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Parametric Interactions of Optical Modes 
A M I O N  YARIV, MEMBER,IEEE 

Absfract-A formalism for  treating  interactions  between optical 
modes  in  the presence of time-varying parameters is developed. The 
problems of parametric oscillation, frequency conversion, and  inter- 
nal  laser modulation are  treated, as well as a new  class of interactions 
involving parametric modulation in  the presence of negative losses. 

I. INTRODUCTION 

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHIS PAPER is  concerned  \yit,h the  st,udy of para- 
metric interactions in  the opt,ical region. The con- 
cept of parametric interactions is taken t o  mean 

the propagation, or  oscillat,ion, of electromagnetic waves 
in  the presence of time-varying parameters [l], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a]. These 
parameters include not only reactive ones, but lossy ones, 
such as conductivity, as well. 

The formalism  developed  below is relevant to a  number 
of experimental situations that have been the subject 
of numerous recent investigations. Among these are  the 
the AB4 phase-locked laser of Hargrove et al. [3 ] ;  the 
FM laser proposed by  Yariv [4], [lo] and  demonstrated  by 
Peterson and  Yariv [5] and  by  Harris  and Targ [6]; and 
the optical parametric oscillator discussed by  Kingston 
[7], Kroll [SI, and  demonstrated  by Giordnmine and 
Miller [9]. 

Some of the results derived below have  been used, 
without derivation, by  the aut’hor in an earlier publica- 
tion [lo]. 

11. EXPANSION OF RESOYATOR FIELDS 

Since a  great deal of the analysis that follo~vs is con- 
cerned with parametric interact,ions inside optical res- 
onators (or, in general, any resonator with typicaI di- 
mensions large compared t o  t,he wavelength), it is worth- 
while to derive first the spect,rum of modes and  their 
characteristic frcquencies  for the case of a passive res- 
onator. These modes,  considered as a  complete  ortho- 
normal  set, will  be  used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl-0 expand the resonator field  in 
the presence of parametric modulation. 

A formalism developed by Slater [ll] is found con- 
venient for obtaining the mode spect,rum discussed above. 
It is especially  useful, since it is not necessary t o  specify 
-the exact shape of the resonator so that  the results 
obtained  are  very general. 

Using Slater’s formalism we  define t,wo infinite set,s 
of vector functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,(?) and ga(F) satisfying 

k,E, = 0 x R a ,  k,R, = 0 x Ea (1) 

0.0, = o.H, = 0 (2) 
- - 
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and 6 x E, = 0 at  the boundaries of the resonator. 
For the moment, IC, is  considered as a  constant,  but will 
be  shown ho be equal to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, fi where w, is 2~ times the 
characteristic frequency of t,he uth mode. It follows from 
(1) that 

It also  follows from (I) and t,he boundary condition 
7% x B, = 0 t,hat 

where the  inkgration ext.ends over t,he whole volume of 
the optical resonator. The derivation of (4) is given by 
Slater 1111. The mode amplitudes are  normalized so that 

Using E, and IT, as complete orthonormal  sets in which 
to expand the electromagnetic fields i? (F,  1) and H ( F ,  t )  
inside the resonat,or, we can put 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and E have  their  customary definitions. For the 
moment, wa is a scalar constant  and p,(t),  q,(t) represent 
the time-varying part of the mode  fields. 

The field hamiltonian, i.e., the  total energy, is given 
by (using ndcs units) 

Substituting (6) and using (5 )  leads to a  “harmonic- 
oscillator” form of the hamiltonian 

x = 3 (p: + U:pa2). (8) 
a 

In order t.0 make some  more  definite statements  about 
le,, w,, and  the interdependence of p, ( t )  and qa(i),  it is 
necessary t.0 substitute  (sa)  and (6b) into Maxwell’s 
equations 

- - a i j  a v x H = - = - ( e l ? ) .  
at at 

30 
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The result is This results in 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= w a d ;  

and similarly, from (10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d 

W:qa(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-z I$a(t)I. 

Solving (1 1) and (12) simultaneously yields 

- = +jw,c*, 
dct 
dt 

- = - j W &  
dc, 
dt 

The  total energy at  time t is  given by X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEa w& (t)ca(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ea zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,c:(O)c,(O) and is thus  a constant, of the motion. 

qa(t) = Re [q,(O)ej”“’] 

p,(t) = - Im [w,,qa(0)eiwnf]. In this section we consider the case of a  multimode 
(13) IV. DIELECTRIC  MODULATION IN A RESONATOR 

This ident,ifies W, and k,  as t,he charact.erist,ic (radian) 
frequency and wave number, respectively, of the  ath- 
resonator mode. 

resonator whose dielectric constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is modulated har- 
monically in time. The  spatial  variation of E is left arbi- 
trary.  The solution of Maxwell equations for this case 
can be expressed as  a sum of characteristic solutions of 

111. THE NORMAL MODES the passive (nonmodulated) resonator with time-varying 
coefficients. These coefficients, taken at  a given instant,, 

. -  

It is possible to carry Out the analysis complet’ely in describe t,he distribution of the  total energy among the 
terms of p ,  and qa, but it is far more convenient, as will various modes. 
become  clear in t,he next sect,ion, to inOroduce a new set Max,?rell equations are writ,ten, in this case, as 
of field coordinates c, and  its complex conjugate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc*, which 

so that Subst,jluting (6) for E and in the first. equation of (20) 

q a  = (24- (e, + c,) 
1/2 * 

(15) 
gives 

. .  
1 / 2  

pa = jk) (e;?: - e,). 

Expressing t,he total energy (5) in terms of e*, and c, 
gives 

The same  substitut,ion in the second equation of (20) 
results in 

X = w,c,c:. 

The  quantity cac:/h is equal to the  total number of 
photons in  the  ath mode. This definition of normal mode 
amplit,udes is a  natural one in  the  study of parametric 
interactions, since the basic parametric mechanism  can 
be viewed  as a “collision” process. in which an integral 
number of photons at certain frequencies are  “annihilat,ed” 
while a new set of photons of different energies  is “created.”’ 
Expressing the  interaction  in  terms of field coordinates, 
such as the ea’s ,which are related directly to  the number 
of photons, introduces a desired measure of symmetry 
into’the diflerential equations describing this process and 
facilitates  their solution. 

The equations of motion for c*, and c, in a passive 
cavity are derived by  subst,ituting (15) into (11) and (12). 

’In a  quantum  mechanical  formulation of the problem  (see 
Louise11 [l]) h-*c,* and h-k, correspond to the creation and annihi- 
lation boson operators, respectively. 

where we assume that no conduction current exist,s, 
i.e., Z = 0. The dielectric constant  is t8aken as the sum 
of a constant  term  and  a  modulated  term 

E(?, t )  = E + El@, ‘I). (23) 

Using (22)  in (21) gives 

Taking  the scalar product of the  last equation with E, 
and  integrating over the  cavity volume  gives 

where Xaa is defined by 
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The equations of motion for the normal-mode am- 
plitudes are obtained by subst,it,uting (15) int,o (21) and 
(24). The result being zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d 

(cd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ c,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiay(cZ - c,) 

from which we get: 

If the dielectric perturbation is  t,ime-harmonic it can 
be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

€l(F, t )  = E1(l:) cos (at + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) (27) 

and using  (25) 

ssh = +Sth[ei(wt+d) + e-”wt*d’l 

where 

Equations (26)  show that  at  the absence of dielectric 
modulation, Xab = 0, the mode amplitudes vary as 
c: = ~”$0) exp ( jaJ). This suggests the  substitut,ion 

c:(t) = D:(t)ejWut 

ca(t) = Da(t)e-jwet. 
(29) 

Using  (28) and (29) in (26)  gives 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(jwei(wt+d) - jwe- j (ot+4) )(D$ejwtt - D,e-jU’)). (30) 

In the following analysis we  will make the  adiabatic 
approximation r i b  << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjw$, and neglect the  terms in- 
volving D 6  and D,“b on the  right side of (30). We are now 
in  a position to derive the equations pertaining to specific 
situations. 

FM Laser Oscillation 

Assume an optical resonator of length L corresponding 
to a laser with characteristic-resonance frequencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7i-C 

= 

where a is the mode integer that is equal to 2L/X. The 
modulation  radian frequency w of the dielectric constant 
is taken  as equal to  the intermode spacing w , + ~  - W ,  = 

rc/L i.e., 

w = W,+I - w,. (3 1) 

Using t,his condition in (30) and keeping on the  right 
side only those terms that  are multiplied by eio4t (the 
other  terms are nonsynchronous  and give no average 
interaction) results in 

Defining a coupling  coefficient K,b by 

and  approximating ~ w ~ * ~ w ~  in the region of interest by 
a,, (33) can be rewritt,en as 

These are the equations of motion for the normal 
mode amplitudes of an optical resonator moddated  “on 
resonance” (a = w , + ~  - ma). Equation (35) is identified 
with  a familiar Bessel equation recursion formuIa’ so 
that  its solution can  be written directly as 

DY,(t) = e J a W  (36) 

where J ,  is the ordinary Bessel function of order a. 
The solution including the e iwQt  term is thus 

- i a ( O + x / 2 )  

c(t) = 2 ~ ~ ( , l ) ~ i a ( + + r / 2 )  i w a t  
+ m  

e (37) 

and  constitutes  a  transient FM oscillation mode with a 
modulation index u t  and  a center frequency wo. This mode 
of oscilla.tion  is  discussed in Peterson and  Yariv [5], Yariv 
[lo], Harris  and .McDuff  [13], and  by  Harris  and McDuff 
[14]  which takes  into  account nonlinear behavior and mode 
competition effects. 

Another mode of FM oscillation results when the di- 
electric modulation frequency is nearly, but  not  quite, 
equal to  the intermode spacing wa+.] - w, of the laser 
resonator. The deviation from resonance is  taken as Aw 
so that 

- m  

Mathematical  Physics. New York: McGraw-Hill, 1953, pt. 2, p. 1323. 
%ee, for example, P. M. Morse and H. Feshbach, Methods of 
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Using the  substitution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D*,(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(32) yields 

- + jaAwGz 
dGf 
d t  
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where w e  made use of (34) and neglected, again, the small 
dependence of K on the optical frequency in  the region of 
interest. 

The  stesdy-state solution of (40)  is 

The  complete optical field can be written as 

and is to be viewed as  the basic resonator mode in  the 
presence of a  modulated E. c(t) corresponding according to 
(42), to  an FM oscillation with  a center frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwo and a 
modulation index (K /Aw)  [ lo],  [13]. Frequency  modulation 
of optical lasers in which the modulation of e is caused  by 
modulating an electro-optic crystal inside the laser resona- 
tor was  proposed by  Yariv 141, [lo].  Revelant experiments 
were performed by  Peterson  and  Yariv [5] and  by  Harris 
and  Targ [6]. Harris  and McDuff  [14] have  extended 
the  theory  to  the nonlinear region and considered the 
effects of gain saturation  and mode competition. Some 
detailed FM laser experiments have been described by 
by  Amman et al. [HI.  

Parametric  Ampli$cation and Oscillation 

Another  situat,ion which may  be  treated as a special 
case of the formalism developed above is that of parametric 
oscillation (or amplification) in a multimode resonator. 
The  starting point is, again, (30). We assume that  the 
interaction is limited to two modes;” a “signal” mode at  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w1 and  an  “idler” mode a t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwz. The dielectric modulation 
frequency w is equal to  the sum of w1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 

E l @ ,  t)  = e,($ cos (wt + 4) 

w = 0, + w2. 

(43) 

For  the case of two modes (30) becomes 

the coupling  coefficient SI,Z (or K I , ~ )  depends  on the direction of 
3In the optical region this  discrimination is due to the  fact  that 

propagation  in the nonlinear  crystals which is modulated dielectri- 
cally and will usually be vanishingly  small  except for one  pair of 
01, w2. In  the microwave region the mode  spacing, for small cavities, 

avoided. 
is nonequal and coupling between more than two modes can be 

where the i‘slo”’ terms involving D l  and D, on the  right 
side of (30) have been neglected. Using  (43)  gives 

(44) 

where K = K~ .2 as defined by (34). 
The solution of (42) is 

D:(t) = D*,(O) cosh $ + je+i’D2(0) sinh K t  5 
(45) 

Equations (45) describe the temporal  buildup of oscilla- 
tion in a lossless parametric oscillator. 

To obtain  an expression for the threshold of parametric 
oscillation we must  take cognizance of the losses that, 
up  to  this point, have been neglected. This can be done 
formally by introducing an effective conductivity u in 
the analysis with u/c equal to  the decay lifetime in the 
mode. This introduces an extra  term ( - c / ~ E ) c ~  on  the 
right side of (26) which eventually shows up  as 

where the conventional substitution U/E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/& has been 
made. The Q factors  can now be considered as represent- 
ing all the mode  losses including that of external coupling. 

The start-oscillation condition is derived by  putting 
dDT/dt  = dD2/d t  = 0. The  determinantal equation for 
nontrivial solution for DT and D2 gives 

which  using  (34) with a = 1, b = 2, becomes 

(47) 

This is the start-oscillation condition. It may be compared 
with the corresponding lumped-circuit expression for para- 
metric oscillation that reads 

AC 1 

2 G - d & , & ,  
--- 

where Ac is the amplitude of the time-varying part of 
the circuit capacitance, c1 and c2 are, respectively, the 
capacitances in  the signal and idler circuits. 

In  the optical parametric oscillator the modulation of 
the dielectric constant is brought  about  by applying an 
intense ‘(pump” optical field Ep,,(~) cos ut t o  a nonlinear 
crystal  medium characterized by  the nonlinear suscepti- 
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bility tensor elements [ E ] ,  [17]. This nlodulat,ion 
can  be considered as an effective modulation of the 
dielectric constant, el ( f )  according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ~ ( T )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX E ~ , ( T )  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x is the appropriate x i j k  element. 

This  point of view has been justified in a detailed anal- 
ysis of the optical paranlet,ric oscillat,or [20]. 

It may  be  interesting to estimate the threshold require- 
ments  in  terms of known materials  and available pump 
powers. When the index matching conditions are fulfilled 
[19], [20], t.he spatial int,egral of (37) is equal to  unity 
and  the threshold condition becomes 

_ - _ _  & XE,O 1 
26 2~ V ‘ Q ~ Q ~  

- >-, 

since the nonlinear coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx are usually quoted  in 
cgs units we use the equivalent cgs-threshold expression 

In a typical  optical  resonator  with a length of 5 em, a 
loss per pass of one percent, operat,ing a t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa frequency of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 x lo’* c/s (I p),  the quality  factor Q1 - Qz is of the 
order of magnitude of  10‘.  Choosing, as an example, 
I<H,PO,(KDP)  as the nonlinear crystal,  t’he  appropriate 
nonlinear constant is [21j xzzv - 3 x lo-’. Subst,itut.ing 
these values and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 2.2, into (48) gives 

E,, x 2 X IO-ksu 

for the threshold pump field. The corresponding power 
densit,y is 5 x lo3 watt~s/em’, a number easily attained 
with pulsed lasers. If instead of KDP we calculat,e the 
t,hreshold pump field  for a crystal  such  as IliWbOs with 
x E 3 x lo-’ esu [22] ,the result. is 

E,, z 2 X IO-’esu 

which corresponds to a threshold power density of -50 
watts/’cmz. The  last  result indicates t,hat a CW para- 
metric oscillator is quite feasible. This power density 
is  easily available inside the optical  resonator of present 
day gaseous laser oscillators. This suggests incorporating 
the nonlinear crystal  into the laser  oscillator for parametric 
CW oscillation. A pulsed parametric oscillator using 
LiNbOs has been  described by Giordmaine and Miller [91. 

V. Loss MODULATION 

hnot,her class of parametric  interactions result,s when 
a lossy, rather  than reactive,  parameter is nlodulated 
harmonically. h form of loss modulation was employed 
by Hargrove et al. [3] who introduced an acoustic dif- 
fraction cell into t.he optical  resonator of a laser oscil- 
lator.  The working equat,ions for,  this case and a discus- 
sion of their implication have been  given by  the  author 
[lo]. This section includes the derivation  and some ad- 
dit,ional discussion. 

The modulation of loss  will be  introduced by allowing 
the effective conductivit,y u of the resonator medium to 
vary  in space and  time so that Maxwell equations  can  be 

writ,ten as 

- 

v x $7 = U ( f ,  t)E + t - aE 
at 

Substituting for IT and E their expansion according to 
(6) and using (3) results in 

- d?, t> p a J a  - - -___ 
4; a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.\/E @,E, (50) 

for the first equation of (49) and in 

@h = p b  (51) 

for the second. 

ing over the  cavity volume leads Do 
Taking the  dot product of (40) with E,  and integrat,- 

4% = - c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,,b(t)Po - lj, (52) 

wherc 

S,,,(t) = - j U ( T ,  t)E,.E, dz:. 
1 
E V e  

(53) 

Equations (51) and (52) are the equations .of motion 
for  the pb’s and pB’s. By substituting for p o  and qb from 
(15), we obtain,  after some rearrangement,, the following 
equations for the normal mode amplitudes: 

where 
- 

Taking the conductivity as the sum of an average tenn 
and an harmonic perturbation 

u(7, t )  = u, + Ul(P) cos ( w t  + 4), 

t,he expression for ~ ~ , ~ ( t )  becomes 

A substitut,ion of (55) int,o the equat,ion of motion (54) 
gives 
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and  its complex conjugate for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdc,/dt. These are  the main 
working equations. 

Consider first the case when the modulation  frequency 
w is equal to  the mode spacing (or a multiple thereof) 
of the optical resonator. It is further assumed that  the 
resonance frequencies are equally spaced so that 

w,+1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, = w, - w,-1 = 0.  

Substituting (58) into (57) and retaining on the  right 
side only the synchronous terms, i.e., those having exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(jw,t) 
time dependence, gives 

(58) 

whose solution is [20] 

D*,(t) = Ia(Kt) 

which upon  substitution  in (60)  yields 

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC*,(t) = ~ ~ ( ~ t ) ~ i l ( w o + a o ) t + a d l  - ( r o / Z d t  

where wo is the frequency of the reference  mode, a = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 
Anot,her situation of practical importance, discussed 

in Yariv [lo], results when the modulation  frequency 
is slightly off resonance,  i.e.,  when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ , + 1  - W ,  = w - AW 

where Am is the deviation from resonance.  Defining the 
variable 0% ( t )  by 

c$ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD * , ( t ) e i [ ( ” ” + “ A ~ ) t + ’ ” ~ + + ” “ / 2 1  - ( r o / Z ~ ) t  e 

and  subst,ituting  into (59), using 

whose steady-state solution (dD:/dt = 0)  is 

D f  = Io(&) 

so that c*,(t) is  given by [lo] 

The new “super mode” 

where ca(t)  is  given by (64), corresponds to  an  optical 
field at  wo whose  envelope is  made  up of a  train of pulses 
with a period of ZT/W [lo], [23] .  

VI. PARAMETRIC OSCILLATION BY 

Loss MODULATION 

Since reactive parametric  modulation can, as discussed 
in Section IV, give rise to oscillation, it is of interest  to 
explore, a t  least on paper, the possibility of oscillation 
via loss modulation. 

The  starting point is  (57) with the modulation fre- 
quency w put equal to  the  sum of two resonance frequencies 
that  are  taken as w1 and w2 

. w  = w1 + w2. (65) 

After substituting (65) in (57) and defining D*,(t) by 

c*,(t) = D5(t)eiWut 

the synchronous part of (57) becomes 

(66) 

so that DT couples to D2 and vice versa. The  steady-state 
oscillation condition results in a  determinantal equation 

Under ordinary conditions when uol and uo2 represent 
the passive  losses of modes “ 1” and “2 ” ,  respectively, 
(68) cannot be  fulfilled. This follows from (56), which 
shows that K b , ,  5 (1/26) u1 and  from  the  fact  that 
the modulated part of the conductivity ul must  satisfy  the 
condition ul < uo, where uo is t,he average conductivity. 
Equation (68) can be satisfied, however,  when the average 
losses of mode “ 1” (represented by uol) or of mode “2” 
(uO2) are  reduced  without  a similar reduction in  the mod- 
ulated conductivity ul. This could  be the case if the  total 
conductivity of mode 1, for example, is given by 

u = u& + ul(F) cos (wt + 4) - u;; 

where uLl represents the passive resonator losses at w1 
and satisfies the condition u& > ul(y). The  term - CT:; 
represents some gain mechanism at wl, such as that due 
to  an inverted laser population. Under  these conditions 
uol in (68)  is  given by 

(To1 = u& - u;; 

and can, in principle, be made small enough so that  the 
condition of  (68) for parametric oscillation obtains. 

In  the case of reactive modulation it is  well  known 
that  the numbers of photons generated at  the various 
frequencies satisfy  the R’Ianley-Row relations [24]. In  the 
case of the parametric oscillator this relation takes  the 
form P,/wl = P2/w2 where PI and P2 are  the  total powers 
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produced at  the signal (wl) and idler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w2)  frequencies, re- 
spectively. These relations are satisfied by (46). 

In  the case of loss modulation we get, directly  from (67) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[w,D*,(t)D,(t)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -* (w2D%D2) 
d 

- - @,(e i'D*,D*2 + ei4D1D2). KI  2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

According to (16) and (66) w,D*,D, is the energy stored 
in  the  uth mode. The  last  term  in each of t,he  equations 
in (69) represents the power  produced by the loss mod- 
ulation. Since, according to (56), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ~ , ~ w ~  = K , , ~ W ~ ,  these 
powers are equal and we can  write 

P,  = P, 

where PI and P, are  the powers generated by  the non- 
linear loss modulation at  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, and up, respectively. 

As pointed out in Louise11 et al. [ 2 ] ,  the parametric 
equations  in the t.ime domain  have the same form as  the 
corresponding spatial  equations. As an example consider 
(67). The  spatial equivalent of these equat,ions is 

dD: 
dx 

__ - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--Icy Df - 5 . L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 1  2 

ei4D2 
(70) 

where a j  = aoi/ec, c being the velocity of propagation, 
CY is the  spatial  attenuation  constant,  and c i ,  is related 
to  K ~ , ;  by 

c .  . = K .  ./e 
1 . 1  1 . 1  

when index  matching [9] obtains.  From (TO) it follows t,hat 

Consider the special case when a1 + a2 = 0, i.e.,  when 
the negative losses (gain) of one  wave are equal  in mag- 
nitude to t'he losses of t.he other. When this  happens (71) 
has a simple solution given by 

DT(z) = DT(0) cosh (7%) 

- 1: D,(0) + !& e"'DT(0) sinh (yz) 
2 Y  i 

mhers 

Taking  the case of a single input at w1 SO that D*,(O) # 0 
but D2(0) = 0, (72) becomes 

DT(z) = DT(0) cosh (yz) - EL DT(0) sinh (7%) 

~ ~ ( 2 )  = -'x e-'+D:(O) si& (yz). 

27 
(73) 

2y 

Equations (73) describe how the amplitude of t,he input 
wave at w1 is amplified by  a factor ~ ( 1  - a l /Zy )eyz  
for yx >> 1. In addition, a new  wave at w2 = w - w1 is 
generated so that  the  output can  be taken at  w1 or w2. 

Equations (73) sat,isfy the condition P I  = P2 derived 
in the preceding section. In this case it takes  the form 

[Dl(z)DT(z) - D1(O)DT(O)]wl = DZ(z)D*,(z)w,. 

VII. P.4RA4iUETRIC FREQUENCY CONVERSION BY 

DIELECTRIC &~ODULhTION 

In  the parametric frequency converter Ohe modulation 
frequency w fulfills the condition 

wp = 0 + w1 (74) 

so that it is equal to t.he difference of the two frequencies 
that it couples and  not t,o their  sum. When (74) applies, 
t,he synchronous part of (30) becomes 

where K is defined, as in (34), by 

(75) 

Equations (75) do  not include losses. Their  solution, as 
is well known, 121, [16], and [17], corresponds to a periodic 
excha,nge of energy  between  modes 1 and 2 described by 

where, according t.0 (16), the energy in  a mode, say mode 
a, is given by w,c,c*, = w,D,D'$. It is of interest to in- 
vesstigate the effect of the inclusion of losses (positive 
and negative) on the behavior of the  frequemy converter. 
This is done by adding, phenomenologically, a dissipative 
term  that accounts for the decay (or growth) of radiation 
density  in each  mode at the  absence of coupling. Equation 
(75) is rewriOten as 

dD: 
dt 2 E  

-_ = _-_ Df - jie-'+DnY, 

(77) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuO1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo2 are  the effective conductivities at  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw1 
and w2. The  determinantal  equation  resuhing  from the 
steady-state condition is 

A  steady-state oscillation is thus only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApossible when  one 
of the two modes has (sufficient) negative losses. This 
can  be accomplished, for example, by  having one of the 
modes  amplified by a laser transition simultaneously 
with  the dielectric modulation. 

VIII. PARAMETRIC FREQUENCY CONVERSION BY 

Loss MODULATION 

Assume that  the frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw at which the losses are 
modulated  is  equal to  the difference of the frequencies 
of the two resonances that  are coupled by it, i.e., 

wa = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw + w1. (79) 

The synchronous part of (57) becomes 

which after  substituting c*,(t) = D*,(t)eiUat becomes 

~ The  determinantal  equation resulting from  the  steady- 
state oscillation condition is 

and is the same as  that for the loss modulated parametric 
oscillator, (68). The  argument following  (68) applies, 
consequently, in  this case and shows that  in  the presence 
of sufficient negative losses simultaneous oscillation at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w1 and w 2  can  be sustained by “lossy” pumping at w = 

In a manner similar to  that discussed in Section VI 
it should be possible to make  a  spatially distributed 
frequency converter for converting a “low”-frequency 
input a t  w1 to  an  output wave at  w 2  = w + wl. This  may 
be especially  useful for converting a low-frequency (say 
infrared) signal to a visible (or near visible) one where it 
can  be  detected efficiently and  with  a  fast response time 
with conventional photoemissive detectors. 

w2 - w1. 

IX. CONCLUSION 

The equations of motion  governing the  interaction of 
optical modes in  the presence of time-varying parameters 
have  been derived. A formalism of normal modes  is 
developed  which results in concise and  symmetric  formu- 
lation of the problem. Two general types of modulation 

have  been considered: 1) modulation of the dielectric 
constant  and 2) modulation of the losses. In  addition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to treating some well-known  cases such as paramet.& 
oscillation and  internal mode-locking in laser oscillators, 
new interactions involving loss modulation and dielectric 
modulation in  the presence of negative losses have been 
considered. 

REFERENCES 
[l] W. H. Louisell, Coupled  Modes  and  Parametric  Electronics. 

New York: Wiley,  1960. 
[2] W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum 

fluctuations  and noise in  parametric processes,” Phys. Eev., vol. 
124, pp. 1646-1654,  December  1961. This reference is denoted  in 

[3] L. E. Hargrove, R. L.  Fork,  and M. A. Pollack,  “Locking of 
the  text as LYS. 

HeNe laser modes induced by synchronous  intracavity modu- 
lation,” 1964, Annual Conference on  Electron  Device  Research, 
Cornel1 University, Ithaca, N.  Y.; Appl.   Phys. Letters, vol.  5, 
n. 45. .Jdv 1964. 

[4]  A. Yariv,  “Electro-optic  frequency  modulation in optical res- 
onators,” Proc. IEEE (Correspondence), vol.  52, pp. 719-720, 
June 1964. 

[5]  D.  G. Peterson  and A. Yariv,  “Parametric  frequency conversion 
by  the electro-optic effect in  KDP,” Appl.  Phys.  Letters, vol.  5, 

[6] S. E. Harris  and R. Targ, “FM oscillation of the He-Ne laser,” 
pp.  184-186, November 1964. 

[7] R. ,H. Kingston,  “Parametric  amplification  and oscillation at  
Appl.   Phys. Letters, vol. 5, pp. 202-204, November 1964. 

optical  frequencies,” Proc. I R E  (Correspondence), vol.  50,  p.472, 
April  1962. 

[SI N. M. Kroll,  “Parametric  amplification  in  spatially  extended 
media  and  application to the design of tunable oscillators at  
optical frequencies,’’ Phys. Rev., vol.  127, pp. 1207-1211, August 
1962. 

191 J. A. Giordmaine  and R. C. Miller,  ‘‘Tunable  coherent  para- 
metric oscillation in LiNbOa at optical frequencies,” Phys. Rev. 
Letters, vol.  14, pp. 973-976, June 1965. 

[io] A. Yariv, “Internal modulation  in  multimode  laser oscillators,” 
1964 Annual Conf.  on Electron Device Research, Cornell  Uni- 
versity, Ithaca, N. Y., June 1964. Published  in J .  Appl.  Phys., 
vol.  36, pp. 388-391, February 1965. This and [4] constitute, to  
the author’s knowledge, the first proposal  and  analysis of an 
FM laser using electro-optic  modulation and mode  locking  in- 
side a laser resonator. 

[Ill J. C. Slater, Microwave  Electronics. Princeton, N. J.: Van 

r _  . ., . . . ~ ~  ~. . ~. 

[12] E. Jahnke  and F. Emde, Tables of Functions. New York:  Dover, 
Nostrand, p. 57. 

. .  
p.  145. 

[13] S. E. Harris  and 0. P. McDuff, “FM laser oscillation-theory,” 
Appl.  Phys.  Letters, vol.  5, pp. 205-206, November 1964. 

[14] S. E. Harris  and 0. P. McDuff,  “Theory of FM laser oscilla- 
tion,” IEEE J. of Quantum  Electronics, vol. 1, pp. 245-263, 

[15] P. A. Franken  and J. F. Ward,  “Optical  harmonics and non- 
September 1965. 

linear phenomena,” Reu. Mod. Phus., vol.  35, DX). 23-39, Jan- 
uary 1963. 

[16] P. K. Tien,  “Parametric  amplification  and  frequency mixing in 
propagating circuits,” J. Appl.   Phys.,  vol. 29, pp.  1347-1357, 
September 1958. 

[17] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. 
Pershan,  “Interactions  between  light waves in  nonlinear 

[lS] E. 0. Amman, B. J. McMurtry, aad M. K.  Oshman,  “Detailed 
media,” Phys. Rev., vol.  127, pp. 1918-1938, September 1962. 

experiments  on  He-Ne FM lasers,” IEEE J. of Quantum Elm- 
tronics, vol. 1, pp. 263-6273, September 1965. 

[19] J. A. Giordmaine,  “Mixing of light beams in  crystals,” Phys. 
Rev., vol. 8, pp. 19-20, January 1962. 

[20]  A. Yariv  and W. H. Louisell, “Theory of the optical  parametric 
oscillator,” to be published. 

[21] A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Observation of 
continuous  optical  harmonlc  generation  with gas masers,” Phys. 
Rev.  Letters, vol. 11, p.  14, July 1963. 

[22]  G. D. Boyd? R. C. Miller, K. Nagsau, PI. L. Bond, and A. 
Savage, “LiNb?: an efficient phase  matchable  nonlinear 
optical  material, AppZ.  Phys.  Letters, vol. 5, pp. 234-236, 

[23] M. DiDomenico, Jr., “Small-signal analysis of internal 
December  1964. 

pp. 2870-2876,  October  1964. 
(coupling-type)  modulation of lasers,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  App l .  Phys., vol.  35, 

[24] J. M. Manley  and H. E. Rowe, “General  energy  relations  in 
nonlinear  reactance,” Proc. IRE (Correspondence), vol. 47, pp. 
2115-2116, December 1959. 

” .  I _ -  


