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In this thesis, we present a layer-wise learning of Stochastic Neural Networks (SNNs) in an information-

theoretic perspective. In each layer of an SNN, the compression and the relevance are defined to quantify

the amount of information that the layer contains about the input space and the target space, respectively.

We jointly optimize the compression and the relevance of all parameters in an SNN to better exploit the

neural network’s representation. Previously, the Information Bottleneck (IB) ([1]) extracts relevant in-

formation for a target variable. Here, we propose Parametric Information Bottleneck (PIB) for a neural

network by utilizing (only) its model parameters explicitly to approximate the compression and the rele-

vance. We show that, the PIB framework can be considered as an extension of the Maximum Likelihood

Estimate (MLE) principle to every layer level. We also show that, as compared to the MLE princi-

ple, PIB : (i) improves the generalization of neural networks in classification tasks, (ii) generates better

samples in multi-modal prediction, (iii) is more efficient to exploit a neural network’s representation

by pushing it closer to the optimal information-theoretical representation in a faster manner. Our PIB

framework, therefore, shows a great potential from an information-theoretic perspective for exploiting

neural networks’ representative power that have not yet been fully utilized.
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Chapter I

Introduction

1.1 Motivation

Deep Neural Networks (DNNs) have demonstrated competitive performance in several learning tasks

including image recognition (e.g., [5], [6]), natural language translation (e.g., [7], [8]) and game playing

(e.g., [9]). Specifically in supervised learning contexts, a common practice to achieve good performance

is to train DNNs with the Maximum Likelihood Estimate (MLE) principle along with various techniques

such as data-specific design of network architecture (e.g., convolutional neural network architecture),

regularizations (e.g., early stopping, weight decay, dropout ([10]), and batch normalization ([11])), and

optimizations (e.g., [12]). The learning principle in DNNs has therefore attributed to the MLE principle

as a standard one for guiding the learning toward a beneficial direction. The question however is does

the MLE principle effectively and sufficiently exploit a neural network’s representative power and is

there any better alternative? As an attempt to address this important question, this work investigates the

learning of DNNs from the information-theoretic perspective.

An alternative principle is the Information Bottleneck (IB) framework ([1]) which extracts relevant

information in an input variable X about a target variable Y . More specifically, the IB framework con-

structs a bottleneck variable Z = Z(X) that is an compressed version of X but preserves as much relevant

information in X about Y as possible. In this information-theoretic perspective, I(Z,X), the mutual in-

formation of Z and X , captures the compression of Z about X and I(Z,Y ) represents the relevance of Z

about Y . The optimal representation Z is determined via the minimization of the following Lagrangian:

LIB[p(z|x)] = I(Z,X)−β I(Z,Y ) (1.1)

where β is the positive Lagrangian multiplier that controls the trade-off between representation com-

plexity, I(Z,X), and predictive power in Z, I(Z,Y ). The exact solution to the minimization problem

above is found ([1]) with the implicit self-consistent equations:























p(z|x) =
p(z)

Z(x;β )
exp(−βDKL [p(y|x)‖p(y|z)])

p(z) =
∫

p(z|x)p(x)dx

p(y|z) =
∫

p(y|x)p(x|z)dx

(1.2)

where Z(x;β ) is the normalization function, and DKL[.‖.] is the Kullback-Leibler (KL) divergence ([13]).

Unfortunately, the self-consistent equations are highly non-linear and still non-analytic for most practical

cases of interest. Furthermore, the general IB framework assumes that the joint distribution p(X ,Y ) is

known and does not specify concrete models.

On the other hand, the goal of the MLE principle is to match the model distribution pmodel as close

to the empirical data distribution p̂D as possible (e.g., see Appendix I.B). The MLE principle treats the

1



neural network model p(xxx;θθθ) as a whole without explicitly considering the contribution of its internal

structures (e.g., hidden layers and hidden neurons). In other words, the MLE principle is generic that is

not specified to neural networks and does not explicitly make use of the hierarchical structure of neural

networks during the learning phase. As a result, a neural network with redundant information in hidden

layers may have a good distribution match in a training set but show a poor generalization in a test set. In

the MLE principle, we only need empirical samples of the joint distribution to maximize the likelihood

function of the model given the data. The MLE principle is proved to be mathematically equivalent to

the IB principle for the multinomial mixture model for clustering problem when the input distribution

X is uniform or has a large sample size ([14]). However in general the two principles are not obviously

related.

In this work, we propose a learning framework that is specifically tailored for neural networks.

Particularly, we leverage neural networks and the IB principle by viewing neural networks as a set of

encoders that sequentially modify the original data space. We then propose a new generalized IB-based

objective that takes into account the compression and relevance of all layers in the network as an explicit

goal for guiding the encodings in a beneficial manner. Since the objective is designed to optimize all

parameters of neural networks and is mainly motivated by the IB principle for deep learning ([15]), we

name this method the Parametric Information Bottleneck (PIB). Because the generalized IB objective

in the PIB is intractable, we approximate it using variational methods and Monte Carlo estimation.

We propose re-using the existing neural network architecture as variational decoders for each hidden

layers. The approximate generalized IB objective in turn presents interesting connections with the MLE

principle. In practice, we empirically show that our PIBs have a better generalization and push the neural

network’s representation closer to the information-theoretical optimal representation as compared to the

MLE principle.

1.2 Thesis statement

We start out by stating our main thesis (proposition) that we are maintaining in this work:

Thesis claim: To better exploit a neural network’s representation requires internal information

within hidden layers to be considered explicitly during the learning phase.
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Chapter II

Related Work

Originally, the general IB framework is proposed in [1]. The framework provides a principled way of

extracting the relevant information in one variable X about another variable Y . The authors represent the

exact solution to the IB problem in highly-nonlinear self-consistent equations and propose the iterative

Blahut Arimoto algorithm to optimize the objective. However, the algorithm is not applicable to neural

networks. In practice, the IB problem can be solved efficiently in the following two cases only: (1) X ,Y

and Z are all discrete ([1]); or (2) X ,Y and Z are mutually joint Gaussian ([16]) where Z is a bottleneck

variable.

Recently, the IB principle is applied to DNNs ([15]). The work proposes to use mutual information

of a hidden layer with the input layer and the output layer to quantify the performance of DNNs. By

analyzing these measures with the IB principle, the authors establish an information-theoretic learning

principle for DNNs. In theory, one can optimize the neural network by pushing up the network and all

its hidden layers to the IB optimal limit in a layer-wise manner. Although the analysis offers a new per-

spective about optimality in neural networks, it proposes an general analysis of optimality rather than a

practical optimization criteria. Furthermore, estimating mutual information between the variables trans-

formed by network layers and the data variables poses several computational challenges in practice that

the authors did not address in the work. A small change in a multi-layered neural network could greatly

modify the entropy of the input variables. Thus, it is hard to analytically capture such modifications.

Recently, the authors in [17] have used variational methods to approximate the mutual information

as an attempt to apply the IB principle to neural networks. Their approach however considers one

single bottleneck and parameterizes the encoder p(zzz|xxx;θθθ) by an entire neural network. The encoder

maps the input variable xxx to a single bottleneck variable zzz that is not a part of the considered neural

network architecture. Therefore, their approach still treats a neural network as a whole rather than

optimizing it layer-wise. Furthermore, the work imposes a variational prior distribution in the code

space to approximate its actual marginal distribution. However, the variational approximate distribution

for the code space may be too loose for a good approximation.

Our work, on the other hand, focuses on better exploiting intermediate representations of a neural

network architecture using the IB principle. More specifically, our work proposes an optimization IB

criteria for an existing neural network architecture in an effort of learning better the layers’ representa-

tion to their IB optimality. In estimating mutual information, we adopt the variational method as in [17]

for I(Z,Y ) but use empirical estimation for I(Z,X). Furthermore, we exploit the existing network archi-

tecture as variational decoders rather than resort to variational decoders that are not part of the neural

network architecture.
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Chapter III

Background

In this chapter, we provide preliminaries to the remaining chapters by reviewing the most relevant and

fundamental concepts from Information Theory [2] and Neural Networks.

3.1 Notations

Throughout this thesis, we adopt the following notations. We use capital letters, e.g., X ,Y,Z, to represent

random variables. Normal lowercase letters, e.g., x,y,z, and bold lowercase letters, e.g., xxx,yyy,zzz, indicate

specific values of univariate and multivariate random variables, respectively. Here p(X = xxx) is written

as p(xxx) for short which indicates the probability of X at a specific value xxx. Hence, p(xxx) and p(yyy)

indicate different probability functions. Calligraphic letters, e.g., X ,Y,Z denotes the spaces in which

the corresponding random variables live. We use notation |X | to prefer to the cardinality of space

X . Probability distributions from data are denoted as pD(.). Probability distributions from models are

denoted as p(.). For simplicity, we use integral notations for expectation of a function of both discrete-

valued and continuous random variables, i.e.,

Ep(xxx)[ f (xxx)] =
∫

p(xxx) f (xxx)dxxx.

We use notation xxx∼ p(xxx) to indicate that xxx is sampled according to distribution p(xxx).

3.2 Information Theory

3.2.1 Entropy

As an introduction of entropy, we consider a simple example of data compression as follows.

Example 3.2.1. Consider a discrete random variable X with the following distribution:



















p(X = 1) = 1
3

p(X = 2) = 1
3

p(X = 3) = 1
3

Now assume that we wish to encode each element X = i ∈ X into a binary string C(i) of various length

li. One measure for the quality of the encoding is a degree of compression, i.e., the expected length of

bits needed to describe the distribution,

L(C) = ∑ p(X = i)li
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Let’s consider, for instance, the encoding function:

C(1) = 0

C(2) = 10

C(3) = 11

Note that this encoding function makes no confusion in recovery, e.g., decoded message 01011010

is uniquely decoded back into 12312 without any confusion. The expected length, i.e, the expected

number of bits, to describe the distribution under the encoding function C is then,

L(C) =
1

3
×1+

1

3
×2+

1

3
×2 =

5

3
≈ 1.67 (bits)

A natural question is what is the minimum expected number of bits needed to describe the distribution

without confusion? No matter how we compress the signal X , there exists an irreducible complexity of

the signal below which it cannot be further compressed. This irreducible complexity is the entropy of

the signal.

Entropy is a fundamental concept in information theory ([2]) that measures the uncertainty of a

random variable. Intuitively, the more uncertain an event, the more surprising, the more informative,

and the greater its entropy. To establish a functional, H(X) or H(p), that can quantify the amount of an

uncertainty in a probability distribution of a discrete random variable, p(x), Shannon ([18]) suggested

three axioms that any such functional must follow.

Axiom 1. H(X) is continuous in p(x).

Axiom 2. If p(x) = 1
|X | ,∀x, then H(X) is a monotonically increasing function of |X |.

Axiom 3. For any grouping of X = {x1, ...,x|X |} into the group T = {t1, ..., t|T |}, the functional H(X)

must satisfy:

H(X) = H(p(x)) = H(p(t))+∑
t

p(t)H(p(x|t))

Interestingly, the entropy defined in the following definition is the only functional that satisfies three

axioms above.

Definition 3.2.1. (Entropy) The entropy H(X) of a discrete random variable X is defined as

H(X) =− ∑
x∈X

p(x) log p(x)

Here we adopt the convention that 0 log0 = 0 according the property that x logx→ 0 as x→ 0.

Function log is either to the base 2 or the base logarithm e, and the entropy is measured in bits or nats,

respectively. Note that log in this chapter is all expressed in bits while it is based in logarithm e in the

remaining chapters. For the example of data compression in the beginning, the entropy (in bits) of signal

X can be computed by the above definition as,

H(X) =−3×
1

3
log

1

3
≈ 1.58 < L(C)≈ 1.67
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To illustrate the concavity property of entropy, we consider a random Bernoulli variable in the following

simple example.

Example 3.2.2. Let X be a random Bernoulli variable Bernoulli(p), i.e.,

X =







1 with probability of p

0 with probability of 1− p

Then, the entropy of X is

H(X) = H(p) =−p log p− (1− p) log(1− p)

A plot of H(p) is illustrated in Figure 3.1. The plot shows concavity of H(p) in terms of p where H(p)

Figure 3.1: The entropy (in bits in this example) of Bernoulli(p) with various values of p. The entropy

H(p) achieves its maximum with uniform distribution, i.e., p = 0.5 and is a concave functional with

respect to p.

has its maximum when Bernoulli(p) becomes a uniform distribution, i.e., p = 0.5. These two properties

also hold for general cases as stated in the following propositions.

Proposition 3.2.1. H(X) ∈ [0, log|X |] and is a concave function of p(x).

Proposition 3.2.2. For any discrete random variable X, H(X) achieves its maximum if and only if (iff)

p(x) is a uniform distribution, i.e., p(x) = 1
|X | ,∀x ∈ X .

A formal proof of Proposition 3.1 and Proposition 3.2 can be found in Theorem 2.7.3 (Convexity of

entropy) and Theorem 2.6.4 in [2].

The concept of entropy can be extended to more than one random variables as stated in the following

definition.
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Definition 3.2.2. (Joint entropy) The joint entropy H(X ,Y ) of a pair of discrete random variables

(X ,Y ) with a joint distribution p(x,y) is defined as

H(X ,Y ) =− ∑
(x,y)∈(X ,Y)

p(x,y) log p(x,y)

We also define the conditional entropy of a random variable given another variable as follows.

Definition 3.2.3. (Conditional entropy) If (X ,Y )∼ p(x,y), then the conditional entropy of Y given

X is defined as

H(Y |X) = ∑
x∈X

p(x)H(Y |X = x) =− ∑
(x,y)∈(X ,Y)

p(x)p(y|x) log p(y|x)

Intuitively, H(Y |X) is the uncertainty in Y once X is known. Furthermore, the uncertainty in both X and

Y equals the uncertainty in X plus the uncertainty in Y when X is given. This property is formally stated

in Theorem 3.2.3.

Theorem 3.2.3. (Chain rule for entropy)

H(X ,Y ) = H(X)+H(Y |X)

Proof: This result is straightforward from the definition of entropy and the property of log that

log(xy) = log(x)+ log(y).

3.2.2 Relative Entropy

Another important concept from Information Theory that we used in this thesis is relative entropy or

KL divergence, DKL[.||.]. This concept measures the discrepancy between two distributions. More

specifically, DKL[p||q) is a measure of invalidity of assuming that the distribution is q while the true

distribution is p. Its concise definition is shown in the following definition:

Definition 3.2.4. (Relative entropy)

DKL[p||q] := ∑
x∈X

p(x) log
p(x)

q(x)

Especially, the relative entropy is always non-negative as stated in the following theorem.

Theorem 3.2.4. (Information inequality)

DKL[p||q]≥ 0

with equality iff p(x) = q(x)∀x ∈ X .

The proof of Theorem 3.2.4 directly follows the result of Jensen’s inequality:
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Theorem 3.2.5. (Jensen’s inequality) If f is a convex function and X is a random variable,

E[ f (X)]≥ f (E[X ])

with equality if X is constant or f is linear.

Zero-forcing property of KL divergence: In practice, e.g., in variational inference, we usually

approximate the intractable distribution p with a variational (tractable) distribution q by reducing their

KL divergence DKL[p||q] over a set of empirical samples drawn from p. An emergent effect of such

approximation is that it encourages q to be close to zero whenever p is zero.

3.2.3 Mutual Information

Here we review the concept of mutual information, which is heavily used in this thesis. This time, we

get started with a definition before considering a concrete example.

Definition 3.2.5. (Mutual information) Consider two random variable X ,Y with joint distribution

p(X ,Y ), and marginal distributions p(X) and p(Y ). The mutual information, I(X ,Y ), is then de-

fined as

I(X ,Y ) = I(Y,X) = ∑
(x,y)∈(X ,Y)

p(x,y) log
p(x,y)

p(x)p(y)

An intuitive meaning of mutual information I(X ,Y ) is that it measures the amount of information that

X contains about Y . The random variables X and Y have some degree of dependence (intrinsically

determined via the joint distribution p(X ,Y )) that knowing some (sampled) values of X gives some

guidance in predicting values of Y . How much is such guidance depends on how much information

about Y that X has, i.e., I(X ,Y ). Note that the role of X and Y are exchangeable in mutual information

I(X ,Y ). As an illustration, consider a following simple example.

Example 3.2.3. Let X1,X2, and Y be three random variables such that







Y = X1 = X2 = {0,1}

p(y) = p(x1) = p(x2) = 0.5 ∀y ∈ Y,x1 ∈ X1,X2 ∈ X2,

and

p(y,x1) =







1 if y = x1 = 0

0 otherwise,

p(y,x2) =
1

4
∀y,x2

It follows from p(y,x1) and p(y,x2) that the value of Y is totally determined once X1 is known

while knowing X2 gives no clue about value of Y . Intuitively, we would expect that Y1 contains some
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information about X while Y2 has no information about X . This intuition is indeed correctly quantified

by mutual information since we have, from the definition, that

I(X1,Y ) = 2 = H(X)

I(X2,Y ) = 0

In the special case when X and Y are independent, their mutual information I(X ,Y ) becomes zero, i.e.,

knowing X does not enable a shorter description of Y and vice versa.

3.2.4 Mutual Information versus Entropy

The knowledge of X gives some information about Y which reduces the uncertainty of Y . Intuitively,

mutual information I(X ,Y ) can be interpreted as the reduction of the uncertainty in Y when X is known.

Theorem 3.2.6 rigorously describes the aforementioned intuitions followed by the Venn diagram in

Figure 3.2 summarizing such relationships.

Theorem 3.2.6.

I(X ,Y ) = I(Y,X) (3.1)

I(X ,X) = H(X) (3.2)

I(X ,Y ) = H(X)−H(X |Y ) (3.3)

I(X ,Y ) = H(Y )−H(Y |X) (3.4)

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (3.5)

3.2.5 Stochastic Encoding

Let X be a random signal with probability p(X). We assume here that X is a finite space. A stochastic

encoder p(z|x) induces a soft partitioning of space X into a new space Z (so-called code space) with

probability measure,

p(z) = ∑
x∈X

p(x)p(z|x)

The encoding may modify the structure and the information content of space X (e.g., Figure 3.3). It fol-

lows from the Asymptotic Equipartition Property (AEP) ([2]) that there are on average 2H(X |Z) elements

in X that are mapped to the same code in Z . Since the “typical” volume of X is 2H(X), the average

volume of the partitioning in X that is induced by p(z|x) is,

2H(X)

2H(X |Z)
= 2I(X ,Z).

To put it literally, we need on average I(X ,Z) bits per element in X to specify an element in Z without

confusion. This is also the rate of the encoding, one factor that quantifies the quality of the encoding.

9



Figure 3.2: Relationship between mutual information and entropy (Figure credit: [2])

Definition 3.2.6. (Rate of encoding) The rate of an encoding, R[p(z|x)], is the average number of

bits per message needed to specify a code in the code space without confusion.

Figure 3.3: This specific stochastic mapping that transforms space X of 2 dimensionality into a new

code space Z of one dimensionality modifies the information content of the original space in a lossy

way. A good learning principle should make this loss in a beneficial manner in which only irrelevant

information is discarded and the relevant information is preserved.

Mutual information, I(Z,X), is a measure of the quality of the encoding since it bounds from below the

rate of the encoding as stated in the following theorem.
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Theorem 3.2.7.

R[p(z|x)]≥ I(Z,X)

A more rigorous argument for the correctness of Theorem 3.2.7 can be found in Chapter 7 of [2].

3.3 Neural Networks

A neural network is a parametrized model that is inspired by human brain’s architecture. It is a universal

approximator that can learn any smooth predictive relationship given sufficient data ([19]).

To describe neural networks, let’s consider the supervised learning context where we have access

to the labeled training set SD := {(xxx(i),y(i)) ∈ (X ,Y)|1 ≤ i ≤ N}. Neural networks define a non-linear

form of hypothesis f (xxx;W,bbb) with learnable parameters W and bbb. A neural network consists of neurons

that are rearranged in a specific architecture (e.g., feed-forward neural network, convolutional neural net-

works [20], recurrent neural networks [21]). Each neuron (Figure 3.4) is a computational unit that makes

an affine transformation of its input possibly followed by a squashing function, e.g., sigmoid, tanh, and

ReLU. Figure 3.5 shows an specific example of neuron arrangement with feed-forward architecture.

Figure 3.4: A neuron is a computational unit in a neural network that squashes an affine transformation

of the input vector by an non-linear activation function (figure credit: [3]).

3.3.1 Back-propagation algorithms

Back-propagation algorithm [22] is a very famous and successful algorithm to learn neural networks.

Due to its popularity, we ignore its details, which can be found for instance in this tutorial [23], and

focus instead on its meaning. Back-propagation consists of two phases for each iteration: forward

and backward pass (Figure 3.6). In the forward pass, the network passes a batch of data examples

through the network architecture and computes the loss at the output end according to the defined loss

function. During the backward pass, the network computes the partial derivatives of the loss with respect

to the network weights using the chain rule and then update the weights. Intuitively, the backward pass

propagates the errors computed in the forward pass back to each neurons and updates the neuron weights

to fix up the errors collectively (Figure 3.7). An advantage of back-propagation is that it enables large-

scale learning in which a large set of data can be trained efficiently by gradient-based methods using a
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Figure 3.5: An example of neural network architecture with 3 hidden layers (figure credit: [4]).

small batch of data samples at each iteration. It is also shown to be efficient for non-convex loss function

in the context of deep learning. The main disadvantage is however it does not guarantee to obtain the

minimum, e.g., the obtained value may be suboptimal or local minimum.

Figure 3.6: Two phases of back-propagation (figure credit: Prof. Sung Ju Hwang’s lecture notes).
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Figure 3.7: The backward pass propagates errors back to each neurons to fix up neuron weights (figure

credit: Prof. Sung Ju Hwang’s lecture notes).

3.3.2 Loss functions as the MLE principle

We demonstrate that common loss functions in neural networks for supervised learning actually follow

the MLE principle. Specifically, we consider here the two most common loss functions: the squared loss

function and the cross-entropy loss function. We denote p̂D as empirical data distribution in which

p̂D(yyy|xxx
(i)) =







1 if yyy = yyy(i),

0 otherwise.
(3.6)

Here we consider deterministic neural networks only and explain how the conditional distribution p(yyy|xxx)

is defined. For stochastic neural networks, the conditional distribution p(yyy|xxx) is made clear in Subsection

5.2.1 of Chapter 5. We denote ŷyy as the output of the last layer (before activation if any) when xxx is fed

into the network as an input.

Squared loss

In this case, we assume a multivariate Gaussian distribution with the neural network output as its mean

vectors and unit covariance matrix, i.e.,

p(yyy|xxx) =N (yyy; ŷyy, I) (3.7)

= (2π)−
1
2 exp

(

−
1

2
(yyy− ŷyy)T (yyy− ŷyy)

)

(3.8)
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Then the squared loss function can be interpreted as the KL divergence between the empirical conditional

data distribution and the conditional model distribution:

Lsquared(xxx
(i);θθθ) =

1

2
‖ŷyy(i)−yyy(i)‖2 (3.9)

=− p̂D(yyy
(i)|xxx(i)) log p(yyy(i)|xxx(i))+ const (3.10)

=−∑
y=1

p̂D(yyy|xxx
(i)) log p(yyy|xxx(i)) (3.11)

Cross-entropy loss

The cross-entropy loss is also easily rewritten as the KL divergence between two distributions:

p(y = k|xxx(i)) = [softmax(ŷyy)]k,1≤ k ≤C (3.12)

Lcross−entropy(xxx
(i);θθθ) =− log p(y = y(i)|xxx(i)) (3.13)

=−
C

∑
y=1

p̂D(y|xxx
(i)) log p(y|xxx(i)) (3.14)

Thus, as we can see from the above examples, a common loss function in neural networks for a

supervised learning context can be interpreted as an “implementation” of the MLE principle. This is

made possible by distribution assumptions of the neural network model depending on the type of the

output space and loss functions.
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Chapter IV

Information Bottleneck Principle

This chapter serves an important background as well as motivation for our work in the remaining chap-

ters. Here we present the IB principle proposed by [1]. The IB framework provides a principled way

of extracting relevant information in one variable about another variable. In this chapter, we revisit this

concept from our own perspectives.

Consider a general context of supervised learning in which we wish to learn a (deterministic or

stochastic) mapping p(Y |X) from an input space DD
1 ⊆ R

D into a target space DK
2 ⊆ R

K such that the

learned mapping is as close to some underlying unknown conditional distribution pD(Y |X) as possible

given a set of finite samples {(x(i),y(i)) ∈ (DD
1 ×D

K
2 )|1 ≤ i ≤ N} drawn i.i.d. from some underly-

ing unknown distribution pD(X ,Y ). Depending on the structure of the target space and the (unknown)

underlying distribution pD, the described context can become several tasks including classification, re-

gression, image segmentation or multi-modal prediction problems. Moreover, the way that the input

space presents the information and the relevant information about the target space can be implicitly

complicated depending on the input space structure. Therefore, it is beneficial for subsequent tasks to

represent such information in the input space in a manner such that they can disentangle underlying ex-

planatory factors in the data [24]. Specifically for the context of supervised learning, one is interested in

finding a good representation Z = Z(X) of the input that compresses the data but preserves the relevant

information about Y . Such representation, closely related to the Minimum Description Length (MDL)

Principle [25], presents useful regularities in the data about the target which in turn enables a minimal

description of the model and better generalization.

4.1 The IB optimal representations

An optimal representation Z = Z(X) of the input X with regard to the target Y can be defined in terms of

compression and relevance level in the representation Z. Here, compression in a representation Z can be

defined as the amount of information of the input data which is still present in Z. Respectively, relevance

in a representation Z is defined as the amount of information that the representation Z contains about the

target variable Y . A detailed definition is presented in Definition 4.1.1.

Definition 4.1.1. (Compression and Relevance) Given three random variables X ,Y, and Z where

Z = Z(X) is a representation of X from which Z is stochastically mapped.

• Compression: the averaged number of bits per signal in X to specify Z without confusion,

i.e., the averaged amount of information that Z contains about X .

• Relevance: the averaged amount of information that Z contains about Y .
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For such intuitive definitions of compression and relevance, mutual information naturally becomes a

good measure that can quantify these concepts in a representation Z. Specifically, the compression and

the relevance in the representation Z can be measured with I(Z,X) and I(Z,Y ), respectively. Recall

that the mutual information I(Z,X) measures the amount of information that Z contains about X , or the

decrease in the uncertainty of X when Z is known. Since Z is resulted from a data processing on X , the

three variables Y,X , and Z form a Markov chain in that order which is denoted as Y → X → Z. It then

follows from the Data Processing Inequality (DPI) [2] that

I(X ,Y )≥ I(Z,Y ) (4.1)

I(X ,X) = H(X)≥ I(Z,X). (4.2)

Ideally, we wish Z = Z(X) to be the minimal sufficient statistics of X that preserves all the informa-

tion in X about Y , i.e., I(Z,Y ) = I(X ,Y ) (maximum relevance) and that has the minimum description

length, i.e., I(Z,X) is minimized (maximum compression). The minimal sufficient statistics is formally

determined via the optimization problem (see more on Theorem 5 of [26]):

min
Z=Z(X):I(Z,Y )=I(X ,Y )

I(Z,X) (4.3)

The authors in [1] relaxed this optimization problem to be approximate sufficient statistics by using the

method of Lagrangian multipliers to ease the original minimization problem with the minimization of

the following objective:

L{p(z|x)} := I(Z,X)−β I(Z,Y ) (4.4)

where β is a positive Lagrange multiplier that determines the trade-off between compression and rele-

vance in Z. As β → 0, the minimization of the Lagrangian (4.4) results in the maximum compression,

I(Z,X) = 0 (e.g., it collapses all information in X into a single point) thus also loses all useful infor-

mation, I(Z,Y ) = 0. On the other hand, as β → ∞, the minimization leads to the maximum relevance,

I(Z,Y ) = I(X ,Y ), but the minimum compression ,I(Z,X) = H(X), i.e., Z = φ(X) where φ(.) is an in-

vertible deterministic function. The relaxation in (4.4) has another interpretation as it maintains the

relevance in Z above certain level, i.e., I(Z,Y ) ≥ D for some 0 < D < I(X ,Y ), which is controlled by

the Lagrange parameter β . The authors in [1] gave an exact yet implicit solution to the minimization

problem (4.4) via the IB self-consistent equations:

p(z|x) =
p(z)

Z(x;β )
exp(−βDKL [p(y|x)‖p(y|z)]) (4.5)

where Z(x;β ) is the normalization function, and p(z) and p(y|z) respects the constraints for a valid

distribution and the Bayes’ Rule:

p(z) =
∫

p(z|x)p(x)dx (4.6)

p(y|z) =
∫

p(y|x)p(x|z)dx (4.7)
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Figure 4.1: The information curve R(D) is a non-decreasing concave curve that divides the informa-

tion plane into the achievable region and non-achievable region. Any point of compression-relevance

(I(Z,X), I(Z,Y )) of a representation Z is achievable iff it lies under the information curve in the infor-

mation plane. The representation curve Z4−Z3−Z2−Z1 of a neural network lies within the achievable

region. The goal of learning a neural network is to move the representation curve close to the information

curve.

Note that once the joint distribution p(x,y) and an encoder p(z|x) are given, the corresponding decoder

p(y|z) is uniquely determined (via Equation 4.7). Since p(y|z) maps space Z onto the target space Y ,

instead of reconstructing X , we call p(y|z) relevance decoder rather than decoder.

Definition 4.1.2. (Relevance decoder) Given p(x,y) and p(z|x), p(y|z) defined in Equation 4.7 is

relevance decoder corresponding to encoder p(z|x).

The IB self-consistent equations (4.5)-(4.6)-(4.7) poses a highly nonlinear functional of p(z|x) which

is, unfortunately, very challenging to solve. In practice, the IB problem can solved efficiently in the

following two cases only: (1) X ,Y and Z are all discrete [1]; or (2) X ,Y and Z are mutually joint

Gaussian [16].

4.2 The Information Plane

Developed by [1], the information plane is an information-theoretic plane that characterizes any repre-

sentation Z = Z(X) in terms of the achievability of compression-relevance (I(Z,Y ), I(Z,X)) given the

joint distribution I(X ,Y ). The plane has I(Z,X) and I(Z,Y ) as its horizontal axis and its vertical axis,

respectively. In the plane, the information curve, which is given as

R(D) := min
Z=Z(X):I(Z,Y )≥D

I(Z,X), (4.8)
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characterizes the achievability in the representation Z. Finding the so-called compression-relevance

function R(D) [27] is an equivalent problem to the optimization of the Lagrangian (4.4). An interesting

property of the compression-relevance function, R(D) is that it is a non-decreasing concave function of

D with the slope determined by the Lagrangian multiplier [1], [27]:

∂D

∂R
= β−1, (4.9)

and that it is an inherent characteristic of the joint distribution p(x,y) regardless of any model assump-

tions. The information plane and information curve is illustrated in Figure 4.1.
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Chapter V

Parametric Information Bottleneck

This chapter presents our main contribution. Here we describe an information-theoretic perspective of

neural networks and then define our PIB framework. This perspective paves a way for the soundness of

constraining the compression-relevance trade-off into a neural network layers.

We first introduce notations used in this chapter. We denote X ,Y as the input and the target (label)

variables of the data, respectively; Zl as a stochastic variable represented by the lth hidden layer of a neu-

ral network where 1 ≤ l ≤ L, L is the number of hidden layers. We extend the notations of Zl by using

the convention Z0 := X and Z−1 := /0. The space of X ,Y and Zl are denoted as X ,Y and Zl , respectively.

Each respective space is associated with the corresponding probability measures pD(xxx), pD(yyy) and p(zzzl)

where pD(.) indicates the underlying probability distribution of the data and p(.) denotes model dis-

tributions. Each Zl is stochastically mapped from the previous stochastic variable Zl−1 via an encoder

p(zzzl|zzzl−1). We name Zl,1≤ l ≤ L as a (information) bottleneck or code variable of the network. In this

work, we focus on binary bottlenecks where Zl ∈ {0,1}
nl and ni is the dimensionality of the bottleneck

space.

5.1 Neural Networks as Sequential Quantization

An encoder p(zzz|xxx) introduces a soft partitioning of the space X into a new space Z whose probability

measure is determined as p(zzz) =
∫

p(zzz|xxx)pD(xxx)dxxx. The encoding can modify the information content of

the original space possibly including its dimensionality and topological structure. On average, 2H(X |Z)

elements of X are mapped to the same code in Z . Thus, the average volume of a partitioning of X

is 2H(X)/2H(X |Z) = 2I(X ,Z). The mutual information I(Z,X) which measures the amount of information

that Z contains about X can therefore quantify the quality of the encoding p(zzz|xxx). A smaller mutual

information I(Z,X) implies a more compressed representation Z in terms of X .

Since the original data space is continuous, it requires infinite precision to represent it precisely.

However, only some set of underlying explanatory factors among others in the the data space would be

beneficial for a certain task. Therefore, lossy representation is often more helpful (and of course more

efficient) than a precise representation. In this aspect, we view the hidden layers of a multi-layered neural

network as a lossy representation of the data space. The neural network in this perspective consists of

a series of stochastic encoders that sequentially encode the original data space X into the intermediate

code spaces Zl . These code spaces are lossy representations of the data space as it follows from the DPI

([2]) that

H(X)≥ I(X ,Zl)≥ I(X ,Zl+1) (5.1)
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where we assume that Y,X ,Zl and Zl+1 form a Markov chain in that order, i.e.,

Y → X → Zl → Zl+1 (5.2)

A learning principle should compress irrelevant information and preserve relevant information in the

lossy intermediate code spaces. In the next subsection, we describe in details how a sequential series of

encoders, compression and relevance are defined in a neural network.

5.2 PIB Framework

Our PIB framework is an extension of the IB framework to optimize all parameters of neural networks.

In neural networks, intermediate representations represent a hierarchy of information bottlenecks that

sequentially extract relevant information for a target from the input data space. Existing IB framework

for DNNs specifies a single bottleneck while our PIB preserves hierarchical representations which a neu-

ral network’s expressiveness comes from. Our PIB also gives neural networks an information-theoretic

interpretation both in network structure and model learning. In PIBs, we utilize only neural network

parameters θθθ for defining encoders and variational relevance decoders at every level, therefore the name

Parametric Information Bottleneck. Our PIB is also a standard step towards better exploiting represen-

tational power of more expressive neural network models such as Convolutional Neural Networks ([20])

and ResNet ([28]).

5.2.1 Stochasticity

In this paper, we focus on binary bottlenecks in which the encoder p(zzzl|zzzl−1) is defined as

p(zzzl|zzzl−1) =
nl

∏
i=1

p(zl,i|zzzl−1) (5.3)

where

p(zl,i = 1|zzzl−1) = σ(a
(l)
i ) = σ(W

(l)
i: zzzl−1 +b

(l)
i ), (5.4)

σ(.) is the sigmoid function, and W (l) is the weights connecting the lth layer to the (l + 1)th layer.

Depending on the structure of the target space Y , we can use an appropriate model for output dis-

tributions as follows: (1) For classification, we model the output distribution with softmax function,

p(Y = i|zzzL)= softmax(W
(L+1)
i: zzzL+bbb

(L+1)
i ); (2) For binary output vectors Y , we use a product of Bernoulli

distributions, p(yyy|zzzL) = ∏i p(yyyi|zzzL) where p(Yi = 1|zzzL) = σ(W
(L+1)
i: zzzL+bbb

(L+1)
i ); (3) For real-valued out-

put vectors Y , we use Gaussian distribution, p(Y |zzzL) = N (yyy;µµµ = W (L+1)zzzL +bbb(L+1),σσσ2). The condi-

tional distribution p(yyy|xxx) from the model is computed using the Bayes’ rule and the Markov assumption

(Equation 5.2) in PIBs 1:

p(yyy|xxx) =
∫

p(yyy,zzz|xxx)dzzz =
∫

p(yyy|zzz)p(zzz|xxx)dzzz =
∫ L+1

∏
l=1

p(zzzl|zzzl−1)dzzz (5.5)

1Here we use integral
∫

even for discrete-valued variables instead of sum ∑ for denotation simplicity.
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Figure 5.1: A directed graphical representation of a PIB of two bottlenecks. The neural network param-

eters θθθ = (θθθ 1,θθθ 2,θθθ 3). The dashed blue arrows do not denote variable dependencies but the relevance

decoders for each bottleneck. The relevance decoder ptrue(yyy|zzzi), which is uniquely determined given

the encoder pθθθ (zzzi|xxx) and the joint distribution pD(xxx,yyy), is intractable. We use pθθθ (yyy|zzzi) as a variational

approximation to each intractable relevance decoder ptrue(yyy|zzzi).

where zzz = (zzz1,zzz2, ...,zzzL) is the entire sequence of hidden layers in the neural network. Note that for a

given joint distribution pD(xxx,yyy), the relevance decoder ptrue(yyy|zzzl) is uniquely determined if an encoding

function p(zzzl|xxx) is defined. Specifically, the relevance decoder is determined as follows:

ptrue(yyy|zzzl) =
∫

pD(xxx,yyy)
p(zzzl|xxx)

p(zzzl)
dxxx (5.6)

It is also important to note that many stochastic neural networks have been proposed (e.g., [29],

[30], [31], [32], [33]). However, our motivation for this stochasticity is that it enables sampling of

bottleneck variables given the data variables (X ,Y ). The generated bottleneck samples are then used

to estimate mutual information. Thus, our framework does not depend on a specific stochastic model.

Furthermore, deterministicity makes estimation of mutual information harder. In deterministic neural

networks, we only have one sample of hidden variables given one data point. Thus, estimating mutual

information for hidden variables in this case is as hard as estimating mutual information for the data

variables themselves.

5.2.2 Learning Principle

Since the neural network is a lossy representation of the original data space, a learning principle should

make this loss in a beneficial manner. Specifically in PIBs, we propose to jointly compress the network’s

intermediate spaces and preserve relevant information simultaneously at all layers of the network. For
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Figure 5.2: Minimizing JPIB can be intuitively interpreted as tightening the information knots of a neu-

ral network architecture. Here a curvature of the curve connecting two consecutive layers represents

compression while the thickness of the string connecting Zl to Y indicates relevance level.

the lth-level bottleneck Zl , the compression is defined as the mutual information between Zl and the

previous-level bottleneck Zl−1 while the relevance is specified as its mutual information with the target

variable Y . We explicitly define the learning objective for PIB as:

LPIB(Z) := LPIB(θθθ) :=
L

∑
l=0

[

β−1
l I(Zl,Zl−1)− I(Zl,Y )

]

(5.7)

where the layer-specific Lagrangian multiplier β−1
l controls the tradeoff between layer complexity and

predictive power in each bottleneck, and the concept of compression and relevance is taken to the ex-

treme when l = 0 (with convention that I(Z0,Z−1) = I(X , /0) = H(X) = constant). Here we prefer to this

extreme, i.e., the 0th level, as the super level. While the lth level for 1≤ l ≤ L indicates a specific hidden

layer l, the super level represents the entire neural network as a whole.

Specially, the PIB objective can be consider as a joint version of the theoretical analysis in [15]. A

special notice is that the relevance terms in our PIB objective is equally weighted across different layers.

A possible extension to our PIB objective is to weight the information terms of different layers but this

is out of the scope of this work for now.

Definition 5.2.1. (The super level) The 0th level in a neural network is referred to as the super

level.

Optimizing PIBs now becomes the minimization of LPIB(Z) which attempts to decrease I(Zl,Zl−1)

and increase I(Zl,Y ) simultaneously. The decrease of I(Zl,Zl−1) makes the representation at the lth-level

more compressed while the increase of I(Zl,Y ) promotes the preservation of relevant information in Zl
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about Y . An intuitive meaning of minimizing JPIB is presented in Figure 5.2 as tightening the “informa-

tion knots" of a neural network architecture at all levels (including the super level). That is, reducing

the PIB objective is intuitively as gradually tightening the information with the hidden layers guided by

the relevant information with regard to the target variable. In optimization’s aspect, the minimization

of LPIB is much harder than the minimization of LIB since LPIB involves dependent terms that even the

self-consistent equations of the IB framework are not applicable to this case. Furthermore, LPIB is in-

tractable since the bottleneck spaces are usually high-dimensional and the relevance encoders ptrue(yyy|zzzl)

(computed by Equation 5.6) are intractable. In the following section, we present our approximation

to LPIB which fully utilizes the existing architecture without resorting to any model that is not part of

the considered neural network. This approximation then leads to an effective gradient-based training of

PIBs.

5.3 Approximate learning

Here, we present our approximations to the relevance and the compression terms in the PIB objective

LPIB. We use variational methods for the relevance terms while simply rely on Monte Carlo sampling

for estimating the compression terms. Key derivations and important propositions that accompany the

approximations are also presented.

5.3.1 Approximate Relevance

Since the relevance decoder ptrue(yyy|zzzl) (Equation 5.6) is intractable, we cannot compute mutual infor-

mation I(Y,Zl) exactly. Instead we use a variational relevance decoder pv(yyy|zzzl) to approximate the

intractable relevance decoder. In this variational approximation, we posit a family of distributions and

then find a member of that family that is closest to the intractable distribution in terms of KL divergence.

Specifically, we firstly decompose the mutual information into the difference of two entropies:

I(Zl,Y ) = H(Y )−H(Y |Zl) (5.8)
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where H(Y ) = constant can be ignored in the minimization of L(Z), and

H(Y |Zl) =−
∫

p(yyy,zzzl) log ptrue(yyy|zzzl)dyyydzzzl (5.9)

=−
∫

p(zzzl)ptrue(yyy|zzzl) log ptrue(yyy|zzzl)dyyydzzzl (5.10)

=−
∫

p(zzzl)ptrue(yyy|zzzl) log pv(yyy|zzzl)dyyydzzzl−
∫

p(zzzl)DKL[ptrue(yyy|zzzl)||pv(yyy|zzzl)]dzzzl (5.11)

≤−
∫

p(zzzl)ptrue(yyy|zzzl) log pv(yyy|zzzl)dyyydzzzl (5.12)

=−
∫

p(yyy,zzzl) log pv(yyy|zzzl)dyyydzzzl (5.13)

=−
∫

p(xxx,yyy,zzzl) log pv(yyy|zzzl)dyyydzzzldxxx (5.14)

=−
∫

pD(xxx,yyy)p(zzzl|xxx,yyy) log pv(yyy|zzzl)dyyydzzzldxxx (5.15)

=−
∫

pD(xxx,yyy)p(zzzl|xxx) log pv(yyy|zzzl)dzzzldxxxdyyy (due to the Markov assumption 5.2) (5.16)

=−EpD(xxx,yyy)

[

Ep(zzzl |xxx) [log pv(yyy|zzzl)]
]

=: H̃(Y |Zl) (5.17)

where the equality holds iff ptrue(yyy|zzzl) = pv(yyy|zzzl),∀yyy ∈ Y,zzzl ∈Zl . In PIBs, we propose using the higher-

level part of the existing network architecture at each layer to define the variational relevance encoder

for that layer, i.e., pv(yyy|zzzl) = p(yyy|zzzl) where p(yyy|zzzl) is determined by the network architecture. In this

case, we have:

pv(yyy|zzzl) = p(yyy|zzzl) =
∫ L+1

∏
i=l

p(zzzi+1|zzzi)dzzzL...dzzzl+1 = Ep(zzzL|zzzl) [p(yyy|zzzL)] (5.18)

In other words, the intractable relevance decoders ptrue(yyy|zzzl) is approximated by the distributions p(yyy|zzzl)

which is defined by the network architecture. Reducing H̃(Y |Zl) has a meaning as reducing an upper

bound of H(Y |Zl) in hope that H(Y |Zl) is reduced as well. More importantly, H̃(Y |Zl) involves only the

neural network’s parameters thus helps optimizing the neural network explicitly using the IB mechanism.

We will refer to H̃(Y |Zl) as the variational conditional relevance for the lth-level bottleneck variable Zl

for the rest of this work.

Definition 5.3.1. (Variational Conditional Relevance (VCR)) The variational conditional relevance

for lth-level bottleneck variable Zl is defined as H̃(Y |Zl).

What follow are two important results which indicate that the relevance terms in our objective is closely

and mutually related to the concept of the MLE principle.

Proposition 5.3.1. The VCR at the super level (i.e., l = 0) equals the negative log-likelihood (NLL)

function.
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Proposition 5.3.2. The VCR at the highest-level bottleneck variable ZL equals the VCR for the

entire compositional bottleneck variable Z = (Z1,Z2, ...,ZL) which is an upper bound on the NLL.

That is,

H̃(Y |ZL) = H̃(Y |Z)≥−EpD(xxx,yyy) [log p(yyy|xxx)] (5.19)

While Proposition 5.3.1 is a direct result of Equation 5.18, Proposition 5.3.2 holds due to Jensen’s

inequality (its detail derivation in Appendix I.A).

In PIB’s terms, the MLE principle can be interpreted as a statistic mechanism that attempts to in-

crease the VCR of the network as a whole. In contrast, the PIB objective takes into account the VCR at

every level of the network, not just the entire network as in the MLE principle. In the other direction, the

VCR can also be interpreted in terms of the MLE principle as well. It follows from Equation 5.17 and

5.18 that the VCR for layer l (including l = 0) is the NLL function of p(yyy|zzzl). Therefore, increasing the

relevance components of JPIB is equivalent to performing the MLE principle for every layer level instead

of the only super level as in the standard MLE. Another sound interpretation is that our PIB framework

encourages forwarding explicit information from all layer levels for better exploitation during learning

while the MLE principle performs an implicit information forwarding by using only information from

the super level. Finally, the VCR for a multivariate yyy can be decomposed into the sum of that for each

component of yyy (see Appendix I.C).

5.3.2 Approximate Compression

The compression terms in LPIB involve computing mutual information between two consecutive bottle-

necks. For simplicity, we present the derivation of I(Z1,Z0) only 2. We decompose the mutual informa-

tion as follows:

I(Z1,Z0) = H(Z1)−H(Z1|Z0), (5.20)

which consists of the entropy and conditional entropy term. The conditional entropy can be further

rewritten as:

H(Z1|Z0) =
∫

p(zzz0)H(Z1|Z0 = zzz0)dzzz0 =
∫

p(zzz0)
N1

∑
i=1

H(Z1,i|Z0 = zzz0)dzzz0 (5.21)

= Ep(zzz0)

[

N1

∑
i=1

H(Z1,i|Z0 = zzz0)

]

(5.22)

where Z1 = (Z1,i)
N1

i=1 and H(Z1,i|Z0 = zzz0) =−q logq− (1−q) log(1−q) where q = p(Z1,i = 1|Z0 = zzz0).

The entropy term H(Z1) however remains exponential in the dimensionality of z1 since p(zzz1) does not

2The extension at the other levels is straightforward from the derivation of I(Z1,Z0).

25



have a closed-form representation. Here we propose resorting to empirical samples of zzz1 generated by

Monte Carlo sampling to estimate the entropy:

H(Z1) =−Ep(zzz1)[log p(zzz1)]≈−
1

M

M

∑
k=1

log p(zzz
(k)
1 ) =: ĤMLE(Z1) (5.23)

where

zzz
(k)
1 ∼ p(zzz1) = Ep(zzz0)[p(zzz1|zzz0)] (5.24)

Even though p(zzz1) does not have a closed-form, sampling from p(zzz1) is made easy with Equation 5.24.

This estimator is also known as the maximum likelihood estimator or ‘plug-in’ estimator ([34]). The

larger number of samples M guarantees the better plug-in entropy by the following bias bound ([35])

|E[ĤMLE(Z1)]−H(Z1)| ≤ log

(

1+
|Z1|−1

M

)

(5.25)

where |Z1| denotes the cardinality of the space of Z1. In practice, log p(zzz1) may be numerically unstable

for large cardinality |Z1|. In the large space of Z1, the probability of a single point p(zzz1) may becomes

very small that log p(zzz1) become numerically unstable. To overcome this problem, we propose an upper

bound on the entropy using Jensen’s inequality:

log p(zzz1) = logEp(zzz0)[p(zzz1|zzz0)]≥ Ep(zzz0) [log p(zzz1|zzz0)] (5.26)

Thus,

H(Z1)≤−Ep(zzz1)

[

Ep(zzz0) [log p(zzz1|zzz0)]
]

:= H̃(Z1) (5.27)

The upper bound H̃(Z1) is numerically stable because the conditional distribution p(zzz1|zzz0) is factorized

into ∏i p(z1,i|zzz0), therefore, log p(zzz1|zzz0) =∑i log p(z1,i|zzz0) which is more stable. The upper bound H̃(Z1)

can then be estimated using Monte Carlo sampling for zzz0 and zzz1.

Note that both approximate relevance and approximate compression involves integral or sum over

exponential number of terms and there is no simplification. In practice, we further approximate the

approximate relevance and approximate compression using Monte Carlo sampling since drawing zzzl from

xxx is easy in stochastic neural networks.

5.3.3 Approximate Gradients via Binary Bottlenecks

Discrete-valued variables in PIBs make standard back-propagation not straightforward. Fortunately, one

can estimate the gradient in this case. For this problem, [31] used a Generalized EM algorithm while

[36] proposed to resort to reinforcement learning. However, these estimators have high variance. In this

work, we use the gradient estimator inspired by [32] for binary bottlenecks because it has low variance

despite of being biased. Specifically, a bottleneck zzz = (z1,z2, ...,znl
) can be rewritten as being continuous

by zi = σ(ai)+ εi where

εi =







1−σ(ai) with probability σ(ai)

−σ(ai) with probability 1−σ(ai)
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Algorithm 1 Minibatch version of training PIB, we use M = 16 for training (and M = 32 for testing).

1: procedure GRAD-PIB

2: Input: Labeled training dataset SD

3: θθθ ← Initialize parameters

4: repeat:

5: (xxxi,yyyi)
N
i=1 ← Random minibatch of N samples drawn from SD

6: Generate M samples of zzzi per each sample of zzzi−1 for 1≤ i≤ L

7: Use the generated samples above and Equations 5.17 and 5.27 to approximate L̃PIB(θθθ)

8: ggg←
∂

∂θθθ
L̃PIB(θθθ) using Raiko estimator

9: θθθ ← Update parameters using the approximate gradients ggg and SGD

10: until convergence of parameters θθθ

11: Output: θθθ

12: end procedure

The bottleneck component zi defined as above still gets value of either 0 or 1 but it is decomposed into

the sum of a deterministic term and a noise term. The gradient is then propagated only through the de-

terministic term and ignored in the noise term. A detail of gradient-based training of PIB is presented in

Algorithm 1. A nice property of Algorithm 1 is that at each iteration we can perform Monte Carlo sam-

pling for one single pass and use these samples to estimate the approximate relevance and compression

for all levels. This property however comes with a tradeoff that it requires exponentially more samples

for higher-level layers. A possible solution for this limitation is a new sampling mechanism in which a

fixed number of samples are used for estimating the information terms regardless of layer levels. The

details of this solution is however out of the scope of this thesis’s current version.
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Chapter VI

Experiments

This chapter presents some empirical results of our proposed PIB framework. Here we used the same

architectures for PIBs and Stochastic Feed-forward Neural Networks (SFNNs) (e.g., [31]) and trained

them on the MNIST dataset ([20]) for image classification, odd-even decision problem and multi-modal

learning. Here, a SFNN simply prefers to feed-forward neural network models following the MLE prin-

ciple for learning model parameters. Each hidden layer in SFNNs is also considered as a stochastic

variable. The aforementioned tasks are to evaluate PIBs, as compared to SFNNs, in terms of general-

ization, learning dynamics, and capability of modeling complicated output structures, respectively. All

models are implemented using Theano framework ([37]).

6.1 MNIST Classification

In this experiment, we compare PIBs with SFNNs and deterministic neural networks in the classification

task. For comparisons, we trained PIBs and five additional models. The first model (Model A) is a

deterministic neural network. In Model D, we used the weight trained in Model A to perform stochastic

prediction at test time. Model E is SFNN and Model B is Model C with deterministic prediction during

test phase. Model C uses the weighted trained in PIB but we report deterministic prediction instead of

stochastic prediction for test performance.

Model Mean (%) Std dev.

deterministic (A) 1.73 -

deterministic SFNN as deterministic (B) 1.88 -

PIB as deterministic (C) 1.46 -

deterministic as stochastic (D) 2.30 0.07

stochastic SFNN (E) 1.94 0.036

PIB 1.47 0.034

Table 6.1: The MNIST classification results of various models.

The MNIST dataset ([38]) contains a standard split of 60000, and 10000 examples of handwritten

digit images for training and test, respectively in which each image is grayscale of size 28× 28 pixels.

We used the last 10000 images of the training set as a holdout set for tuning hyper-parameters. The best

configuration chosen from the holdout set is used to retrain the models from scratch in the full training

set. The result in the test set is then reported (for stochastic prediction, we report mean and standard

deviation). We scaled the images to [0,1] and do not perform any other data augmentation. These base

configurations are applied to all six models we use in this experiment.
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Figure 6.1: A comparison of Monte-Carlo averaging and deterministic prediction of PIB.

The base architecture is a fully-connected, sigmoid activation neural network with two hidden layers

and 512 units per layer. Weights are initialized using Xavier initialization ([39]). Models were optimized

with stochastic gradient descent with a constant learning rate of 0.1 and a batch size of 8. For stochastic

sampling, we generate M = 16 samples per point during training and M = 32 samples per point during

testing. For stochastic prediction, we run the prediction 10 times and report its mean and deviation

standard. For PIBs, we set βl = β ,∀1 ≤ l ≤ L. We tuned β from {0}∪{10−i : 1 ≤ i ≤ 7}, and found

β−1 = 10−4 works best.

Table 6.1 provides the results in the MNIST classification error in the test set for PIB and the com-

parative models (A), (B), (C), (D), and (E). As can be seen from the table, PIB and Model C gives nearly

the same performance which outperform deterministic neural networks and SFNNs, and their stochastic

and deterministic version.

It is interesting to empirically see that the deterministic version of PIB at test time (Model C) gives

a slightly better result than PIB. This also empirically holds for the case of SFNN. To investigate more

in this, we compute the test error for various values of the number of samples used for Monte-Carlo

averaging, M (Figure 6.1). As we can see from the figure, the Monte-Carlo averaging of PIB obtains its

good approximation around M = 30 and the deterministic prediction roughly places a lower bound on

the Monte-Carlo averaging at test time. Additionally, we visualize the first layer’s learned filters under

different frameworks. In a standard deterministic neural network and SFNN, all layers in the network

are modified in a collaborative manner to reduce the likelihood function as a whole at each iteration.
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In PIB, on the other hand, each layer contributes to the relevance level of the entire network and the

layer itself. Therefore, it is expected that a layer in an PIB captures more relevant information about the

target variable. To observe this effect, we look at the first-level features learned by deterministic neural

network, SFNN and PIB in Figure 6.2. The figure shows that PIB shows sharper features at many units

that deterministic neural network and SFNN cannot learn.

Figure 6.2: The learned weights of the first layer in MNIST classification for various models: determin-

istic neural networks (left), SFNN (middle), and PIB (right).

6.2 Learning dynamics

One way to visualize the learning dynamic of each layer of a neural network is to plot the layers in the

information plane ([1], [27]). The information plane is an information-theoretic plane that characterizes

any representation Z = Z(X) in terms of (I(Z,Y ), I(Z,X)) given the joint distribution I(X ,Y ). The

plane has I(Z,X) and I(Z,Y ) as its horizontal axis and its vertical axis, respectively. In the general IB

framework, each value of β specifies a unique point of Z in the information plane. As β varies from 0

to ∞, Z traces a concave curve, known as information curve for representation Z, with a slope of β−1.

The information-theoretic goal of learning a representation Z = Z(X) is therefore to push Z as closer to

its corresponding optimal point in the information curve as possible. For multi-layered neural networks,

each hidden layer Zl is a representation that can also be quantified in the information plane.

In this experiment, we considered an odd-even decision problem in the MNIST dataset in which the

task is to determine if the digit in an image is odd or even. We used the same neural network architecture

of 784-10-10-10-1 for PIB and SFNN and trained them with Stochastic Gradient Descent (SGD) with

constant learning rate of 0.01 in the first 50000 training samples. For PIB, we use β−1
l = β−1 = 10−4.

Since the network architecture is small, we can compute mutual information Ix := I(Zi,X) and Iy :=

I(Zi,Y ) precisely and plot them over training epochs.

As indicated by Figure 6.3, both PIB and SFNN enable the network to gradually encode more in-

formation into their hidden layers at the beginning as I(Zi,X) increases. The encoded information at

the beginning also contains some relevant information for the target variable as I(Zi,Y ) increases as

well. However, information encoding in the PIB is more selective as it quickly encodes more relevant
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Figure 6.3: The learning dynamic of PIB (left) and SFNN (right) in a decision problem are presented

in the information plane (the log function is in the natural base e). Each point represents a hidden

layer while the color indicate epochs. Because of the Markov assumption (Equation 5.2), we have

H(X)≥ I(Zi,X)≥ I(Zi+1,X) and I(X ,Y )≥ I(Zl,Y )≥ I(Zl+1,Y ).

information (it reaches higher I(Z,Y ) but in lesser number of epochs) while keeps the layers concise

at higher epochs. The SFNN, on the other hand, encodes information in a way that matches the model

distribution to the empirical data distribution. As a result, it may encode irrelevant information that hurts

the generalization.

We also evaluate the learning dynamics of PIB in terms of classification errors in Figure 6.4. Both

the training error curve and the validation error curve of PIB lie below its corresponding curve of SFNN.

It indicates that our PIB framework exploits the neural network’s representation faster. We hypothesize

that this faster convergence property is due to our explicit information encoding and compression in

the PIB objective. At each iteration, while the SFNN is trying to match the model distribution to the

empirical distribution, the PIB framework encourages a compressed yet informative representation at

every level of the neural network. As a result, the neural network under the PIB framework somehow

captures better the regularities in the data distribution that improve generalization.

6.3 Multi-modal learning

As PIB and SFNN are stochastic neural networks, they can model structured output space in which a

one-to-many mapping is required. A binary stochastic variable zzzl of dimensionality nl can take on 2nl

different states each of which would give a different yyy. This is the reason why the conditional distribution

p(yyy|xxx) in stochastic neural networks is multi-modal.

In this experiment, we followed [32] and predicted the lower half of the MNIST digits using the

upper half as inputs. We used the same neural network architecture of 392-512-512-392 for PIB and

SFNN and trained them with SGD with constant learning rate of 0.01. We trained the models in the full

training set of 60000 images and tested in the test set. For PIB, we also used β−1
l = β−1 = 10−4. The

visualization in Figure 6.5 indicates that PIB models the structured output space better and faster (using
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Figure 6.4: Classification errors during training and validation of PIB (β−1 = 10−4) and SFNN.

lesser number of epochs) than SFNN. The samples generated by PIB is totally recognizable while the

samples generated by SFNN shows some discontinuity (e.g., digit 2,4,5,7) and confusion (e.g., digit

3 confuses with number 8, digit 5 is unrecognizable or confuses with number 6, digit 8 and 9 are

unrecognizable).
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Figure 6.5: Samples drawn from the prediction of the lower half of the MNIST test data digits based on

the upper half for PIB (left, after 60 epochs) and SFNN (right, after 200 epochs). The leftmost column

is the original MNIST test digit followed by the masked out digits and nine samples. The rightmost

column is obtained by averaging over all generated samples of bottlenecks drawn from the prediction.

The figures illustrate the capability of modeling structured output space using PIB and SFNN.

6.4 Additional Experiment: Structure Analysis

It is also interesting to analyze how expanding 1 network architecture affects its learning and perfor-

mance. The expansion can either in vertical direction (Figure 6.6, 6.7 and 6.8), i.e., changing the num-

ber of units within a layer, or horizontal direction, i.e., changing the number of hidden layers. For

vertical expansion, it can be interpreted as changing the cardinality of the code space but in an effective

way: exponentially. Increasing a code space’s cardinality means allow more room for encoding more

information. To extract relevant information from the original data space, the code space needs to have

enough room for such relevant information. For this experiment, we use the same network architecture

of 784-10-10-10-1 as a base one and decrease the number of units within a layer by 2. As we shrink the

second layer,it gets closer to the third layer in the information plane. This can be explained as follows.

Since the code space of the second layer gets smaller, it is easier for the third layer to encode almost all

of information from the second layer’s code space. In case of PIB, they even get closer as we explicitly

reduce the mutual information between the second and the third layer.

1Here we use “expansion" to mean both expanding and shrinking.
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Figure 6.6: The learning dynamic of PIB (left) and SFNN (right) in architecture of 784-10-8-10-1.

Figure 6.7: The learning dynamic of PIB (left) and SFNN (right) in architecture of 784-10-6-10-1.

Figure 6.8: The learning dynamic of PIB (left) and SFNN (right) in architecture of 784-10-4-10-1.
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Figure 6.9: The learning dynamic of PIB (left) and MLE (right) in a decision problem in 10-10-8.

Figure 6.10: The learning dynamic of PIB (left) and MLE (right) in a decision problem in 10-10-6.

Figure 6.11: The learning dynamic of PIB (left) and SFNN (right) in architecture of 784-10-10-1.
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Chapter VII

Conclusion

In this chapter, we summarize our contributions and discuss limitations in our proposed algorithm. Fol-

lowed that, we discuss our future work towards extending our framework to larger neural network archi-

tecture and developing an analysis tool for architecture diagnosis.

7.1 Summary

Here we summarize our contributions and achievements. In this thesis, we

• provided arguments about inefficiency of MLE principle for learning neural networks and encour-

aged a re-thinking of a new learning principle that is specifically tailored for neural networks;

• introduced a principled interpretation of multi-layered architecture of neural networks and an

information-theoretic learning framework, PIB, to better exploit a neural network’s representation

by explicitly considering representation complexity and predictive power for every layer;

• proposed an approximation that fully utilizes all parameters in a neural network and does not

resort to any extra models, followed by an efficient gradient-based algorithm, the first algorithm

that learns all parameters using Information Bottleneck principle;

• supported the effectiveness and robustness of our PIB with the qualitative empirical results.

7.2 Discussion

We address here some limitations in our current work and some potential future directions that we can

extend our ideas.

7.2.1 Limitation

• The sampling mechanism in our proposed gradient-based algorithm requires an exponential num-

ber of samples as the number of hidden layers grow, which currently causes computational burden

in large neural network architectures;

• Since our algorithm is of gradient-based learning, it inherits the weakness of gradient-based learn-

ing which fails to guarantee the theoretical learning bound and underestimate the variance of the

underlying data distribution; this property makes it difficult to analyze neural network architec-

tures;

• Here only fully-connected feed-forward architecture with binary hidden layers are considered and

larger neural network architecture is not yet exploited.
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7.2.2 Future work

• Since we used generated samples to estimate mutual information, we can potentially extend the

learning framework to larger and more complicated neural network architectures. This work is our

first step toward exploiting expressive power of large neural networks using information-theoretic

perspective that is not yet fully utilized.

• Our framework incorporated information theory framework to a neural network architecture and

learned all its parameters according to the complexity-predictiveness tradeoff for each layer; there-

fore it holds a great potential of analyzing neural network architectures (e.g, detecting which neu-

ron is redundant in terms of the amount of information it preserves so that we can decide if it is

beneficial to prune the neuron).

For further discussion, please catch me at http://thanhnguyentang.com or thanhnguyen2792@

gmail.com.
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Appendix I

A. Proof of the Prepositions

Proof of the Preposition 2: It follows from the Markov chain assumption (5.2) that p(yyy|zzz)= p(yyy|zzzL,zzzL−1, ...,zzz1)=

p(yyy|zzzL) and from Jensen’s inequality that

∫

p(zzz|xxx) log p(yyy|zzz)dzzz≤ log

(

∫

p(zzz|xxx)p(yyy|zzz)dzzz

)

= log p(yyy|xxx)

Hence, the variational compositional relevance H̃(Y |Z) equals the variational relevance for the last bot-

tleneck and is an upper bound on the negative log-likelihood as well (Q.E.D).

B. MLE as distribution matching

The purpose of the MLE principle can be interpreted as matching the model distribution to the empirical

data distribution using the KL divergence as a measure of their discrepancy. Rigorously, given a set

of samples X = {xxx1,xxx2, ...,xxxN} i.i.d. drawn from some underlying data distribution pD(xxx), a parametric

model pmodel(xxx;θθθ) attempts to map any data sample xxx to a real number that estimates the true probability

pD(xxx). The MLE principle maximizes the likelihood function under the empirical data distribution. This

in turn can be interpreted as matching the model distribution pmodel with the data distribution pD by

minimizing their KL divergence to find the maximum likelihood (point) estimator for θθθ :

θθθ ML = argmax
θθθ

Exxx∼pD(xxx) [log pmodel(xxx;θθθ)] (1)

= argmin
θθθ

[

−Exxx∼pD(xxx) [log pmodel(xxx;θθθ)]+Exxx∼pD(xxx) [log pD(xxx;θθθ)]
]

(2)

= argmin
θθθ

DKL [pD(xxx)‖pmodel(xxx;θθθ)] (3)

≈ argmax
θθθ

N

∑
i=1

log pmodel(xxxi;θθθ) (4)

where expression (4) is an empirical estimation of expression (1) for N datapoints.

C. Variational relevance for multivariate target variable

The VCR at level l (defined by (5.17), (5.18)) for a multivariate variable yyy can be decomposed into the

variational conditional relevances for each of its components. Indeed, without loss of generality, we

assume bivariate target variable yyy = (y1,y2). It follows from the fact that the neurons within a layer are
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independent given some previous layer that we have

H̃(Y |Zl) =−EpD(xxx,y1,y2)

[

Ep(zzzl |xxx) [log p(y1,y2|zzzl)]
]

(5)

=−EpD(xxx)pD(y1,y2|xxx)

[

Ep(zzzl |xxx) [log p(y1|zzzl)+ log p(y2|zzzl)]
]

(6)

= ∑
i

−EpD(xxx)pD(yi|xxx)

[

Ep(zzzl |xxx) [log p(yi|zzzl)]
]

(7)

= ∑
i

H̃(Yi|Zl) (8)
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