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Abstract. It is well known that the inverse problem in optical tomog-
raphy is highly ill-posed. The image reconstruction process is often
unstable and nonunique, because the number of the boundary mea-
surements data is far fewer than the number of the unknown param-
eters to be reconstructed. To overcome this problem, one can either
increase the number of measurement data !e.g., multispectral or mul-
tifrequency methods", or reduce the number of unknowns !e.g., using
prior structural information from other imaging modalities". We intro-
duce a novel approach for reducing the unknown parameters in the
reconstruction process. The discrete cosine transform !DCT", which
has long been used in image compression, is here employed to pa-
rameterize the reconstructed image. In general, only a few DCT coef-
ficients are needed to describe the main features in an optical tomog-
raphic image. Thus, the number of unknowns in the image
reconstruction process can be drastically reduced. We show numeri-
cal and experimental examples that illustrate the performance of the
new algorithm as compared to a standard model-based iterative im-
age reconstructions scheme. We especially focus on the influence of
initial guesses and noise levels on the reconstruction results. © 2009

Society of Photo-Optical Instrumentation Engineers. #DOI: 10.1117/1.3259360$
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1 Introduction

In optical tomographic !OT" imaging, one attempts to deter-

mine the spacial distribution of optical properties inside a bio-

logical tissue, based on measurements taken on the boundary

of the tissue. This type of inverse problem is in general highly

ill-posed. This means that many different optical property dis-

tributions inside the medium can lead to the same light distri-

bution on the surface of the medium. One of the reasons for

this problem is that the number of unknown parameters to be

reconstructed often by far exceeds the number of boundary

measurements available. Therefore, the number of known data

points is substantially smaller than the number of unknown

parameters in the resulting system of algebraic equations. To

overcome this problem, one can try to increase the number of

data points. To this end, researchers have suggested, for ex-

ample, multispectral methods
1

as well as multifrequency mea-

surement systems.
2

In addition, or alternatively, one can seek

to reduce the number of unknowns. In this direction, various

groups have suggested combining optical tomography !OT"
with other imaging modalities, such as magnetic resonance

imaging !MRI"3
or ultrasound !US".4 In these cases, the other

imaging modalities provide the prior structural information

for optical imaging. Furthermore, Schweiger and Arridge
5

have tested different local basis functions to convert spatial

optical properties to certain local basis coefficients. In this

way, an image is described by a “small” number of coeffi-

cients, rather than by each pixel value in the image.

In this paper, we propose a substantially different ap-

proach. We hypothesize that the number of unknowns can be

drastically reduced by parameterizing the spatial distribution

of optical properties via a globe basis transform and then re-

construct the coefficients of this global basis transform. As the

global basis function, we employ in this work the DCT, which

has long been used in the field of image compression.
6,7

It has

been shown that using the DCT, one can achieve high com-

pression ratios for smooth images without losing much infor-

mation. Optical tomographic images are typically very

smooth due to the strong scattering of light in most biological

tissues. It can be expected that only a few DCT coefficients

are needed to recover the spatial variations seen in these im-

ages. By reconstructing the DCT coefficients, rather than each

pixel value of an image, the number of unknown parameters

can be greatly reduced as compared to conventional optical

tomographic image reconstruction schemes.

To illustrate the performance of the parametric-DCT recon-

struction technique, we employ in this paper the frequency-

domain equation of radiative transport !FD-ERT". In Sec. 2,

the pertinent aspects of the FD-ERT and related conventional

reconstruction schemes are reviewed. Section 3 is devoted to
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the DCT and its application to OT. In Sec. 4, two numerical

reconstruction examples, one containing a capsular perturba-

tion and the other with the uniform distribution in one direc-

tion, are presented. The influence of varying initial guesses

and noise levels on parametric reconstruction will be dis-

cussed. In Sec. 5, we present reconstruction results obtained

with experimental data from a tissue-like phantom. Through-

out the paper, we compare the performance of the novel

parametric-DCT method to more conventional approaches to

the reconstruction problem in OT.

2 Frequency Domain Optical Tomography with
the ERT

We implemented the parametric-DCT reconstruction method

by adapting an existing model-based iterative image recon-

struction !MOBIIR" algorithm that uses the frequency domain

ERT.
8

In the following, we briefly review some pertinent de-

tails of this MOBIIR algorithm.

2.1 The Forward Problem

A frequency-domain ERT describes the photon density in

phase space, i.e., as a function of position x!D!R3 and

direction !!S2 !unit sphere of R3", and can be expressed as:

# i"

v

+ " · %+ #t!x"$u!x,"" − #s!x"%
s2

k!" · "!"u!x,"!"d"!

= 0 in D $ S2

u!x,"" = q!x,"" on %
−
, !1"

where i=&
−1, v is the speed of light in the medium, and " is

the source modulation frequency. The parameter #t=#a+#s,

with #a!cm−1" and #s!cm−1" being the absorption and scat-

tering coefficient, respectively. u!x ,"" is the radiance at po-

sition x!x!D" traveling in direction " with the unit of

W cm−2 sr−1. Note that u!x ,"" is frequency dependent.

q!x ,"" is a source with the unit of W cm−3 sr−1 defined on

the boundary set:

%& ª '!x,"" ! &D $ S2 s.t. & " · #!x" ' 0( . !2"

Here, #!x" is the outward unit normal to the domain at x

!&D. The phase function k!! ·!!" !sr−1" describes the prob-

ability that photons traveling in direction !! scattered into

direction !. It is a positive function independent of x and

satisfies the normalization condition: )S2k!! ·!!"d"!=1. The

scattering kernel for light propagation in tissues is chosen

here as the Henyey-Greenstein phase function:
9

k!" · "!" =
1 − g2

!1 + g2
− 2g cos ("3/2

, !3"

where cos!("=" ·"!.

Solving the forward problem !1" yields the quantity of

photon radiance. However, in OT experiments, the quantity

that one measures is outgoing photon current. This current can

be expressed as

J!xd" =%
%+

" · #!xd"u!xd,""d" , !4"

where xd is the position of the detector, and %+= '" :"

!S2 and " ·#!xd"'0(. The outgoing current J!xd" is a com-

plex function of the optical parameters #a and #s.

With the combination of the discrete ordinates method
10

for the angular variable, a finite-volume discretization method

for the space variable,
11

and an appropriate boundary condi-

tion, the continuous ERT can be converted to the following

linear algebraic equation:

Au = Su + Q , !5"

where A!CNM$NM and S!CNM$NM are the complex dis-

cretized streaming-collision and the scattering operators, re-

spectively. N denotes the total number of discretized ele-

ments, and M denotes the total number of discretized

ordinates. The boundary source term and the boundary condi-

tion are given by Q. The vector u!CNM$1 describes the dis-

cretized radiance u!x ,"". Equation !5" is solved by a gener-

alized minimal residual !GMRES" method, and the

preconditioner we employ is the zero fill-in incomplete LU

factorization *ILU!0"+. The GMRES algorithm is stopped

when the relative residual is smaller than a preset value. Here

we enforce the stopping criteria as ,!A−S"uk
−Q,l2 / ,!A

−S"u0
−Q,l2)10−10, where, u0 is an initial guess and uk is

the u value at the k’th GMRES iteration. Details regarding

discretizing and solving the forward problem can be found in

Ref. 12.

2.2 The Inverse Problem and Conventional MOBIIR
Methods

After discretizing Eq. !1", one can predict the radiance field

values of all the discretized elements and the photon density

current values of the boundary elements. However, in real OT

experiments, only a limited number of boundary measure-

ments are available, which is typically far less than the num-

ber of the discretized mesh cells. Thus, only an underdeter-

mined system is available to be used to reconstruct optical

property maps. Classically, a least-squares problem is formu-

lated and a regularization term is added to compensate for this

underdetermination. Numerically, this requires the minimiza-

tion of the following objective function:

min *+!#a,#s" =
1

2
-
i=1

Ns

-
j=d

Nd

!Pi,dui − zi,d"2

+
+

2
-
C=1

N

-
p=a,s

# -
,=x,y,z

!D,
C#p"2 + !#p

C"2$ ,

!6"

where #a= !#a
1 , . . . ,#a

C , . . . ,#a
N"T

!RN$1 and #s

= !#s
1 , . . . ,#s

C , . . . ,#s
N"T

!RN$1 denote absorption coeffi-

cients and scattering coefficients, respectively, and N is the

number of discretized elements. Ns and Nd are the number of

sources and detectors, respectively. Pi,d is the discretized

form of the operator at the detector position xi,d that projects

the photon radiance to the outgoing photon current. zi,d refers
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to the boundary measurement. The second term is a regular-

ization term, and + is a regularization parameter. D,
C

!R de-

notes the discretized partial differential operator at the ele-

ment C in ,= !x ,y ,z" direction. We refer interested readers to

Ref. 8 for more details concerning the inverse algorithm.

Summarizing the preceding solvers, we plot the flowchart

of a typical MOBIIR algorithm in Fig. 1. The code starts with

an initial guess of the distribution of optical properties inside

the medium. Using the forward solver, the predictions of the

outgoing current on the boundary of the medium are calcu-

lated. The inverse solver compares these predicted detector

readings with actual measurement data using the objective

function. Subsequently, the code calculates an update of the

optical property distribution using a quasi-Newton scheme.

The update is used as an input for the forward solver in the

next iteration. The updating will continue until the value of

the objective function falls below a preset error threshold -.

3 Parametric Reconstruction with the DCT

3.1 Image Compression with DCT

Various compression algorithms have been developed to re-

duce the memory needed to store images.
13–15

For example,

the DCT is at the core of JPEG image compression.
7

The

general formula for a two-dimensional !2-D" DCT of an im-

age with Mx$My pixels is given by:

F!kx,ky" =
1

4
C!kx"C!ky"-

x=0

Mx

-
y=0

My

f!x,y"cos# !2x + 1"kx.

2Mx

$
$cos# !2y + 1"ky.

2My

$
with 0 ) kx ) Mx − 1; 0 ) ky ) My − 1,

C!kx" = .
1

&2
kx = 0

1 else
/ ,

C!ky" = .
1

&2
ky = 0

1 else
/ , !7"

The values of F!kx ,ky" are called DCT coefficients of f!x ,y".
The inverse discrete cosine transform !IDCT" can be written

as:

f!x,y" =
1

4
-
kx=0

Mx

-
ky=0

My

C!kx"C!ky"F!kx,ky"cos# !2x + 1"kx.

2Mx

$
$cos# !2y + 1"ky.

2My

$
with 0 ) x ) Mx − 1;0 ) y ) My − 1,

C!kx" = .
1

&2
kx = 0

1 else
/ ,

C!ky" = .
1

&2
ky = 0

1 else
/ . !8"

Equation !8" states that any image !or signal" can be repre-

sented by the expansion coefficients in the spatial frequency

domain. Since only a few coefficients are usually needed to

capture most features of an image, this provides a way to

efficiently store and recover an image. An illustration of this

scheme is shown in Fig. 2. Here, a target with optical proper-

ties that are Gaussian distributed is embedded in a 42

$42 pixels image. A DCT is applied, and the 2-D DCT co-

efficients are plotted in Fig. 2!b". We see that the main DCT

coefficients are centered at the low-spatial-frequency corner.

Higher frequency coefficients are close to zero. If we use only

one-seventh of the frequency components in each dimension

!hence, only 6$6 low-frequency coefficients" and perform

the IDCT, we obtain Fig. 2!c". It can be seen that such a

“reconstructed” image is almost identical to the original im-

Fig. 1 A flowchart of reconstructing an optical properties map with
the conventional MOBIIR method. Fig. 2 !a" A 42$42 pixel absorption coefficient map with a Gaussian

distribution perturbation enclosed; !b" DCT coefficients of the absorp-
tion image !a"; !c" an IDCT recovered image using 6$6 low-
frequency DCT coefficients; and !d" the relative error map of the re-
covered image !c".
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age in Fig. 2!a". Figure 2!d" illustrates the relative error de-

fined as

/r =
Ar!x,y" − Ao!x,y"

Ao!x,y"
,

with Ar!x ,y" as the “reconstructed” image *here Fig. 2!c"+ and

Ao!x ,y" the original image *here Fig. 2!a"+. We find that with

6$6 low-frequency coefficients the reconstructed image has

a maximum error around 0.2%.

If we attempt to reconstruct an image that contains a sharp-

edge target, more DCT coefficients have to be used. This is

illustrated in Fig. 3!a", where an image contains a square with

sharp edges. The DCT coefficient map of this image is plotted

in Fig. 3!b". A reconstructed image using 6$6 DCT coeffi-

cients !one-seventh of total number of DCT coefficients" is

presented in Fig. 3!c". Figure 3!d" shows its corresponding

relative error map. Notice that the error map of the recon-

structed image reaches 20%, which is substantially larger than

the one shown in Fig. 2!d". In order to decrease the error

down to 0.2%, we have to use 39$39 DCT coefficients. Fig-

ures 3!e" and 3!f" show the IDCT recovered image and the

image errors, respectively.

3.2 OT with Parametric-DCT Method

To accurately calculate the photon propagation requires a

finely discretized mesh. We found that in some cases, up to 10

discretized elements per photon mean free path are needed.

Such a finely discretized mesh induces images that contain a

very large number of pixels. The algorithm described in Sec.

2.2 treats each discretized element of an image as an indepen-

dent variable. Therefore, the forward discretization results in a

large number of unknowns for the inverse computation.

The image compression technique with DCT can help to

reduce the number of these unknowns. We write the spatial

distributed optical properties in a three-dimensional !3-D" do-

main as:

#a!s"!x,y,z" 0 -
kx=0

Kx

-
ky=0

Ky

-
kz=0

Kz

Aa!s"!kx,ky,kz"cos12x + 0x

2Lx

kx.2
$cos12y + 0y

2Ly

ky.2cos12z + 0z

2Lz

kz.2 , !9"

where #a!s"!x ,y ,z" is the absorption !or scattering" coeffi-

cients at x= !x ,y ,z". Aa!s"!kx ,ky ,kz" represents DCT coeffi-

cients at spatial frequency kx, ky, and kz in the x, y, and z

directions. Lx, Ly, and Lz are the length in the x, y, and z

directions. Kx, Ky, and Kz are the numbers of DCT coeffi-

cients to be used in reconstruction. 0x, 0y, and 0z are the

discretized resolutions.

With Eq. !9", the objective function that we want to mini-

mize takes on the following form:

min *!Aa,As" =
1

2
-
i=1

Ns

-
d=1

Nd

!Pi,dui − zi,d"2, !10"

where Aa and As are the DCT coefficients for #a and #s,

respectively. Compared with Eq. !6", the reconstructed param-

eters changed from optical properties !#a ,#s" to DCT coeffi-

cients !Aa ,As". Also, the regularization term is left out. Regu-

larization terms, such as the Tikhonov regularization,
16

tend to

smooth images by removing high-spatial-frequency compo-

nents. Using a parametric reconstruction technique based on

the DCT expansion, the higher frequency components are au-

tomatically filtered out and hence the use of an extra regular-

ization term is not needed.

To minimize the objective function in Eq. !10", we employ

a quasi-Newton approach with BFGS updates of the Hessian

matrix.
17

The gradient of the objective function !10" can be

written as:

&*

&Aa!s"!kx,ky,kz"
= -

N
&*

&#a!s"!x,y,z"
cos12x + 0x

2Lx

kx.2
$cos12y + 0y

2Ly

ky.2cos12z + 0z

2Lz

kz.2 ,

!11"

where &* /&#a!s"!x ,y ,z" is the derivative of the objective

function with respect to optical properties, and N is the num-

ber of total discretized elements. Details on how to obtain the

derivative with respect to optical properties can be found in

Ref. 8.

The overall flowchart for an image reconstruction algo-

rithm that makes use of the parametric-DCT method is pre-

sented in Fig. 4. By comparing this flow chart with the flow

chart for the conventional MOBIIR approach shown in Fig. 1,

one can easily see the main differences between these two

methods. Both methods employ the same forward solver and

use a quasi-Newton method to update their system param-

eters. However, in the DCT approach, the gradient of the ob-

jective function is calculate with respect to the DCT coeffi-

Fig. 3 !a" A 42$42 pixel absorption coefficient map with a square
perturbation enclosed; !b" DCT coefficients of the absorption image
!a"; !c" an IDCT recovered image using 6$6 low-frequency DCT
coefficients; !d" the relative error map of the recovered image !c"; !e"

an IDCT recovered image using 39$39 DCT coefficients; and !f" the
relative error map of the recovered image !e".
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cients, while in the conventional MOBIIR scheme the

gradient is calculated with respect to the optical properties.

Subsequently, the updated DCT coefficients are used to up-

date the optical properties using Eq. !9"; and the new optical

property values become input to the forward solver in the next

iteration step.

3.3 Number of DCT Coefficients

Choosing an appropriate number of DCT coefficients for the

reconstruction is an important issue. The number of necessary

DCT coefficients used to store and recover an image is deter-

mined by the smoothness of the image. The smoother an im-

age is, the fewer DCT coefficients are required. As shown in

Fig. 2 and Fig. 3, a sharp-edged object in an image requires

more DCT coefficients. If we have some prior knowledge of

the image features, we can choose a suitable number of DCT

coefficients to represent the image and later use that number

of DCT coefficients to perform the reconstruction. Such prior

knowledge will help to improve the quality of the recon-

structed images !see Sec. 4.3".
Some information about the number of DCT coefficients

necessary for optical tomographic imaging can be gleaned

from studies of resolution limits and minimal detectable ob-

ject size in OT. These topics have been studied by several

groups.
3,18–21

These authors found that the achievable reso-

lution depends on tissues’ size, geometry, optical properties,

imaging modality and many other parameters. Pogue et al.
22

argued that standard resolution testing is optimal when infinite

contrast is used and hardware evaluation is the goal. However,

deep tissue imaging of absorption or fluorescent contrast

agents in vivo requires a more detailed analysis that takes

tissue contrast into account. Overall, they found that for most

biological tissues, a good approximation is to assume that the

minimum detectable size is in the range of 1 /10 of the outer

diameter of the object imaged. For our analysis, this finding

can be interpreted as to mean that smallest spatial variations

in reconstructed optical tomographic images are in the range

of 1 /10 of the outer diameter.

Given this degree of spatial variation, we can estimate an

approximate number of necessary DCT coefficients as fol-

lows. We define Kx !or y ,z" as the maximum number of DCT

coefficients needed in one dimension, 0x !or y ,z" as the res-

olution of an OT image along x !or y ,z" direction, and Lx !or

y ,z" as the length of an OT image in x !or y ,z" direction.

Then we can write:

Kx!or y,z" =
Lx!or y,z"

1/2
=

Lx!or y,z"

0x!or 0y, 0z"
. !12"

Here, we define the wavelength !1 /2" of a cosine function as

the limit of spatial variability *0x !or 0y , 0z"+. Assuming

that 0x !or 0y , 0z" is 1 /10Lx!or y,z", as found by Pogue et

al.,
22

we see that one needs approximately 10 coefficients for

each dimensions. We used these considerations as a guide

throughout our studies.

4 Numerical Examples

4.1 Tissue Geometry

We illustrate the performance of the parametric-DCT recon-

struction algorithm by using three-dimensional !3-D" numeri-

cal examples. The geometry of the problems considered in

this work are shown in Fig. 5. First, we consider a cylindrical

computational domain defined as Dª '!x ,y ,z"T 3 *!x−2.05"2

+ !y−2.05"2+1/2)2.05 cm;0.0)z)3.0 cm(. Inside this do-

main, a cylindrical capsule !perturbation" is located defined

by Dª '!x ,y ,z"T 3 *!x−3.0"2+ !y−3.0"2+1/2)0.7 cm;1.2)z

)2.2 cm( *see Fig. 5!a"+. The scattering coefficients and an-

isotropy factors of the background medium are identical to

those of the cylindrical perturbation !#s=40.0 cm−1, g

=0.73". The absorption coefficients of the background and

cylindrical perturbation are 0.1 cm−1 and 0.2 cm−1, respec-

tively. The source modulation frequency is set to "
=300 MHz. Using the mesh generating software GID, the

computational domain is discretized into 13,798 elements

with 2723 nodes. The angular domain is discretized into 24

uniformly distributed directions with a full-level symmetry.

This discretization yields a total number of 13,798 unknown

parameters, if we consider to reconstruct the absorption opti-

cal properties on the discretized elements only. In this case,

the measurement data are generated by a synthetic forward

computation rather than real experiments. Two layers of

sources and detectors are placed around the boundary, as il-

lustrated in Fig. 5!a". The two layers are separated by 1.0 cm.

Fig. 4 A flowchart of reconstructing a spatial distribution optical prop-
erties map with the parametric-DCT method.

Fig. 5 A tissue-like phantom and source–detector geometries used in
this study. The numerical phantoms shown in !a" and !b" mimic the
experimental tissue geometry shown in !c". A cylinder with outer di-
ameters of 4.1 cm contains a cylindrical perturbation of diameter
1.4 cm, which is located slightly off center. The perturbation is either
a capsule of height 1.0 cm or a column with the same height as the
outer cylinder. Optical properties and more details concerning this
phantom are given in the text.
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On each layer 12 sources !S12" and 12 detectors !D12" are

evenly distributed. In totally, we will generate S24$D24

=576 measurement data, which is far fewer than 13,798, the

number of unknown discretized elements.

In a second set of studies, we consider another cylindrical

domain, this time given by Dª '!x ,y ,z"T 3 *!x−2.05"2+ !y
−2.05"2+1/2)2.05 cm;0.0)z)5.0 cm(. The cylindrical

perturbation is given by Dª '!x ,y ,z"T 3 *!x−3.0"2+ !y
−3.0"2+1/2)0.7 cm;0.0)z)5.0 cm(. Therefore, in this case

both the height of the background cylinder and the perturba-

tion are 5 cm *see Fig. 5!b"+. The perturbation has a uniform

distribution along the z direction. The discretization yields

23,221 unknown elements with 4512 nodes. We use 24 full-

level symmetrical distribution directions as well. The ex-

amples chosen here only reconstruct images of absorption co-

efficients with fixed scattering coefficients. Scattering

coefficients’ reconstruction can be implemented in a similar

way.

4.2 Image Evaluation Metrics

In the following, we will compare reconstruction results of the

parametric-DCT approach to those obtained through the con-

ventional MOBIIR algorithm. To quantify the reconstruction

quality and the differences between the two approaches, we

use the following imaging evaluation metrics:

1. Maximum error:

/max = max!/1, . . . ,/i, . . . ,/N" with /i = 3#i
r
− #i

o3 . !13"

2. Normalized root mean square error:

/rms = # 1

N
-
i=1

N 1#i
r
− #i

o

#i
o 2$1/2

, !14"

where #i
o and #i

r are the exact and reconstructed values on the

discretized element i, respectively. We also employ these met-

rics to quantify the effects of the initial guesses and noise on

reconstructed images.

4.3 Image Reconstruction Results

4.3.1 Reconstruction of a capsular perturbation

In this example, we varied the number of DCT coefficients to

study their influence on the reconstruction results. To straddle

the range of 10 coefficients as discussed in Sec. 3.3, we first

fix the number of DCT coefficients in the xy cross section

Kx$Ky =10$10, and vary Kz=5, 10, 15. Next, we fix Kz

=10 and vary Kx=Ky =5, 10, 15. The initial absorption coef-

ficients are set as #a=0.1 cm−1 !background value".
Figure 6 shows the results obtained by varying the number

of DCT coefficients in the xy cross section. One can see that

the reconstructed images with Kx$Ky $Kz=5$5$10
*Figs. 6!d"–6!f"+ reproduce the shape of the perturbation;

however, the background shows somewhat larger fluctuations

when compared to the results obtained with Kx$Ky $Kz

=10$10$10 *Figs. 6!g"–6!i"+. If we further increase Kx

$Ky to 15$15 *Figs. 6!j"–6!l"+, the image quality deterio-

rates.

Figure 7 shows the reconstruction results obtained by fix-

ing Kx$Ky =10$10 and varying the number of DCT coef-

ficients along the z direction. When Kz=5, we observe *In

Figs. 7!d"–7!f"+ that there are some fluctuation around the

boundary. For Kz=15, the reconstructed images show more

fluctuation in the background. Table 1 provides the related

maximum error and the normalized mean square error. Over-

all, one can see that the combination of Kx$Ky $Kz=10

$10$10 gives the smallest errors. Therefore, we will use

this number of coefficients Kx$Ky $Kz=10$10$10 in the

following simulations, where we study the influence of the

initial guess and noise levels on the reconstruction results.

Next, we compare the results of the parametric-DCT re-

construction !Kx$Ky $Kz=10$10$10" with those of the

conventional MOBIIR reconstruction !Figs. 8 and 9". Looking

at Figs. 8!d"–8!f", we notice that using the conventional MO-

BIIR method the shape of the perturbation is distorted. Using

the parametric-DCT method *see Figs. 8!g"–8!i"+, the shape of

the perturbation is much smoother. The cross-line plots pre-

sented in Fig. 9 give the values of optical properties along the

Cartesian coordinates crossing the center of the capsulized

perturbation. This shows that the cross-line curves of the ab-

sorption values have a smooth bell shape when the

parametric-DCT method is employed. Using the conventional

MOBIIR method results in more fluctuating curves !Table 2".

4.3.2 Reconstructions of a column perturbation

To compare experimental results with our numerical simula-

tions, we consider a cylindrical medium with a cylindrical

column perturbation *see Fig. 5!b"+. Given the results ob-

tained in the previous section, we performed the reconstruc-

tion with with Kx$Ky $Kz=10$10$10. In addition, as-

suming that we know that there are no variation in the optical

Fig. 6 3-D reconstruction results of the spatial distribution of #a

!cm−1" using the parametric-DCT method with different numbers of
DCT coefficients at xy cross section. The images are extracted at the
planes defined as !a", !d", !g", and !j": z−1.7=0.0; !b", !e", !h", and
!k": y−2.05=0.0; !c", !f", !i", and !l": x−3.0=0.0. Here !a", !b", and !c"

are cross-sectional images for the exact setup; !d", !e", and !f" for the
parametric-DCT reconstructed images with DCT coefficient numbers
Kx$Ky$Kz=5$5$10; !g", !h", and !i" for the parametric-DCT re-
constructed images with DCT coefficient numbers Kx$Ky$Kz=10
$10$10; !j", !k", and !l" for the parametric-DCT reconstructed im-
ages with DCT coefficient numbers Kx$Ky$Kz=15$15$10,
respectively.
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properties along the z direction, we also performed recon-

structions with Kx$Ky $Kz=10$10$1. Figure 10 shows

the exact absorption maps *Figs. 10!a"–10!c"+, the recon-

structed absorption maps using the parametric-DCT method

*Figs. 10!d"–10!i"+, and the reconstructed absorption maps us-

ing the conventional method *Figs. 10!j"–10!l"+. The cross-

line plots of the optical properties of the reconstruction im-

ages are presented in Fig. 11.

One can see that employing the prior information enhances

the image quality *see Figs. 10!d"–10!f"+. Fixing Kz=1 leads

to a uniform distribution of absorption coefficients along the z

direction. If we ignore this prior information and reconstruct

with parameters Kx$Ky $Kz=10$10$10, we are still able

to obtain smooth images. However, along the z direction, the

reconstructed perturbation has limited length and locates

around the two source–detector planes. Information from

above and below these two planes is limited. Last, we observe

that the reconstructed images using the conventional MOBIIR

method are much more noisy than the results obtained with

the parametric image reconstruction method. The related val-

ues for the maximum errors and the root mean square errors

are 0.0803 and 0.1581 for MOBIIR reconstruction and 0.0563

and 0.1601 for the parametric DCT method with 1010$10
coefficients !see Table 2".

4.4 Effects of the Initial Guess on Reconstruction
Results

At the heart of the inverse reconstruction for both the conven-

tional MOBIIR and the parametric-DCT method is the quasi-

Newton update, which is an optimization scheme for finding a

local minimum. If the initial guess fed into the reconstruction

algorithm is far away from the true minimum, it is difficult for

the algorithm to converge to its real solution.
17

To evaluate the

sensitivity of the parametric-DCT reconstruction method to

the choice of the initial guess, we performed numerical stud-

ies using the capsular perturbation. The number of DCT co-

efficients is fixed to Kx$Ky $Kz=10$10$10.

Figure 12 presents the reconstructed cross-sectional im-

ages with initial guesses varying from #a=0.10 cm−1 !back-

ground value" to #a=0.05 cm−1. As expected, we observe

that the stronger the initial guess deviates from the back-

ground value, the worse the images’ qualities are. However,

even an initial guess 50% lower than the actual values still

leads to a reasonable result. This cannot be said when the

conventional MOBIIR scheme is applied. Figures 12!j"–12!l"
show a much more noisy reconstruction than Figs.

12!g"–12!i". Table 3 shows the errors and mean values of the

reconstructed images. We define the images mean value as

Table 1 Errors of the reconstructed images using the parametric-DCT method with different numbers of
DCT coefficients.

Kx$Ky$Kz 5$5$10 10$10$10 15$15$10 10$10$5 10$10$15

/max 0.0499 0.0484 0.0632 0.0527 0.0498

/rms 0.0784 0.0744 0.0936 0.0749 0.0752

Fig. 7 3-D reconstruction results of the spatial distribution of #a

!cm−1" using the parametric-DCT method with different numbers of
DCT coefficients along the z direction. The images are extracted at the
planes defined as !a", !d", !g", and !j": z−1.7=0.0; !b", !e", !h", and
!k": y−2.05=0.0; !c", !f", !i", and !l": x−3.0=0.0. Here !a", !b", and !c"

are cross-sectional images for the exact setup; !d", !e", and !f" for the
parametric-DCT reconstructed images with DCT coefficient numbers
Kx$Ky$Kz=10$10$5; !g", !h", and !i" for the parametric-DCT re-
constructed images with DCT coefficient numbers Kx$Ky$Kz=10
$10$10; !j", !k", and !l" for the parametric-DCT reconstructed im-
ages with DCT coefficient numbers Kx$Ky$Kz=10$10$15,
respectively.

Fig. 8 3-D reconstruction results of the spatial distribution of #a

!cm−1" with the conventional MOBIIR method and the parametric-
DCT method. The reconstructed cross-sectional images are extracted
at the plane defined as !a", !d", and !g": z−1.7=0.0; !b", !e", and !h":
y−2.05=0.0; !c", !f", and !i": x−3.0=0.0. Here, !a", !b", and !c" are
cross-sectional images for the exact setup; !d", !e", and !f" for the
conventional MOBIIR reconstruction; and !g", !h", and !i" for the
parametric-DCT reconstruction, respectively.
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#̄a=-i
N#a!i" /N, with N as the number of discretized ele-

ments. Comparing the parametric-DCT method with the con-

ventional MOBIIR method at the initial guess #a

=0.05 cm−1, one can find that the parametric-DCT method

yields smaller errors and a closer mean value to the exact

image. We define the mean value offset as 2#̄a= 3#̄a
r
− #̄a

o3,
with #̄a

r and #̄a
o as the mean values of the reconstructed and

exact images, respectively. We can see the reconstructed mean

values with the parametric-DCT approach are less offset, as

shown in the last row of Table 3. Overall, these results show

that the parametric-DCT approach is much less sensitive to

the choice of the initial guess than the conventional MOBIIR

scheme.

4.5 Effects of Measurement Noise on Reconstruction
Results

To study the effect of measurement noise on the parametric-

DCT reconstructions, we purposely add a certain amount of

random noise to the synthetically generated data. If Ji,d is a

synthetic measurement corresponding to the source i and the

detector d, then the noisy data J̄i,d=Ji,d!1+2i,dN!0,1"I*−1,1+".
Here, N!0,1" is a standard normal distribution, and I*−1,1+
is an interval indicator function that is equal to 1 in the inter-

val of *−1,1+ and zero otherwise. The parameter 2i,d is the

standard deviation of added noise, which we vary from 1% to

5%, which are typical values for OT measurement systems.

We test the effect of this type of noise on the reconstruction

results of a cylindrical domain with a capsulized perturbation

!Fig. 5". Again, we chose the number of DCT coefficients as

Kx$Ky $Kz=10$10$10.

The reconstruction results are shown in Fig. 13. As ex-

pected, we see that as the standard deviation of the added

noised increases, the quality of the reconstructed images de-

creases. When we add 5% noise, some artificial perturbations

appear in the background area, while the reconstructed ab-

sorption values decrease in perturbation area. However, we

also observe that the parametric-DCT reconstruction approach

outperforms the conventional MOBIIR method at the same

noise level *see Figs. 13!g"–13!l"+. Using the conventional

approach, we see artificial inhomogeneities in background

area and the shape of reconstructed perturbation appears dis-

torted. The maximum errors and normalized standard devia-

Table 2 Errors of the reconstructed images using the parametric-DCT method and the conventional
MOBIIR method.

Capsule Column

Conventional Parametric-DCT Conventional

Parametric-DCT

!10$10$10" !10$10$1"

/max 0.0536 0.0484 0.0803 0.0563 0.0548

/rms 0.0770 0.0744 0.1581 0.1601 0.1435

Fig. 9 Cross-line plots of the reconstructed absorption coefficients of
Fig. 8 at the line: !a" along the x axis at the plane z−1.7=0.0; !b"

along the y axis at the plane z−1.7=0.0; !c" along the z axis at the
plane x−3.0=0.0.

Fig. 10 3-D reconstruction results of the spatial distribution of #a

!cm−1" with the conventional MOBIIR method and the parametric-
DCT method for the column perturbation. The reconstructed cross-
sectional images are extracted at the plane defined as !a", !d", !g", and
!j": z−2.5=0.0; !b", !e", !h", and !k": y−2.05=0.0; !c", !f", !i", and !l":
x−3.0=0.0. Here !a", !b", and !c" are cross-sectional images for the
exact setup; !d", !e", and !f" for the parametric-DCT reconstruction
with Kx$Ky$Kz=10$10$1; !g", !h", and !i" for Kx$Ky$Kz=10
$10$10; and !j", !k", and !l" for the conventional MOBIIR recon-
struction, respectively.
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tion errors with varying noise levels are presented in Table 4.

Overall, we find that the parametric-DCT method is less sen-

sitive to noise.

5 Image Reconstruction with Experimental
Data

Last, we also tested our new parametric imaging reconstruc-

tion code with experimental data. The experimental data were

acquired with a continuous wave dynamic near-infrared opti-

cal tomographic !DYNOT" system.
23

In this system, light

from a laser diode !wavelength 1=760 nm is delivered to 24

source fiber bundles via an optical demultiplexing switch that

allowed light to be sequentially delivered to different posi-

tions. The demultiplexor consists of a mirror mounted on a

rotating stepper motor, which reflected light from the incom-

ing laser source into different source fibers depending on the

angular orientation of the mirror. Twenty-four detector fiber

bundles were used to direct light to the detectors. Light was

collected by silicon photodiodes, which were connected to a

series of programmable amplifiers and a lock-in filter. Re-

ported signal-to-noise ratio !SNR" is in the range of 0.5% to

5%, depending on the optical properties and tissue geom-

etries. More details concerning this system can be found in

Ref. 23.

The tissue-like phantom used in this study has a similar

geometry compared to the preceding numerical setup with a

column perturbation *see Sec. 4.3.2, Fig. 5!c"+. The back-

ground medium of this phantom consists of a 1% Intralipid

solution. The cylindrical perturbation is made from a mix of

1% Intralipid and ink placed in a transparent straw. The scat-

tering coefficients of the background and the perturbation are

the same #s
b=#s

p427.0 cm−1 !Ref. 24". The absorption coef-

ficients of the background and the perturbation are #a
b

40.023 cm−1 and #a
p'0.1 cm−1, respectively.

25
The aniso-

tropic factor g40.73 is close to water. The diameter of this

perturbation d40.6 cm is a little smaller than the size of

numerical perturbation used in sections above.

Fig. 11 Cross-line plots of the reconstructed absorption coefficients of
Fig. 10 at the line: !a" along the x axis at the plane z−2.5=0.0; !b"

along the y axis at the plane z−2.5=0.0; !c" along the z axis at the
plane x−3.0=0.0.

Fig. 12 3-D reconstruction results of the spatial distribution of #a

!cm−1" starting the iterations with different initial guesses. The cross-
sectional images are extracted at the plane defined as !a", !d", !g", and
!j": z−1.7=0.0; !b", !e", !h", and !k": y−2.05=0.0; !c", !f", !i", and !l":
x−3.0=0.0. Here !a", !b", and !c" are the parametric-DCT reconstruc-
tion with initial guess #a

0=0.10 cm−1; !d", !e", and !f" for the
parametric-DCT reconstruction with initial guess #a

0=0.07 cm−1; !g",
!h", and !i" for the parametric-DCT reconstruction with initial guess
#a

0=0.05 cm−1; !j", !k", and !l" for the conventional MOBIIR recon-
struction with initial guess #a

0=0.05 cm−1, respectively.

Table 3 Errors and mean values of reconstructed images with different initial guesses in the capsular
perturbation case.

Exact Parametric-DCT Conventional

#a
0 N/A 0.10 0.07 0.05 0.05

/max N/A 0.0484 0.0555 0.0625 0.0954

/rms N/A 0.0744 0.1596 0.2457 0.2930

#̄a 0.1019 0.1023 0.0949 0.0903 0.0850

2#̄a 0 0.0004 −0.0070 −0.0116 −0.0169
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The reconstructed absorption maps and corresponding

cross-line plots are shown in Figs. 14 and 15, respectively.

For the parametric-DCT reconstruction, We used Kx$Ky

$Kz=10$10$1 DCT coefficients. We can see that the

parametric-DCT approach outperforms the conventional MO-

BIIR method. Both the shape and absolute optical properties

of the inhomogeneity are better recovered with the

parametric-DCT method. This is in agreement with the find-

ings of our numerical studies.

6 Discussion and Conclusions
We introduced a parametric image reconstruction approach to

optical tomographic imaging, which makes use of the

discrete-cosine transform !DCT" to represent the recon-

structed images. This approach was implemented by adopting

an existing model-based iterative image reconstruction !MO-

BIIR" scheme, which uses the frequency-domain equation of

radiative transfer !ERT" as a forward model. We illustrated

and analyzed the performance of the new code using synthetic

as well as experimental data. We could demonstrate that the

parametric-DCT reconstruction method allows us to substan-

tially reduce the number of unknown image parameters and

overall results in better quality of the reconstructed images,

when compared to a conventional, nonparametric reconstruc-

tion techniques. In particular, the results show that DCT-based

codes are less sensitive to noise in the data and to the choice

of the initial guess needed in iterative image reconstruction

schemes.

The number of unknowns in the imaging problem is re-

duced by expanding the reconstructed images into spatially

varying 2-D or 3-D cosine functions of increasing order. If a

typical image is discretized into pixels or voxels, the number

of unknowns can be in the thousand and even millions, de-

pending on the level of discretization. However, it has been

shown by several groups that the detection limit of a hetero-

geneity is about 1 /10 of the outer dimensions of the medium

under consideration. This effectively means that variations of

spatial properties in optical tomographic images are limited to

about 1 /10 of the outer dimensions. Our numerical results

show that these variations can be captured with approximately

Table 4 Errors of reconstructed images with different noise level in
the capsule perturbation case.

Parametric-DCT Conventional

Noise level No noise 2% 5% 5%

/max 0.0484 0.0611 0.1103 0.3111

/rms 0.0744 0.1299 0.1596 0.2655

Fig. 13 3-D reconstruction results of the spatial distribution of #a

!cm−1" with different noise levels. The cross-sectional images are ex-
tracted at the plane defined as !a", !d", !g", and !j": z−1.7=0.0; !b",
!e", !h", and !k": y−2.05=0.0; !c", !f", !i", and !l": x−3.0=0.0. Here
!a", !b", and !c" are the parametric-DCT reconstruction without noise;
!d", !e", and !f" for the parametric-DCT reconstruction with 2% noise;
!g", !h", and !i" for the parametric-DCT reconstruction with 5% noise;
!j", !k", and !l" for the conventional MOBIIR reconstruction with 5%
noise, respectively.

Fig. 14 3-D phantom experimental data reconstruction results of the
spatial distribution of #a !cm−1" with the parametric-DCT method and
the conventional MOBIIR method. The cross-sectional images are ex-
tracted at the plane defined as !a" and !d": z−2.5=0.0; !b" and !e":
y−2.05=0.0; !c" and !f": x−3.1=0.0. Here !a", !b", and !c" are cross-
sectional images for the conventional MOBIIR reconstruction; !d", !e",
and !f" for the parametric-DCT reconstruction, respectively.

Fig. 15 Cross-line plots of reconstructed absorption coefficients of Fig.
14 at the line: !a" along the x axis at the plane z−2.5=0.0; !b" along
the y axis at the plane z−2.5=0.0; !c" along the z axis at the plane
x−3.1=0.0.
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10 coefficients in each dimension, since the largest spatial

frequency is proportional to one tenth of the base frequency.

Therefore, using the parametric-DCT approach, only 10 un-

knowns !the expansion coefficients" per dimension need to be

determined instead of the much larger number of pixels in an

image.

If more and more expansion coefficients are used in the

parametric-DCT algorithm, the images become increasingly

similar to the images obtained with traditional nonparametric

MOBIIR codes. In this case, the number of unknowns in

parametric-DCT reconstruction approaches the number of un-

knowns in the MOBIIR method. Higher frequency compo-

nents that seem to produce artifacts become visible. The rea-

son for that is most likely that an overfitting takes places, and

the many unknowns will “fit” the noise in the data. On the

other hand, as we use fewer and fewer coefficients in the

parametric code, the images become smoother, and high-

frequency components disappear. Since fewer unknowns are

used, images reconstructed with the parametric-DCT method

appear in general smoother than images generated with MO-

BIIR codes that use a larger number of unknowns.

Another advantage of the parametric DCT approach is that

these codes converge faster to the final result. For the ex-

amples considered in this paper, we observed up to 50% re-

duction in convergence times. The exact speed-up factor de-

pends on the optical properties, problem geometry, and the

ratio of the mesh size to the number of chosen DCT coeffi-

cients.

In this paper, we present results concerning the reconstruc-

tion of the spatial distribution of the absorption coefficients.

However, the same approach can be applied to reconstruct the

spatial distribution of scattering coefficients. As indicated in

Eq. !9", the absorption coefficients and the scattering coeffi-

cients of an image can be expanded in the spatial-frequency

domain individually. Thus, the number of DCT coefficients

for the absorption coefficients and for the scattering coeffi-

cients become independent. The number of necessary DCT

coefficients to obtain a good scattering coefficients map will

depend on the expected spatial variations in a reconstructed

image. It has been shown that the spatial variations in the

scattering images are of the same order as the variations in the

absorption images !see, e.g., Dehghani et al.
21

and Pogue et

al.
22". Therefore, one can expect that a similar number of DCT

coefficients are needed for scattering images, and indeed we

found the same general trends for scattering images as de-

scribed in the paper for absorption images.

Last, although the examples presented in this paper were

based on optical tomography using the frequency-domain

ERT, the parametric-DCT method by nature is not limited to

any particular light-propagation model. The parametric-DCT

reconstruction techniques can also be applied to diffusion-

theory-based optical tomography and other inverse problems,

such as impedance tomography and microwave tomography.
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