parameterization is explicit and
analytic, the dependence on the parameter �� can be learned
within the standard EM formulation.

The method is interesting from two perspectives. First, as
a gesture or activity recognition technique, it is immediately

applicable to scenarios where inputs to be recognized vary
smoothly with some meaningful parameter(s). One possible
application is advanced human-computer interfaces where
the gestures indicating quantity must be recognized and the
quantities measured. Also, the technique may be applied to
other types of movement, such as human gait, where one
would like to ignore or extract some component of the style
of the movement.

Second, the parameterized technique presented is do-
main-independent and is applicable to any sequence
parsing problem where some context or style ([25]) spans
an entire sequence.

The PHMM framework has been generalized to handle
nonlinear dependencies of the state output distributions on
the parameterization ��. We have shown that, where the
linear PHMM employs the EM algorithm in training and
testing, the nonlinear variant similarly uses the GEM
algorithm.

The drawbacks of the generalized approach are two-fold:
The number of hidden units for the networks must be
chosen appropriately during training and, second, during
testing, the GEM algorithm is more computationally
intensive than the EM algorithm of the linear approach.

The nonlinear PHMM is able to model a much larger
class of parameterized gestures and movements than the
linear parametric HMM. A benefit of the increased
modeling ability is that, with some care, the parameter
space may be chosen independently of the observation
feature space. It follows that the parameterization may be
tailored to a specific gesture. Furthermore, more intuitive
parameterizations may be used. For example, a family of
movements may be parameterized by a subjective quantity
(for example, the style of a gait). We believe these are
significant advantages in modeling parameterized gesture
and movement.
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Fig. 13. The spherical coordinate system is a natural parameterization of

pointing direction.

Fig. 14. The output of the logistic network corresponding to state j � 5

displayed as a surface. State 5 is near the apex of the gesture and
shows the greatest sensitivity to pointing angle. Only the y coordinate of
the output is shown; the x coordinate is similarly nonlinear.



APPENDIX

EXPECTATION-MAXIMIZATION ALGORITHM

FOR HIDDEN MARKOV MODELS

In this section, we derive (3) from the expectation-
maximization (EM) algorithm [3] for HMMs. In the
following, the observation sequence xt is the observable
data and the state qt is the hidden data. We denote the
entire observation sequence as x and the entire state
sequence as q.

EM algorithms are appropriate when there is reason to
believe that, in addition to the observable data, there are
unobservable (hidden) data such that if the hidden data
were known, the task of fitting the model would be easier.
EM algorithms are iterative: The values of the hidden data
are computed given the value of some parameters to a
model of the hidden and observable data (the ªexpectationº
step), then, given this guess at the hidden data, an updated
value of the parameters is computed (ªmaximizationº).
These two steps are alternated until the change in the
overall probability of the observed and hidden data is small
(or, equivalently, the change in the parameters is small). For
the case of HMMs, the E step uses the current values of
parameters of the Markov machineÐthe transition prob-
abilities aij, initial state distribution �j, and the output
probability distribution bj�xt�Ðto estimate the probability
tj that the machine was in state j at time t. Then, using
these probabilities as weights, new estimates for aij and
bj�xt� are computed.

Particular EM algorithms are derived by considering the
auxiliary function Q��0 j ��, where � denotes the current
value of the parameters of the model and �0 denotes the
updated value of the parameters. We would like to estimate
the values of �0. Q is the expected value of the log
probability of the observable and hidden data together
given the observables and �:

Q��0 j �� � Eqjx;� logP �x;q; �0�� � �24�

�
X

q

P �q j x; �� logP �x;q; �0�; �25�

where x is the observable data and the state sequence q is
hidden. This is the ªexpectation stepº. The proof of the
convergence of the EM algorithm shows that if, during each
EM iteration, �0 is chosen to increase the value of Q (i.e.,
Q��0 j �� ÿQ�� j �� > 0�, then the likelihood of the ob-

served data P �x j �� increases as well. The proof holds

under fairly weak assumptions on the form of the

distributions involved. Choosing �0 to increase Q is called

the ªmaximizationº step.
Note that if the prior P ��� is unknown, then we replace

P �x;q; �0� with P �x;q j �0�. In particular, the usual HMM

formulation neglects priors on �. In the work presented in

this paper, however, the prior on �� may be estimated from

the training set and, furthermore, may improve recognition

rates, as shown in the results presented in Fig. 10.
The parameters � of an HMM include the transition

probabilities aij and the parameters of the output prob-

ability distribution associated with each state:

Q��0 j �� � Eqjx;� log
Y

t

aqtÿ1qtP �xt j qt; �
0�

" #

: �26�

The expectation is carried out using the Markov property:

Q��0 j �� � Eqjx;�

X

t

log aqtÿ1qt �
X

t

logP �xt j qt; �
0�

" #

�
X

t

Eqjx;� log aqtÿ1qt � logP �xt j qt; �
0�

� �

�
X

t;j

P �qt � j j x; ��

X

i

P �qtÿ1 � i j x; �� log aij � logP �xt j qt � j; �0�

" #

:

�27�

In the case of HMMs, the ªforward/backwardº algorithm is

an efficient algorithm for computing P �qt � j j x; ��. The

computational complexity is O�TNk�, T the length of the

sequence, N the number of states, k � 2 for completely

connected topologies, k � 1 for causal topologies. The

ªforward/backwardº algorithm is given by the following

recurrence relations:

�1�j� � �jbj�xt� �28�

�t�j� �
X

i

�t�i�aij

" #

bj�xt� �29�

�T �j� � 1 �30�
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Fig. 15. Recognition results are shown by the log probability of the windowed sequence beginning at each frame number. The true positive

sequences are labeled by the value of �� recovered by the EM testing algorithm and the value computed by direct measurement (in parentheses).



�t�j� �
X

j

aijbj�xt�1��t�1�j� �31�

from which tj may be computed:

tj �
�t�j��t�j�

P �x j ��
: �32�

In the ªmaximizationº step, we compute �0 to increase Q.

Taking the derivative of (27) and writing P �qt � j j x; �� as

tj, we arrive at:

@Q

@�0
�

X

t

X

j

tj

@
@�0 P �xt j qt � j; �0�

P �xt j qt � j; �0�
; �33�

which we set to zero and solve for �0.
For example, when bj�xt� is modeled as a single

multivariate Gaussian � � �j;�j

� 	

, we obtain the familiar

Baum-Welch reestimation equations:

�j �

X

t

tjxt

X

t

tj
�34�

�j �

X

t

tj�xt ÿ �j��xt ÿ �j�
T

X

t

tj
: �35�

The reestimation equation for the transition probabilities

aij is derived from the derivative of Q and is included here

for completeness:

�t�i; j� � P �qt � i; qt�1 � j j x; ��

�
�t�i�aijbj�xt��t�1�j�

P �x j ��

�36�

aij �

X

Tÿ1

t

�t�i; j�

X

Tÿ1

t

tj

: �37�
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