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Abstract

The Gaussian Mixture Model (GMM) is among the
most widely used parametric probability distribu-
tions for representing data. However, it is com-
plicated to analyze the relationship among GMMs
since they lie on a high-dimensional manifold. Pre-
vious works either perform clustering of GMMs,
which learns a limited discrete latent representa-
tion, or kernel-based embedding of GMMs, which
is not interpretable due to difficulty in computing
the inverse mapping. In this paper, we propose
Parametric Manifold Learning of GMMs (PML-
GMM), which learns a parametric mapping from a
low-dimensional latent space to a high-dimensional
GMM manifold. Similar to PCA, the proposed map-
ping is parameterized by the principal axes for the
component weights, means, and covariances, which
are optimized to minimize the reconstruction loss
measured using Kullback-Leibler divergence (KLD).
As the KLD between two GMMs is intractable, we
approximate the objective function by a variational
upper bound, which is optimized by an EM-style al-
gorithm. Moreover, We derive an efficient solver by
alternating optimization of subproblems and exploit
Monte Carlo sampling to escape from local minima.
We demonstrate the effectiveness of PML-GMM
through experiments on synthetic, eye-fixation, flow
cytometry, and social check-in data.

1 Introduction

Probabilistic models are effective tools for representing real-
world data in the presence of noise. For example, Gaus-
sian mixture models (GMMs) are regarded as a universal
visual vocabulary in computer vision [Sánchez et al., 2013;
Winn et al., 2005; Perronnin et al., 2006] due to its capacity
to model the mean and correlation in image patches; hidden
Markov models (HMMs) are often used to model the speech
sequence in natural language processing [Rabiner, 1989] be-
cause it can model the dynamics of both hidden (underly-
ing) processes and the observed speech sequences; linear
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dynamical systems (dynamic textures, DTs) are used to de-
scribe a video since it can abstract complex patterns of mo-
tion and appearance [Doretto et al., 2003]. Clustering prob-
abilistic models can produce hierarchical representations of
data, which can be used for retrieval, annotation, indexing and
codebook generation. Previous works have developed clus-
tering algorithms for Gaussian distributions [Yu et al., 2018;
Vasconcelos and Lippman, 1999], DTs [Chan et al., 2010],
and HMMs [Coviello et al., 2012].

While clustering probabilistic models can give hierarchical
representations, it cannot learn a continuous and interpretable
manifold on which we can see the continuous change be-
tween probabilistic models. In various application domains,
e.g., medical diagnosis [Carter et al., 2009], behavior analysis
[Chan et al., 2018] and visual recognition [Perronnin et al.,
2006], such an interpretable manifold provides better insight
into the subject differences and the underlying mechanisms.
For example, suppose we collect data from several subjects
and learn a subject-level GMM for each subject’s data. The
GMMs could be clustered to obtain common patterns among
the subjects, but this provides a limited discrete representation
(one of K clusters). Alternatively, if the GMMs are embedded
into a manifold, then the subject’s coordinates on the mani-
fold are continuous and their relationship with other subject
properties (e.g., subject age, performance) could be revealed
using correlation analysis. Furthermore, directions on the
manifold would correspond to changes in the structure of the
GMMs, providing insight on the underlying mechanisms of
the revealed correlations. Despite its importance, manifold
learning for probabilistic models has not been well-explored.

In this paper, we propose to learn a smooth and interpretable
manifold for GMMs, where the inverse mapping between the
low-dimensional latent space and the high-dimensional sta-
tistical manifold can be obtained easily. Inspired by PCA,
we propose a parametric approach for learning manifolds of
distributions. The GMM parameters for the component priors,

means, and covariances {πk,µk,Σk}
Kb

k=1 are each represented
by their own principal axes. The latent space (w, z,y) is the
coefficients on the principal axes, and projecting them onto
the principal axes yields the GMM parameters. Figure 1a illus-
trates the mappings between the statistical manifold and latent
space. By minimizing the KL divergence between the original
GMMs and their reconstructions through the latent space, we
obtain the parameters in f−1, and also a continuous and inter-
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Figure 1: Learning a Parametric Manifold for GMMs. (a) The GMM
parameters (π,µ,Σ) for the component priors, means, and covari-
ances are mapped to a latent space (w, z,y) corresponding to coeffi-
cients on the principal axes of the parameters. The forward mapping
f is obtained via an optimization problem to minimize reconstruction
error (KL divergence), while the inverse mapping f−1 is obtained
directly by projecting the latent variables onto the principal axes of
the parameters. (b) The latent space (w, z,y) is mapped to a hierar-
chical latent space v to further reduce the dimension, which models
dependencies among the component priors, means, and covariances.

pretable latent space for the statistical manifold. In addition,
the latent space (w, z,y) is mapped to a hierarchical latent
space v to further reduce the dimension (see Figure 1b), which
models dependencies among the latent space coefficients (and
hence among the component priors, means, and covariances).

Our contributions are three-fold: 1) we propose a para-
metric manifold of GMMs that can be explicitly generated
from latent variables; 2) we propose an optimization method
based on variational approximation to learn the parametric
mapping, and derive a fast solver by alternating optimization
and Metroplis-Hastings sampling; 3) we empirically show that
our method can reconstruct GMMs well and learn a smooth
and interpretable latent space in several application domains.

2 Related Work

Given a set of probabilistic models (PMs), with each PM repre-
senting one example in the dataset, the relationship among the
PMs can be uncovered through clustering, to obtain discrete
groups of common models, or through dimensionality reduc-
tion, to obtain a latent space where directions in the latent
space correspond to changes in the PM.

The hierarchical EM (HEM) algorithm is a seminal work
in clustering PMs [Vasconcelos and Lippman, 1999], and was
first proposed to cluster Gaussian distributions. The Gaussians
are collected into a “base” GMM, from which a “reduced”
GMM is estimated with fewer number of components. The
components in the reduced GMM serve as the representative
Gaussians for the clusters, and the cluster memberships map
between the Gaussians of the base GMM and the reduced
GMM. To avoid high computation cost, virtual samples are
generated from the base GMM and a closed-form solution
is derived that expresses the reduced GMM in terms of the
parameters of the base GMM. Later, HEM was extended to
cluster time-series PMs: DTs [Chan et al., 2010] and HMMs
[Coviello et al., 2012]. As the original HEM algorithm was
derived for clustering, [Yu et al., 2018] recently propose a
density-preserving HEM algorithm for simplifying a GMM

into an equivalent GMM with fewer components, while mini-
mizing the distortion as measured by KLD.

These clustering methods only obtain a discrete representa-
tion of the set of PMs, i.e., a finite set of representative models
and cluster assignments. In contrast, we propose to learn a
manifold of PMs, which is a continuum of representative mod-
els specified by the latent space coefficients. Hence, our model
can better visualize changes in the structure of the PMs.

In our learning algorithm, we adopt a variational approx-
imation to the expected log-likelihood, which is similar to
that of DPHEM [Yu et al., 2018]. The main difference is that
DPHEM takes a single input GMM and reduces the number
of components to obtain a single output GMM. In contrast,
our formulation takes a set of GMMs and embeds them into
a parametric manifold by minimizing the reconstruction loss
of the GMMs. DPHEM is a special case of our framework
when there is one input GMM and Km < Kb, where Km and
Kb are the number of components in the reconstruction GMM
and the input GMM, respectively. Also, the EM algorithm in
our paper has no closed-form solution in the M-step, whereas
the simpler M-step of DPHEM has a closed-form solution.

There are two general approaches for dimensionality re-
duction for PMs: kernel embedding and latent variable mod-
els. Kernel embedding explicitly models the mapping from
input space to latent variables using a kernel function (or
distance function). Hence, PMs can be embedded into a
low-dimensional space by using a suitably-defined kernel
function over probability distributions. For example, kernel
PCA [Schölkopf et al., 1998] can be used with the KL kernel
[Moreno et al., 2004] or probability product kernel [Jebara
et al., 2004] to perform dimensionality reduction on a set of
GMMs. Based on information geometry [Amari and Nagaoka,
2007], [Carter et al., 2009] propose Fisher Information Non-
parametric Embedding (FINE), which computes geodesics
on the Riemannian manifold of distributions, and then uses
multi-dimensional scaling (MDS) to obtain embeddings. The
advantage of these kernel methods is that the forward mapping
from distributions to embedding coordinates can be obtained
explicitly. However, the disadvantage is that the inverse map-
ping from embedding coordinates to distribution is difficult
and requires solving the pre-image problem, which hinders
interpretation of the embedding space and its relationship with
the input space. In contrast to kernel methods, our method
explicitly constructs the inverse mapping from latent space to
probability space.

Latent variable models solve the problem in the opposite
way: they model the generative process, i.e. inverse mapping
from low-dimensional latent variables to high-dimensional
variables. For example, Gaussian Process Latent Variable
Models (GPLVM) [Lawrence, 2004] obtains non-linear in-
verse mappings using a kernel matrix on the latent variables.
However, the high-dimensional variables are still treated as
vectors, and thus GPLVM cannot naturally represent struc-
tured non-vector data, such as probability distributions. While
it is possible to also kernelize the high-dimensional variable,
this leads to the same pre-image problem as KPCA above.
Similar to GPLVM, our method is also a generative model,
but in contrast to GPLVM, we construct an explicit parametric
mapping from the latent space to the probability distribution.
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AutoEncoders (AEs) are another type of nonlinear embed-
ding method with latent variables. AEs first map input vectors
to a latent space (encoder) and then reconstruct input vectors
from the latent variables (decoder). Using neural network
encoder/decoders, AEs can model complex mapping functions
for high-dim input vectors. However, previous AE works
have not considered how to handle multi-modal distribution
input such as GMMs – using vectorized GMMs as inputs to
the AE does not address the identifiability problem caused
by component permutations. Our method is invariant to com-
ponent permutation due to the KLD loss and the variational
parameters as assignment indicators.

3 Parametric Manifold Learning of GMMs

Let {πk,µk,Σk}
Kb

k=1 be the parameters of a GMM with K
components, where πk is the prior probability of the kth com-

ponent, and µk ∈ R
D and Σk ∈ S

D×D
+ are the mean and

covariance matrix of the kth component. The probability dis-

tribution for a GMM is p(x) =
∑Kb

k=1 πkN (x|µk,Σk). Our
goal is to learn a mapping between the space of GMMs and
a lower-dimensional latent space, i.e., to learn the forward
mapping f : p(x) → (w, z,y) where w ∈ R

dw , z ∈ R
dz ,

y ∈ R
dy are the latent variables for component prior, mean

and covariance, respectively, as well as an inverse mapping
f−1 : (w, z,y) → p(x).

3.1 Parametric Manifold for GMMs

In contrast to kernel methods, here we focus on explicitly con-
structing the inverse mapping from latent space to probability
space. Following PCA reconstruction, we define a set of prin-
cipal axes and corresponding coefficients (w, z,y) for each
GMM parameter (prior, mean, covariance), from which the
parameters can be reconstructed. The latent space variables
are used to reconstruct a GMM with Km components (pos-

sibly different from Kb), with parameters {π̂r, µ̂r, Σ̂r}
Km

r=1.
The rth component of the reconstructed GMM is defined by

a set of principal axes {ar, {mrl}
dz

l=1, {Crl}
dy

l=1} and offsets

{br, βr}, where ar ∈ R
dw , mrl, br ∈ R

D, Crl ∈ R
D×D

and βr ∈ R, according to

π̂r = σ(wT
ar)

∑Km
n=1 σ(wTan)

, µ̂r =

dz
∑

l=1

zlmrl + br,

Σ̂
−1
r =

dy
∑

l=1

log(1 + exp(yl))CrlC
T
rl + β2

rI,

(1)

where σ(x) = 1/(1 + exp(x)) is the sigmoid function, and
yl, zl are the l-th coefficients of y and z.

Similar to PCA, the mean µ̂r is a linear combination of prin-
cipal axes mrl, weighted by zl, and an offset vector br. The

reconstructed precision matrix Σ̂
−1
r is a linear combination of

CrlC
T
rl and an offset β2

rI . The reason for reconstructing the
precision matrix in this way is three-fold. First, the positive

definite constraint of Σ̂r is naturally fulfilled since the weights
log(1 + exp(yl)) are always non-negative. Second, when the
latent variable y ≪ 0, then the precision matrix will be a “de-
fault” value (i.e., a fixed level of uncertainty). For increasing
values of the latent variable y, the precision will increase, i.e.,

the covariance (uncertainty) decreases. Thus the latent variable
naturally interpolates between different shapes of covariance
matrices and a default covariance. Third, the gradients are eas-
ier to compute when defining the reconstruction through the
precision matrix. For priors π̂r, the sigmoid function has more
stable gradients, c.f., the gradients of the softmax function that
change rapidly due to the exponential function. Also note that
the probability constraints (non-negative and sum to 1) on the
prior are naturally fulfilled by the formulation.

Note that the latent variables (w, z,y) are shared among
all the components of the reconstructed GMM, although each
reconstructed component has its own set of principal axes.
Furthermore, there is no need to define an explicit correspon-
dence between the rth component of the reconstructed GMM
and kth component of the input GMM, since the learning al-
gorithm uses the reconstruction loss between the whole input
GMM and the whole reconstruction GMM – the ordering of
the components in the input GMMs will not affect the embed-
ding. Finally, PCA is a special case of our formulation in (1)
when there is only one component Kb = Km = 1, and the
latent variable y ≪ 0 and βr is a constant (see supplemental
[Liu et al., 2019]). From this perspective, our method is more
universal than vanilla PCA.

3.2 Learning with EM Optimization

We next propose a learning algorithm for estimating the recon-
struction parameters and latent variables from training data.
Given a training set of N GMMs, let pi(x) be the distribu-

tion for the ith GMM with parameters {πik,µik,Σik}
Kb

k=1.
Denote the corresponding latent variables as (wi, zi,yi),

the reconstructed GMM as {π̂ir, µ̂ir, Σ̂ir}
Km

r=1, and its dis-
tribution as p̂i(x). The reconstruction parameters Θ =

{ar, {mrl}
dz

l=1, {Crl}
dy

l=1, br, βr}
Km

r=1 and latent variables for

the training data Ω = {wi, zi,yi}
N
i=1 are obtained by mini-

mizing the reconstruction loss between pi(x) and p̂i(x), mea-
sured by KLD [Kullback, 1997],

{Θ∗,Ω∗} = argmin
Θ,Ω

N
∑

i=1

DKL(pi‖p̂i), (2)

where DKL(p‖q) =
∫

p(x) log p(x)
q(x)dx is the KLD between

p and q. Decomposing the KLD and removing the first term,
which is a constant w.r.t. {Θ,Ω} yields an equivalent opti-
mization problem to minimize the cross-entropy loss,

JCE(Θ,Ω) = −
N
∑

i=1

∫

pi(x) log p̂i(x|Θ,Ωi)dx

= −
N
∑

i=1

∫ Kb
∑

k=1

πikNik(x) log

Km
∑

r=1

π̂irN̂ir(x)dx, (3)

where Nik(x) = N (x|µik,Σik) is the original Gaussian and

N̂ir(x) = N (x|µ̂ir, Σ̂ir) is its reconstruction.

Variational Approximation

As the cross-entropy between two GMMs in (3) is intractable,
we derive an approximation based on a variational upper-
bound inspired by [Yu et al., 2018]. Introducing the variational

parameters q = {q
(i)
kr }, (3) is approximated (see supplemental

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3075



[Liu et al., 2019]),
JCE(Θ,Ω) ≤ J̃CE(Θ,Ω, q) (4)

= −
N
∑

i=1

Kb
∑

k=1

πik

Km
∑

r=1

q
(i)
kr

[

log π̂ir

q
(i)
kr

+ Ex∼Nik
[log N̂ir(x)]

]

The variational parameter q
(i)
kr can be interpreted as a soft

assignment value for assigning the kth component of the ith
GMM to the rth component of its reconstruction.

Variational Optimization Algorithm

Using J̃CE , we minimize an upper bound to JCE ,

{Θ̂, Ω̂, q̂} = argmin
Θ,Ω,q

J̃CE(Θ,Ω, q). (5)

We adopt an alternating (variational EM) algorithm to solve
the optimization problem:

(i) Variational M-step: Given q̂, optimize the manifold and

latent variables: {Θ̂, Ω̂} = argminΘ,Ω J̃CE(Θ,Ω, q̂).

(ii) Variational E-step: Given {Θ̂, Ω̂}, calculate the optimal

variational parameters: q̂ = argmin
q
J̃CE(Θ̂, Ω̂, q).

For (ii), the optimal values of the variational parameters q̂
(i)
kr

is derived analytically,

q̂
(i)
kr =

π̂irN̂ir(µik) exp{−
1
2 tr(Σ̂

−1
ir

Σik)}
∑Km

n=1 π̂inN̂in(µik) exp{−
1
2 tr(Σ̂

−1
in

Σik)}
. (6)

The M-step is solved efficiently by alternating optimization
of the parameters, i.e., using fast solvers for sub-problems
of optimizing one set of parameters while keeping others
fixed. For example, mrl and br can be obtain in closed-form,
CrlC

T
rl can be solved by semidefinite programming, ar and

βr can be solved by the Newton-Raphson method. Finally,
the optimizer may converge to a local minimum due to q̂. To
help escape from local minima, after each iteration, we use
a Metropolis-Hasting sampler for q̂ [Metropolis et al., 1953;
Hastings, 1970], which randomly swaps assignments for a
random Gaussian component (see supplemental [Liu et al.,
2019]).

Regularization

In (1), the latent variables and principal axes are unconstrained,
and thus multiple equivalent solutions exist by scaling the
latent variables and principal axes in opposite directions. To
remove this ambiguity, we apply regularization on the latent
variables, which effectively constrains the principal axes, using
a regularized objective function,

J̃CE(Θ,Ω, q) +
N
∑

i=1

(

cw‖wi‖
2 + cz‖zi‖

2 + cy‖yi‖
2
)

.

To better condition the assignment variables q
(j)
kr and prevent

degeneration to uniform assignments, following previous work
[Vasconcelos and Lippman, 1999; Yu et al., 2016], we intro-
duce virtual samples where the variables x are replicated with
i.i.d. distributions. Using Nv virtual samples, the optimal vari-
ational parameters are,

q̂
(i)
kr =

π̂irN̂ik(µik)
Nv exp{− 1

2Nvtr(Σ̂
−1
ir

Σik)}
∑Km

n=1 π̂inN̂in(µik)Nv exp{− 1
2Nvtr(Σ̂

−1
in

Σik)}
.

This expression is similar to the deterministic annealing [Rose,
1998], derived from the maximum entropy principle to avoid
poor local optima (see supplemental [Liu et al., 2019]).

Dataset Metric KPCA GPLVM FINE PML-GMM

Synthetic
KL Loss 505.6 4.678 - 5.419e-2
LDA Acc - - - -

Eye Fixations
KL Loss 1.749 0.8257 - 0.7100
LDA Acc 51.5% 51.5% 45.5% 81.8%

Flow Cyto (Kb=2)
KL Loss 5.196 4.284 - 2.447
LDA Acc 90.0% 95.0% 50% 95.0%

Flow Cyto (Kb=1)
KL Loss 5.258 1.689 - 1.680
LDA Acc 35% 100% 90% 100%

Social Checkin
KL Loss 7.668 16.784 - 2.7398
LDA Acc 43.8% 43.8% 62.5% 81.3%

Table 1: KL reconstruction loss for held-out test GMMs and LDA
classification accuracy in the latent space.

3.3 Inference

After learning the manifold Θ̂, a novel GMM is embedded
in the manifold by minimizing the cross-entropy between the
novel GMM {πk,µk,Σk}

K
k=1 and its reconstruction,

(w, z,y) = argmin
w,z,y

−

∫ Kb
∑

k=1

πkNk(x) log

Km
∑

r=1

π̂rN̂r(x)dx

+ cw‖w‖2 + cz‖z‖
2 + cy‖y‖

2. (7)
The optimization problem is solved using the same algorithm

in Section 3.2, but keeping the manifold parameters Θ̂ fixed.

3.4 Hierarchical Latent Space

In (1), we use different latent variables to embed the prior,
means and covariances to allow flexibility in representation.
However, this treats the generation of each set of parameters
independently. The dependencies among the prior, mean, and
covariances is further modeled using a hierarchical latent space
(HLS), which reduces the dimension of the latent space (LS).
The HLS can also be used to visualize the GMM manifold in
a 2D or 3D space. We assume a linear relationship between
HLS and LS, [wT

i y
T
i z

T
i ]

T = Hvi, where vi ∈ R
dv are

the HLS variables, and the matrix H ∈ R
(dw+dy+dz)×dv

consists of orthonormal basis vectors. Now the Variational
M-step optimizes w.r.t. {Θ,H,v} (see supplemental [Liu et
al., 2019]).

4 Experiments

To demonstrate the effectiveness of our method, we conduct
experiments on GMMs on four different domains: 1) synthetic
data, 2) flow cytometry data [Aghaeepour et al., 2013], 3) eye-
fixation data [Chan et al., 2018] and 4) social check-in data
[Cho et al., 2011]. For comparisons, we also learn the latent
space using GPLVM and KPCA, both using the Gaussian ker-
nel for vector inputs. To convert a GMM into a vector, we first
transform its parameters so that valid GMMs can be obtained
in the reconstruction stage – we map the prior to an uncon-
strained space using the inverse softmax function, and use a
Cholesky decomposition for the covariance matrix. The trans-
formed parameters of the GMM are then concatenated into a
long vector. As the GMM vector is determined by the order of
components during the concatenation, the component orders
will affect the result of embedding. We normalize the order
as follows. For all GMMs in the dataset, the parameters for
each Gaussian component are converted into vectors. and then
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Figure 2: Experiment on Synthetic Data. The positions of latent variables are kept the same as that of ground truth. PML-GMM learns a
smooth latent structure and achieve the best reconstruction.

mapped to a 1-D line using PCA. The PCA coefficient for each
Gaussian component then determines the order during concate-
nation. Finally, we compare with FINE [Carter et al., 2009],
which originally embeds Gaussians into a low-dimensional
space, by extending it to embed GMMs. The KLD between
GMMs is computed by variational approximation [Hershey
and Olsen, 2007].

We evaluate the methods in 4 ways: 1) the KLD reconstruc-
tion loss on a held-out test-set of GMMs; 2) the correlation
of the latent space with respect to other dependent variables
(metadata); 3) classification accuracy using latent discrimi-
nant analysis (LDA) in the latent space; 4) visualization of the
GMM manifold. Specifically, for (3), we use LDA to learn a
1D discriminant space from the trained latent variables, then
map test latent variables to the same space and use k Nearest
Neighbors to do classification. The accuracy measures the
correlation between latent space and data labels, as well as
the effectiveness of latent variables in downstream tasks. The
class labels for the eye fixation, flow cytometry, and social
check-in datasets are older/young, healthy/unhealthy, and liv-
ing city, respectively. Note that we put the experiment result
of social checkin data in Supplemental [Liu et al., 2019].

4.1 Summary of Quantitative Results

We first present a quantitative evaluation of the methods based
on the reconstruction loss of the held-out test data, and test
accuracy of using LDA in the latent space. Table 1 shows
the result. In terms of reconstruction loss, PML-GMM out-
performs other methods, which demonstrates that it general-
izes well to novel GMMs. For the accuracy metric, PML-
GMM outperforms KPCA and FINE. PML-GMM obtains the
same performance as GPLVM when the component number
is small, Kb={1, 2} on Flow Cytometry. However, when Kb

increases (Synthetic and Social Checkin), GPLVM performs
worse due to the component ordering problem when vectoriz-
ing the GMM parameters. These results show that the latent
space obtained by PML-GMM is more effective at revealing
the underlying structure in the data.

4.2 Synthetic Data

The synthetic dataset consists of 39 synthetic GMMs with
10 components, whose mean and covariances are generated

from a 1D latent space (Fig. 2(a1)), according to some latent
functions (see supplemental [Liu et al., 2019]), and the priors
are uniform. 20 GMMs are used for training (blue points)
and the other 19 (red points) are reserved for testing. For a
fair comparison, the latent space dimension is set as 1 for all
methods. PML-GMM learns both a smooth latent space and
achieve the best reconstruction error (Table 1), compared with
other methods. KPCA neither reconstructs GMMs nor learns a
smooth latent space. GPLVM reconstructs some of the GMMs
but fails on others, and the latent space is not consistent with
ground truth. See more visualizations in [Liu et al., 2019].

Our framework uses a two-stage estimation procedure: 1)
subsets of data (e.g., corresponding to subjects) are summa-
rized using GMMs; 2) the GMM manifold is estimated from
the individual GMMs. One reasonable alternative to our frame-
work is to directly learn the GMM manifold from the data
samples, denoted as Direct-PML (see supplemental [Liu et
al., 2019]). Fig. 2(5) shows an example using Direct-PML to
learn a manifold of synthetic GMMs. Direct-PML can neither
learn a good GMM manifold (Average KLD loss of 2.749)
compared to PML-GMM, nor learn a right latent space.

4.3 Eye-Fixation Data

The eye-fixation data [Chan et al., 2018] consists of eye-
fixation coordinates of 34 young adults and 67 older adults
(34 for training, 33 for testing) when recognizing faces. We
model each person’s eye-fixation pattern with a GMM, where
each Gaussian component corresponds to a region-of-interest
(ROI) on the face. As suggested by [Chan et al., 2018], we use
K=3 components corresponding to 3 ROIs. For PML-GMM,
the latent space is set to 6 dimensions (dw = dz = dy = 2)
and the HLS is set to dv = 3.

The latent space is shown in Fig. 3. Only in the latent space
of PML-GMM (Fig. 3a) do we observe that there are different
regions for older (AD quadrant) and young (CD quadrant)
adults, and the test data consisting of older adults (black plus
points) are all embedded into the older region (AD quadrant).
In contrast, the other three methods embed testing GMMs into
their latent spaces in an undesirable way (see LDA accuracy in
Table 1). We examine the correlation between the HLS and the
subject’s age using multivariate linear regression analysis (see
2). The HLS of PML is correlated with ages at a statistically
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Figure 3: Latent spaces of Eye-Fixation Data. PML-GMM can learn
meaningful regions corresponding to older (AD quadrant) and young
(BC quadrant) adults, and embeds test data to the correct region.
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Figure 4: Manifold Visualization of Eye-Fixation Data. (b) shows
the changes in eye-fixation regions of older adults (AD quadrant) to
young ones (CB quadrant). Green crosses show GMMs nearest to
the centroid.

significant level and has the largest R2 statistic.

PML-GMM GPLVM KPCA FINE

p <0.0001 0.1586 0.0157 0.0001

R2 0.3180 0.0773 0.1485 0.2703

Table 2: Eye fixation data: correlation between the HLS and age
using multivariate linear regression analysis.

For PML we visualize the manifold along the two principal
axes in Fig. 4b. Along AB, from the centroid towards A shows
a vertically shaped ROI going up towards the upper center of
the face, and towards B shows a vertically shaped ROI at
the nose and a more horizontally shaped ROI around the eyes.
Along CD, from the centroid to C shows a horizontally shaped
ROI going upwards, whereas towards D shows a vertically
shaped ROI going downwards. As older adults’ ROIs focus
on the face midline, their ROIs are vertically shaped, and thus
they are embedded into the AD quadrant. In contrast, young
adults look around the eye regions and have horizontal ROIs
around the eyes, and thus they are embedded into the BC
quadrant. This finding is consistent with the previous paper
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Figure 5: Manifold Visualization of Flow Cytometry Data. (a) HLS
of PML-GMM. (b) EF visualizes the change from unhealthy cells to
healthy cells and GH visualizes the middle region between healthy
and unhealthy.

[Chan et al., 2018] but we visualize the continuous change of
eye gaze strategy, instead of only discrete clusters as in [Chan
et al., 2018].

4.4 Flow Cytometry Data

Flow cytometry data is used in medical diagnosis to test for
unhealthy disorders by measuring cell properties in patients.
The dimensionality of flow cytometry data samples ranges
from 5-8, and the number of points for one patient is often
thousands, which makes direct analyses cumbersome. Here
we use an open AML dataset [Aghaeepour et al., 2013] with
7-dim features. 30 healthy and 30 unhealthy patients are used
for training, and another 10 healthy and 10 unhealthy are used
for testing. We use the same LS/HLS dimensions as Sec. 4.3.
We run EM on each patient’s data using K ∈ {2, 3, 4, 5} and
find that when K > 2 there are many subjects (> 80%) with
low-weight components. Hence, we use either Kb=2 or Kb=1
GMMs to model each patient. Although PML-GMM and
GPLVM performs the same in classification accuracy, PML-
GMM achieves 43% lower reconstruction loss than GPLVM
(see Table 1). Furthermore, PML-GMM can easily visualize
GMMs from the latent space (see Fig. 5), while GPLVM
cannot give a good visualization due to the poor reconstruction
loss. In Fig. 5b, EF shows that unhealthy cells change to
healthy cells by gradually separating two components. GH
shows the region between the unhealthy and healthy, and
includes both 1 component (unhealthy) and 2 components
GMMs (healthy). See [Liu et al., 2019] for latent spaces learnt
by KPCA, GPLVM and FINE.

5 Conclusion

In this paper, we propose a parametric method to learn the
manifold of GMMs, which both learns a parametric mapping
from latent space to GMM parameters, and obtains a continu-
ous and interpretable latent space. Future work will increase
the representation power of the HLS by nonlinear mapping
and extend PML to other important probabilistic models like
HMMs.
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