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Abstract

numerical variables.

difference between the means as an effect measure.

Background: The number of events per individual is a widely reported variable in medical research papers. Such
variables are the most common representation of the general variable type called discrete numerical. There is
currently no consensus on how to compare and present such variables, and recommendations are lacking. The
objective of this paper is to present recommendations for analysis and presentation of results for discrete

Methods: Two simulation studies were used to investigate the performance of hypothesis tests and confidence
interval methods for variables with outcomes {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}, using the

Results: The Welch U test (the T test with adjustment for unequal variances) and its associated confidence interval
performed well for almost all situations considered. The Brunner-Munzel test also performed well, except for small
sample sizes (10 in each group). The ordinary T test, the Wilcoxon-Mann-Whitney test, the percentile bootstrap
interval, and the bootstrap-t interval did not perform satisfactorily.

Conclusions: The difference between the means is an appropriate effect measure for comparing two independent
discrete numerical variables that has both lower and upper bounds. To analyze this problem, we encourage more
frequent use of parametric hypothesis tests and confidence intervals.

Background

Categorical, or discrete, data are characterized by having
a finite number of categories or values, whereas continu-
ous data can take on any real value within a given range.
For a categorical variable with more than two categories,
we distinguish between nominal and ordered variables.
Ordered variables have a natural ordering to the cate-
gories, for example, degree of pain classified as none,
mild, moderate, or severe.

Sometimes, we have data that are essentially categori-
cal, but with numerical properties, or numerical data
that can take on only a small number of values. We
shall refer to such data as discrete numerical [[1], p.11].
In medical research, discrete numerical data arise mostly
in situations where we count the number of events per
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individual, such as the number of clinical visits, the
number of adverse events, or the number of units of
blood transfused. As a preliminary assessment of the
prevalence of variables reporting the number of events,
we considered all randomized, controlled trials (RCTs)
published in January and February 2010 in the New
England Journal of Medicine, Lancet, Journal of the
American Medical Association, and BMJ. Out of a total
of 52 papers, 24 (46%) papers reported at least one vari-
able describing the number of events; 16 (31%) papers
reported baseline variables, and 15 (29%) papers
reported outcome variables.

Discrete numerical data are a blend between categori-
cal and continuous data, and it is not obvious how to
analyze such data. Of particular interest is how to com-
pare two independent discrete numerical variables, a
common problem in comparisons of two treatment or
exposure groups. Should we analyze discrete numerical
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variables using methods for continuous or for ordered
categorical data?

The main problem with using methods for ordered
categorical data is information loss. Statistical methods
for ordered categorical data do not treat the distance
between values or categories as constant. Thus, we may
not be getting the most out of the data. Even worse in
that regard is to combine the outcomes into two cate-
gories and use methods for binary data. By doing so, we
may throw away a lot of information. Poor power is
often the result, and estimates may be inaccurate [2,3].

If we intend to analyze discrete numerical data with-
out discarding relevant information, we should consider
treating the variables as if they were continuous. Contin-
uous variables with an approximately normal distribu-
tion are best analyzed using parametric methods for
confidence intervals and hypothesis tests [4,5].
The usual alternative is a non-parametric test and a non-
parametric or bootstrap confidence interval, or a trans-
formation, for example, the logarithmic, prior to para-
metric methods. To decide if parametric methods are
appropriate, the shapes of the underlying distributions
are estimated by inspecting histograms, QQ-plots, and
sample moments, or by using prior knowledge about the
variable of interest. For discrete numerical variables,
however, such tools may not be relevant because of the
discrete nature of the underlying distributions.

In the survey of 52 RCT's published in four leading
medical journals, 12 (23%) papers used statistical meth-
ods to compare discrete numerical variables between
groups. All these 12 papers reported p-values, but only
two papers reported effect measures and confidence
intervals. Seven papers used non-parametric methods,
three papers used parametric methods, one paper used
negative binomial regression, one paper stated that the
Cochran-Mantel-Haenszel test was used, and one paper
used either the two-sample T test or the Wilcoxon-
Mann-Whitney test.

The literature on statistical methods for analyzing dis-
crete numerical variables is sparse. Newcombe [6] com-
pares eight confidence interval methods for the mean of
a single variable on the scale {0, 1, 2}, but does not con-
sider comparisons of two independent variables. For
comparing two continuous variables, on the other hand,
a large body of literature exists. A relevant study for the
hypothesis tests under investigation in this paper is
Fagerland and Sandvik [7]. Confidence intervals for the
difference in means of two independent continuous vari-
ables are considered in Zhou and Dinh [5] and Wilcox
[[8], chapter 5]. Ordered categorical data is the topic of
many papers, see for example Ryu and Agresti [9].

Returning to our survey, we counted nine different
methods of presenting discrete numerical variables. The
most common methods were to tabulate the data using
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categories such as {0, 1-3, 4+}, present the group means
and standard deviations, or present medians and inter-
quartile ranges (IQRs). Other methods included various
combinations of means, medians, ranges, IQRs, and con-
fidence intervals. Only two (8%) of 24 papers reported
complete non-categorized data.

There is thus lack of a consensus on how to compare
and present discrete numerical variables. In this paper,
we shall investigate the performance of standard meth-
ods for continuous data applied to discrete numerical
variables with outcomes such as {0, 1, 2, 3}. We assume
that we are faced with samples from two independent
random variables of equal type but with possibly differ-
ent distributions. We shall further assume that we do
not have a composite upper (or lower) limit, such as {0,
1, 2, 3, 4+}, where 4+ indicates outcomes with four or
more events. The aim of this paper is to establish strong
empirical evidence for recommending a suitable effect
measure, methods for hypothesis testing and confidence
intervals, and overall manner of presentation.

Methods

Effect measure

When we are dealing with two independent continuous
variables, we are usually interested in estimating (and
making inference about) the difference between some
measure of the central tendencies. For symmetric distri-
butions, most measures of central tendency, such as the
arithmetic mean and the median, are equal. However,
when distributions are skewed, different measures can
vary substantially. The mean can be unduly influenced
by outliers and may be a poor representation of the
typical value. Choosing an appropriate measure of cen-
tral tendency can then be quite difficult, particularly
because software to analyze the optimal effect measure
may not be readily available.

Fortunately, we seldom have the same problem with
discrete numerical variables. When the variables have
both lower and upper bounds, and when the range of
possible values is quite limited, there will be no outliers
or extreme values, at least not in the mathematical
sense. There is thus no obvious added value of using,
for example, the median or a trimmed mean as the mea-
sure of central tendency. Moreover, the median of dis-
crete numerical variables often has a small number of
possible values—five for a three-valued scale—which
makes it an imprecise measure of central tendency and
thus unsuitable for demonstrating less than large differ-
ences between the groups.

As long as the mean of the variable of interest makes
sense for the subject matter, we consider it to be a sui-
table measure of central tendency and that the differ-
ence between the two means is an appropriate effect
measure. Note that using the mean is only appropriate
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for outcome scales without composite limits. If scales
such as {0, 1, 2, 3+} is used, where 3+ indicates out-
comes with three or more events, the estimated group
means may underestimate the true means. The resulting
estimate of the difference between the means may then
be difficult to interpret. When using methods for con-
tinuous data, we strongly recommend against using
composite limits.

Another appropriate effect measure for comparing two
independent groups is the relative effect, p = Pr(X <Y),
where X and Y are random samples from the two groups.
The relative effect is the probability that a random sam-
ple from one group is less than a random sample from
the other group. If the groups are identically distributed,
p = 1/2. Several rank-based methods, such as the
Wilcoxon-Mann-Whitney test, is based on p or its gener-
alization to tied values, p = Pr(X <Y ) + 0.5. Pr(X = Y').

As an effect measure, the relative effect has the disad-
vantage that it is less specific than the difference
between the means, and thereby more difficult to inter-
pret. The relative effect can be a good alternative in
situations where the mean is a poor estimate of central
tendency. For discrete numerical variables with few pos-
sible values, the difference between the means is our
preferred effect measure.

Simulation study of hypothesis tests

For the main comparison of hypothesis tests, we con-
sider four hypothesis tests: the two-sample T test, the
modified T test for unequal variances (the Welch U
test), the Wilcoxon-Mann-Whitney (WMW) test with
adjustment for ties, and the Brunner-Munzel generalized
WMW test. Details of the test statistics and their distri-
butions can be found in Additional file 1.

We selected four outcome scales: {0, 1, 2}, {0, 1, 2, 3},
{0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}. For each scale, we
defined six underlying distributions, which we named
uniform, normal, u-shaped, linear trend, step, and
skewed. For the {0, 1, 2} scale, no skewed distribution
was defined, but two different step distributions were
used. Table 1 presents the expected values of the

Table 1 Expected values for the six distributions in the
simulation study

Outcome scale

Distribution {0, 1,2} {0,1,2,3} {0,1,2 3,4} {0,1,2 3, 4,5}
Uniform 1.0 1.5 20 25
Normal 1.0 15 20 2.5
U-shaped 1.0 1.5 20 25
Linear trend 0.63 1.0 1.25 1.625

Step 0.8 & 0.6* 09 1.1 16
Skewed * 0.6 0.75 0.88

*An additional step distribution was used instead of the skewed distribution.
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distributions. Further details are provided in Additional
file 1: Web Figures 1-4. With six distributions, a total of
6> = 36 different combinations are possible. For 12 of
these combinations, the expected values are equal, and
for the remaining 24, the difference between expected
values ranges from small (linear trend versus step) to
large (uniform/normal/u-shaped versus skewed/step).
When the two sample sizes are equal, the order of the
distributions is irrelevant and the number of distribution
combinations is reduced to 21, nine with equal expected
values and 12 with unequal expected values.

Nine different sample size combinations were used,
ranging from (10, 10) to (100, 100) and including both
equal and unequal sizes. The nominal significance level
was 5% and 100 000 replications were used. Table 2
shows a summary of the simulation setup.

It has been suggested that a permutation test based on
the Brunner-Munzel test statistic is appropriate for
comparing small-sample discrete data [11]. We assessed
this test—using 10 000 random permutations for each
calculated test—in a small separate simulation study.
Only the sample sizes m = n = 10, the nine combina-
tions of distributions with equal expected values, and 10
000 replications were used.

Simulation study of confidence intervals

The variance estimates used in the T and the Welch U
tests are frequently used for the computation of confi-
dence intervals. We refer to those intervals as the T
confidence interval and the Welch U confidence inter-
val. These are reported in most general purpose statisti-
cal software packages. It is clear from the results of the
simulation study of hypothesis tests (see Results section)
that the variance estimate for the T test is inaccurate
for most situations where the sample sizes are unequal.
As such, we include the Welch U confidence interval,
but not the T confidence interval, in our investigation.
In like manner, we do not consider non-parametric

Table 2 Summary of the simulation setup (hypothesis
tests)

Hypothesis tests T: two-sample T test

U: Welch U test (T test for unequal variances)
WMW: Wilcoxon-Mann-Whitney test

BM: Brunner-Munzel test

Outcome scales {0,1,2,,{0,1,2,3,{0,1,23,4,{0,1,2 3,4, 5}

Distributions Uniform, normal, u-shaped, linear trend, step,
skewed

Sample sizes (10,10), (25,25), (50,50), (100,100), (25,10), (50,10,

(m, n) (100,50), (100,25), (100,10)

Nominal siglevel 5%

Replications 100 000
Programming Matlab [10] with the Statistics Toolbox
language
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confidence intervals based on the WMW statistic
because the WMW test performed poorly in the simula-
tion study of hypothesis tests.

As alternatives to the Welch U confidence interval, we
consider two simple bootstrap intervals: the percentile
bootstrap and the bootstrap-t [12], both with 2000
samples.

Bootstrap confidence intervals are computationally
demanding. For the computation of a single interval,
there are, of course, no obstacles with modern computer
power. In a simulation study, however, we need to com-
pute several thousand intervals, which, accumulated
over various settings, can be quite time consuming. The
full simulation setup from the previous section is
thereby reduced for the investigation of the confidence
intervals. We consider only four sample size combina-
tions and use 10 000 replications. The outcome scales
and the distributions are unchanged. We summarize the
new simulation setup in Table 3.

Results

Hypothesis tests

For each combination of outcome scale, sample sizes,
and distributions, the rejection rates of the tests were
recorded. When the expected values of the two distribu-
tions were equal, the rejection rates estimated the true
significance level of the tests for the hypothesis of equal
means. For distributions with unequal expected values,
the rejection rates estimated the power of the tests to
detect departures from equality of means.

For the assessment of true significance levels, we
defined robustness criteria. If, for a given setting, the
estimated true significance level of one of the tests
deviated less than 10% from the nominal level, the test
was defined as 10% robust. Similarly, if the estimated
true significance level deviated less than 20% from the
nominal level, the test was defined as 20% robust. A test
with true significance levels that deviated more than

Table 3 Summary of the simulation setup (confidence
intervals)

Confidence intervals U: the Welch U (T adjusted for unequal

variances)

PB: percentile bootstrap (2000 samples)

Bt: bootstrap-t (2000 samples)
0,1,2,{01,23}1{01,23,4,1{0,1,23,45}

Uniform, normal, u-shaped, linear trend, step,
skewed

(10, 10), (50, 50), (25, 10), (100, 25)
Nominal confidence 95%

Outcome scales
Distributions

Sample sizes (m, n)

level
Replications 10 000
Programming Matlab [10] with the Statistics Toolbox

language
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20% from the nominal level was defined as nonrobust.
For a nominal significance level of 5%, the three robust-
ness categories were

+ 10% robust: 4.5 < p < 5.5
+ 20% robust: 4.0 < p < 5.0
+ Nonrobust: p < 4.0 or p > 6.0

where p denotes the estimated true significance level.
These robustness criteria have been used previously
[7,13]. We refer to Bradley [14] for a general discussion
of robustness criteria.

We present the full results of the main simulation
study in Additional file 2: Web Tables 3-38. Table cells
are colored green, yellow, and red to indicate 10%
robustness, 20% robustness, and nonrobustness,
respectively.

To facilitate interpretation of the results, we present a
summary of the results in Tables 4-5 and Additional file
2: Web Tables 1-2. The summery tables for the out-
come scales {0, 1, 2, 3, 4} (Additional file 2: Web Table
1) and {0, 1, 2, 3, 4, 5} (Additional file 2: Web Table 2)
were placed in Additional file 2 because the results were
similar to the results from the outcome scale {0, 1, 2, 3}
(Table 5). Columns 2-5 show the mean deviation of the
true significance level from the nominal significance
level for the four main tests. The mean value is calcu-
lated over all combinations of distributions with equal
expected values. For each sample size combination, the
test with the smallest mean deviation (the best test in
that situation) is marked with bold type. The test with
the largest mean deviation (the worst performing test) is
marked with italic type.

For the permutation test, the rejection rates for the
outcome scale {0, 1, 2} ranged from 6.5% to 9.8%. The
mean deviation from 5% was 2.89. When the other out-
come scales were used, the rejection rates decreased but
were still quite high and greater than those of the other
tests.

Table 4 Simulation results (hypothesis tests) for the
outcome scale {0, 1, 2}

Mean deviation from 5% Relative power (%)

Sample size T u wWMW BM T u WMW BM
10, 10 0.19 030 060 075 902 884 867 100.0
25,25 010 0.08 033 023 9.2 9.1 991 100.0
50, 50 0.04 005 023 011 975 974 100.0 997
100, 100 0.07 007 027 009 983 983 100.0 997
25,10 127029 124 042 979 941 9.7 100.0
50, 10 185 0.35 1.90 050 982 912 100.0 983
100, 50 087 0.06 089 008 980 974 100.0 992
100, 25 163  0.11 1.64 017 971 937 1000 973
100, 10 225 036 227 051 971 869 100.0 943
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Table 5 Simulation results (hypothesis tests) for the
outcome scale {0, 1, 2, 3}

Mean deviation from 5% Relative power (%)

Sample size T u WwWMw BM T u WMwW BM
10, 10 024 028 055 059 1000 968 899 984
25,25 006 0.06 035 019 1000 998 948 956
50, 50 0.06 006 033 011 1000 999 961 958
100, 100 007 0.07 033 010 100.0 1000 977 973
25,10 135 027 134 044 1000 954 927 946
50, 10 205 039 200 051 1000 915 934 913
100, 50 100 0.04 703 006 1000 997 967 96.1
100, 25 178 0.09 177 012 1000 976 956 941
100, 10 255 041 242 050 100.0 884 936 890

Columns 6-9 display the relative power of the four
main tests. The relative power is calculated by adding
the per cent rejection rates for all combinations of dis-
tributions with unequal expected values and using the
largest sum as the reference value. The greatest power is
marked with bold type and the lowest power is marked
with italic type.

The proportions of true significance levels that were
nonrobust—averaged over all outcome scales, sample
sizes, and distribution combinations—were 31% (T), 6.8%
(U), 34% (WMW), and 1.8% (BM).

Confidence intervals

For each calculated confidence interval, we note three
items: (i) does the interval contain the true difference
between the means? (ii) the length of the interval; (iii)
does the confidence limits extend beyond the maximum
possible difference for the scale? For example, when
using the outcome scale {0, 1, 2}, the maximum possible
difference between the means is +2.

The first item is used to estimate the coverage prob-
ability of the confidence intervals. The coverage prob-
ability should be close the nominal confidence level of
95%. If two or more confidence intervals have similar
coverage probabilities, we can compare the intervals’
lengths. Note that an interval with a low coverage prob-
ability can be expected to be shorter than an interval
with a coverage probability close to the nominal level.
From the third item, we compute the overshoot rate—
the rate at which the intervals give nonsensical results.

The full results of the simulation study are given in
Additional file 2: Web Tables 39-54. As before, green
table cells indicate 10% robustness (94.5 < ¢ < 95.5), yel-
low table cells indicate 20% robustness (94.0 < ¢ < 96.0),
and red cells indicate nonrobustness (¢ < 94.0 or ¢ >
96.0), where ¢ denotes the estimated coverage
probability.

We present a summary of the results in Table 6. Each
table cell is the per cent mean coverage probability or
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Table 6 Simulation results (confidence intervals)

Mean coverage prob. Mean interval length

Sample size U PB Bt U PB Bt
Outcome scale {0, 1, 2}

10, 10 95.2 93.2 95.8 145 127 149
50, 50 94.8 94.7 94.8 0.61 0.60 0.61
25,10 94.3 92.5 94.1 121 1.07 1.19
100, 25 95.0 94.3 94.6 0.70 0.66 0.69
Outcome scale {0, 1, 2, 3}

10, 10 95.0 93.0 95.8 1.95 1.71 201
50, 50 94.8 94.6 94.8 0.82 0.80 0.82
25,10 94.5 92.5 943 1.63 144 161
100, 25 94.8 94.0 944 094 0.89 092
Outcome scale {0, 1, 2, 3, 4}

10, 10 94.9 92.7 95.8 236 2.05 243
50, 50 94.8 94.5 94.8 0.99 097 099
25,10 94.5 92.5 945 1.96 173 195
100, 25 94.7 94.1 944 113 1.07 1.1
Outcome scale {0, 1, 2, 3,4, 5}

10, 10 94.9 92.5 95.8 284 247 294
50, 50 94.8 94.5 94.8 1.20 117 1.20
25,10 94.5 925 945 237 2.09 2.35
100, 25 94.7 94.0 944 1.35 1.29 134

Mean coverage probabilities in per cent.

the mean interval length over all combinations of
distributions.

The proportions of confidence intervals that were
nonrobust—averaged over all outcome scales, sample
sizes, and distribution combinations—were 6.6% (U), 60%
(PB), and 18% (Bt).

The overshoot rate was zero for all intervals for all
settings.

Recommendations: hypothesis test

For the outcome scale {0, 1, 2}, both the Welch U test
and the Brunner-Munzel test had true significance levels
that were close to the nominal level, although the Brun-
ner-Munzel test did not perform well for the smallest
sample size combination (m = n = 10). Among the two
tests, the Brunner-Munzel test had superior power. The
WMW test had true significance levels close to the nom-
inal level when both samples were drawn from identical
distributions. However, it was severely nonrobust for
unequal distributions, particularly when the sample sizes
were unequal. In these cases, the true significance level of
the WMW test was sometimes above the nominal level
and sometimes below the nominal level. The WMW test
is thus not a reliable test of equality of distributions as it
would have poor power in many situations. The ordinary
T test performed similarly to the WMW test and neither
test can be recommended. Nor can we recommend the
Neubert-Brunner permutation test, which performed
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poorly for m = n = 10. Instead, we recommend the Brun-
ner-Munzel test, expect for small sample sizes where the
Welch U test is our first choice.

The results from using the outcome scales {0, 1, 2, 3},
{0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5} were similar and are
considered together. The T and WMW tests were
usually robust when distributions were equal, but for
unequal distributions, the nonrobustness of both tests
increased with increasing number of outcome values. Of
all tests considered, the T test had the greatest power.
The Welch U test had superior robustness properties
and performed well both for equal and unequal sample
sizes, except for some cases where the sample size dif-
ference was large. Its power was often quite close to
that of the T test. The Brunner-Munzel test performed
generally well, but were usually slightly inferior to the
Welch U test. We recommend the Welch U test and
note that the Brunner-Munzel test can be a useful alter-
native. The T test and the WMW test are not
recommended.

Recommendations: confidence intervals
The results for all three confidence interval methods
were consistent over all the outcome scales. The cover-
age probability for the percentile bootstrap interval was
considerably below the nominal level for most situa-
tions, and as such, we cannot recommend its use. The
bootstrap-t interval performed well when both sample
sizes were 50. However, for the other sample size com-
binations, the coverage probability often deviated mark-
edly, and in both directions, from the nominal level. In
general, the Welch U interval had coverage probabilities
close to the nominal level, although some distribution
combinations produced coverage probabilities in the
range 93-94% when the sample sizes were unequal. The
interval lengths of the Welch U and the bootstrap-t¢
intervals were similar.

Overall, the Welch U confidence interval performed
better than the two bootstrap intervals and we recom-
mend its use.

Recommendations: presentation of results

Reporting guidelines recommend—and many journals now
require—that the principal analyses of a study are pre-
sented with the three key statistical items: point estimate,
confidence interval, and p-value [15,16]. No exception
should be made for discrete numerical data. In addition,
given the discrete nature of the data, a 2 x g table (where g
is the number of outcome values) representing the entire
body of data can easily be presented, at least when the
number of outcome values is small. This will show the dis-
tribution of data across the possible outcome values and
allow readers to perform alternative analyses. Unfortu-
nately, such reporting is rarely done in practice. The usual
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method of presentation is to report the group means or
medians with either the standard deviations or the inter-
quartile ranges. In the next section, we consider data from
two clinical trials and illustrate how discrete numerical
data can be analyzed and presented.

Clinical example: postcard intervention to reduce
repetition of deliberate self poisoning

In a randomized controlled trial of patients hospitalized
for deliberate self poisoning, Carter et al. [17] rando-
mized 378 patients to an intervention group and 394
patients to a control group. All patients received stan-
dard treatment. In addition, the patients in the interven-
tion group received eight postcards over 12 months.
The main outcome measures were the proportion of
patients with one or more repeat episodes of deliberate
self poisoning and the number of episodes of deliberate
self poisoning per patient during 12 months. The latter
outcome measure is discrete numerical. As the maxi-
mum number of observed episodes per patient was four,
the outcome scale was {0, 1, 2, 3, 4}.

The authors detected a difference between the sexes
and undertook subgroup analyses for men and women
separately. Complete data is available for men (Table 7),
but not for women. The distributions are highly skewed,
but appear to be quite similar in the two groups. The
sample size is large and—given the results from the
simulations studies—it appears appropriate to use the
Welch U confidence interval and test. The difference
between the means is 0.0059 with 95% confidence inter-
val -0.14 to 0.15. The p-value is 0.94. There is thus no
evidence of a treatment effect in men.

The authors of this trial used negative binomial regres-
sion to compare the risk of repeat episodes in the two
groups. They found that the incidence risk ratio for the
postcard group was 0.97 (95% confidence interval 0.48 to
1.98, p = 0.94)-a similar result to the one above. The
negative binomial distribution is based on a sequence of
Bernoulli trials where the probability of an event (an epi-
sode of self poisoning) is constant. We are not convinced
that it is appropriate to treat the number of repeat epi-
sodes of deliberate self poisoning as a sequence of event/
non-event trials. Furthermore, it does not seem likely
that the probability of an episode of self poisoning is
independent of the number of previous episodes.

Table 7 Number of repeat episodes of deliberate self
poisoning in men

Number of repetitions

0 1 2 3 4  mean (std)
Control group (n = 102) 86 13 2 0 1 0.21 (0.57)
Postcard group (n =145) 125 13 10 2 0 020 (0.56)

Source: Carter et al. [17], Table 3.
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Clinical example: intensive versus standard asthma
education program

Does an intensive asthma education program reduce the
number of visits to the emergency department and the
number of hospitalizations for asthmatic children? Ng et
al. [18] examined this issue by randomizing 100 children
with an acute attack of asthma to either an intensive
asthma education program (n = 55) or a standard
asthma education program (n = 45).

The number of visits to the emergency department
during the first three months after discharge from the
pediatric department was observed on a {0, 1, 2, 3, 4}
scale. The results are given in Table 8. The sample size
in this trial is similar to the (50, 50) used in the simula-
tion studies, where the Welch U interval and test are
recommended. The difference between the means is
0.83 with 95% confidence interval 0.36 to 1.30. The p-
value is 0.0007. It appears that the intensive program
reduces the number of visits to the emergency depart-
ment by almost one visit per patient as compared with
the standard program. The authors further found that
the intensive program reduced the number of hospitali-
zations, but not the number of unscheduled visits to the
general practitioners.

Finally, we note a small discrepancy between our cal-
culations and the results reported in Ng et al. [18]. No
effect measure and confidence interval were presented
in that paper, but the p-value was given as 0.004 with
either the T test or the Wilcoxon-Mann-Whitney test.
We get p = 0.0003 with the ordinary T test, p = 0.0007
with the Welch U test, and p = 0.001 with the Wil-
coxon-Mann-Whitney test.

Discusssion

We have considered how to compare two independent
discrete numerical variables, a problem for which the dif-
ference between the two means is a suitable effect mea-
sure. Through two simulation studies, we find that the
Welch U test and confidence interval can be recom-
mended for statistical inference. The Brunner-Munzel
test can also be recommended—except for small sample
sizes—however, if it is used in conjunction with the
Welch U confidence interval, consistency between the
test and confidence interval is not guaranteed. We prefer
a unified approach, where test and confidence interval is
based on similar principles. We further recommend that

Table 8 Number of visits to the emergency department

Number of visits

0 1 2 3 4 mean (std)
Standard program (n = 45) 19 10 7 3 6 127 (142)
Intensive program (n = 55) 39 8 8 0 0 044074

Source: Ng et al. [18], Table 3.
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a table summarizing all the data is presented, at least for
primary outcome variables.

We are not aware of any other paper that explicitly deal
with the problem of comparing two independent discrete
numerical variables by using statistical methods for con-
tinuous data. Our small survey illustrates that comparisons
and presentations of such variables are performed in var-
ious fashions in the medical research literature. Few
reported effect measures and confidence intervals, and few
presented complete data. Non-parametric methods—which
were outperformed by their parametric counterparts in
our study—were the most commonly used statistical meth-
ods. As such, this paper provides a necessary justification
for using standard parametric methods for continuous
data when comparing discrete numerical variables.

If we compare the recommendations in this paper
with the results from studies of two continuous vari-
ables, there is some, but not complete, agreement. For
approximately normal distributed variables, the two-
sample T test and confidence interval are well known to
be the optimal methods for comparing the means. It is
for nonnormal data, and especially skewed data, that
alternative methods might be preferable. In a study of
hypothesis tests, Fagerland and Sandvik [7] found that
no test can be recommended for all situations, although
the Welch U test performed best overall. They recom-
mend that the selection of test is based on a thorough
investigation of distribution properties. Zhou and Dinh
[5] compared the ordinary T interval, the bootstrap-¢
interval, the bias-corrected and accelerated interval,
and three intervals based on transformation of the
t-statistic. They found that the bootstrap-t interval
gave consistent and best coverage, and that two of the
transformation intervals were better than the ordinary
T interval. The most noticeable difference between
these two studies and the present one is the perfor-
mance of the bootstrap-¢ interval. In our study, the
bootstrap-¢ interval performed poorly for small sample
sizes and for unequal sample sizes compared with the
Welch U interval. This difference in performance may
be due to the fact that Zhou and Dinh used continu-
ous distributions, whereas we used discrete distribu-
tions. Unfortunately, Zhou and Dinh [5] did not
include the Welch U interval in their simulation study,
thus a comparison of the Welch U and the bootstrap-¢
intervals for continuous distributions is not available.
Regarding the poor performance of the WMW test,
Lehmann [[19], Section 1.4 and p.60] notes some con-
cerns both for the exact and the asymptotic WMW
test in the presence of many ties.

Sometimes, it might be of interest to compare other
aspects of the variables besides the means. In the example
of intensive versus standard asthma education program,
for example, not only the means but also the standard
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deviations are quite different (Table 8). The Kolmogorov-
Smirnov test is commonly used to test the hypothesis that
two variables have identical distributions. In the presence
of many ties—as is the case with discrete numerical data—
Neuhduser [20] suggests a permutation test based on the
Baumgartner-Weif3-Schindler statistic, and shows that this
test is superior to the Kolmogorov-Smirnov test and five
other tests for the hypothesis of equal distributions.

Our two simulation studies were limited to the out-
come scales {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1,
2, 3, 4, 5}. Nevertheless, we extend the recommendations
to wider discrete numerical outcome scales—provided
they have both upper and lower limits—with some confi-
dence. This is due to two reasons: (i) the results from the
simulation studies were quite similar for the outcome
scales {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}; (ii) as
long as the variables have lower and upper bounds that
are not too far apart, the mean will be an appropriate
measure of central tendency. We thereby expect that the
methods under investigation in this study will perform
similarly on variables with outcomes such as {0, 1,...., 10}.

One benefit of being able to use simple parametric
tests and confidence intervals for the comparison of two
samples is that there is a natural way of generalizing the
approach to situations with more than two samples and
to the regression setting. It would be useful to perform
a study to assess the performance of linear regression
models with discrete numerical dependent variables.
Based on the results from this study, we are optimistic
about the prospects from such an investigation.

Conclusions

In the medical research literature, discrete numerical
variables—usually reporting the number of events per
individual-are common. Until now, no studies has
assessed the performance of parametric methods for
comparing such variables. In our study, the Welch U test
and confidence interval outperformed the Wilcoxon-
Mann-Whitney test and two simple bootstrap intervals.
We encourage more frequent use of parametric methods
for comparing discrete numerical variables.
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