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Abstract
Persistent homology computes topological in-
variants from point cloud data. Recent work
has focused on developing statistical methods for
data analysis in this framework. We show that,
in certain models, parametric inference can be
performed using statistics defined on the com-
puted invariants. We develop this idea with a
model from population genetics, the coalescent
with recombination. We apply our model to an
influenza dataset, identifying two scales of topo-
logical structure which have a distinct biological
interpretation.

1. Introduction
Computational topology is emerging as a new approach to
data analysis, driven by efficient algorithms for comput-
ing topological structure in data. Perhaps the most mature
tool is persistent homology, which summarizes multiscale
topological information in a two-dimensional persistence
diagram (see Figure 1 and Section 2). Recent work has con-
centrated on developing the statistical foundations for data
analysis using the persistent homology framework (Balakr-
ishnan et al., 2013; Blumberg et al., 2012; Chazal et al.,
2014). The focus of this work has been estimating the
topology of an object from a finite, noisy sample. Doing so
requires statistical methods to distinguish topological sig-
nal from noise.
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Here we consider a different scenario. Many simple
stochastic models generate complex data that cannot be
readily visualized as a manifold or summarized by a small
number of topological features. These models will gener-
ate persistence diagrams whose complexity increases with
the number of sampled points. Nevertheless, the collec-
tion of measured topological features may exhibit addi-
tional structure, providing useful information about the un-
derlying data generating process. While the persistence di-
agram is itself a summary of the topological information
contained in a sampled point cloud, to perform inference
further summarization may be appropriate, e.g. by consid-
ering distributions of properties defined on the diagram. In
other words, we are less interested in learning the topol-
ogy of a particular sample, but rather in understanding the
expected topological signal of different model parameters.

In this paper, we show that summary statistics computed on
the persistence diagram can be used for likelihood-based
parametric inference. We use genomic sequence data as a
case study, examining the topological behavior of the coa-
lescent process with recombination, a widely used stochas-
tic model of biological evolution. We find that the process
generates nontrivial topology in a way that depends sensi-
tively on parameter in the model. The idea is presented as a
proof of concept, in order to motivate the identification ad-
ditional models with regular topological structure that may
amenable to this type of inference.

1.1. Related Work

The application of persistent homology to genomic data
was first introduced in (Chan et al., 2013), where recombi-
nation rates in viral populations were estimated by comput-
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ing Lp-norms on barcode diagrams. The statistical prop-
erties of random simplicial complexes, including distribu-
tions over their Betti numbers, has been studied in (Kahle,
2011; 2013). The persistent homology of Gaussian random
fields and other probabilistic structures has been studied in
(Adler et al., 2010). Functions defined on the persistence
diagram were used to compute a fractal dimension for var-
ious polymer physics models in (MacPherson & Schwein-
hart, 2012).

2. Background
2.1. Persistent Homology

We summarize persistent homology from the perspective
of an end-user. For detailed background, see the reviews
(Carlsson, 2009; Ghrist, 2008) and the books (Edelsbrun-
ner & Harer, 2010; Zomorodian, 2005). In brief, persistent
homology computes topological invariants representing in-
formation about the connectivity and holes in a dataset. A
dataset, S = (s1, . . . , sN ), is represented as a point cloud
in a high-dimensional space (not necessarily Euclidean).
From the point cloud, a nested family of simplicial com-
plexes, or a filtration, is constructed, parameterized by a
filtration value ε, which controls the simplices present in
the complex. The two most common ways of constructing
a simplicial complex at each ε are the Čech complex and
the Vietoris-Rips complex. The filtration is represented as
a list of simplices defined on the vertices of S, annotated
with the ε at which the simplex appears. Given a filtra-
tion, the persistence algorithm is used to compute homol-
ogy groups. The 0-dimensional homology (H0) represents
a hierarchical clustering of the data. Higher dimensional
homology groups represent loops, holes, and higher dimen-
sional voids in the data. Each feature is annotated with an
interval, representing the ε at which the feature appears and
the ε at which the feature contracts in the filtration. These
filtration values are the birth and death times, respectively.
The topological invariants in the filtration can be concisely
represented in a barcode diagram, a set of line segments or-
dered by filtration value on the horizontal axis (Figure 1).
Equivalently, invariants can represented by a persistence di-
agram, a scatter plot with the birth time on the horizontal
axis and the death time on the vertical axis . Persistent ho-
mology is computed using Dionysus (Morozov, 2012).

2.2. Coalescent Process

The coalescent process is a stochastic model that gener-
ates the genealogy of individuals sampled from an evolving
population (Wakeley, 2009). The genealogy is then used to
simulate the genetic sequences of the sample. This model
is essential to many methods commonly used in population
genetics. Starting with a present-day sample of n individ-
uals, each individual’s lineage is traced backward in time,
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Figure 1. Two representations of the same topological invariants,
computed using persistent homology. Left: Barcode diagram.
Right: Persistence diagram. Data was generated from a coales-
cent simulation with n = 100, ρ = 72, and θ = 500.

towards a mutual common ancestor. Two separate lineages
collapse via a coalescence event, representing the sharing
of an ancestor by the two lineages. The stochastic process
ends when all lineages of all sampled individuals collapse
into a single common ancestor. In this process, if the total
(diploid) population size N is sufficiently large, then the
expected time before a coalescence event, in units of 2N
generations, is approximately exponentially distributed:

P (Tk = t) ≈
(
k

2

)
e−(

k
2)t, (1)

where Tk is the time that it takes for k individual lineages
to collapse into k − 1 lineages.

After generating a genealogy, the genetic sequences of the
sample can be simulated by placing mutations on the indi-
vidual branches of the lineage. The number of mutations on
each branch is Poisson-distributed with mean θt/2, where
t is the branch length and θ is the population-scaled muta-
tion rate. In this model, the average genetic distance be-
tween any two sampled individuals, defined by the number
of mutations separating them, is θ.

The coalescent with recombination is an extension of this
model that allows different genetic loci to have different
genealogies. Looking backward in time, recombination is
modeled as a splitting event, occurring at a rate determined
by population-scaled recombination rate ρ, such that an in-
dividual has a different ancestor at different loci. Evolu-
tionary histories are no longer represented by a tree, but
rather by an ancestral recombination graph. Recombina-
tion is the component of the model generating nontrivial
topology by introducing deviations from a contractibile tree
structure, and is the component which we would like to
quantify. Coalescent simulations were performed using ms
(Hudson, 2002).
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Figure 2. Distributions of statistics defined on the H1 persistence
diagram for different model parameters. Top left: Number of fea-
tures. Top right: Birth time distribution. Bottom left: Death time
distribution. Bottom right: Feature length distribution. Data gen-
erated from 1000 coalescent simulations with n = 100, θ = 500,
and variable ρ.

3. Statistical Model
The persistence diagram from a typical coalescent simula-
tion is shown in Figure 1. Examining the diagram, it would
be difficult to classify the observed features into signal and
noise. Instead, we use the information in the diagram to
construct a statistical model in order to infer the param-
eters, θ and ρ, which generated the data. Note that we
consider inference using only H1 invariants, but the ideas
easily generalize to higher dimensions. We consider the
following properties of the persistence diagram: the total
number of features, K; the set of birth times, (b1, . . ., bK);
the set of death times, (d1, . . ., dK); and the set of persis-
tence lengths, (l1, . . ., lK). In Figure 2 we show the dis-
tributions of these properties for four values of ρ, keeping
fixed n = 100 and θ = 500. Several observations are
immediately apparent. First, the topological signal is re-
markably stable. Second, higher ρ increases the number
of features, consistent with the intuition that recombina-
tion generates nontrivial topology in the model. Third, the
mean values of the birth and death time distributions are
only weakly dependent on ρ and are slightly smaller than
θ, suggesting that θ defines a natural scale in the topolog-
ical space. However, higher ρ tightens the variance of the
distributions. Finally, persistence lengths are independent
of ρ.

Examining Figure 2, we can postulate: K ∼ Pois(ζ), bk ∼

Gamma(α, ξ), and lk ∼ Exp(η). Death time is given by
dk = bk + lk, which is incomplete Gamma distributed.
The parameters of each distribution are assumed to be an
a priori unknown function of the model parameters, θ and
ρ, and the sample size, n. Keeping n fixed, and assuming
each element in the diagram is independent, we can define
the full likelihood as

p(D | θ, ρ) = p(K | θ, ρ)
K∏

k=1

p(bk | θ, ρ)p(lk | θ, ρ). (2)

Simulations over a range of parameter values suggest the
following functional forms for the parameters of each dis-
tribution. The number of features is Poisson distributed
with expected value

ζ = a0 log

(
1 +

ρ

a1 + a2ρ

)
(3)

Birth times are Gamma distributed with shape parameter

α = b0ρ+ b1 (4)

and scale parameter

ξ =
1

α
(c0 exp(−c1ρ) + c2). (5)

These expressions appears to hold well in the regime ρ < θ,
but break down for large ρ. The length distribution is expo-
nentially distributed with shape parameter proportional to
mutation rate, η = αθ. The coefficients in each of these
functions are calibrated using simulations, and could be
improved with further analysis. This model has a simple
structure and standard maximum likelihood approaches can
be used to find optimal values of θ and ρ.

4. Experiments
4.1. Coalescent Simulations

We simulated a coalescent process with sample size n =
100 and l = 10,000 loci. The mutation rate, θ, was var-
ied across θ = {50, 500, 5000}. The recombination rate,
ρ, was varied across ρ = {4, 12, 36, 72}. The output of
the process is a set of binary sequences of variable length
(length is dependent on θ). The Hamming metric is used
to construct a pairwise distance matrix between sequences.
We computed persistent homology and used the model de-
scribed in Section 3 to estimate θ and ρ. Results are shown
in Figure 3, where we plot estimates and 95% confidence
interval from 500 simulations. We observe an improved
ρ estimate at higher mutation rate. This is expected, as in-
creasing θ is essentially increasing sampling on branches in
the genealogy. We also observe tighter confidence intervals
at higher recombination rates, consistent with the behavior
seen in Figure 2.
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Figure 3. Inference of recombination rate ρ using topological in-
formation. The recombination rate ρ is estimated for five values
{4, 12, 36, 72, 144} at three different mutation rates {50, 500,
5000}. Mean estimate over 500 simulations and 95% confidence
interval is shown.

4.2. Application: Influenza Reassortment

To test our model on biological data, we considered reas-
sortment in avian influenza virus. Influenza is a single-
stranded RNA virus that is naturally found in avian popula-
tions. Each viral genome has eight genetic segments. Sub-
types are defined by two segments, hemagglutinin (HA)
and neuraminidase (NA), e.g. H1N1 and H3N2. When a
host cell is coinfected with two different viral strains, reas-
sortment of these segments can occur, such that viral off-
spring is a genetic mixture of the two parental strains. Re-
assortment is of substantial medical interest, and has been
connected with the outbreak of influenza epidemics.

We computed persistent homology on an aligned dataset
of 3,105 avian influenza sequences across the seven major
HA subtypes. The persistence diagram is shown in Figure
4.2, along with density estimates for the birth and death
distributions. Both birth and death times appear strongly
bimodal, unlike in the coalescent simulations, which were
strictly unimodal. This suggests two distinct scales of topo-
logical structure. Using the representative cycles output by
Dionysus on a subset of this data, we classified features as
intrasubtype (involving one HA subtype) and intersubtype
(involving multiple HA subtypes). The H1 barcode dia-
gram for this data is shown in the Figure 4.2 inset. Intrasub-
type features, in blue, occur at an earlier filtration scale than
intersubtype features, in green. The multiscale topological
approach of persistent homology can distinguish biological
events occuring at different genetic scales.

We isolated the two peaks and estimated two recombina-
tion rates: an intrasubtype ρ1 = 9.68, and an intersubtype
ρ2 = 21.43. We conclude that intersubtype recombination
occurs at a rate over twice that of intrasubtype recombi-
nation, however a genetic barrier exists that maintains dis-
tinct subtype populations. The nature of this barrier war-
rants further study. This illustrates a real world example in
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Figure 4. The H1 persistence diagram computed from an avian
influenza dataset. On the top and left are plotted the marginal
distributions of birth and death times, along with a density esti-
mate for each distribution. The bimodality indicates two scales of
topological structure. Inset: The barcode diagram for a subset of
this data. Blue bars have representative cycles involving only one
subtype, green bars have cycles involving multiple subtypes.

which multiscale topological structure can be captured by
persistent homology and given biological interpretation.

5. Conclusions
In machine learning, the task is often to infer parameters of
a model from observations. This paper presented a proof of
concept for statistical inference based on topological infor-
mation computed using persistent homology. Unlike previ-
ous work, which considered estimating homology of a par-
tially observed object, we were interested in a model which
generates a complex, but stable, topological signal. Three
conditions were required for the success of this approach:
First, a well-defined statistical model. Second, an intuition
that the observed topological structure is directly correlated
with the parameters of interest in the model. Third, suf-
ficient topological signal to reliably estimate statistics on
the persistence diagram. It is an open question to identify
classes of models for which these conditions will hold.
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