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Abstract—In this work, we propose the use of a modified version of the

correlation coefficient as a performance criterion for the image alignment problem.

The proposed modification has the desirable characteristic of being invariant with

respect to photometric distortions. Since the resulting similarity measure is a

nonlinear function of the warp parameters, we develop two iterative schemes for

its maximization, one based on the forward additive approach and the second on

the inverse compositional method. As is customary in iterative optimization, in

each iteration, the nonlinear objective function is approximated by an alternative

expression for which the corresponding optimization is simple. In our case, we

propose an efficient approximation that leads to a closed-form solution (per

iteration) which is of low computational complexity, the latter property being

particularly strong in our inverse version. The proposed schemes are tested

against the Forward Additive Lucas-Kanade and the Simultaneous Inverse

Compositional (SIC) algorithm through simulations. Under noisy conditions and

photometric distortions, our forward version achieves more accurate alignments

and exhibits faster convergence, whereas our inverse version has similar

performance as the SIC algorithm but at a lower computational complexity.

Index Terms—Image registration, motion estimation, gradient methods,

parametric motion, correlation coefficient.

Ç

1 INTRODUCTION

THE parametric image alignment problem consists of finding a
transformation which aligns two image profiles. The profiles can
either be entire images, as in the image registration problem [1],
[2], or subimages, as in the region tracking [3], [4], [5], motion
estimation [6], [7], [8], [9], and stereo correspondence [10], [11]
problems. In image registration, the alignment problem needs to
be solved only once, whereas, in region tracking, a template image
has to be matched over a sequence of images. Finally, in motion
estimation and stereo correspondences, the goal is to find the
correspondence for all image points in a pair of images.

The alignment problem can be seen as a mapping between the
coordinate systems of two images; therefore, the first step toward
its solution is the suitable selection of a geometric transformation
that adequately models this mapping. Existing models are
basically parametric [12] and their exact form heavily depends
on the specific application and the strategy selected to solve the
alignment problem [3], [13]. The class of affine transformations
and, in particular, several special cases (as pure translation) have
been the center of attention in many applications [1], [2], [3], [4],
[6], [10], [11], [13]. Alternative approaches rely on projective
transformations (homography) and, more generally, on nonlinear
transformations [5], [13], [14], [15].

Once the geometric parametric transformation has been defined,
the alignment problem reduces itself to a parameter estimation
problem. Therefore, the second step toward its solution consists of

coming up with an appropriate performance measure, that is, an
objective function. The latter, when optimized, will yield the
optimum parameter estimates. Most existing approaches adopt
measures that rely on lp norms of the error between either the whole
image profiles (pixel-based techniques) or a specific feature of the
image profiles (feature-based techniques) [12]. Clearly, the l2 norm is
by far the most popular selection so far [1], [3], [6], [7], [9], [10], [13],
[15], [16]. The l2-based objective function is usually referred to as the
Sum-Squared-Differences (SSD) measure and the corresponding
optimization problem is known as the SSD technique [5], [9].
Variations on this approach have been proposed for the important
problem of optical flow determination [5], [7], [17], and robust
versions that can combat outliers were developed in [18].

For the optimum parameter estimation, all existing objective
functions require nonlinear optimization techniques. Depending
on the adopted solution strategy, the corresponding techniques
can be broadly classified into two categories. The first includes
gradient-based or differential approaches and the second includes
direct search techniques [12]. Gradient-based schemes, because of
their low computational cost, are regarded as more well fitted to
CV applications [13], [19]. They are, however, characterized by
noticeable convergence failure whenever homogeneous areas
and/or single slanted edges (aperture problem [20]) are present.
Meaningless estimates may also arise whenever we have strong
displacement values. Direct search techniques, on the other hand,
do not suffer the latter drawback. Indeed, these approaches can
easily accommodate large motions since they rely on global image
searches. Unfortunately, the latter require an exceedingly high
computational cost, which becomes more intense in the cases of
fine quantization needed in the case of accurate estimates [6].
Efforts to reduce complexity by adopting interpolation instead of
fine quantization or hybrid techniques that combine the two
classes can be found in [9], [15].

A common assumption encountered in most existing techniques
is the brightness constancy of corresponding points or regions in the
two profiles [20]. However, this assumption is valid only in specific
cases and it is obviously violated under varying illumination
conditions. There, it becomes clear that, in a practical situation, it is
important that the alignment algorithm be able to take into account
illumination changes. Alignment techniques that compensate for
photometric distortions in contrast and brightness have been
proposed in [1], [6], [8], [10], [16]. Alternative schemes make use
of a set of basis images for handling arbitrary lighting conditions [3],
[21] or use spatially dependent photometric models [7].

In this paper, we adopt a recently proposed similarity measure
[11], the enhanced correlation coefficient, as our objective function for
the alignment problem. Our measure is characterized by two very
desirable properties. First, it is invariant to photometric distortions
in contrast and brightness. Second, although it is a nonlinear
function of the parameters, the iterative scheme we are going to
develop for the optimization problem will turn out to be linear,
thus requiring reduced computational complexity. Despite the
resemblance of our final algorithm to well-known variants of the
Lucas-Kanade alignment method which take lighting changes into
account [10], [19], its performance, as we are going to see, is
notably superior. We would like to mention that the enhanced
correlation coefficient criterion was successfully applied to the
problem of 1D translation estimation in stereo correspondence [11]
and 2D translation estimation in registration [2].

The remainder of this paper is organized as follows: In
Section 2, we formulate the parametric image alignment problem.
Section 3 contains our main analytic results, namely, the definition
of our objective function, the development of a forward and an
inverse compositional iterative scheme for its optimization, and
the relation of the proposed schemes to existing SSD techniques. In
Section 4, our schemes are tested in a number of experiments
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against the currently most popular algorithms, namely, the Lucas-
Kanade and Simultaneous Inverse Compositional (SIC) methods.
Finally, Section 5 contains our conclusions.

2 PROBLEM FORMULATION

Suppose we are given a pair of image profiles (intensities) IrðxÞ,
IwðyÞ, where the first is the reference or template image and the
second is the warped and x ¼ ½x1; x2�t, y ¼ ½y1; y2�t denote coordi-
nates. Suppose also that we are given a set of coordinates T ¼
fxk; k ¼ 1; . . . ; Kg in the reference image, which is called the target

area. The alignment problem consists of finding the corresponding
coordinate set in the warped image. Of course, we are not
interested in arbitrary correspondences but, rather, in those that
are structured and can be modeled with a well-defined vector
mapping y ¼ ��ðx; pÞ, where p ¼ ½p1; � � � ; pN �t is a vector of
unknown parameters. Such correspondence problems often arise
in practice, with the most common case being motion estimation in
a sequence of images. In this application, due to the relative
motion between scene and camera, whole (target) areas appear
differently in time.

Assuming that a transformation model is given (and under the
validity of the brightness constancy assumption), the alignment
problem is simply reduced to the problem of estimating the
parameters p such that

IrðxÞ ¼ Iw ��ðx; pÞð Þ; 8 x 2 T : ð1Þ

In order to have a chance of obtaining a unique solution, it is
necessary that the number N of unknown parameters does not
exceed the number K of target coordinates. Of course, in practice,
we usually have N � K, which suggests that (1) is an over-
determined system of (nonlinear) equations.

Most existing algorithms attempt to compute the parameter
vector p by minimizing the difference or the dissimilarity of the two
profiles. Dissimilarity is expressed through an objective function
EðpÞ which involves the lp norm of the intensity difference of the
two images. Since, in real applications, due to different viewing
directions and/or different illumination conditions, the brightness
constancy assumption is violated, it is necessary to include an
additional photometric transformation �ðI; ��Þ that accounts for
the photometric changes and which is parameterized by a vector of
unknown parameters ��. A typical optimization problem has the
following form:

min
p;��

Eðp; ��Þ ¼ min
p;��

X
x2T

IrðxÞ �� Iw ��ðx; pÞð Þ; ��ð Þj jp: ð2Þ

We must mention that optimization problems of the form of (2) are
often ill-posed and it is usually necessary to impose extra
regularity (smoothness) conditions in order to obtain an acceptable
solution [17].

Solving the optimization problem is clearly not a simple task
because of the nonlinearity involved in the correspondence part.
The computational complexity and estimation quality of the
existing schemes depends on the specific lp norm and the models
used for warping and photometric distortion. As far as the norm
power p is concerned, most methods use p ¼ 2 (euclidean norm).
This will also be the case in our approach, which we detail in the
next section.

3 PROPOSED CRITERION AND MAIN RESULTS

Under the warping transformation ��ðx; pÞ, the coordinates xk,
k ¼ 1; . . . ; K of the target area T are mapped into the
coordinates ykðpÞ ¼ ��ðxk; pÞ, k ¼ 1; . . . ; K. Let us define the
reference vector ir and the corresponding warped vector iwðpÞ as

ir ¼ ½Irðx1Þ Irðx2Þ � � � IrðxKÞ�t;
iwðpÞ ¼ ½Iwðy1ðpÞÞ Iwðy2ðpÞÞ � � � IwðyKðpÞÞ�t;

ð3Þ

and denote with �ir and �iwðpÞ their zero-mean versions, which are

obtained by subtracting from each vector its corresponding
arithmetic mean. We then propose the following criterion to

quantify the performance of the warping transformation with

parameters p:

EECCðpÞ ¼
�ir

k�irk
�

�iwðpÞ
k�iwðpÞk

����
����

2

; ð4Þ

where k � k denotes the usual euclidean norm.
It is apparent from (4) that our criterion is invariant to bias and

gain changes. This also suggests that our measure is going to be
invariant to any photometric distortions in brightness and/or in

contrast. Consequently, to a first approximation, we can completely

disregard the photometric transformation and concentrate solely on
the geometric. It is also interesting to mention that our measure

exhibits statistical robustness against outliers, as is reported in [22].

All of these positive characteristics clearly support our expectation
that the proposed criterion will turn out to be a suitable objective

function for the parametric image alignment problem.

3.1 Performance Measure Optimization

Once the performance measure is specified, we then continue with
its minimization in order to compute the optimum parameter

values. It is straightforward to prove that minimizing EECCðpÞ is

equivalent to maximizing the following enhanced correlation coeffi-

cient [11]:

�ðpÞ ¼
�itr

�iwðpÞ
k�irk �iwðpÞ

�� �� ¼ îtr
�iwðpÞ
�iwðpÞ
�� �� ; ð5Þ

where, for simplicity, we denote with îr ¼ �ir=k�irk the normalized

version of the zero-mean reference vector, which is constant. Notice

that, even if �iwðpÞ depends linearly on the parameter vector p, the
resulting objective function is still nonlinear with respect to p due

to the normalization of the warped vector. This, of course, suggests

that its maximization requires nonlinear optimization techniques.
As was mentioned in Section 1, maximizing �ðpÞ can be

performed either by using direct search or by gradient-based

approaches. Here, we are going to use the latter. As is customary

in iterative techniques, we are going to replace the original
optimization problem with a sequence of secondary optimizations.

Each secondary optimization relies on the outcome of its

predecessor, thus generating a chain of parameter estimates which
hopefully converges to the desired optimizing vector. At each

iteration, we do not have to optimize the objective function but an

approximation to this function. Of course, the approximation must
be selected so that the resulting optimizers are simple to compute.

Next, let us introduce the approximation we are going to apply for

our objective function and derive the solution that maximizes it.
Assume that p is “close” to some nominal parameter vector ~p

and write p ¼ ~pþ�p, where �p denotes a vector of perturbations.

Let ~y ¼ ��ðx; ~pÞ be the warped coordinates under the nominal

parameter vector and y ¼ ��ðx; pÞ under the perturbed ones.
Considering the intensity of the warped image at coordinates y

and applying a first-order Taylor expansion with respect to the

parameters, then we can write

IwðyÞ � Iwð~yÞ þ ryIwð~yÞ
� �t@��ðx; ~pÞ

@p
�p; ð6Þ

where ryIwð~yÞ denotes the gradient vector of length 2 of the

intensity function IwðyÞ of the warped image, evaluated at the

nominal warped coordinates ~y. Since ��ðx; pÞ is a vector
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transformation of length 2 (in order to yield the warped

coordinates), then @��ðx;~pÞ
@p denotes the size 2�N Jacobian matrix

of the transform with respect to the parameters, evaluated at the

nominal parameter values. Note that we have silently assumed

that the intensity function Iw and the warping transformation �� are

of sufficient smoothness to allow for the existence of the required

partial derivatives.

We can now apply (6) for all coordinates xk, k ¼ 1; . . . ;K, of the

target area T . This will yield the following linearized version of the

warped vector with parameters p:

iwðpÞ � iwð~pÞ þGð~pÞ�p; ð7Þ

where Gð~pÞ denotes the size K �N Jacobian matrix of the warped

intensity vector with respect to the parameters, evaluated at the

nominal parameter values ~p. In order to specify exactly this

matrix, let us assume that the warping transformation is of the

form

��ðx; pÞ ¼ ½�1ðx; pÞ; �2ðx; pÞ�t; ð8Þ

where �1, �2 are scalar functions. Then, the ðk; nÞ element of the

matrix G can be written as

Gð~pÞk;n ¼
X2

i¼1

 
@IwðyÞ
@yi

�����
y¼ykð~pÞ

� @�iðxk; pÞ
@pn

�����
p¼~p

!
; ð9Þ

where k ¼ 1; . . . ;K; n ¼ 1; . . . ; N , and we recall that y ¼ ½y1; y2�t

are the coordinates in the warped image.

We now need to compute the zero-mean version of the warped

vector. With the help of (7), we obtain the following approximation

of the objective function �ðpÞ defined in (5):

�ðpÞ � �ð�pj~pÞ ¼ îtr
�iwð~pÞ þ �Gð~pÞ�p
�iwð~pÞ þ �Gð~pÞ�p
�� �� ; ð10Þ

where �Gð~pÞ and �iwð~pÞ are the column-zero-mean versions of Gð~pÞ
and iwð~pÞ, respectively.

From now on, let us, for notational simplicity, drop the

dependence of the warped vectors on p; we can then write our

previous approximation as follows:

�ð�pj~pÞ ¼ îtr
�iw þ îtr

�G�pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�iwk2 þ 2�itw

�G�pþ�pt �Gt �G�p
q : ð11Þ

Although �ð�pj~pÞ is nonlinear in �p, its maximization is

simple and results in a closed-form expression. This is a

consequence of the next theorem, which provides the necessary

result.

Theorem 1. Consider the scalar function

fðxÞ ¼ uþ utxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vþ 2vtxþ xtQx

p ; ð12Þ

where u; v are scalars; u;v are vectors of length N ; Q is a square,

symmetric, and positive definite matrix of size N ; and v, v, Q are

such that

v > vtQ�1v; ð13Þ

then, as far as the maximal value of fðxÞ is concerned, we distinguish

the following two cases:
Case u > utQ�1v: Here, we have a maximum, specifically

max
x

fðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� utQ�1vÞ2

v� vtQ�1v
þ utQ�1u

s
; ð14Þ

which is attainable for

x ¼ Q�1 v� vtQ�1v

u� utQ�1v
u� v

� �
: ð15Þ

Case u � utQ�1v: Here, we have a supremum which is equal to

sup
x
fðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
utQ�1u

p
ð16Þ

and can be approached arbitrarily close by selecting

x ¼ Q�1 �u� vf g; ð17Þ

with � positive scalar and of sufficiently large value.1

Proof. The proof makes repeated use of the Schwartz inequality.

All details are presented in the Appendix. tu

Let us now examine whether we can apply Theorem 1 for the

maximization of �ð�pj~pÞ defined in (11). For this, we need to

verify the validity of (13). For the problem of interest, this

translates into the following inequality: k�iwk2 > �itwPG
�iw, where

PG ¼ �Gð �Gt �GÞ�1 �Gt. This relation is trivially satisfied because PG is

an orthogonal projection operator (i.e., P 2
G ¼ PG and Pt

G ¼ PG)

and, therefore, we can write

k�iwk2 ¼ kPG�iwk2 þ k½I � PG��iwk2 	 kPG�iwk2 ¼ �itwPG
�iw; ð18Þ

where I denotes the identity matrix. We have equality if and only

if ½I � PG��iw ¼ 0, which is true whenever �iw is a linear combination

of the columns of �G. Clearly, the probability of this happening is

zero, especially under the presence of noise. Consequently, the

desired inequality, for all practical purposes, is strict.
Since we can apply Theorem 1, according to (15), the

optimizing perturbation is equal to

�p ¼ ð �Gt �GÞ�1 �Gt k�iwk
2 ��itwPG

�iw

îtr
�iw � îtrPG

�iw
îr ��iw

( )
; ð19Þ

when îtr
�iw > îtrPG

�iw; or, according to (17),

�p ¼ ð �Gt �GÞ�1 �Gtf�̂ir ��iwg; ð20Þ

when îtr
�iw � îtrPG

�iw, where � must be selected so that the resulting

�ð�pj~pÞ satisfies �ð�pj~pÞ > �ð0j~pÞ. In other words, we would like

to select a perturbation that will increase the correlation and will

make it nonnegative. The following lemma provides possible

values for �.

Lemma 1. Let îtr
�iw � îtrPG

�iw and define the following two values for �:

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�itwPG

�iw

îtrPG îr

s
; �2 ¼

îtrPG
�iw � îtr

�iw

îtrPG îr
: ð21Þ

Then, for � 	 �1, we have that �ð�pj~pÞ > �ð0j~pÞ; for � 	 �2, that

�ð�pj~pÞ 	 0; finally, for � 	 maxf�1; �2g, we have both inequalities

valid.

Proof. By substituting the value of �p from (20) in (11), the

objective function becomes the following function of �:
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1. More precisely, we mean that, for every � > 0, there exists a
sufficiently large scalar �� such that the resulting fðxÞ is � close to the
upper bound.



fð�Þ ¼
îtr

�iw � îtrPG
�iw

	 

þ �̂itrPG îrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�iwk2 ��itwPG
�iw

	 

þ �2 îtrPG îr

r : ð22Þ

It is easy to verify that the derivative of fð�Þ is nonnegative;
therefore, fð�Þ is increasing in �. This suggests that, for � 	 �2,
we have fð�Þ 	 0. Notice now that, for � ¼ �1, we can write

fð�1Þ ¼
îtr

�iw � îtrPG
�iw þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�itwPG

�iw
� �

îtrPG îr

	 
r
k�iwk

	 �ð0j~pÞ; ð23Þ

with the last inequality being a consequence of applying the
Schwartz inequality on îtrPG

�iw and recalling that PG is an
orthogonal projection operator. tu

Remarks. One should expect, as �iw approaches �ir, to use mostly

(19) since, for �iw � �ir, we have îtr
�iw � îtr

�ir > îtrPG
�ir � îtrPG

�iw. It is

interesting, however, to note that, if one insists on using (19) at

all times, then, whenever îtr
�iw � îtrPG

�iw holds, we end up with a

negative correlation �ð�pj~pÞ (this being true even if �ð0j~pÞ > 0Þ
which is always smaller than �ð0j~pÞ. In other words, instead of

increasing the correlation coefficient (as is the desired goal), in

this case, we decrease it. This clearly suggests that it is preferable

to use (20) with a value of �, as indicated in Lemma 1, (21).

3.2 Forward Additive ECC Iterative Algorithm

Let us now translate the above results into an iterative scheme in
order to obtain the solution to the original nonlinear optimization
problem. Assuming that estimate pj�1 of the parameter vector is
available from iteration j� 1, we can compute�iwðpj�1Þ and �Gðpj�1Þ;
then, we can approximate �ðpÞ following (10) with the help of
�ð�pjjpj�1Þ and optimize this approximation with respect to �pj.
This will lead to the parameter update rule pj ¼ pj�1 þ�pj. As is
indicated in Step S4, we stop iterating whenever the norm of the
updating vector �pj becomes smaller than some predefined
threshold value T . The iteration steps are summarized in Table 1
and we call the corresponding algorithm the Forward Additive
ECC (FA-ECC).

Given the number K of pixels in the target area T and the
parameter vector estimate pj�1 of length N , the complexity per
iteration of the proposed scheme can be easily estimated. From
Table 1 and taking into account that, usually,K 
 N , we realize that
the most computationally demanding part is Step S3, which
involves the computation of �pj with the help of (19) or (20). As
we can see, in this step, we need to form the matrix �Gt �G, which
requires OðKN2Þ operations. This is the leading complexity in our
algorithm since all other steps require at most OðKNÞ per iteration.

3.3 Inverse Compositional ECC Iterative Algorithm

When the alignment problem is restricted to specific classes of
parametric models, it is possible to devise more computationally
efficient versions since certain parts of the algorithm can be

computed offline [3], [13], [15]. If, for example, we adopt the
methodology proposed in [19], we can come up with the Inverse
Compositional ECC (IC-ECC) version of our algorithm which has
the significantly reduced complexity OðKNÞ per iteration. We
briefly mention that the methodology found in [3], [13] relies on
interchanging the role of iw and ir. Consequently, matrix G

becomes the Jacobian matrix of the reference intensity vector and
since the warping function for this vector is the identity, matrix G

is constant and �Gt �G can be computed offline. The latter is the
reason behind the one order of magnitude reduction in computa-
tional complexity. The outline of our alternative algorithmic
version IC-ECC can be easily obtained from Table 1 by
appropriately modifying our FA-ECC version.

Regarding inverse algorithms (additive and compositional) as
well as the forward compositional algorithm [15], we should point
out that they can be applied only to specific classes of warps. It is
also known that inverse algorithms are more susceptible to noisy
conditions than their forward counterparts [13]. These important
weaknesses limit the usage of such algorithms in practice.

3.4 Relation to Existing SSD-Based Measures

In this section, we are going to derive our performance measure in
a different way. This will also help us in relating it to the two
currently most popular SSD approaches in the literature. For our
analysis, we are going to assume that photometric distortion is
limited only to global brightness and contrast changes. Under this

simple type of photometric changes, we can define the following
performance measure for our parametric alignment problem:

Eðp; ��Þ ¼ �1iwðpÞ þ �2 � irk k2; ð24Þ

where �� ¼ ½�1 �2�t is the parameter vector for the photometric
transformation. Our goal, of course, is to minimize the objective
function with respect to all parameters. Regarding the first
photometric parameter, we must point out that negative values
of �1 produce the inversion effect, where colors are reversed.
Consequently, if there exists the a priori knowledge that such a
color inversion cannot take place, then it is logical to limit �1 only

to positive values. Now, if we first minimize the objective function
with respect to �1; �2, we obtain the following interesting result:

EðpÞ ¼ min
�1	0;�2

Eðp; ��Þ ¼ k�irk2 1� max �ðpÞ; 0f g½ �2
n o

; ð25Þ

where �ðpÞ is the correlation function defined in (5). Notice that,

since the reference image is constant, so is the norm k�irk2

contained in the previous relation; therefore, further minimization
with respect to p is equivalent to minimizing the term
ð1� ½maxf�ðpÞ; 0g�2Þ. But, this expression is decreasing in �ðpÞ;
consequently, we can equivalently maximize the correlation
function �ðpÞ, thus recovering our criterion. The final optimization
problem makes a lot of sense. Indeed, notice that, since �ðpÞ is free
of photometric distortions (the simple type we consider here) and
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Outline of the Proposed Forward Additive ECC (FA-ECC) Refinement Algorithm



under the knowledge that there is no color inversion, it is quite

plausible to look for the most positive correlation.
If we drop the constraint �1 	 0, then the minimization of the

objective function in (25) is the optimization problem proposed by

Fuh and Maragos [6]. By optimizing first with respect to �1, �2

yields

EFMðpÞ ¼ min
�1 ;�2

Eðp; ��Þ ¼ k�irk2 1� �2ðpÞ

 �

: ð26Þ

Notice that the resulting measure is now a decreasing function of

j�ðpÞj; therefore, any further minimization with respect to p is

equivalent to maximizing the absolute value j�ðpÞj of the

correlation function. It is clear that this optimization problem

does not take into account the prior knowledge that there is no

color inversion. In [6], maximization was achieved by adopting an

exhaustive search approach in the N-D quantized parameter

space. Clearly, in a noncolor-inversion situation, such a search will

give rise to the correct maximum positive correlation (provided, of

course, that the warped image does not contain parts that are the

negative of the target area). However, as we mentioned in

Section 1, exhaustive search approaches are characterized by high

computational complexity, which becomes exceedingly demand-

ing when we are interested in fine subpixel accuracy.
Although not proposed in [6], alternatively, we could adopt an

iterative approach similar to the one suggested for our measure. If,

however, we attempt to maximize j�ðpÞj using the same approx-

imation as in (10), then one can show that the optimum

perturbation �p is always given by (19). As was indicated in

our remarks (after Lemma 1), adopting this strategy may result in

negative correlations corresponding to local minima for �ðpÞ
instead of the desired maxima. In other words, there are more

chances for the iterative algorithm to be locked in erroneous local

extrema than is the case with our approach.
An alternative measure arises if, in (24), we interchange the

roles of iw and ir, that is,

Eðp; ��Þ ¼ �1ir þ �2 � iwðpÞk k2: ð27Þ

This is the approach adopted by Lucas and Kanade [10] and it is

known to generate, along with its variants, the most widely used

algorithms in practice. Following similar steps as in the previous

two cases, let us first minimize with respect to the two photometric

parameters. This yields

ELKðpÞ ¼ min
�1 ;�2

Eðp; ��Þ ¼ �iwðpÞ
�� ��2

1� �2ðpÞ

 �

: ð28Þ

We observe in the current outcome that the resulting criterion has

two terms that depend on the parameters p, namely, the familiar

part f1� �2ðpÞg and the magnitude of the warped image k�iwðpÞk2

(which is not constant). Therefore, minimizing ELKðpÞwith respect

to the parameters involves the minimization of the combination of

the two terms. The first observation is that this criterion will not

necessarily produce the same solution as our measure. Second,

due to the term k�iwðpÞk2, it is clear that an iterative algorithm can

lock in solutions which result in k�iwðpÞk2 � 0 (for example, areas

with uniform intensity). And, third, because of the term �2ðpÞ, the

algorithm can lock in negative correlations.
Despite the previous observations, the Lucas-Kanade perfor-

mance measure gives rise to the most popular iterative algorithms

for the image alignment problem. For this reason, we are going to

use it as a point of reference and compare it against our scheme.

Consequently, let us present its Forward Additive LK (FA-LK)

updating version in more detail. Substituting the linear approx-

imation of �iwðpÞ in (28), then minimizing with respect to �p, we

obtain the following optimum updating perturbation:

�pLK ¼ ð �Gt �GÞ�1 �Gt îtr
�iw � îtrPG

�iw

1� îtrPG îr
îr ��iw

( )
; ð29Þ

which is applicable at all times. Comparing (19) with (29), we
realize that the difference is only in the scalar quantity that
precedes the vector îr. As we are going to see, this seemingly slight
variation, in combination with (20), will result in significant
performance improvements.

For the Lucas-Kanade approach, it is possible to define a special
SSD-based measure that can handle arbitrary linear appearance
variations. For its minimization, an iterative algorithm that makes
use of the inverse additive update rule was proposed in [3] by
Hager and Belhumeur. Based on the same SSD measure, Baker
et al. [19], by adopting the inverse compositional approach,
proposed several variants of the Hager-Belhumeur algorithm.
Among these alternative algorithmic schemes, the SIC algorithm is
reported to have the best performance [19]. Therefore, this
algorithm will also be tested in the next section.

4 SIMULATION RESULTS

In this section, we perform a number of simulations in order to
evaluate our FA-ECC and IC-ECC algorithmic version. As we
mentioned above, we will also simulate the FA-LK algorithmic
version that copes with photometric distortions and the SIC
algorithm, which is considered to be the most effective inverse
LK scheme. For all aspects affecting the simulation experiments,
we made an effort to stay exactly within the framework specified
in [13], [19]. To model the warping process, we are going to use the
class of affine transformations. We know that the 2D rigid body or
similarity transformation are members of this class. Furthermore,
the Jacobian of the affine model is a constant matrix, meaning that
it can be computed offline. Before proceeding with the presenta-
tion of our simulation results, let us first briefly present the
experimental setup and the figures of merit we are going to adopt.

4.1 Experimental Setup and Figures of Merit

In order to create a reference and a warped image, we follow the
procedure proposed in [13]. In brief, let IðxÞ be a given image and
xi, i ¼ 1; 2; 3, the coordinates of three points which define the
boundaries of the desired target area. We perturb these points by
adding Gaussian noise Nð0; �2

pÞ (�p captures the strength of the
geometric deformation), select a vector x0 such that the points
x0 þ xi, i ¼ 1; 2; 3, lie in the interior of the support of the given
image, and define the parameter vector pr of the affine
transformation that maps the original points to the translated
noisy ones. We apply this transformation to all points of the target
area to warp it. With the help of bilinear interpolation, we compute
the new intensities. This process defines the reference profile IrðxÞ.
For the warped image, we use the given one.

All algorithms are initialized in the same way, namely,
p0 ¼ ½1 0 0 1 xt0�

t. At iteration j, each algorithm provides the
parameter estimates pj. In order to measure the quality of this
estimate, we use the following quantity:

eðjÞ ¼ 1

6

X3

i¼1

��ðxi; prÞ � ��ðxi; pjÞ
�� ��2

; ð30Þ

which quantifies the existing squared error between the exact
warped version of the points xi, i ¼ 1; 2; 3, and their estimated
counterparts.

By averaging this error over many realizations that differ in the
point noise realization, we can compute the Mean Square Distance
(MSD) value. Obviously, by computing this value in each iteration
of an algorithm, we form a sequence that captures its learning

ability. Of course, it is unrealistic to expect that any of the
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algorithms will converge at all times. This is particularly apparent
for high values of �p. For this reason, in order to quantify the
algorithmic performance in a meaningful way and have the right
picture of this convergence characteristic, we adopt the idea
followed in [13], namely, to define the MSD but conditioned on the
event that all of the competing algorithms have converged. By
“convergence,” we mean that eðjmaxÞ � TMSD. In other words, we
consider that an algorithm has converged when its squared error
eðjÞ at a prescribed maximal iteration jmax is below a certain
threshold level TMSD.

The second quantity which is of importance is clearly the
percentage of converging (PoC) runs. Therefore, we define this
quantity as being the percentage of algorithms that converge up to
a predefined maximal iteration jmax. PoC will be depicted as a
function of the point standard deviation �p, which is the most
important factor that affects the performance of all algorithms.

Since it is only natural to prefer an algorithm that converges
quickly with high probability, we propose a third figure of merit that
captures exactly this aspect. Specifically, for characteristic values
of �p and thresholds TMSD, we apply the algorithms for a maximal
number of iterations jMAX . Then, we compute the cumulative PoC
achieved by each algorithm as jmax increases from 0 to jMAX . This
third figure of merit is proposed here for the first time.

In all of the experiments, we use the “Takeo” image as the
warped profile and generate a reference image as was previously
described. We make 5,000 realizations of image pairs and we add
independent and identically distributed, zero-mean Gaussian
intensity noise of standard deviation �i before running the
competing algorithms. Although in [13], [19] we find three
different scenarios, here, due to lack of space, we only focus in
the one where we add noise to both image profiles (since this is the
most interesting from a practical viewpoint).

4.2 First Experiment

In this experiment, for the intensity noise, we use a standard
deviation �i, which corresponds to eight gray levels, and compare
the convergency characteristics of the competing algorithms for a
maximum number of iterations2 jmax ¼ 15 and TMSD ¼ 1 pixel2.
Figs. 1a, 1b, and 1c depict the convergence profiles of the
algorithms for different values of �p. We observe the appearance
of an MSD floor value in each algorithm which is due to the
presence of the intensity noise. Fig. 1d presents the corresponding
PoC as a function of �p.

As we can see, each algorithm attains a different MSD floor
value with our FA-ECC version converging to the lowest one and
with a rate which can be significantly better. Specifically, for weak
geometric deformations, all algorithms reach almost comparable
floor values and have comparable convergence rates, with FA-ECC

being slightly faster than its rivals. However, in the case of
medium to strong deformations, FA-ECC reaches an MSD floor
value which is 3 dB lower than the inverse versions and slightly
lower than the FA-LK algorithm. On the other hand, the
convergency rate of FA-ECC is significantly superior compared
to all other algorithms. Regarding our IC-ECC version, as we can
see, it has performance comparable to the SIC algorithm. The same
characteristics also apply to PoC, where FA-ECC exhibits a larger
percentage of successful convergences while IC-ECC matches the
performance of SIC. Regarding the third figure of merit, we
applied the algorithms for a maximal number of iterations
jMAX ¼ 100. In order to test the accuracy of the alignment, we
selected a threshold value TMSD ¼ ð1=18 pixelÞ2 (i.e., �25 dB),
assuring that TMSD is higher than the MSD floor value of all
competing algorithms. Fig. 3a depicts the corresponding curves for
three values of �p. As we can see, for weak deformations, all
algorithms are almost completely successful after the
10th iteration. When, however, the geometric deformation be-
comes stronger, FA-ECC outperforms its competitors significantly.
Again, IC-ECC is comparable to SIC.

4.3 Second Experiment

In this simulation, we consider the realistic case of photometrically
distorted images under noisy conditions. We consider two
different scenarios. We impose the photometric distortion 1) on
the reference image and 2) on the warped one. Since all competing
algorithms perfectly compensate for linear photometric distor-
tions, we consider a nonlinear transformation of the form
IðxÞ  ðIðxÞ þ 20Þ0:9, which is applied to the intensity of each
image pixel. We repeat the same set of simulations as in the first
experiment, only now we impose the photometric distortion before
adding intensity noise.

The results we obtained are shown in Fig. 2. As we can see, the
performance of our forward algorithm seems to be almost
unaffected, achieving, under both scenarios, almost the same and
the lowest MSD floor value. On the other hand, the performance of
both inverse algorithms and FA-LK scheme seems to be vitally
affected. Comparing Fig. 2 with Fig. 1, we observe that, under the
first scenario, FA-ECC performs even better than before. In fact,
the MSD floor value is now 3 and 5 dB lower than the value
attained by the FA-LK algorithm and the inverse algorithms,
respectively. We should note here that the MSD floor is due not
only to the intensity noise but also to the photometric model
mismatch. Under the second scenario, all algorithms achieve the
same MSD floor value. As far as PoC is concerned, we observe a
rather steady and robust behavior for the forward algorithms
under both scenarios while inverse schemes, under the first
scenario, exhibit a significant performance reduction as compared
to the second one.

Finally, we present the corresponding curves of the third figure
of merit in Fig. 3b under the first scenario since, under the second
one, both the inverse and the FA-ECC algorithm exhibited a
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2. In order to make the different MSD floor values achieved by the
competing algorithms in Figs. 1a, 1b, and 1c and Figs. 2a, 2b, and 2c visible,
30 iterations are shown.

Fig. 1. MSD in decibels as a function of number of iterations under the presence of noise (�i ¼ 8 gray levels). (a) �p ¼ 2. (b) �p ¼ 6. (c) �p ¼ 10. In (d), PoC as a function

of �p.



similar performance. As in the previous experiment, we permit a
maximal number of 100 iterations with a threshold TMSD ¼
ð1=10 pixelÞ2 (i.e., �20 dB), since now we have higher MSD floor
values. Again, FA-ECC outperforms the other algorithms. Com-
paring Fig. 3a with Fig. 3b, we can also notice a robust and
consistent behavior of FA-ECC with respect to intensity noise and
photometric distortion model mismatch.

In summary, we can safely conclude that our proposed
schemes are preferable to the corresponding variants of the
LK algorithm. Clearly, our forward version is more effective than
the forward LK scheme regarding both speed and percentage of
convergence. On the other hand, our inverse version has
performance which is comparable to the performance of SIC,
which is the best inverse version of the LK algorithm. However,
the point that makes our IC-ECC version preferable to SIC is the
reduced computational complexity, which is OðKNÞ as compared
to SIC, which requires OðKðN þ 2Þ2Þ operations.

We should also mention that we evaluated the algorithms
under diverse uncertainty conditions. Only in the case of zero
intensity noise (in other words, when the warped image follows
the warping model exactly), we observed the performance of both
inverse algorithms and the FA-ECC to be similar and to outper-
form the FA-LK algorithm in all figures of merit. This performance
difference can, in fact, become quite significant if the geometric
deformations are strong (i.e., �p 	 6). However, due to lack of
space, we cannot present these results in more detail.

5 CONCLUSIONS

In this paper, we have proposed a new l2-based iterative algorithm
tailored to the parametric image alignment problem. The new
scheme is aimed at maximizing the Enhanced Correlation
Coefficient function, which constitutes a measure that is robust
against geometric and photometric distortions. The optimal
parameters were obtained by iteratively solving a sequence of
approximate nonlinear optimization problems which enjoy a
simple closed-form solution with low computational cost. In

addition, based on the inverse compositional update rule, we
developed an efficient modification of the forward algorithm. Our
iterative schemes were compared against two variants of the
LK algorithm through numerous simulations. Under ideal condi-
tions, the proposed algorithms and the SIC algorithm exhibited
similar performance, outperforming the forward LK algorithm.
However, in the more realistic case of noisy conditions and
photometric distortions, our forward algorithm exhibited a
noticeably superior performance in convergence speed, accuracy,
and percentage of convergence.

APPENDIX

PROOF OF THEOREM 1

The proof of Theorem 1 relies on the application of Schwartz
inequality. In order to simplify our presentation, let us impose the
following change of variables:

z ¼ Q1=2xþQ�1=2v; ~u ¼ Q�1=2u; ~v ¼ Q�1=2v; ð31Þ

then the function we want to optimize becomes a function of z and
has the form

fðzÞ ¼ ðu� ~ut~vÞ þ ~utzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� k~vk2
	 


þ kzk2

r : ð32Þ

Note that condition v > k~vk2 guarantees that the quantity under
the square root in the denominator is positive.

Let us first consider the case u� ~ut~v > 0, then we can define

~z ¼ zt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� k~vk2

q� �t
; ~w ¼ ~ut

u� ~ut~vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� k~vk2

q
2
64

3
75
t

ð33Þ

and our objective function becomes

fðzÞ ¼ ~wt~z

k~zk �
j ~wt~zj
k~zk � k ~wk; ð34Þ

with the last inequality being the result of applying the Schwartz
inequality. Now notice that k ~wk is constant, constituting an upper
bound to our objective function. This bound is attainable when
both inequalities become equalities. From the Schwartz inequal-
ity, we know that we have equality whenever we select
~z ¼ � ~w, where � is some scalar quantity. Under this selection,
in order for the first inequality to become equality, we need
� > 0. From ~z ¼ � ~w, by equating the last vector elements, we
conclude that � ¼ ðv� k~vk2Þ=ðu� ~ut~vÞ, which is positive only
when u� ~ut~v > 0, yielding z ¼ ðv� k~vk2Þ~u=ðu� ~ut~vÞ. It is inter-
esting to note that, when u� ~ut~v � 0, the upper bound k ~wk is not
tight (not attainable) and, therefore, this case needs the separate
treatment that follows.
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Fig. 2. MSD in decibels as a function of number of iterations for photometrically distorted reference (solid lines) and warped (dashed lines) image under the presence of

noise (�i ¼ 8 gray levels). (a) �p ¼ 2. (b) �p ¼ 6. (c) �p ¼ 10. In (d), PoC as a function of �p.

Fig. 3. PoC as a function of iterations: (a) noisy images (�i ¼ 8 gray levels) and

(b) noisy (�i ¼ 8 gray levels) and photometrically distorted images.



When u� ~ut~v � 0, in order to find the supremum, we apply

the following inequalities:

fðzÞ ¼ ðu� ~ut~vÞ þ ~utzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� k~vk2
	 


þ kzk2

r

� ~utzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� k~vk2
	 


þ kzk2

r

� k~uk kzkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� k~vk2
	 


þ kzk2

r
� k~uk:

ð35Þ

The first inequality is true because of the nonpositivity of u� ~ut~v

(from our assumption); for the second, we applied the Schwartz

inequality in the numerator; finally, for the last, we used the fact

that the ratio is smaller than 1. We observe that, in this case, we

end up with a different (smaller) upper bound. In order to verify

its tightness (i.e., whether it constitutes a supremum), we use the

selection prescribed by the Schwartz inequality, that is, z ¼ �~u

again with � > 0 and compute the corresponding value of the

objective function. By letting �!1, we realize that we converge

to k~uk. This suggests that, for sufficiently large �, we can approach

the desired upper bound arbitrarily close (but there is no finite z

for which we can attain it exactly!). This concludes the proof. tu
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