
 Open access  Proceedings Article  DOI:10.1109/MED.2017.7984256

Parametric identification of a powered two-wheeled vehicles : Algebraic approach
— Source link 

M. Fouka, Pierre-Marie Damon, Lamri Nehaoua, Hichem Arioui ...+1 more authors

Published on: 16 May 2017 - Mediterranean Conference on Control and Automation

Topics: Vehicle dynamics

Related papers:

 Decoupled model for motorcycle and identification of dynamic parameters

 Identification of low order vehicle handling models from multibody vehicle dynamics models

 Linear System Identification Versus Physical Modeling of Lateral–Longitudinal Vehicle Dynamics

 On estimation of vehicle linear model parameters

 Modeling and Identification of Passenger Car Dynamics Using Robotics Formalism

Share this paper:    

View more about this paper here: https://typeset.io/papers/parametric-identification-of-a-powered-two-wheeled-vehicles-
47eebjbmqc

https://typeset.io/
https://www.doi.org/10.1109/MED.2017.7984256
https://typeset.io/papers/parametric-identification-of-a-powered-two-wheeled-vehicles-47eebjbmqc
https://typeset.io/authors/m-fouka-2t04p3druk
https://typeset.io/authors/pierre-marie-damon-a6u3cg5781
https://typeset.io/authors/lamri-nehaoua-20p4yrv09l
https://typeset.io/authors/hichem-arioui-3fobczzo8x
https://typeset.io/conferences/mediterranean-conference-on-control-and-automation-20egy5ys
https://typeset.io/topics/vehicle-dynamics-3s9kpbgn
https://typeset.io/papers/decoupled-model-for-motorcycle-and-identification-of-dynamic-1fanvj6obh
https://typeset.io/papers/identification-of-low-order-vehicle-handling-models-from-ryvbeds5ga
https://typeset.io/papers/linear-system-identification-versus-physical-modeling-of-1ji583ps3z
https://typeset.io/papers/on-estimation-of-vehicle-linear-model-parameters-1ybjtte6mh
https://typeset.io/papers/modeling-and-identification-of-passenger-car-dynamics-using-kbvwl0bc2x
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/parametric-identification-of-a-powered-two-wheeled-vehicles-47eebjbmqc
https://twitter.com/intent/tweet?text=Parametric%20identification%20of%20a%20powered%20two-wheeled%20vehicles%20:%20Algebraic%20approach&url=https://typeset.io/papers/parametric-identification-of-a-powered-two-wheeled-vehicles-47eebjbmqc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/parametric-identification-of-a-powered-two-wheeled-vehicles-47eebjbmqc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/parametric-identification-of-a-powered-two-wheeled-vehicles-47eebjbmqc
https://typeset.io/papers/parametric-identification-of-a-powered-two-wheeled-vehicles-47eebjbmqc


HAL Id: hal-01520798
https://hal.archives-ouvertes.fr/hal-01520798

Preprint submitted on 16 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parametric Identification of a Powered Two-Wheeled
Vehicles : Algebraic Approach

Majda Fouka, Pierre-Marie Damon, Lamri Nehaoua, Hichem Arioui, Saïd
Mammar

To cite this version:
Majda Fouka, Pierre-Marie Damon, Lamri Nehaoua, Hichem Arioui, Saïd Mammar. Parametric
Identification of a Powered Two-Wheeled Vehicles : Algebraic Approach. 2017. ฀hal-01520798฀

https://hal.archives-ouvertes.fr/hal-01520798
https://hal.archives-ouvertes.fr


Parametric Identification of a Powered Two-Wheeled Vehicles :

Algebraic Approach

M. Fouka, P-M. Damon, L. Nehaoua, H. Arioui and S. Mammar

Abstract— The paper aims to identify model’s parameters of
powered two-wheeled vehicles (PTWv) allowing us to simulate
and interpret its lateral dynamics. The motorcycle motion is
identified in order to conduct a preliminary study of simulated
behavior of the vehicle while riding.

An algebraic identification method for continuous-time linear
system is used to obtain an accurate model of the motorcycle
under the steering inputs persistent condition, vehicle dynamics
tools are mainly used to simulate the different responses and to
compare the identified parameters using the BikeSim software.

The validation of this model is investigated using data mea-
surement in order to confirm the accuracy of the parameters
estimation.

I. INTRODUCTION

Powered two-wheeled vehicles (PTWv) are an increas-

ingly popular means of transport, especially for the oppor-

tunities it offers to avoid congestion. But the PTWv still

remains to this day, a particularly dangerous transportation

mode. Studies on powered two-wheelers have historically

been few [1] [2]. This lack of studies raises the question of

the relevance of the solutions adopted to reduce accidents.

The objective of our research is to study motorcycle

turning, the development of active riding assistances and

preventive safety systems that can warn riders upstream of

hazardous driving situations to ensure acceptable levels of

comfort and safety, taking into account the infrastructure and

the near environment [3] [4].

In this perspective, measures aiming to reduce vulnerable

riders accidents should be studied, taking into account the

fact that PTWv have a specific dynamic behavior that will

sometimes lead to greater control difficulties [5].

The purpose of this paper is to present the particularities

of a motorcycle and the characteristic variables of the vehicle

dynamics. A simple model is considered to describe the

lateral behavior of the yaw and roll motions. So as to

understand the dynamics of the vehicle and the excitations

to which it is subject.

The idea of using identification from measurements comes

naturally: to determine the physical parameters necessary

for the simulation based on the tests and measurements

carried out on the vehicle. It is then possible, by calculating

the dynamic model of the system, to build a simulation

model and to identify the parameters. To the knowledge

of the author, works on the parametric identification of the

PTWv have been very few, main research were achieved

without considering the physical model of the two-wheeled
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vehicle. In [6], the author considers an autoregressive model

of motorcycle to estimate the state space model of lateral

dynamics without identifying parameters. There are other

research axes which are concerned with the identification

of the controller parameters to stabilize the motorcycle, in

the book [7], authors explore the field of the black box

control-oriented modeling, by presenting a case study of

direct identification from experiment. In [8], authors study

the handling of a motorcycle out of plane dynamics with a

robust MBD model to ensure directional stability and identify

the key parameters.

An algebraic identification method is used to obtain an

accurate model of the real system. The algebraic estimation

method presented by Fliess and al. in [9] is used for

continuous-time linear system. The algebraic method has

already been applied with good results in a wide range of

applications, like: flexible robots estimation, Mass-Spring-

Damper model, Identification Method for a DC Motor

([10],[11],[12],[14]). The advantages of this approach are

that the method does not require initial conditions and

requires dependence between the system (input / output)

and the algorithm is computed on-line (Instantaneous con-

vergence). The difficulties encountered concern the choice of

the persistent input excitation in real situation.

In this paper the identification algorithm has been verified by

simulation, the validation of this model will be investigated

with the use of data carried out on the PTWv ; The paper is

organized as follows. Section II briefly describes the PTWv’s

lateral dynamics. Section III presents a static method to

identify geometric parameters and an algebraic method to

identify inertial parameters of the model. Finally, section V

provides some simulation results.

II. TWO-WHEELED LATERAL DYNAMICS

DESCRIPTION

A. Geometry and the Motorcycle Description

In the present work, the motorcycle is considered as a rigid

body. The movements of the motorcycle are characterized
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v

Fig. 1. The motorcycle geometrical description



by three translations: the longitudinal, lateral and vertical

position (x, y, z), and three rotations: the roll φ about the

longitudinal axis x, the pitch θ about the transverse axis y

and the yaw ψ about the vertical axis z.

The inertial parameters of the motorcycle are generally

represented by: it mass m, the moments of inertia : Ix, Iy, Iz

and the position of its center of gravity Gt , for more detail

please refer to [13].

One can note that these parameters are unknown.

B. Dynamic Model of a Rigid Motorcycle

In this part, the lateral movement of the powered two-

wheeled vehicle is considered by simplifying the sharp model

[1], with the assumption that the roll axis is considered on

the ground.
Let us consider the following motorcycle model with

3 DoF giving the lateral, the yaw and the roll motion
dynamics:







m(v̇y + ψ̇vx) = Fy f +Fyr

Izψ̈ = aFy f −bFyr

Ixφ̈ −mh(v̇y + ψ̇vx) = mghφ
(1)

and the tire relaxation dynamics
{

Ḟy f = − vx

τ Fy f +C f 1(δ −
vy−aψ̇

vx
)+C f 2φ +∆FS

y f

Ḟyr = − vx

τ Fyr −Cr1(
vy−bψ̇

vx
)+Cr2φ +∆FS

yr

(2)

where ∆FS
yr, ∆FS

y f are the nonlinear parts of forces which

characterizes the dangerous situations (saturation of the

forces) and τ is a scalar defining the length of relaxation,

all the variables are listed in appendix.

These equations allow us to describe the lateral dynamics of

a motorcycle modeled as a single rigid body.

Let x(t) = ( vy ψ̇ φ φ̇ Fy f Fyr )T , adding the trivial

expressions φ̇ = φ̇ . We deduce the following Linear Param-

eter Varying (LPV) system :

Eẋ(t) = M (vx(t))x(t)+Nu(t)+F (vx(t))d(t)

where the input u(t) is the sterring angle δ and d(t) is the

nonlinear part of the lateral forces. Measurable values are

the roll and yaw rates ψ̇ , φ̇ and ay =
1
m
(Fy f +Fyr). Then the

output equation can be written y(t) =Cx(t).
Please refer to Appendix for the expressions of matrix E,

M, N, F and C.

Since the matrix E is non-singular, then the system can

be transformed in the following form

ẋ(t) = A(vx(t))x(t)+Bu(t)+Q(vx(t))d(t) (3)

with 





A(vx(t)) = E−1M(vx(t))
B = E−1N

Q(vx(t)) = E−1F(vx(t))

Finally, the single-body motorcycle model is described as an

LPV model.
{

ẋ(t) = A(vx(t))x(t)+Bu(t)+Q(vx(t))d(t)
y(t) = Cx(t)

(4)

III. IDENTIFICATION OF THE MOTORCYCLE

DYNAMIC

A. Identification of a, b and h parameters by a static method

The position of the center of gravity Gt of the motorcycle

has a significant influence on the lateral dynamics. In this

part, we endeavor to describe a practical method by applying

the static (force and moment) fundamental principle, and

with the use of simple tools to record the values of the

vertical forces on the front and rear wheels.

The center of mass for a single-body model of a motor-

cycle is defined by the values of the geometric parameters

a, b and h .

let’s consider that the motorcycle is positioned on a slope

(figure 2),

Gt

e

h

a b

α

Ff Fr
Fz f

x

z

Fig. 2. The balance of forces - motorcycle on the slope in the opposite
direction (1st Case).

Where,

• Fz f (resp.Fzr): the component of the vertical force ap-

plied to the front wheel (or rear wheel, measured with

a weight person scale) along the Z axis.

• Px = Psin(α): the component of the weight along the

x-axis.

• α: the angle of the slope.

• P = mg: represents the force of gravity applied to the

center of mass.

Now, we consider the ”Inclined” configuration to seek the

”horizontal” position of Gt (a and b) and the ”vertical” posi-

tion (h). The motorcycle is lifted up with a hydraulic lifting

goat to a desired angle of inclination α , we put a wedge

under the rear wheel, and the person scale under the front

wheel (1st case : (figure 2)), the same procedure is performed

by turning the motorcycle in the reverse configuration, (2nd

case). The angle of the slope α can easily be calculated by

trigonometry.
The equations of forces and moments in projection on the

x and z axis allow us to find a, b and h at the same time:







Ff z1
+Frz1

= Ff z2
+Frz2

= P

P tan(α)h+Ff z1
a−Frz1

b = 0 (1st case)
P tan(α)h−Ff z2

a+Frz2
b = 0 (2nd case)

a+b = e

(5)

The motorcycle position can be located by solving the set
of equations, we get for a, b and h:





a
b
h



=





Ff z1
−Frz1

P. tan(α)
−Ff z2

Frz2
P. tan(α)

1 1 0





−1

×





0
0
e







B. Algebraic identification approach

The goal of this section is the parameters identification

of a time invariant linear system modeled by a rational

transfer function by knowing the output signal y(t) and the

input signal u(t), we attempts to estimate the parameters of

the model, the advantages are that the estimation does not

require initial conditions or dependence between the system

input and output and the algorithm is computed on-line.

[15],[9] [16].

Identifiability:

The parameters are linearly identifiable if, and only if,[9]

P ×Θ
T = Q (6)

where

• P and Q are respectively (8x8) and (8x1) matrices.

• Θ is the set of parameters.

• det(P) 6= 0.

The algebraic approach is mainly based on the robust com-

putation of the time-derivatives of signal by using a finite

weighted combination of time-integrations of this signal.

These results allow to obtain an estimate of the time-

derivative of a particular order in an arbitrary small amount

of time. We apply the basic principles of the method on

the linear motorcycle model described by equations (1-2) to

obtained the transfer function H(s) between the output ψ̇
and the input δ :

H =
Y

U
=

N3s3 +N2s2 +N1s+N0

s4 +D3s3 +D2s2 +D1s+D0
(7)

the coefficients N0, ..,N3,D0, ..,D3 are non-linear functions

of the parameters Ix and Iz (the inertia parameters Ix and Iz

are unknown, to be identified from the transfer function).

If we can identify the coefficients of the transfer function,

we can deduce the values of the system parameters by a

set of equations. We can rewrite the transfer function from

equation (7) into the following form:

y(4)+D3y(3)+D2ÿ+D1ẏ+D0y = N3u(3)+N2ü+N1u̇+N0u

(8)

where the exponent (i) indicates the derivation of order i

with respect to t.

We proceed to compute the unknowns system parameters Di,

Ni as follows: In the Laplace domain, the time derivative is

equivalent to the product s. Taking laplace transform of the

expression 8 and by multiplying s:

[s5y(s)− s4y(0)− s3y(0)− s2y(0)− sy(0)]
+D3[s

4y(s)− s3y(0)− s2y(0)− sy(0)]+ . . .+D0sy(s)
= N3[s

4u(s)− s3u(0)− s2u(0)− su(0)]+ . . .+N0su
(9)

Since the initial conditions are unknown so we differentiate
five times so that all constant terms leave, then :

∂ 5

∂ s5 [s
5y]+D3

∂ 5

∂ s5 [s
4y]+D2

∂ 5

∂ s5 [s
3y]+D1

∂ 5

∂ s5 [s
2y]+

D0
∂ 5

∂ s5 [sy] = N3
∂ 5

∂ s5 [s
4u]+N2

∂ 5

∂ s5 [s
3u]+

N1
∂ 5

∂ s5 [s
2u]+N0

∂ 5

∂ s5 [su]

(10)

Then we develop each term of (10), Let’s calculate ∂ 5

∂ s5 [s
5y]

:

∂ 5

∂ s5
[s5y] = 5!y+5!×C1

5 × s
∂y

∂ s
+

5!

2!
×C2

5 × s2 ∂ 2y

∂ s2

+
5!

3!
×C3

5 × s3 ∂ 3y

∂ s3
+

5!

4!
×C4

5 × s4 ∂ 4y

∂ s4

+
5!

5!
×C5

5 × s5 ∂ 5y

∂ s5

with Cr
n =

n!
r!(n−r)! , by the same way , ∂ 5

∂ s5 [s
4y] we have :

∂ 5

∂ s5
[s4y] =4!×C1

5 ×
∂y

∂ s
+4!×C2

5 × s
∂ 2y

∂ s2

+
4!

2!
×C3

5 × s2 ∂ 3y

∂ s2
+

4!

3!
×C4

5 × s3 ∂ 4y

∂ s4

+
4!

4!
×C5

5 × s4 ∂ 5y

∂ s5

The other terms are calculated using the same procedure.
Since it is already known, from the theory of the Laplace

transform, multiplication by s means a derivation with re-
spect to t in time domain, which is not a numerically robust
operation. This is why we multiply the equation by s−5 to
avoid unnecessary derivations.

we calculate s−5 ∂ 5

∂ s5 [s
5y]

s−5 ∂ 5

∂ s5
[s5y] = 5!s−5y+5!×C1

5 × s−4 ∂y

∂ s
+

5!

2!
×C2

5 × s−3 ∂ 2y

∂ s2

+
5!

3!
×C3

5 × s−2 ∂ 3y

∂ s2
+

5!

4!
×C4

5 × s−1 ∂ 4y

∂ s3
+

5!

5!
×C5

5 ×
∂ 5y

∂ s4

s−5 ∂ 5

∂ s5
[s4y] = 4!×C1

5 × s−5 ∂y

∂ s
+4!×C2

5 × s−4 ∂ 2y

∂ s2
+

4!

2!
×C3

5 × s−3 ∂ 3y

∂ s2
+

4!

3!
×C4

5 × s−2 ∂ 4y

∂ s4
+

4!

4!
×C5

5 × s−1 ∂ 5y

∂ s5

and so on for the other terms. Thus, in the temporal domain,
the resulting equation can be written as

D3 p1 1 +D2 p1 2 +D1 p1 3 +D0 p1 4 +N3 p1 5

+N2 p1 6 +N1 p1 7 +N0 p1 8 =−q1
(11)

q1 represents the temporal form of the equation s−5 ∂ 5

∂ s5 [s
5y]

q1 =−5!C1
5

∫ 5
ty+5!C2

5

∫ 4
t2y− 5!

2!C
3
5

∫ 3
t3y+ 5!

3!C
4
5

∫ 2
t4y

− 5!
4!C

5
7

∫ 5
y+ 5!

5!C
5
5

∫ 2
t5y− 5!

5!C
5
5

∫
t7y

(12)

The expressions of p1 1, p1 2, ..., p1 8 and q1 are written as
a differential equation.
The matrix can be completed by integrating the previous
equation and making it invertible. Then we can deduce a
matrix relation. The coefficients are identified by solving
equation (13).







p1 1 p1 2 . . . p1 8

p2 1 p2 2 . . . p2 8

...
...

. . .
...

p8 1 p10 2 . . . p8 8







︸ ︷︷ ︸

P













D3

...
D0

N3

...
N0













=−







q1

q2

...
q8







︸ ︷︷ ︸

Q

(13)

(
D3 . . . D0 N3 . . . N0

)T
= P

−1
.Q (14)

with p8 i =
∫

p7 i =
∫∫

p6 i =
∫∫∫

p5 i = . . . =
∫ 7

p1 i pour ∀ i = {1,2, . . . ,8.}



and q8 =
∫

q7 =
∫∫

q6 =
∫∫∫

q6 = . . . =
∫ 7

q1 pour ∀ i =
{1,2, . . . ,8}
Implementation point of view : each component of the P

and Q matrix can be written in a state space framework by

a simple linear variant time filter. The excitation input plays

a very important role in the identification of the transfer

function.

IV. SIMULATION RESULT

A. Static Test : geometric parameters a, b, h and m

As previously seen, the center of mass of a motorcycle

is defined by the values of the parameters a, b and h for

a one-body model. This point can vary with the weight of

the rider. Thus, we distinguished two different cases (with

and without rider), we used the static method presented in

section (3), each scenario being tested once without the

rider then with rider.

With the measurements of the vertical forces it is possible

to calculate the values of the parameters a,b and h by

equation (5).

Table I presents experimental test carried out on the scooter

of the laboratory .

TABLE I

GEOMETRIC PARAMETERS a,b,h(m), m(kg)

geomtric parameters (a) (b) (h) (m)

motorcycle without rider 0.7363 0.5637 0.3960 142

motorcycle with rider 0.8015 0.4985 0.5194 221

First, the rider influence is clearly checked, especially for

the h parameter. The values of a and b share the wheelbase

with a ratio of (57 % and 43 %) without rider, (62 % and

38 %) with rider.

B. Identification of inertial parameters

From differential model, we realized a motorcycle model

of a rigid body taking the values of geometric parameters

calculated from the static test, for the pneumatic parameters

that are influenced by tire types and road condition, we

consider the typical values presented in [3] and the values

of other accessible parameters are taken from data sheet of

the motorcycle. By the nature of the system, the model is

unstable. It was necessary to add a controler to guarantee

the stability of the system with state feedback computed by

poles placement (to replacement rider). The dynamics of the

motorcycle has been analyzed with a Sharp model [1] ex-

isting in the database of the simulation software ”Bikesim”,

this bike is similar to the scooter in terms of dynamics and

characteristic. Bikesim offers the possibility to create move-

ments using excitation inputs: steering angle, acceleration,

braking, and taking into account the climatic parameters such

as wind. The excitation signal plays a very important role in

parameters identification, so we have chosen the excitation

input using Bikesim so that the angular accelerations will be

well excited without falling the motorcycle.

C. Analysis of the dynamic behavior

The results presented below allow to study the behavior

of the motorcycle identical to that used for identification,

combining braking in a straight line and a steering wheel

action, to allow us choosing the best input excitation.

1) Braking in a straight line: Straight-line braking tests

show mainly the longitudinal behavior along XG and

the pitching behavior around the YG axis [17].
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2) Step Steer: The stepping-wheel steering - sudden steer-

ing of the stepped wheels Fig. 3 - allows to study the

behavior of the vehicle in the transverse direction YG

and in roll - rotation around the axis XG.
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Fig. 3. Lateral speed-Roll angle-Step Steer-Trajectory.

3) Flying sinus: the steering angle follows a law of the

wobbled sinus type, the flying angle (Figure 5) is of

sinusoidal shape but of progressively increasing fre-

quency and amplitude progressively decreasing. These

tests involve the two-wheeled vehicle mainly in yaw

and in rolling which allows us to identify the associated

modes :
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Fig. 4. Steering angle δ : flying angle

D. Algebraic identification

The study of transfer functions of type: (yaw rate
ψ̇/steering angle δ ) allows us to identify the inertial param-
eters of the motorcycle body. We have excited the dynamics
with a flying sinus in the steering angle, then measurement
data are used in the parametric identification method to
obtain the following transfer function:

Hid(s)=
ψ̇

δ
=

503.9s3 +1.511×104s2 −9.22×104s−1.317×106

s4 +158.5s3 +5749s2 +4.136×104s+4.755×104

=
N3ids3 +N2ids2 +N1ids+N0id

s4 +D3ids3 +D2ids2 +D1ids+D0id

The coefficients of the transfer function calculated from

the state space model (7) of the motorcycle: [Di,Ni] are

functions of the unknown parameters Ix, Iz, they are highly

complex and non-linear, after simplification, we get the

denominator coefficient:

D3 =
3.5837×103

Iz
+ 528.1462

Ix
+13.1750

D2 =
6.0275×104

Iz
+ 1.4796×103

Ix
+2.0384×106

D1 =
2.3268×107

Ix.Iz
− 2.0230×104

Iz

D0 =
2.6024×107

Ix.Iz
we have to find two parameters Ix and Iz, we

show only the two coefficients D3 and D2 of the denominator

:

Fig. 5. Convergence

It can be seen, from the above simulation that the method

converges after 0.8(s) this is due to the response time of the

filters.

After estimation by the algebraic method we calculate the

values of parameters Ix and Iz from the expressions of D3

and D2 and the identified function Hid :

Ixestim
= 17.609 kg.m

2
, Izestim

= 31.073 kg.m
2

Note that the prior inertial parameters are computed from

BIKESIM using the huygens theorem :

Ixbikesim
= 17.623 kg.m

2
, Izbikesim

= 31.058 kg.m
2

E. Model validation with data measurement

We had performed test scenarios with a scooter motor-

cycle, instrumented with several sensors (odometer, GPS

sensor, IMU..). After that, we have analyzed and processed

data obtained by rancing scenarios, in order to find consistent

results compared to real situation. To validate the model, it

Fig. 6. scooter

is sufficient to recover the input data acquired during the

experiment for exciting the identified model and observe the

output of the model, thus comparing it with the measured

output.

From experiments conducted, a scenario is chosen where

the motorcycle was turning on a mini-roundabout to better

check the variation of the roll angle which is given by the

IMU (10 DoF ) placed at the center of gravity under the seat.

Fig. 7. Validation of the model: turning at the roundabout

The graphs (Figure 7) show that the output of the model

is coherent with the measurements of the experiments. The

measurement are slightly disturbed, the measured roll angle

of and model have a very close profiles, the simulation results

converge well to the data measured by sensors embedded on

the motorcycle.



V. CONCLUSIONS

This paper presents an algebraic identification approach,

used to identify the center of gravity and the inertial param-

eters of a powered two wheels vehicle modeled as a rigid

body.

The difficulties encountered concern the choice of the per-

sistent input to excite the dynamics of the motorcycle (effect

of bad conditionings).

The model is validated by the data measurement carried out

on a scooter. In future works, it is interesting to identify a

non-linear multi-body model of motorcycles which includes

additional parameters and construct a robust motorcycle

control law with respect to parametric uncertainties. Another

perspective is to take into account the geometry of the road

which has been considered flat and to consider the effect of

the rider in the dynamics.

APPENDIX

The system state matrices are :

M =











0 −mvx 0 0 1 1
0 0 0 0 a −b
0 0 0 1 0 0
0 mhvx mgh 0 0 0

−
C f 1

vx

aC f 1

vx
C f 2 0 − vx

τ 0

−Cr1

vx

bCr1

vx
Cr2 0 0 − vx

τ











N =










0
0
0
0

C f 1

0










.

E =










m 0 0 0 0 0
0 Iz 0 0 0 0
0 0 1 0 0 0

−mh 0 0 Ix 0 0
0 0 0 0 1 0
0 0 0 0 0 1










F(vx(t)) =










0 0
0 0
0 0
0 0
vx

τ 0

0 vx

τ










C =






0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1
m

1
m




 , and u(t) = δ , d(t) =

(

∆FS
y f

∆FS
yr

)

• [a,b,h]: geometric variables.

• [m]: motorcycle mass.

• [g]: acceleration gravity.

• [vx,vy]: longitudinal and lateral velocity.

• [Ix, Iz]: moment of inertia along the x and z axes.

• [φ ,ψ]: roll and the yaw angle.

• [δ ]: steering angle imposed by the rider

• [Gt ]: center of gravity of the vehicle.

• [Fy f ,Fyr]: the lateral force applied to the front and the

rear wheel.

• [Cr1,Cr2,C f 1,C f 2]: pneumatic coefficients (r: rear wheel,

f: front wheel, 1: stiffness of the slide, 2 camber

stiffness)

• [∆FS
yr,∆FS

y f ]: nonlinear part.

REFERENCES

[1] Sharp, Robin S, ”The stability and control of motorcycles”, Journal
of mechanical engineering science, vol. 13,pp 316-329, 1971.

[2] Nishimi, Tomoo and Aoki, Akira and Katayama, Tsuyoshi Nishimi, T.,
Aoki, A., Katayama, T. (1985). Analysis of straight running stability
of motorcycles (No. 856124). SAE Technical Paper.

[3] Ichalal, D., Dabladji, H., Arioui, H., Mammar, S., Nehaoua, L. (2013,
June). Observer design for motorcycle lean and steering dynamics es-
timation: a takagi-sugeno approach. In American Control Conference
(ACC), 2013 (pp. 5654-5659). IEEE.

[4] Slimi, H., Arioui, H., Nouveliere, L., Mammar, S. (2010, June).
Motorcycle speed profile in cornering situation. In American Control
Conference (ACC), 2010 (pp. 1172-1177). IEEE.

[5] Arioui, H., Hima, S., Nehaoua, L. (2009, July). 2 DOF low cost
platform for driving simulator: Modeling and control. In Advanced
Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International
Conference on (pp. 1206-1211). IEEE.

[6] James, S. R. (2002). Lateral dynamics of an offroad motorcycle by
system identification. Vehicle System Dynamics, 38(1), 1-22.

[7] Tanelli, M., Corno, M., Saveresi, S. (2014). Modelling, simulation and
control of two-wheeled vehicles. John Wiley Sons.

[8] Pradeepak, R., Bhambri, M., Rahman, S. (2015). A Parametric Multi
Body Approach to Find the Key Elements Influencing the Steering
Torque Applied by Rider on a Motorcycle (No. 2015-01-0641). SAE
Technical Paper.

[9] Fliess, M., SiraRamrez, H. (2003). An algebraic framework for linear
identification. ESAIM: Control, Optimisation and Calculus of Varia-
tions, 9, 151-168.

[10] Mamani, G., Becedas, J., Feliu-Batlle, V., Sira-Ramirez, H. (2007,
July). Open-loop algebraic identification method for a DC motor. In
Control Conference (ECC), 2007 European (pp. 3430-3436). IEEE.

[11] Becedas, J., Trapero, J. R., Sira-Ramirez, H., Feliu-Battle, V. (2007,
April). Fast identification method to control a flexible manipulator
with parameter uncertainties. In Robotics and Automation, 2007 IEEE
International Conference on (pp. 3445-3450). IEEE.

[12] Becedas, J., Mamani, G., Feliu-Batlle, V., Sira-Ramirez, H. (2007,
October). Algebraic identification method for mass-spring-damper
system. In WCECS 2007, Proceedings of the World Congress on
Engineering and Computer Science 2007.

[13] Nehaoua, L., Arioui, H., Seguy, N., Mammar, S. (2013). Dynamic
modelling of a two-wheeled vehicle: Jourdain formalism. Vehicle
System Dynamics, 51(5), 648-670.

[14] Reger, J., Jouffroy, J. (2009, December). On algebraic time-derivative
estimation and deadbeat state reconstruction. In Decision and Control,
2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on (pp.
1740-1745). IEEE.

[15] Baronti, F., Zamboni, W., Femia, N., Rahimi-Eichi, H., Roncella, R.,
Rosi, S., Chow, M. Y. (2013, May). Parameter identification of Li-
Po batteries in electric vehicles: A comparative study. In Industrial
Electronics (ISIE), 2013 IEEE International Symposium on (pp. 1-7).
IEEE.

[16] Neves, A. (2005). Identification Algbrique et Dterministe de Signaux
et Systmes Temps Continu: Application des Problmes de Communi-
cation Numrique (Doctoral dissertation, Universit Ren Descartes-Paris
V).

[17] Dabladji, M. E. H., Ichalal, D., Arioui, H., Mammar, S. (2017). Toward
a Robust Motorcycle Braking. IEEE Transactions on Control Systems
Technology, 25(3), 1052-1059.




